ih
 Hydrological data UK

1992 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1992
YEARBOOK

© 1993 Natural Environment Research Council
 Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0948540575

Editor Hydrological data UK series: T J Marsh

I The acquisition, archiving and validation of the bulk of the hydrological data featured in this Yearbook is undertaken as part of the National Water Archive (NWA) project at the Institute of Hydrology. Under the leadership of M L Lees (NWA Manager) a team of regional representatives is responsible for liaison with the measuring authorities (see page 172). In addition to the Project Leader and Yearbook Editor, this team currently includes:-

N W Arnell, A R Black, J D Dixon, S Green, I G Littlewow, S C Loader, D G Morris and F J Sanderson.
The style and contents of the Yearbook, and the scope of the data retrieval service which complements it, reflect a decade of archive system development supervised by D G Morris. Recent enhancements to the retrieval and data presentation facilities have largely been undertaken by O Swain and $R W$ Flavin.

The British Geological Survey is responsible for the acquisition and archiving of the featured groundwater level data. Until his retirement in September 1992, R A Monkhouse was the Groundwater Level Archive manager and provided hydrogeological appraisal and advice relating to the groundwater material which appears in the Yearbook. He is succeeded by Mr A A McKenzie. Measuring authority liaison and data acquisition duties are undertaken by P Doorgakant.

S Black was responsible for the preparation of the text and supervises the sale and distribution of the Hydrological data UK publications through the National Water Archive Office at the Institute of Hydrology.

Design: P A Benoist
Graphics: J J Carr
Typeset and printed in the United Kingdom by Burgess.
The materials used in the production of this volume are made from the pulp of softwood trees in managed Scandinavian forests, in which every tree cut down is replaced by at least one more, thus replenishing the Earth's resources.

HYDROLOGICAL DATA UNITED KINGDOM

1992 YEARBOOK

An account of
rainfall, river flows, groundwater levels and river water quality January to December 1992

FOREWORD

1992 began with an intensification of the very protracted drought which, at one time or another in the preceding four years, had afflicted much of Europe. In the English lowlands the drought could be traced back to the spring of 1988 and, despite several notably wet interludes, had achieved an extreme severity by the early spring of 1992. Thereafter, the drought declined in intensity, albeit unevenly, and a very wet autumn produced widespread floodplain inundations in southern Britain. In Scotland, spate conditions have been common in the last five years especially in rivers draining from the Highlands; this is one manifestation of a remarkable accentuation in the northwest to south-east rainfall gradient across the United Kingdom.

The recent past has provided a clear demonstration of the United Kingdom's vulnerability to droughts and floods. Man's ability to exacerbate - as well as
ameliorate - their effects on both the community and the environment underpins the need for improved water management strategies and engineering design procedures. This requirement is given greater emphasis by the possibility that the clustering of notable climatological events in the last few years may signal a continuing period of climatic instability.

The marshalling and analysis of current and historical hydrological data is an essential prerequisite for the development of more appropriate water management options. A principal function of the Hydrological data UK series is to collate and disseminate information relating to contemporary hydrological conditions and to provide both a perspective within which to examine the recent exceptional events and a benchmark against which any future changes may be assessed.

The Hydrological data UK series of Yearbooks and reports was launched in 1985 as a joint venture by the Institute of Hydrology (IH) and the British Geological Survey (BGS); both organisations are component bodies of the Natural Environment Research Council (NERC). Such a collaborative enterprise arose naturally from the close liaison maintained between those responsible for the management of the National River Flow Archive at IH, and their counterparts at BGS concerned with the National Groundwater Level Archive.

The Archive staff are to be commended for keeping up the pace of publication, and maintaining the computer retrieval services, in a year which has seen the entire data holdings moved from an outdated mainframe computer to a modern client/server network.

The work of the National River Flow and Groundwater Level Archives is overseen by a steering committee which includes representatives of Government departments, the National Rivers Authority and the water industry from England, Wales, Scotland and Northern Ireland.

Professor W.B. Wilkinson
Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYDROLOGICAL REVIEW 3
Summary 3
Rainfall 3
Evaporation and soil moisture deficits 10
Runoff 13
Groundwater 20
1992 Hydrological diary 24
RIVER FLOW DATA 27
Computation and accuracy of gauged flows 27
Scope of the flow data tabulations 27
Gauging station location map 32
Daily flow tables 34
Monthly flow tables 91
THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE 135
List of surface water retrieval options 137
Concise register of gauging stations 139
GROUNDWATER LEVEL DATA 147
Background 147
The observation borehole network 147
Measurement and recording of groundwater levels 147
Index borehole location map 149
Register of selected groundwater observation wells 150
Hydrographs of groundwater level fluctuations 152
The Register 156
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE 159
List of groundwater retrieval options 160
SURFACE WATER QUALITY DATA 161
Background 161
Data retrieval 161
Water quality monitoring station location map 161
Scope of the water quality data tabulations 162
Water quality data tables 164
DIRECTORY OF MEASURING AUTHORITIES 172
PUBLICATIONS in the Hydrological data UK series 174
ABBREVIATIONS 176

The 1992 Yearbook is the fourth edition since responsibility for the publication of data, upon which assessments of water resources in England and Wales may be made, was transferred (under the Water Act 1989) from the Department of the Environment to the National Rivers Authority.

It is the twelfth Yearbook in the Hydrological data LK series and the second volume in the third five-year publication cycle (1991-95).

The 1992 Yearbook represents the thirty-third edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the seventeenth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Ycarbook.

Apart from summary information, surface water and groundwater data on a national basis were published separately prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1992 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also included are water quality data for a selection of monitoring sites throughout the UK. A comprehensive hydrological review of the year includes an examination of the spatial and temporal variations in the intensity of the 1988-92 drought.

An outline description is given of the national River Flow and Groundwater Level Archives and the data retrieval facilities which complement them.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water-year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committec continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two ycars but was then re-formed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and publishing surface water information in England and

Wales then passed to the newly created Water Data Unit of the Department of the Environment (DoE). Yearbooks were published jointly each year by these organisations and the Scottish Office for the wateryears 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface W ater: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department (now The Scottish Office Environment Department) and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks, - the editions for 1983 to 1991 - were published over the following seven years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain (prior to its incorporation into the Institute of Geological Sciences), was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the .Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

SCOPE AND SOURCES OF INFORMATION

The format of the 1992 Yearbook follows that of the recent editions in the Hydrological data UK series. The Hydrological Review examines rainfall, evaporation, soil moisture, river flow and groundwater conditions throughout the year; particular attention is directed to the intensification, and subsequent decline in the drought affecting much of southern Britain. The following data sections provide detailed coverage for the featured year, and for comparison purposes, period of record reference statistics are also given.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydromerric Register and Statistics' volume - provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the second edition (for 1986-90) was published in 1992 - further details are given on page 174.

The Yearbook contents have been abstracted primarily from the National River Flow and Groundwater Level Archives. Water quality data have been provided from the Harmonised Monitoring Archive which is currently maintained by the Environmental Protection Statistics Division of the Dept. of the Environment. Similar data from Northern Ireland have been provided by the Environmental Service of the Department of the Environment (NI).

The National Rivers Authority (NRA) is responsible for the initial collection and processing of most river flow and groundwater level data in England and Wales. Following the 1989 Water Act,
the new Water Service PLCs assumed responsibility for a small number of important monitoring sites for which historical - and a few contemporary - data sets are held on the River Flow and Groundwater Level Archives. The seven River Purification Boards (RPBs) are responsible for most hydrometric data acquisition in Scotland. In Northern Ireland responsibility is shared between the Departments of Environment and Agriculture. These organisations also supplied valuable material relating to significant hydrological events during 1992.

The majority of the rainfall data, and some of the material incorporated in the Hydrological Review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Additional material has been provided by various research bodies and public undertakings.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 28). For details of monthly and annual rainfalls associated with individual raingauge sites reference should be made to the 'RAINFALL' series published regularly by the Met. Office. Brief details of the contents and availability of this publication, together with a short description of other rainfall and climatological data sets published by the Met. Office, are given below.

The National Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

Rainfall and Climatological Data

The Metcorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to the Commercial Services Division. Summaries of the data are also published regularly and a list of current titles is given below:

1. RAINFALL 19_/__

This contains monthly and annual rainfall totals for some 5000 raingauges and is available approximately one year after the title year at a cost of $£ 9.50$ (for the 1992 edition).
2. Monthly Weather Report

This is published monthly and contains climatological means for more than 550 UK observing stations; in addition an introduction and annual summary are produced yearly. The publication should be available six to nine months after the
month concerned, costs around $\{3$ and is available only from Her Majesty's Stationery Office (HMSO) or their stockists.
3. MORECS (Meteorological Office Rainfall and Evaporation Calculation System).
This is a weekly issue of maps and tables of evaporation, soil moisture deficit, effective rainfall and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements.

Further information about these and other publications may be obtained from:

Meteorological Office, Commercial Manager, Commercial Services, Johnson House, London Road, Bracknell,
Berks RG12 2SY
Tel: (0344) 856207
Fax: (0344) 854906

Throughout much of 1992 hydrological attention was directed to the final phase of a remarkably protracted drought which affected much of Europe. An introductory guide to the regional variations in intensity within the United Kingdom is given in the following Hydrological Review. Comprehensive documentation of the drought, including a European perspective, can be found in: The 1988-92 Drought A hydrological review. Copies of this occasional report in the Hydrological data UK series are available through the National Water Archive Office (see page 174).

Summary

The very unusual hydrological conditions which typified much of the preceding four years continued into 1992. Whilst north-western Britain remained notably wet a very persistent drought, afflicting much of the English lowlands, intensified in the late winter of 1991/92 and by the early spring of 1992 had achieved an extreme severity; long term rainfall deficiencies were the equivalent of a year's average rainfall in a significant proportion of castern England. The drought was generally most severe in those parts of the country which are relatively dry under normal circumstances and where concentrations of population, intensive agriculture, and commercial activity generate the greatest demand for water. Much of this demand is met from groundwater and, with water-tables remaining extremely depressed throughout much of the year, the water resources outlook was exceptionally fragile. On the basis of limited information, overall groundwater resources in England and Wales during the summer of 1992 were probably as low as at any time since the turn of the century. Largely as a result of a very prolonged decline in the groundwater contribution which sustains many lowland rivers through the summer, runoff rates were also very modest over extensive areas and the stream network greatly reduced in extent.

Evaporation losses throughout 1992 were generally lower than in the preceding four years during which they contributed substantially to the drought's development and persistence. Nonetheless, actual evaporation losses in 1992 were considerably above average in most regions and their highly seasonal character helped ensure that the final phase of the drought was, in hydrological terms, protracted in many areas. Initially the wet conditions in the spring had little hydrological impact but the wet summer, and associated moist soil conditions, paved the way for a brisk recovery in runoff and recharge rates through the autumn. A few pockets persisted with notable long term rainfall deficiencies and depressed
groundwater levels, mostly in southern England, but by November, the focus of hydrological concern had clearly shifted to the widespread risk of flooding.

Rainfall

National Perspective

The United Kingdom rainfall total for 1992 was 1217 mm , some 13% above the 1941-70 average. On a countrywide basis, 1992 was the wettest year since 1960 and the fifth wettest in a series from 1869;1990 ranks eighth. The notably high rainfall total results principally from the abundant precipitation over much of Scotland. Despite below average rainfall in some eastern areas, Scotland registered its second wettest year in a 134-year series (1990 recorded a considerably higher rainfall total). A wet phase can be traced back to 1977 in Scotland and, in subsequent years, only 1988 has been drier than average. The period 1988-92 constitutes the wettest five-year sequence on record for Scotland by an appreciable margin - rainfall was around 15% above average with the positive anomaly largely accounted for by the remarkably wet conditions which typified western areas and the Highlands.

Rainfall for England and Wales was only seven per cent above average in 1992 but the annual total was still the second highest, after 1986, in the last ten years. The temporal distribution of the rainfall was unusual, greatly favouring the latter half of the year but the spatial distribution conformed more closely to the normal pattern than in the previous five years. Regional variations were, however, important especially in relation to the amelioration of the lowland drought. This is evident in Figure 1 which illustrates the 1992 rainfall pattern relative to the 1941-70 average. The rainfall gradient across Scotland was, once again, accentuated and an exaggeration in the north-west to south-east gradient across Northern Ireland is evident, districts to the south of Lough Neagh being particularly dry. Significantly in England, given the magnitude of rainfall deficiencies entering 1992, the highest percentage rainfall totals related to a broad zone trending south-west from the Wash - this overlapped much of the region where the drought achieved its greatest severity. However, south and south-west of this zone the below average rainfall totals in 1992 contributed to an extended final phase to the drought; substantial rainfall deficiencies were registered over the January-August period in parts of southern England, the South-West especially

1992 rainfall totals throughout the UK are mapped on Figure 2. The overall range of annual totals is appreciably less than in 1989 and 1990 but

Figure 1. Annual rainfall in 1992 as a percentage of the 1941-70 average.

TABLE 11992 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1941-70 AVERAGE

1992						m		,	n	\bigcirc	\checkmark	-	3	Yen		Apr. Sep 1992
Linited	mm	79	88	128	90	59	39	86	161	119	97	162	108	1215	625	554
Kingdom	$\%$	77	113	183	130	79	54	99	156	117	92	145	96	111	107	109
England and	mm	48	47	85	73	49	38	83	129	92	84	138	83	949	401	464
Wales	$\%$	56	72	144	126	73	62	114	143	111	101	142	92	104	83	107
Scotland	mm	139	167	208	118	80	40	91	221	177	123	212	159	1735	1047	727
	\%	101	161	226	131	88	43	81	171	129	83	149	102	121	134	112
Northern	mm	80	93	143	107	47	41	88	164	89	83	132	89	1156	687	536
Ireland	\%	77	124	204	157	64	52	95	159	83	78	129	78	106	120	102
North West	mm	57	100	142	96	62	30	79	151	110	121	172	118	1238	712	528
(NRA)	$\%$	51	123	197	125	76	36	77	121	89	103	142	98	102	114	89
Northumbria	mm	33	45	107	103	31	19	63	99	95	81	100	71	847	447	410
(NRA)	$\%$	41	68	206	187	48	31	82	98	120	108	106	95	96	101	94
Severn-Trent	mm	59	31	67	50	60	54	88	120	74	71	113	61	848	319	446
(NRA)	\%	86	58	129	96	94	96	135	148	110	109	143	87	110	82	116
Yorkshire	mm	47	42	90	66	34	33	81	99	95	77	102	71	837	398	408
(NRA)	\%	61	66	170	118	56	57	116	110	132	112	115	96	100	93	100
Anglian	mm	45	17	63	43	48	34	89	83	86	73	83	41	705	229	383
(NRA)	\%	87	40	158	108	102	69	156	130	165	140	134	77	116	76	124
Thames	mm	28	25	52	66	59	39	78	107	93	73	117	58	795	223	442
(NRA)	\%	45	53	113	143	105	75	130	153	150	114	160	88	113	62	128
Southern	mm	18	33	59	84	29	26	75	104	70	86	141	76	801	265	388
(NRA)	\%	24	58	113	175	53	52	127	142	99	110	150	94	101	60	109
Wessex.	mm	36	39	57	74	25	50	64	129	85	52	152	86	849	317	427
(NRA)	\%	43	66	98	137	37	93	103	157	108	63	157	96	98	67	107
South West	mm	44	69	75	101	30	23	83	174	93	96	216	122	1126	475	504
(NRA)	\%	34	77	89	142	36	35	99	172	89	85	161	90	94	69	99
Welsb	mom	76	80	129	94	70	51	93	222	114	102	214	145	1390	646	644
(NRA)	\%	56	83	148	109	77	62	98	187	91	79	150	100	104	88	108
Highland	mm	197	229	248	141	108	46	95	255	214	155	280	239	2207	1338	859
R.P.B.	$\%$	120	172	218	124	105	42	75	172	135	83	166	122	128	139	113
North East	mm	67	52	113	69	57	52	47	132	107	110	93	78	977	538	464
R.P.B.	\%	74	70	182	113	74	74	51	123	123	113	90	76	96	102	94
Tay	mm	117	111	172	89	57	31	77	201	160	70	163	113	1361	806	615
R.P.B.	$\%$	99	121	210	119	60	37	75	170	139	57	137	84	108	121	105
Forth	mm	110	111	164	73	49	25	74	183	166	66	153	84	1258	728	570
R.P.B.	\%	111	144	238	107	58	33	76	158	154	62	140	77	113	128	104
Clyde	mm	170	231	267	144	95	39	123	278	205	133	255	165	2105	1343	884
R.P.B.	\%	106	204	254	140	98	38	95	196	117	73	153	89	126	147	118
Tweed	mm	63	70	138	99	49	27	61	157	118	77	135	82	1076	591	511
R.P.B.	\%	68	101	238	162	64	40	69	138	127	88	130	91	107	118	102
Solway	mm	91	148	206	148	63	30	101	215	155	116	203	133	1609	983	712
R.P.B.	$\%$	65	159	226	168	68	33	92	165	103	81	140	88	113	129	108
Western Isles	mm	105	318	172	112	65	44	109	182	158	126	218	146	1755	1113	670
Orkney and Shetland	\%	77	309	187	135	96	58	130	194	125	88	159	95	135	145	126

Note: In 1993, the Northumbria and Yorkshire and South-West and Wesser regions of the National Rivers Authority were amalgamated.
annual precipitation in excess of 4000 mm characterised a few parts of the western Highlands and a large area is enclosed by the 2000 mm isohyet. The highest reported annual total was for the Achnangart (Highland Region) raingauge which registered over 4200 mm . By way of contrast, rainfall totals were almost an order of magnitude lower close to the Thames estuary and some especially low annual totals were recorded in parts of north-east England. More significantly in water resources terms, the total area for which the annual rainfall was less than 600 mm was very restricted relative to each year in the 1989-91 sequence. Rainfall totals in the English lowlands were typically $100-200 \mathrm{~mm}$ greater than the 1989-91 average - a very significant increase given the small margin between average annual rainfall and evaporation losses.

The prevalence of thunderstorms in eastern England, notable by their absence throughout much of 1988-91, was an important factor in moderating drought conditions particularly from the early summer. A number of intense rainfall events resulted. The notable precipitation totals associated with these convectional interludes contributed to the above average 1992 rainfall totals in eastern and central England. A breakdown of annual, half-yearly and monthly actual and percentage rainfall totals in 1992 is given in Table 1 for the major administrative divisions in the water industry. In England and Wales the main features of the temporal distribution of rainfall in 1992 were the exceptionally dry winter, an unsettled spring which was followed by a generally dry early summer. A wet July then heralded a notably wet five-month sequence before relatively dry conditions prevailed around year-end. Much of eastern Scotland registered similar seasonal contrasts but the west, as in much of the preceding four years, was remarkably wet in the late winter and early spring. Thereafter, a dry interlude lasted until July only to be succeeded by a very unsettled autumn which brought sustained rainfall to much of Britain.

The Drought

The relatively dry conditions which characterised much of England and Wales during the latter half of 1991 overlay very substantial long-term rainfall deficiencies in most southern and eastern areas. Dry and mild conditions - echoing those that signalled the first severe phase of the drought continued through the 1991/92 winter and, in meteorological terms, the drought reached its zenith in late February. The magnitude of the drought, and its regional dimension, may be deduced from the figures presented in Table 2. For England and Wales as a whole, the 24 months ending in February 1992 were the driest - for sequences starting in March in a rainfall series starting in 1767. Considering sequences beginning in any month, only in the 1850 s
and, more conjecturally, the 1780 s, have appreciably lower 24 -month rainfall accumulations been registered. Rainfall deficiencies in the 40 - to 50 -month timeframes were also exceptional although, in meteorological terms, the long term drought ending in the autumn of 1976 was of a similar severity.

The latter phase of the drought exhibited a very clear focus on eastern and southern England but large rainfall deficiencies could be recognised in other areas, e.g in the Cheshire Plain and central districts in the Grampian Region. Over its full compass from the spring of 1988 , the spatial dimension to the drought is also readily apparent with the most severe conditions experienced in the Anglian, Thames and Southern regions. However, the figures presented in Table 2 serve to obscure some important intra-regional contrasts in drought severity. For example, in the Severn-Trent region rainfall deficiencies increased markedly from west to east; this is also true of the Southern NRA region. In Yorkshire long term rainfall deficiencies in the Wolds and Humberside were as great as any registered elsewhere but drought conditions in the Pennines were sporadic and much reduced in overall magnitude.

Termination of the Drought

A number of recent droughts, for example those of 1959, 1976 and 1984, have ended dramatically as a result of heavy and sustained autumn and/or early winter rainfall. By contrast, the 1988-92 event had no sharply defined termination, the final phase extending beyond 12 months in some areas. In part, this reflects the timing of the onset of wet conditions. The spring of 1992 was wet over much of the drought affected area but rainfall deficiencies continued to build in southern England. As a result of the irregular rainfall distribution, the decline in drought severity in eastern and southern Britain was uneven and, in some areas, patchy. Where, as in East Anglia, the spring rainfall was abundant, its hydrological impact was initially moderated by the accelerating evaporation rates. Thus groundwater levels continued to decline as the meteorological drought abated (see page 23).

England and Wales rainfall over the summer half-ycar (April-Sept) was significantly above average and more than 60 mm greater than over the preceding winter-half year. Since the late-1970s a tendency for a greater proportion of the annual rainfall to occur in the winter has been recognised. Over the drought period, the partitioning of winter and summer rainfall varied erratically and the ratio of the 1991/92 winter half-year rainfall to that of the following six months was the lowest since 1973. Generally, such a distribution is not advantageous from a water resources viewpoint but the wet summer in 1992, and the associated moist soil conditions, did allow aquifer replenishment to recommence early in the autumn. In the lowlands,

TABLE 2 RAINFALL RETURN PERIODS ESTIMATES

		Dec 91 -Feb 92 E. Returo Perrod, yean		Aus 91-Fet 92 Es. Retura Penod, years		Mar 90 -Feb 92 Eal. Returs Period, yeers		Aug 8A-Dec 92 Est. Return Perrod, year	
England and	mm	144		409		1448		2870	
Wales	\% I.TA	60	15-25	69	30-50	79	60-100	86	30-50

NRA REGIONS

North West	mm	276		704		2134		4160	
	\% LTA	88	2	88		88	5-10	93	5-10
Northumbria	mm	156		418		1502		2718	
	\% LTA	71	5-10	73	10-25	85	10-20	85	30-60
Severn-Trent	mm	129		327		1207		2396	
	\% LTA	67	5-10	68	20-40	78	50-90	85	25-45
Yorkshire	mm	151		369		1310		2536	
	\% ITA	70	5-10	69	20-40	79	50-90	84	50-90
Anglian	mm	86		247		877		1734	
	\% I.TA	59	15-35	66	30-60	72	>200	79	>200
Thames	mm	69		241		1002		2062	
	\% I.TA	39	60-90	54	110-150	71	>200	81	80-120
Southern	mm	74		272		1196		2347	
	* LTA	35	110-140	51	>200	75	70-110	81	80-120
Wessex	mm	105		350		1301		2678	
	\% I.TA	45	30-50	61	40-60	75	80-120	84	30-50
South West	mm	165		517		1947		3952	
	$\%$ LTA	47	30-60	64	30-60	82	20-40	90	5-10
Welsh	mm	221		656		2221		4478	
	\% LTA	59	10-25	73	10-20	83	15-35	91	5-10
Scotland	mm	447		1037		3149		5929	
	\% LTA	113	2-5	109	2-5	110	5-15	113	60-100

RIVER PURIFICATION BOARDS

Highland	mm	592		1358		4009		7545	
	\% LTA	120	5-10	118	5-10	116	20-40	119	≥ 200
North East	mm	172		517		1852		3303	
	\% LTA	64	10-25	78	10-20	91	5-10	89	15-35
Tay	mm	325		785		2495		4859	
	* LTA	94	$2{ }^{-}$	96	\sim	99	-	106	2-5
Forth	mm	329		705		2296		4333	
	* LTA	115	2-5	97		103	2-5	106	5-10
Tweed	mm	225		556		1880		3401	
	\% LTA	89	2-5	85	5-10	94	2-5	93	5-10
Solway	mm	401		927		2804		5383	
	\% LTA	104	2-5	97	\cdots	98	$\because:$	103	-..:
Clyde	mm	609		1320		3864		7234	
	\% LTA	132	10-20	117	5-10	116	30-50	118	≥ 200

Return perind assessments are based on tables provided by the Meteorological Office". These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods are underlined.
The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate.

- Tabony, R.C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO).

[^0]particular impetus to the post-drought recovery was provided by a thunderstorm on the 22nd September which produced over 50 mm of rainfall throughout a substantial part of the English lowlands. Some localities recorded in excess of 100 mm , equivalent to around twice the average for the entire month. The scope and intensity of this rainfall event is confirmed by Table 3 which lists all daily rainfall totals in 1992 with associated return periods in excess of 160 years - these are categorised as 'very rare' by the Met. Office.

Unsettled conditions continued throughout most of the autumn and the five-month period ending in November was the wettest such sequence since 1960 for Britain as a whole. Although less heavy than over much of Scotland, rainfall in southern Britain was sufficient to ensure that year-end regional rainfall deficiencies were greatly moderated compared with ten months earlier.

TABLE 3 DAILY RAINFALLS IN 1992 WITH RETURN PERIOD EXCEEDING 160 YEARS

Dete (Rain-day)	Sution Number	Name	Covaty	Gind Referoce	Amount (m)	Rerura Penod•
01.01.92	798224	South Laggan	Highland	NN299978	136.3	280
02.01 .92	685039	Inverinan Mor	Strathclyde	NM994173	119.7	170
02.01 .92	798224	South L-aggan	Highland	NN299978	127.7	180
21.01 .92	942074	Glenanne Saws	Armagb	IH976329	100.9	430
31.03 .92	884630	Cupar	Fife	NO362145	90.0	360
31.03 .92	884790	Clatto Resr	Fife	NO366078	84.0	180
31.03 .92	886589	Leven, Silverbura	Fife	NO393019	81.4	240
31.03 .92	887360	Lothrie Resr	Fife	NO222038	93.4	210
31.03 .92	888701	Braefoot Bay	Fire	NT178842	81.0	260
31.03 .92	897287	Armadale S Wiks No 2	L.othian	NS937695	83.6	170
31.03 .92	897398	Bathgate S Wks	Lothian	NS961704	103.1	560
31.03 .92	898219	Blackburn S Wiks	Lothian	N'T005653	80.7	170
31.03 .92	899283	Linburn	Lothian	NT121683	78.0	190
31.03 .92	901803	Kilspindie	Lothian	NT456804	72.1	200
31.03 .92	901968	Gullane	Lothian	NT480827	73.0	170
31.03 .92	903637	Nunraw Abbey	Lothian	NT594700	95.1	220
31.03 .92	920561	Sourhope	Borders	NT845202	108.3	310
31.03 .92	921548	Pallinsburn	Northumberland	NT911382	100.0	540
18.09 .92	413479	Upton Scudamore P Sta	Wiltshire	ST864483	97.8	320
22.09 .92	147674	Walcot, Lodge Farm	Lincolnshire	TF051351	113.3	750
22.09 .92	148248	Culverthorpe	Lincolnshire	TF025403	89.6	240
22.09 .92	154818	Old Somerby	Lincolnshire	SK964339	99.0	330
22.09 .92	155025	Corby Glen S Wks Auto Sta	Lincolnshire	SK992246	85.0	180
22.09.92	155492	Welby	Lincolnshire	SK976382	87.8	190
22.09 .92	155962	Manthorpe S Wks	Lincolnshire	TF067164	96.5	350
22.09 .92	156000	Carlby	Lincolushire	TF049142	91.6	270
22.09.92	158714	Litchborough, St. Martin's Church	Northamptonshire	SP633542	83.6	190
22.09.92	163095	Oundle S Wks Auto Sta	Northamptonshire	TL038897	78.5	160
22.09 .92	164117	Lutton	Northamptonshire	TLI 12878	106.5	720
22.09 .92	163388	Warmington	Northamptonshire	TL082913	92.4	390
22.09 .92	174062	Bedford (RAE)	Bedfordshice	TL049597	89.0	310
22.09 .92	177833	Swineshead	Bedfordshire	TL062658	79.1	170
22.09 .92	174063	Bedford SAWS	Bedfordshire	TL049597	90.2	330
22.09.92	182578	Royston, Aintree Rd	Herifordshire	TL366407	78.1	160
22.09.92	196541	Great Raveley	Cambridgeshire	TL255810	84.8	230
22.09 .92	196776	Yaxley	Cambridgeshire	TL196934	99.0	630
22.09 .92	265414	Yattendon Court	Berkshire	SLi558743	86.4	180
22.09 .92	279336	Chalfont Park	Buckinghamshire	TQ011891	85.7	190
13.12 .92	713545	Kinlochewe, The Lodge	Highland	NH033619	123.4	170
13.12.92	741962	Knockanrock	Highland	NC187087	119.5	160

[^1]
Evaporation and Soil Moisture Deficits

The five-year period ending in 1992 is the warmest such sequence in the Central England Temperature series which begins in 1659^{1}. Weather conditions were especially conducive to very high evaporation rates in 1989 and 1990 - the two warmest years on record. 1991 and 1992 were less outstanding in evaporation terms but annual losses were still notable. For 1992 as a whole, potential evaporation (PE) losses were modest compared with the records established in 1989 and 1990 but still, typically, ranked within the highest half dozen annual totals in the MORECS series which begins in 1961 (see Table 4, below). Actual evaporation losses were generally even more notable. With lowland soils especially remaining much more moist in the summer and autumn than in the preceding three years, transpiration losses were inhibited for relatively short periods and the annual shortfall of actual evaporation (AE) relative to PE was much diminished compared with the recent past.

The contrast in the development, magnitude and decay of lowland soil moisture deficits during 1992 by comparison with the preceding four years was of particular hydrological importance. In eastern and southern England especially, very high soil moisture deficits (SMDs) served to greatly reduce the hydrological effectiveness of rainfall over the latter half of each year from 1988-91, thereby delaying the seasonal recovery in runoff rates and reducing the period available for infiltration to replenish groundwaters. In 1992, soil moisture conditions from the late spring had a greater affinity with those obtaining over the decade ending in 1987; in almost all areas soils remained at, or close to, saturation from the early autumn.

Figure 3 maps 1992 potential evaporation totals for Great Britain; the computed totals assume a grass cover and medium soil depth. Calculated losses approaching 700 mm were computed for parts of the London area but totals throughout southern Britain were typically below 650 mm , and in the 450-550 range in Scotland. In all areas, the 1992 totals were close to, or above, average with the most notable positive anomalies characterising northern England and coastal areas of western Scotland.

The exceptional nature of evaporation losses over the 1988-92 period is evident from Table 4 which ranks annual PE and AE totals for four representative MORECS squares. Throughout almost all of Britain, 1990 and 1989 PE totals rank first and second highest on record with 1991 and 1992, commonly 1988 also, clustering in the top quartile; for the lower Thames Valley (MORECS square 161) the recent drought years account for four of the five highest annual totals. In southern England some, mostly coastal, locations registered PE totals exceeding 750 mm in both 1989 and 1990; such totals are more typical of southern Europe.

Figure 3. Potential evaporation (for grass cover) in 1992 Data source: MORECS

Evaporation losses declined appreciably over the two succeeding years but generally remained well above average and, in the four-year timeframe, are without parallel - certainly over the 1960-88 period.

Figure 4 illustrates the variation in PE, AE and SMDs for five representative MORECS squares, the location of the featured squares are shown on Figure 3. Notable contrasts may be recognised between 1989 and 1990 and the two following years. In 1990 the annual shortfall of AE relative to PE exceeded 150 mm throughout much of the lowlands. In 1992, the corresponding shortfalls were generally less than 80 mm . This was a consequence of evaporation losses remaining at, or close, to the potential rate in all months apart from July and August. On an annual basis, AE totals were the highest, or close to the highest, on record over wide areas - see Table 4.

Lowland soils generally dried out far less rapidly in the spring and summer of 1991 than in the previous two years and mid-summer SMDs were close to the normal range in the lowlands. Thereafter, however, the dry autumn resulted in a further, late, drying phase and in eastern England deficits remained significant into the early winter. Modest rainfall in early 1992, combined with the significant SMDs which extended across wide areas at the end of 1991, resulted in soils returning to field capacity for no more than a couple of weeks in the driest areas

Figure 4. The variation in potential evaporation, actual evaporation and soil moisture deficits for five MORECS squares.
before evaporation losses accelerated again through the spring. Late-February SMDs in 1992 were close to the highest on record in a broad zone from the Wash to London and soils were extremely dry, for the time of year, close to the Thames Estuary. The dry soils restricted the window of opportunity for aquifer recharge to a few weeks only in parts of the

English lowlands; ordinarily the recharge season extends across several months. From the late spring, however, deficits developed only sluggishly and the wet spell from March to September heralded an early return to saturation in the autumn. Thereafter, the wet soils were an important factor in the continuing vulnerability of many catchments to flooding.

TABLE 4 RANKED MORECS ANNUAL PE AND AE TOTALS (FOR A GRASS COVER)

MORECS SQUARE IOA (HUMBERSIDE)				MORECS SQL゙ARE 161 (LOWER THAMES VALLEY)				MORFCS SQUARE 12\% (CAMBRIDGESHIRE)				MORFCS SQUARE, 177 (DEVON)			
YEAR	$\begin{gathered} P E \\ (\mathrm{n}) \end{gathered}$	YEAR	$\underset{(\mathrm{AE}}{\mathrm{AE})}$	YEAR	$\begin{gathered} \text { PE: } \\ (\mathrm{mm}) \end{gathered}$	YEAR	$\underset{(\mathrm{mm})}{\mathbf{A E}}$	YEAR	$\begin{gathered} \text { PE } \\ (\mathrm{nm}) \end{gathered}$	yEAR	$\underset{(\mathrm{m})}{\mathrm{AE})}$	YEAR	$\begin{gathered} \text { PE } \\ (\Omega \Omega) \end{gathered}$	YEAR	$\begin{gathered} \mathrm{AE} \\ (\mathrm{~m}) \end{gathered}$

1990	721.0	1992	557.2	1990	741.8	1967	562.2	1990	725.1	1992	578.1	1990	665.9	1990	604.4
1989	695.4	1966	538.8	1989	731.0	1966	546.7	1989	689.0	1966	543.0	1989	662.0	1980	592.9
1976	649.5	1986	534.2	1976	672.2	1987	540.0	1976	682.8	1986	540.0	1984	626.7	1985	576.0
1992	640.2	1980	523.5	1992	647.1	1965	532.7	1975	645.7	1967	522.6	1975	615.4	1988	575.3
1991	622.3	1987	523.5	1991	637.4	1968	531.8	1992	638.4	1987	518.3	1976	604.5	1966	569.9
1970	616.9	1988	518.9	1984	627.3	1988	529.7	1970	637.8	1974	518.2	1980	604.2	1973	559.6
1986	016.9	1968	517.3	1970	612.2	1991	523.2	1961	636.2	1968	517.4	1992	592.4	1992	558.3
1975	616.3	1985	517.2	1988	612.2	1985	520.7	1967	626.3	1988	515.9	1961	587.3	1982	557.3
1982	608.1	1973	515.5	1967	598.2	1986	519.4	1974	621.1	1982	512.8	1985	583.2	1975	556.0
1967	606.6	1967	513.7	1986	597.7	1982	516.8	1964	620.6	1973	512.3	1988	582.5	1965	553.3
1964	606.3	1963	512.3	1969	594.3	1971	513.6	1986	619.0	1985	511.6	1983	581.7	1986	551.1
1984	606.0	1982	511.7	1985	591.1	1963	506.0	1991	612.3	1980	508.4	1977	576.6	1970	550.4
1961	597.3	1969	504.0	1983	587.5	1970	502.4	1984	605.9	1989	494.7	1982	575.1	1987	547.4
1988	593.5	1981	501.9	1961	586.2	1992	502.2	1973	591.3	1969	489.1	1966	573.4	1977	546.7
1983	590.7	1974	500.6	1975	585.5	1980	499.5	1983	589.5	1965	487.6	1973	565.9	1969	546.3
1974	582.6	1961	500.2	1964	582.6	1973	497.7	1985	587.0	1975	484.7	1962	564.7	1967	544.5
1977	580.7	1965	499.0	1973	578.3	1964	486.2	1982	586.3	1981	483.3	1970	561.5	1964	542.2
1985	579.4	1983	496.3	1974	578.0	1962	485.6	1962	582.1	1971	482.7	1987	559.8	1979	540.8
1981	577.0	1971	491.4	1982	575.2	1974	484.8	1988	581.0	1963	480.4	1991	559.0	1991	539.1
1965	571.9	1984	489.3	1966	570.6	1984	479.5	1980	580.2	1983	473.3	1967	557.5	1962	538.3
' 1962	566.7	1979	488.5	1972	565.4	1981	479.0	1979	579.5	1977	466.6	1965	557.3	1968	533.6
1966	566.7	1978	487.1	1987	564.8	1977	478.9	1965	579.2	1984	466.4	1986	554.9	1963	532.5
1980	566.3	1962	476.0	1971	561.0	1961	470.2	1966	578.2	1962	464.1	- 1969	554.8	1961	531.6
1963	565.9	1977	473.2	1965	557.5	1969	465.0	1977	573.1	1970	462.6	1964	553.6	1981	531.5
1979	561.0	1989	471.7	1968	553.6	1989	463.4	1969	568.8	1978	461.8	1981	552.4	1978	527.3
1971	555.5	1972	455.8	1962	551.3	1979	463.0	1971	568.4	1979	461.6	1979	550.2	1972	521.8
1973	552.2	1970	449.5	1963	550.9	1983	462.8	1963	563.1	1961	451.7	1978	549.6	1983	520.5
1987	549.6	1964	433.7	1980	549.2	1975	454.5	1972	555.2	1964	444.9	1968	540.2	1989	517.8
1968	545.9	1990	420.2	1977	535.6	1978	434.2	1987	552.6	1972	421.4	1963	538.1	1984	515.4
1978	540.7	1975	413.3	1979	531.2	1972	402.1	1981	549.4	1991	415.8	1972	535.6	1974	506.4
1969	539.9	1991	398.0	1978	513.6	1990	393.7	1978	542.9	1990	401.7	1974	510.6	1971	497.5
1972	527.6	1976	343.9	1981	506.4	1976	330.8	1968	540.4	1976	316.6	1971	504.8	1976	453.6

Av.	579.4	489.3	573.2	487.6	591.2	481.6	564.4	538.7

[^2]
Runoff

For Great Britain as a whole runoff for 1992 was approximately 720 mm , significantly above the 1961-90 average but consistent with most annual totals in the post-1976 period. As in the preceding five years, regional variations were somewhat exaggerated - western Scotland recording above average runoff whereas mean flows in some catchments in eastern England fell well short of the mean. In the English lowlands a relatively modest shortage of rainfall can produce very substantial reductions in river flows and aquifer recharge. The effect of elevated evaporation losses over the 1988-91 period was, in broad terms, to translate a 20 per cent decrease in rainfall into a halving of overall runoff (and recharge) rates. Depressed flows early in 1992 extended well beyond the English lowlands and, in much of Britain, contrasted with the widespread spate conditions in the late autumn and early winter. For many rivers the normal seasonal pattern of runoff variation was greatly distorted in 1992; commonly over half the annual runoff was attributable to the October-December period. Nonetheless, damaging floods were relatively rare in 1992 although floodplain inundations occurred widely in the autumn and early winter - a significant proportion in the English lowlands were related to thunderstorms (see the Hydrological Diary - page 25)

Figure 5 provides a guide to 1992 runoff totals for Great Britain expressed as a percentage of 1961-90 mean. Notwithstanding valuable recent additions to the gauging station network, runoff data remain sparse in some areas. As a consequence, Figure 5 is least precise in north-western Scotland, the Welsh mountains and the coastal lowlands of eastern England. In such areas assessments of residual rainfall (rainfall minus evaporation) totals were used to help delineate annual percentage runoff. Insufficient confirmatory flow data exist for the Scottish islands, or for Anglesey, to allow runoff to be assessed with any confidence. The contrast between Figures 1 and 5 is very marked in much of eastern England; in parts of East Anglia, notably high annual rainfall totals correspond to well below average runoff totals. In large part, this is a manifestation of the long-term decline in baseflows over the 1988-92 period. The recovery in groundwater levels (see below) lagged well behind the return of unsettled weather patterns in the spring of 1992 and runoff rates in some permeable catchments did not respond fully until late in the year.

1988-92 Runoff Patterns

The unusual temporal variations in runoff rates during 1992 and over the preceding four years is evident from Figure 6 which illustrates monthly mean flows (the blue trace) over the 1988-92 period for 16 representative rivers; the period of record monthly maximum and minimum flows are also

Figure 5. A guide to 1992 runoff expressed as a percentage of the 1961-90 average.
illustrated together with the long term monthly average. Flows for the Kingston gauging station on the River Thames have been adjusted to take account of the major upstreamabstractions for London's public water supply. Figure 7 illustrates the flow duration curves, for 1992 and for the preceding record, for a spring-fed East Anglian river and for the River Tay which drains from the Scottish Highlands. Such curves enable the proportion of time that river flows fall below a given threshold to be identified. The 1992 trace for the Stringside stream exemplifies the depressed runoff rates which characterised many catchments in southern and eastern England - it is particularly representative of rivers where the flow includes a major groundwater component. Flows on the Tay, by contrast, may be seen to conform more closely to the normal regime but with enhanced flow rates throughout much of the range - a recurring feature of the last few years.

Notably low river flows were recorded over wide areas in the latter half of 1989, 1990 and 1991. Virtually no seasonal recovery could be recognised by the late autumn of 1991 in the majority of southern rivers and monthly runoff rates remained remarkably stable, as well as exceptionally low, in many chalk catchments. For example, monthly mean flows for the River Itchen showed a variation of less

Figure 6. 1988-92 monthly flow hydrographs.

Figure 6.-(continued)

Figure 7. Flow duration curves for 1992 and the preceding record for the River Tay and the Stringside Stream.
than $+/-20 \%$ over the nine months beginning in August 1991. Artificial augmentation, from groundwater, was a significant factor but the very abnormal consistency in flow rates resulted in monthly runoff totals declining from above average in July 1991 to the lowest on record (for the month) in February 1992. The depressed nature of the late winter river flows in the east is perhaps best demonstrated by the Lee in Hertfordshire. Mean naturalised flows for each of the winter months (December-February) were the lowest in a 110-year record and the runoff over the winter half-year, around a quarter of the long term average, is again without recorded precedent. Early 1992 flows were also depressed in many parts of western and northern Britain; new minimum February daily flows were established over wide areas.

Despite sustained wet weather from March, the limited effective rainfall over the 1992 summer halfyear and, in much of eastern and southern England, the extremely low contribution of groundwater to
river flows, led to a very protracted terminal phase to the runoff drought. The 1992 recessions in the lowlands were certainly much less steep than in the preceding four years. Monthly runoff totals generally remained above those of the late summer in 1990 and 1991. Nonetheless, by early September some of the minimum flows established during the 1976 drought for were eclipsed for spring-fed rivers in eastern England. Notably low flows also occurred during the summer in a number of more responsive catchments in Northumbria and parts of eastern Scotland. Confirmation of the extent and persistence of depressed runoff rates is provided by Table 5 which summarises river flow and runoff records established at primary gauging stations in Great Britain during 1992. Entries are confined to monitoring sites having at least 20 years of record on the National River Flow Archive. Some future revisions may be anticipated as stage-discharge relations are reviewed in the light of the exceptionally low drought flows.

TABLE 5 RIVER FLOW AND RUNOFF RECORDS ESTABLISHED IN 1992

Station	River	Station Name		New	Month	Pre-1992		Month/
Number			Year of	Record	Record(mm)			
			Record	(mm)				
Lowest Annual Runoff								
28032	Meden	Church Warsop	1965	216		227		1991
38016	Stanstead Springs	Mountfitchet	1969	18		34		1991
38017	Mimram	Whitwell	1970	19		20		1991
39029	Tillingbourne	Shalford	1968	189		194		1991
42008	Cheriton Stream	Sewards Bridge	1970	158		171		1973
42009	Candover Stream	Borough Bridge	1970	135		157		1973
42010	Itchen	Highbridge + Allbrook	1958	317		324		1973
Lowest Monthly Runoff								
19002	Almond	Almond Weir	1962	7.0	JUN	7.7	AUG	1983
33050	Snail	Fordham	1960	3.3	AUG	3.4	SEP	1991
38016	Stanstead Springs	Mountfitchet	1969	0.1	AUG	0.5	DEC	1991
38017	Mimram	Whitwell	1970	0.5	JUL	0.9	OCT	1991
39029	Tillingbourne	Shalford	1968	11.3	JUN	12.3	SEP	1991
39036	Law Brook	Albury	1968	8.9	FEB	10.2	DEC	1991
42009	Candover Stream	Borough Bridge	1970	8.1	SEP	9.1	SEP	1991
76011	Coal Burn	Coalburn	1967	0.7	JUN	1.7	JUN	1970

TABLE S-(continued)

Station	Rivet	Slation Nater	Firy	Ne=	Day/	Pre-1992	Day/Moxil/
Number			Yee of	Record	Moath	Record	Year
			Recoed	(m'1)		(m'3)	

Highest Daily Mfean Flows							
08007	Spey	Invertruim	1952	200	02 JAN	194	05 FEB 90
21009	Tweed	Norham	1962	1169	01 APR	1138	04 JAN 82
21023	Leet Water	Coldstream	1970	39.8	01 APR	34.7	28 DEC 78
21025	Ale Water	Ancrum	1972	55.6	01 APR	53.2	03 JAN 82
21032	Glen	Kirknewton	1966	106	01 APR	89.8	02 OCT 81
22001	Coquet	Morwick	1963	261	01 APR	203	03 JAN 82
22006	Blyth	Hartford Bridge	1966	112	01 APR	110	02 MAR 81
22009	Coquet	Rothbury	1972	191	01 APR	181	03 JAN 82
27048	Derwent	West Ayton	1972	2.34	23 SEP	1.59	28 MAR 79
38013	Upper L.ee	Luton Hoo	1960	3.29	29 MAY	3.09	10 OCT 87
39017	Ray	Grendon Underwood	1962	4.86	30 MAY	4.85	18 NOV 63
39037	Kennet	Marlborough	1972	5.99	07 DEC	5.24	25 FEB 77
39068	Mole	Castle Mill	1971	109	31 MAY	77.4	28 DEC 79
41011	Rother	Iping Mill	1966	33.4	02 DEC	31.8	16 SEP 68
41018	Kird	Tanyards	1969	21.1	02 DEC	19.7	09 DEC 82
41022	Lod	Halfway Bridge	1970	18.5	02 DEC	13.7	09 DEC 82
47009	Iiddy	Tideford	1969	8.20	30 NOV	7.79	27 DEC 79
55012	lefon	Cilmery	1966	209	02 DEC	204	07 FEB 90
60002	Cothi	Felin Mynachdy	1961	224	02 DEC	172	21 MAR 81
60003	Taf	Clog-y-Fran	1965	78.2	02 DEC	76.8	18 OCT 87
66001	Clywd	Pont-y-Cambwll	1959	78.6	02 DEC .	67.7	13 DEC 64
85003	Falloch	Glen Falloch	1970	112	02 JAN	109	10 MAR 90

Highest Instantaneous Flows

14002	Dighty Water	Balmossic Mill	1969	34.9	31 MAR	30.7	23 SEP 85
18003	Teith	Bridge of Teith	1957	3.74	02 JAN	362	05 FEB 90
21023	Leet Water	Coldstream	1970	51.7	01 APR	38.9	28 DEC 78
21025	Ale Water	Ancrum	1972	80.2	01 APR	66.4	31 OCT 77
22001	Coquet	Morwick	1963	341	01 APR	290	04 JAN 82
22006	Blyth	Hartford Bridge	1966	163	01 APR	150	02 MAR 81
22009	Coquet	Rothbury	1972	324	01 APR	282	03 JAN 82
38003	Mimram	Panshangar Park	1952	3.57	29 MAY	3.54	30 MAY 79
39037.	Kennet	Marlborough	1972	7.09	07 DEC	6.14	25 FEB 77
43005	Avon	Amesbury	1965	31.1	17 JAN	28.5	04 FER 90
71010	Pendle Water	Barden Lane	1971	134	05 JAN	118	21 DEC 91
84020	Glazert Water	Milton of Campsie	1968	77.1	07 SEP	76.0	30 SEP 77
Lowest Daily Mtean Flows							
07001	Findhorn	Sbenachie	1960	1.034	01 AUG	1.078	27 AUG 84
20004	East Peffer Burn	Lochhouses	1967	0.001	23 JUN	0.002	02 AUG 90
21032	Glen	Kirknewton	1966	0.145	07 AUG	0.151	20 SEP 91
25020	Skerne	Preston le Skerne	1972	0.027	01 AUG	0.042	12 SEP 90
26003	Foston Beck	Foston Mill	1959	0.061	24 MAR	0.064	03 DEC 90
27031	Colne	Colne Rridge	1964	0.028	13 FEB	0.190	10 SEP 89
33014	L.ark	Temple	1960	0.273	12 SEP	0.282	14 AUG 90
33024	Cam	Dernford	1949	0.158	25 JUL	0.177	28 DEC 91
33028	Flit	Sbefford	1966	0.135	18 NOV	0.145	26 AUG 76
33050	Snail	Fordham	1960	0.048	06 AUG	0.067	26 AUG 76
34011	Wensum	Fakenham	1967	0.121	12 SEP	0.130	25 AUG 76
36002	Glem	Glemsford	1960	0.043	03 AUG	0.048	24 AUG 65
38016	Stanstead Springs	Mountfitchett	1969	0.000	23 SEP	0.000	31 DEC 91
38017	Mimram	Whitwell	1970	0.000	01 SEP	0.010	15 DEC 91
39029	Tillingbourne	Shalford	1968	0.216	05 AUG	0.255	12 SEP 91
39036	Low Brook	Albury	1968	0.049	20 SEP	0.056	23 DEC 91
41006	Uck	Isfield	1964	0.063	27 JUN	0.067	03 SEP 76
42009	Candover Stream	Borough Bridge	1970	0.191	21 AUG	0.227	12 SEP 91
43012	Wylye	Norton Bavant	1971	0.061	21 SEP	0.229	10 JUL 76

Note: Only stations with 20 or more years of data on the River Flow Archive are featured. Some flows are estimated.
Note: A number of entries may be revised following reviews of the stage-discharge relations.

Severity of the Drought

The hydrological severity of the drought emerges most clearly when accumulated runoff totals are examined. By the late summer of 1992 monthly flows in some eastern rivers had remained below average for almost four years; over the latter half of this period monthly runoff totals for many rivers draining permeable catchments remained close to the long term minimum. For the two-year period beginning in July 1990 accumulated runoff totals fell below any previous 24 -month total for many lowland rivers, and a few others. A long historical perspective is provided by the flow record for the River Thames. Rankings of 24 -month minimum flows (Table 6) suggest that the 1990-92 gauged (or measured) runoff is outstanding. However, this is largely a result of increasing upstream abstractions to meet the growing water supply needs of the London area; abstraction rates have increased by almost an order of magnitude over the last 100 years and now represent the equivalent of the average August gauged flow. After adjustments to allow for the impact of the major abstractions, the revised rankings - those relating tothe naturalised flows - suggest that only during the 1901-03 and 1933-35 droughts have lower 24 -month flows occurred this century. But the significance of these historical minima is certainly exaggerated by the tendency of low flows to be underestimated prior to the major refurbishment of Teddington Weir in 1951.

The depressed runoff rates over much of eastern

TABLE 6 MINIMUM 24-MONTH RUNOFF TOTALS FOR THE RIVER THAMES AT KINGSTON/ TEDDINGTON

End Year	Gauged		Naturalised		
	$\begin{gathered} \text { Runoff } \\ (\mathrm{mm}) \end{gathered}$	\%LTA	End Year	$\begin{gathered} \text { Runoff } \\ (\mathrm{mm}) \end{gathered}$	\% LTA
1992	120	29.1	1935	246	50.9
1935	179	43.6	1903	255	52.8
1945	200	48.8	1891	260	53.8
1949	210	51.1	1992	264	54.8
1903	211	51.3	1945	270	55.9
1923	218	52.9	1923	272	56.1

and southern Britain during the 1988-92 period were associated with a shrinkage in the stream network that is without modern parallel; the corresponding loss of amenity and aquatic habitat was considerable. Generally, the environmental problems were most acute in lowland spring-fed rivers where the perennial head migrated downstream as declining watertables caused successively lower spring sources to fail. Many examples may be found in areas where little or no groundwater abstraction occurs (for example in parts of the Yorkshire Wolds) but the problem was most acute in those catchments where groundwater pumping, often over many years, has steadily reduced headwater flows. Whilst the deleterious effects of rising abstraction rates were clearly evident during 1989-92, the increasingly important contribution made by water management to the maintenance of low flows needs to be emphasised.

Figure 8. Runoff deficiency diagrams (note: a drought is considered to have terminated when runoff exceeds the average over a three-month period).

Procedures involved include the use of regional transfers (e.g. the Ely-Ouse to Essex Tunnel Scheme), groundwater augmentation of low flows (e.g. on the Hampshire Itchen and the Little Ouse in East Anglia) and other methods (e.g. flow enhancement using sewage effluent, controls on abstractions and demand restrictions).

The late-1992 Transformation

The post-drought recovery in river flows was spatially very uneven and, often, strongly influenced by catchment geology. In some western impervious catchments flow rates returned to the normal range in the spring of 1992 whereas for a few baseflow dominated rivers in the east, runoff rates were still in decline in the autumn. However, notably wet soil conditions from late September ensured a greater degree of regional coherence in the seasonal increase in runoff rates through the autumn. Increases in flows were commonly very brisk and lowland flooding was common. Impervious catchments in East Anglia were badly affected in late September and, entering the winter, floodplain inundations were widespread in southern Britain. The transformation in runoff conditions through the year was exemplified on the River Lambourn (Berkshire) where daily mean flows remained below the previous minima in most of January and February but, following a steep autumn recovery, established new daily maxima (for the month) throughout December. Similar, but less dramatic contrasts between early and late in the year characterised much of southern Britain and the stream network was, by year-end, more extensive than for around five years in parts of eastern England.

The Redefinition of Low Flow Statistics

The limited length of most runoff series has inhibited the development of simple drought indices in the UK but accumulated departures from the mean monthly runoff can help assess the relative severity of droughts, over the post-1950 period especially. Figure 8 shows that for three index catchments the recent drought is appreciably more severe than any over the last 35 years; it is over this period that the great majority of UK river flow data has been collected. Extending the frame of reference to include earlier drought sequences is complicated by the paucity of long, validated flow records. The lengthy flow series that are available suggest that prolonged periods of depressed runoff occurred in the 1940s, at the turn of the century and may have been more common in the nineteenth century. However, in the context of data collected since a truly national monitoring network has been in place, low flow statistics have been largely redefined for many rivers in eastern and southern Britain; by contrast much of Scotland has seen an upward extension in the range of recorded runoff rates.

Figures presented in Table 7 confirm that average flows over the four years from the summer of 1988 were commonly $30-60 \%$ below the preceding average in lowland catchments and the effect of this depressed runoff can be detected even in flow records of 25 years or more. Pre- and post-1988 contrasts are even more distinct when 95% exceedance flows are considered. This is especially true of East Anglia where, for example, the Waithe Beck (Lincolnshire) and River Heacham (Norfolk) 95\% exceedance flows over the drought period were only around $20-30 \%$ of the pre-1988 values; even greater differences characterised headwater stretches many of which dried-up for the first time in 1991/92.

TABLE 7 A COMPARISON BETWEEN PRE- AND POST-1988 FLOWS

Rivel/Station	$\begin{aligned} & C A . \\ & \left(k A^{2}\right) \end{aligned}$	First Year of Record	Mean Fiow				95\% Exceedence Flow			
			$\begin{aligned} & \text { up to } \\ & \text { 1988 } \end{aligned}$	88-92	Full Rerord	* cheage 88-92	$\begin{aligned} & \text { up } 10 \\ & 1988 \end{aligned}$	89-92	Full Record	$\begin{gathered} \text { © ctange } \\ 8 \mathrm{sh}-92 \end{gathered}$
Leven at										
Leven Bridge	196.3	1960	1.95	1.17	1.85	-5	0.28	0.22	0.27	-3.6
1.ud at										
Louth	55.2	1969	0.48	0.21	0.44	-8	0.14	0.09	0.12	-14
Heacham Bk at										
Heacham	59.0	1965	0.22	0.07	0.20	-9	0.06	0.02	0.05	-17
Kennet at										
Theale	1033.4	1962	9.71	7.21	9.5	-2	4.03	3.33	3.83	-5
Great Stour at										
Horton	345.0	1965	3.32	2.21	3.18	-4	1.26	0.86	1.08	- 14
Stringside at										
White Bridge	98.8	1966	0.54	0.17	0.49	-9	0.09	0.02	0.05	-44
Waithe Beck at										
Brigsley	108.3	1961	0.32	0.11	0.30	-6	0.08	0.03	0.06	-25
Litlle Ouse at										
Abbey Heath	699.3	1969	3.9	2.24	3.75	-4	1.32	0.988	1.14	-14

The National Grid Reference of each station is given in the Concise Register of Gaugung Stations.
C.A. $=$ Catchment aren.

Groundwater

Background

Following the unprecedentedly low groundwater levels registered in the autumn of 1976 throughout much of eastern and southern England, water-tables rose rapidly. This recovery heralded a relatively quiescent period during the early and mid-1气30s when groundwater levels in most major aquifers remained close to, but normally above, the average. The regular seasonal cycle of groundwater level decline and recovery was well demonstrated over this period but became noticeably irregular from the spring of 1988 and barely identifiable in some castern aquifer units over the ensuing four years.

Heavy and sustained recharge over the 1987/88 winter raised water-tables in most areas, to their highest level for at least a decade. At the Washpit Farm borehole which penetrates the Chalk and Upper Greensand aquifer in Norfolk, the watertable in the late spring stood at its highest in a $40-$ year record. Similarly, levels in the Therfield well (Herts) were closely comparable to their highest for 70 years. Subsequent recessions were, however, dramatic and extended. The groundwater hydrographs illustrated on pages 152-155 provide clear evidence of the very widespread and marked departures from average conditions which characterised water-table variability from 1987.

1991/92 Aquifer Replenishment

In much of eastern and southern Britain the period from the spring of 1988 to the summer of 1991 was characterised by exceptionally modest aquifer recharge. Correspondingly, extremely low groundwater levels were recorded at the end of the summer/autumn recessions in both 1990 and 1991. The relatively wet summer in 1991 increased the possibility that the following recharge season would be a lengthy one. In the event, however, very limited rainfall over the August 1991 to February 1992 period ensured that, in most aquifers, the seasonal recovery began very late and that total aquifer replenishment would, once more, be amongst the lowest on record. A comprehensive tabulation of estimated recharge over the 1991/92 winter expressed as a percentage of the long term average is given in the Register of Selected Groundwater Observation Wells (pages 156 to 158). The estimates are derived using the cumulative rise in groundwater levels over the full recharge cycle; further details are given on page 151. These figures were used to compile Table 8 which presents estimates of the groundwater replenishment for each of the major administrative divisions in the water industry (for England and Wales).

On a regional basis, the 1991/92 replenishment

TABLE 8 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1991/92

NRA Region	Mean annual replenishment $\left(m^{3} \times 10^{6}\right)$	$\begin{aligned} & 1991-92 \\ & \text { repienishment } \\ & \left(m^{\prime} \times 10^{\circ}\right) \end{aligned}$
Chalk and Upper Greensand aquifer		
Anglian	953	401 (42)
Southern	1231	301 (24)
South West	202	20 (10)
Thames	976	249 (25)
Wessex	947	531 (56)
Yorkshire	322	114 (35)
Total	4631	1615 (35)
Lincolnshire Limestone aquifer		
Anglian	86	78 (97)
Permo-Triassic sandstone aquifers		
Northumbria	11	11 (100)
North West	331	349 (105)
Severn-Trent	528	200 (38)
South West	202	20 (10)
Welsh	27	23 (84)
Wessex	39	12 (30)
Yorkshire	301	156 (52)
Total	1442	815 (57)
Magnesian Limestone aquifers		
Northumbria	80	39 (49)
Severn-Trent	40	8 (19)
Yorkshire	127	26 (20)
Total	248	72 (29)

Percentages of the annual mean are shown in parentheses.
For the sake of conformity with previous publications, the values for the Northumbria and Yorksbire and the South-West and Wesser NRA Regions are shown separately.
to major aquifers approached the long-term average only in parts of northern England, Scotland and Northern Ireland. Although recharge to a minority of individual aquifer units was well above the long term mean, for all the major aquifers as a whole the 1991/92 recharge was below average. Relatively healthy replenishment was registered in the Lincolnshire Limestone and in the Permo-Triassic sandstone outcrops in Northumbria and the North-West. To the south, spatial variability in recharge was substantial with some areas, for example parts of the South-West and the East Midlands receiving well below half of the long term average. Similarly, recharge to much of the MagnesianLimestone aquifer was only around a third of the average. Even lower recharge totals were found throughout the Chalk of eastern England. For some wells and boreholes, including the Holt in the eastern Chilterns, the 1991 recessions continued with barely an inflection in the hydrograph trace. At others, the water-table remained within a narrow range over the twelve months from the autumn of 1991; commonly the entire period being below pre-1989 minima. Some faltering increases did occur through the
spring of 1992 but still left water-tables, prior to the onset of the summer recession, at their most depressed on record.

Figure 9 is based on the recharge assessments for a network of wells and boreholes and provides a guide to spatial variation in 1991/92 groundwater replenishment throughout the Chalk and Upper Greensand aquifer. Generally recharge was less than 60% in eastern areas and below 20% in some districts; recharge was especially meagre in parts of the Chilterns, the Yorkshire Wolds and the North and South Downs. Further inland, recharge amounts were still small but the effects were somewhat mitigated by the recovery beginning from a less depressed condition.

Drought Severity as Indexed by Groundwater Levels

Following a four-year sequence when the paucity of recharge appears unique, certainly in the context of the last 40 years and probably over a much longer period, water-tables were approaching their natural base levels throughout much of eastern, central and southern England. Unsurprisingly, the decline in water-tables throughout the 1992 summer half-year was shallow. Nonetheless by August levels were below any previously registered in most of the Chalk and close to the minimum on record in most other major aquifers. The scope, general severity and persistence of the groundwater drought may be

Figure 9. Generalised percentage of the mean annual replenishment to the main outcrops of the Chalk and Upper Greensand aquifer for 1991-92.
judged by reference to Table 9 which gives end-ofrecession groundwater levels in each year of the 1988-92 sequence for a representative set of wells and boreholes (for a few boreholes the trough level was not recorded until early in the following year). Levels at many monitoring sites were depressed in each year and the 1992 minima were commonly the lowest on record and appreciably below the pre-1989 minima.

Particularly compelling evidence of the unprecedented magnitude of the drought in groundwater terms is provided by the levels at a number of long term index wells and boreholes in the Chalk. By late1991, levels at Dalton Holme (in the Yorkshire Wolds) had declined to below any registered before 1990 (in a 103-year record). At Little Brocklesby (Lincolnshire), levels were closely comparable with the minimum in a series from 1926 and at Therfield - a deep well south of Royston (Hertfordshire) groundwater levels, entering 1992, had declined by over 20 metres since the spring of 1988 and stood at their lowest level since the borehole was last dry in 1923. Late-December 1991 levels at Washpit Farm and Redlands Hall (see Figure 12, page 152) were unprecedented in records of 42 and 28 years respectively; at both sites these levels were closely matched in the early autumn of 1992. Further south in the North Downs, where the drought was less intense, an incomplete groundwater level record, of uncertain accuracy, is available for the Rose and Crown borehole (south of Croydon) from 1879. This suggests that only in 1898, 1922, 1934 and 1944 was the water-table more depressed than in the latespring of 1992; the 1992 minima was, however closely approached in 1976.

In the other principal aquifers, the water-table did not generally remain in a very depressed state for as long as it did in the Chalk, and minimum levels during 1992 seldom eclipsed those registered earlier in the drought. However, some exceptionally low levels were recorded in the Permo-Triassic sandstones during the summer of 1992. In Scotland, levels at Redbank varied erratically but approached the period-of-record minima (established in 1991) on several occasions. By October, levels in the Llanfair DC borehole (North Wales) and at Bussels (Devon) were comparable to the minimum for the month before steep recoveries restored water-tables to within the normal range. Water-tables were even more depressed in a zone from south Yorkshire to the Midlands. 1992 levels at Sykhouse and Woodhouse Grange, for example, remained well below pre-1989 minima. Substantial groundwater abstraction characterises much of this region and the post-drought recovery in the confined aquifer was necessarily much slower; the Weeford Flats borehole, which was dry in 1976, remained dry throughout 1992. 1991/92 recharge to the Magnesian Limestone was exceptionally meagre in parts of Yorkshire and a sustained recession through most of

1992 produced new minimum October/November levels at the Peggy Ellerton monitoring site (page 155).

Notwithstanding some of the monitoring sites mentioned above the great majority of wells and boreholes in the national groundwater level network were selected, so far as is practicable, to avoid the worst effects of groundwater pumping on natural rest water levels. Where, as in large parts of the English lowlands, heavy groundwater abstraction has produced local or regional depressions in the water-table, the depletion in groundwater resources was even greater than the figures presented in Table 9 suggest. Taking into consideration the inordinate nature of the long term rainfall deficiencies, the elevated evaporation losses and the substantial impact of increasing abstraction rates in some areas, it appears probable that the scale of the groundwater depletion in the Chalk of eastern England is without parallel this century. The limited amount of direct evidence concerning the impact on groundwaters of droughts prior to about 1950 implies that a full confirmation may not be possible.

Within the Chalk very large volumes of water are held in storage below the normal range of seasonal groundwater level fluctuations. However, this water is only exploitable if the wells intercept fissures. There are fewer fissures at depth, resulting in decreasing borehole yields as the water-table is lowered. Many dwellings and small holdings located upon the Chalk outcrop of eastern and southern England obtain their water supplies from shallow shafts with only a moderate depth of water in the bottom at the best of times. Falling water-tables caused a number of such sources to fail as they dried out over the two years from late 1990. This emphasised the fragility of the water resources outlook and by the middle of the 1992 summer, it was evident that, in the event of another delayed recovery and restricted replenishment - the fourth in five years over wide areas - serious shortfalls in public and private groundwater supplies would be in prospect. Although valuable experience was gained in the operation of groundwater sources under circumstances not previously encountered, the possibility that 1992/93 might be another dry winter was a matter of real concern.

TABLE 9 END-OF-SUMMER RECESSION GROUNDWATER LEVELS IN SELECTED OBSERVATION WELLS

Stite	Aquifer	Records cocroverce			End-of-Summer Recessoa leveh (axtren OD)			
			Lowest pre-1989		1989	1990	1991	1992
			level	year				
Dalton Holme	C \& UGS	1889	11.58	1905	10.73	10.34	9.64	10.98
Little Brocklesby	C \& UGS	1926	4.58	1976	5.77	4.70	4.53	4.59
Washpit Farm	C\&UGS	1950	41.24	1978	41.98	41.17	40.51	40.30
The Holt	C\& UGS	1964	83.90	1973	85.95	85.43	84.80	84.26
Fairfields	C \& UGS	1974	22.18	1974	22.73	22.15	22.16	-
Redlands Farm	C. $\&$ UGS	1964	34.53	1965	35.68	33.29	32.38	32.29
Rockley	C. \& UGS	1933	128.94(d)	1976	128.94 (d)	128.94(d)	129.04	130.26
Little Bucket Farm	C \& UGS	1971	56.57	1976	57.64	57.09	60.09	59.56
Compton House	C \& UGS	1894	27.64	1976	28.24	27.88	30.79	29.93
West Dean	C \& UGS	1940	1.01	1949	1.16	1.08	1.38	1.33
Lime Kiln Way	C \& UGS	1969	124.09	1976	124.27	124.65	124.00	123.70
Ashton Farm	C \& UGS	1974	63.32	1976	63.67	63.10	64.30	64.66
West Woodyates	C\& UGS	1942	67.62	1976	69.20	67.90	73.50	72.59
New Red ILion	LLst	1964	3.29	1976	7.04	5.49	5.68	8.72
Ampney Crucis	Mid Jur	1958	97.87	1976	98.99	97.38	99.81	100.14
Dunmurry (NI)	PIS	1985	27.80	1985	27.48	27.67	27.50	27.81
Llanfair DC.	PTS	1972	78.85	1976	79.25	79.16	79.05	78.92
Stone	PTS	1974	89.34	1976	89.90	89.73	89.50	89.73
Weeford Flats	PTS	1966	88.61 (d)	1976	89.05	88.98	88.61	88.61
Bussels 7A	PTS	1972	22.90	1976	23.19	23.33	23.39	23.15
Rushyford NE	MgLst	1979	75.27	1982	74.81	74.26	74.67	74.47
Pegry Ellerton	MgLst	1968	31.10	1976	33.15	32.40	31.97	31.23
Alstonfield	CLst	1974	174.22	1975	174.96	174.97	175.00	175.95

Minimum levels for each site are sbown in bold.

Chalk and Uipper Greeasand Lincolnstire Limestove Permo-Triassic sandstones

Mid Jur
MgLst
CLst
(d) $=$ dry

Middle Jurassic limestones
Magnesian Limestone
Cartonferous Limestone

The End of the Drought

The need to generate groundwater level rises from the exceptionally low base established in the summer of 1992 implied that any post-drought recovery would be protracted and, probably, very uneven. In the event, the relatively wet summer in 1992 produced moist lowland soils and heavy September rainfall generally arrested the groundwater recessions and triggered an early, and very brisk, start to the seasonal recovery. Thereafter, sustained rainfall over the final quarter of the year produced abundant recharge and some extremely rapid rises in groundwater levels - echoing the terminal phases of the 1976 and 1984 droughts. By the turn of the year, the water-table in much the greater part of the Chalk and upper Greensand had returned to within the normal range although in some eastern districts,
levels remained substantially below the seasonal mean. This was particularly true of a broad zone from Lincolnshire to Bedfordshire but depressed levels also characterised parts of north Kent where the recovery was especially patchy. A few other pockets remained, including the Permo-Triassic sandstones of the Cheshire Plain and Nottinghamshire, where the 1992/93 recovery was fragile and resources outlook uncertain - mostly these were in areas where groundwater abstraction had exacerbated the meteorological drought.

Reference

Manley, G. (1974) Central England Temperatures: monthly means 1659 to 1973. Quar. Journ. Royal Met. Soc., 100, 389-405.

1992 Hydrological Diary

January

- Away from north-west Scotland, January was a dry month. Parts of southern and north-east England received only a quarter of the long term average rainfall. Monthly totals of under 15 mm were not uncommon; Kew (London) recorded 13 mm - the second driest January this century.
1st-5th: Heavy rain and storm force winds hit Scotland on the 1st as a deep, low pressure system tracked eastward towards Norway. In the Highland Region, Achnangart recorded 155.5 mm on the 1 st and Inverinan (Strathclyde Region) 119.7 mm on the 2nd - events with estimated return periods of 140 and 170 years respectively; South Laggan (Highland Region) recorded 264 mm over the two days. Spate conditions were widespread on the 1st: the peak flow on the River Carron at New Kelso (Highland Region) corresponds to a return period exceeding 25 years and the Invertruim gauging station on the Spey recorded a new maximum daily mean flow of $200.4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 2nd. Flooding occurred in Callander on the following day as the River Teith (at Bridge of Teith) also eclipsed its previous highest daily mean in a 36 -year record.
7th-11th: Heavy falls of rain, sleet and snow resulted in localised flooding in South Wales - where the Rivers Usk and Wye were in spate - and the Midlands.

February

Except in Scotland, February was a mild, dry month, with monthly totals of under 15 mm recorded in some localities for the second successive month. New February minimum runoff totals were recorded in many lowland rivers, examples include the Trent (Nottinghamshire), Itchen (Hampshire), Mimram (Hertfordshire) and Wensum (Norfolk).

March

A wet, mild and mostly dull month over Great Britain, ended a sequence of seven successive dry months in eastern England. A series of Atlantic low pressure systems dominated the weather for much of the month; Achnasheen (Highland Region) recorded 29 wet days in March. In north-castern England the Rivers Wear, Skerne, Derwent (Yorkshire) and Leven recorded new low daily flows for March in mid-month, but by month end their flows had recovered significantly. Rivers registering new minimum daily flows for the month showed a wide distribution, with some, such as the Itchen (Hampshire) and Teme (Hereford and Worcester) recording new low March runoff totals.
31 st: Heavy frontal rain in eastern Scotland and north-east England produced a number of notable daily totals; 103.1 mm of rain fell at Bathgate (Lothian Region) and 100 mm at Pallinsburn (Northumbria), events with associated return periods exceeding 500 years. River flows increased sharply and spate conditions continued beyond month-end in many rivers (see below).

April

April was another unsettled, generally dull and wet month, although some parts of the South-East remained dry until nearly month end. Weather conditions were mixed, with heavy rain early in the month and southern England registering further substantial totals as a result of an active depression, on the 28-29th. Some southern coastal districts registered their wettest April since 1966.
1st April: 76.6 mm fell at Sourhope as an exceptionally wet interlude continued in the North-East and the Borders. New maximum daily mean flows were established on many rivers in the region; examples include the Rivers Eden, Coquet, Blyth and Tweed. Return periods associated with highest instantancous flow rates exceeded 25 years for many gauging stations; especially notable floods occurred on the Blyth at Hartford Bridge and the Coquet at Morwick (both return periods being well over 100 years). Flood marks suggest the Coquet flood was probably the highest since 1831. Significant flooding occurred on the River Wansbeck in Morpeth (Northumberland), and transport disruption was considerable; rain-induced landslides closed the Newcastle-upon-Tyne bypass and a railway line at Gateshead.

May

May was very warm and, in contrast to the previous two months, very sunny over all of Great Britain; It was the warmest May this century in central England. Several intense and localised convectional rainfall events were stimulated by the warm conditions, particularly in a zone from Kent northwestwards through London. The spatial distribution of rainfall was very variable and some southern catchments saw a continuation of long recessions. New minimum daily flows for May were experienced in a number of rivers, such as the Partney Lymn (Lincolnshire), Roding (Essex), Wensum (Norfolk) and Stour (Kent).
20th-29th: Heavy localised precipitation occurred as unstable convectional cells developed. On the $23 \mathrm{rd}, 24$ mm fell in one hour at Bristol (Avon), 39 mm was recorded in under five hours at Connahs Quay (Clwyd) and
on the 29 th, torrential downpours were reported from many localities over central southern England; storm totals of 78.3 mm and 73 mm at Doddershall and Grendon Underwood (Bucks), and 70 mm at Northolt (Greater London) have associated return periods in the $80-120$ year range. The runoff response was especially rapid in urban catchments; the Stevenage Brook (Hertfordshire) exceeded its previous peak flow, in a 19-year record. Also on the 30th, the River Mimram, normally a slow responding chalk stream, recorded its highest peak flow of $3.57 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ in a record extending back 41 years; only two days prior to this the lowest May daily flow in the record occurred.

June

As with the year to date, June was warmer than average; it was the warmest June since 1976. Rainfall totals were well below average over most of the country. Culdrose (Cornwall) registered only 1.3 mm for the month, the lowest June accumulation there for nearly 70 years. Skegness (Lincolnshire) and Carlisle (Cumbria) recorded no rainfall for 25 and 22 consecutive days respectively, and Sunderland (Tyne and Wear) experienced rainfall on only one day. Significant precipitation was generally restricted to the first ten, or last two, days of the month when thundery convectional cells produced some notably intense rainfall events. New minimum runoff records for June were spread widely across the country, from the Rivers Spey and Dee in north-eastern Scotland to the Kent Stour.
9th: Intense thundery activity produced localised high rainfall totals in a band from London to Liverpool: 78.5 mm fell at Lewisham - including 67.4 mm in 75 minutes - an event with a return period of approximately 130 years. Significant transport disruption ensued and a new June peak flow of $30.9 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was recorded on the River Brent.

30th: A precipitation total of 83.8 mm was measured for a thunderstorm at Wrantage (Somerset), an event with an estimated return period exceeding 100 years.

July

A damp month, though most precipitation fell in the first 20 days. Parts of East Anglia received over twice the average monthly rainfall; in contrast, Northern Scotland was notably dry.
20th: Humid air moving northwards from France led to widespread thundery activity in the South-East. Large areas recorded precipitation totals greater than 30 mm in under six hours. In Suffolk, Charsfield and South Elmham received 73.3 mm and 65.3 mm respectively, with 61.2 mm falling at Cantley (Norfolk). Heathrow and Hastings (West Sussex) recorded 24 mm and 22 mm respectively in only 15 minutes. Severe surface flooding resulted with a considerable number of roads, including sections of motorways, impassable; crop damage was reported also. The relatively high soil moisture deficits usefully moderated runoff responses in many rivers.

August

August was the wettest month in Great Britain since February 1990 and the wettest August over England and Wales since 1956. Synoptic patterns were dominated by Atlantic frontal systems and western regions were particularly wet. Swansea (West Glamorgan) recorded its wettest August this century and Eskdalemuir (Dumfries and Galloway) its second wettest in a 82 -year record. Some eastern districts were, however, relatively dry; daily flows on the River Skerne (County Durham) fell below previous August minima and flows remained depressed in many spring-fed lowland streams.

7-8th: A low pressure system on a southerly airflow triggered thunderstorms over Wales, the Midlands and north-cast England. Precipitation totals exceeding 40 mm were recorded at many locations over the two days, with notable one-day accumulations of 96.6 mm at Llanfihangel (Powys) on the 7 th and 68.7 mm at Anderby (Lincolnshire) on the 8 th; each total corresponds to a return period of around 80 years. The torrential downpours resulted in significant localised flooding, for example in Kettering and Stratford-upon-Avon.
31 st: A very deep depression tracked across Scotland, producing a wet and extremely windy August bank holiday. A return period of 60 years was ascribed to a rainfall total of 152.2 mm which fell at Glendessary (Highland Region) fell. On the River Carron (Highland Region), a new August peak flow was recorded of $165.9 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

September

September was a cool, cloudy and wet month in most regions, convectional activity generating some violent storms over parts of the country in mid-month.
18th: A frontal system with localised thunder cells produced rainfall totals of 97.8 mm at Upton Scudamore and 79.7 mm at Warminster in Wiltshire; the associated return periods for these events are around 320 and 90 years respectively.
22-23rd: A slow moving frontal system with embedded convectional cells produced prolonged and torrential
rain over a wide area of the English lowlands from Hampshire to Lincolnshire. Rainfall accumulations exceeding 60 mm were widespread, with some localities receiving greater than 90 mm . Return periods of about 700 years were ascribed to storm totals of 113.3 mm at Walcot (Lincolnshire) and 106.5 mm at Lutton (Northamptonshire). Standing water and landslides caused extensive transport disruption and severe flooding was experienced in some urban areas eg. Edgware (London). Many rivers in East Anglia and the South-East recorded peak flows with return periods in the 10-25 year range. A new record peak flow was established on the Dollis Brook and new September peaks were registered on the Silkstream and River Brent in London and on the Stevenage Brook. Floodplain inundations were widespread and relatively persistent in East Anglia, particularly in the Nene and Great Ouse valleys; new high daily flows for September were measured in the latter.

October

The second half of the year continued in a wet vein; October was notably cold as a result of a persistent northerly airstream. Heavy rain over central and eastern England on the 2nd and 3rd gave way to mostly dry but cold weather until the last third of the month, when a slow moving depression introduced very unsettled conditions.
19-21st: A sluggish depression brought a number of vigorous thunder cells across the South-East; several hours of heavy rain produced storm totals of $25-50 \mathrm{~mm}$ in many localities. Burstow (Surrey) recorded 65 mm over a 32 -hour period and Stansted (Essex) 49 mm in 36 hours. Some overtopping of river banks occurred.

November

November was the fifth successive month with above average rainfall in Great Britain; rain fell on most days and for England and Wales it was the wettest November since 1984. An south-westerly airflow across the country brought particularly wet conditions to the West - it was the wettest November since 1940 in Bristol. Only a few districts in the East failed to attain average rainfall totals. The second half of the month was extremely unsettled; rainfall associated with a succession of fronts produced considerable flooding in Wales and the South-West. Some eastern lowland catchments, such as the Little Ouse (Norfolk) experienced monthly runoff totals above the long term average for the first time in over four years.

21st-30th: An extremely unsettled period which continued into December; 72.5 mm fell at Blaenau Ffestiniog (Gwynedd) on the 22nd and, in the South-West and South Wales, many areas recorded rainfall totals of 25 mm on most days from the 24th. At Treherbert (Mid-Glamorgan), 250 mm fell in the four days starting on the 29th. Flooding in South Wales was severe; on the River Usk at Chain Bridge (Gwent), daily flows were the highest since in November since 1959, whilst on the Ewenny (Mid-Glamorgan), the flow of $27.03 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ at the Keepers Lodge gauging station was the highest November daily flow in a 22 -year record. By month-end river levels exceeded bankfull in many catchments in southern Britain.

December

Gales and heavy rainfall early in the month were succeeded by more anticyclonic conditions which prevailed until year-end in many regions. Nonetheless, new high December runoff totals were recorded on a number of rivers in southern Britain.
1st-6th: Heavy rain fell on the $1 \mathrm{st}-111.6 \mathrm{~mm}$ at Coedty Reservoir (Gwynedd) and Ashprington (Devon) received 76 mm . Serious flooding, which started in November (see above), continued across South Wales (for example in Pontypridd), the South West, West Midlands and Thames Valley, with landslides and slumping of coal tips in South Wales. At the Redbrook gauging station on the River Wye, the mean flow of $760 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 3rd was the highest for December in a record extending back to 1937, whilst on the River Ogmore (Mid Glamorgan) the flow on the 2nd has not been exceeded in December since 1965. In some Chalk headwaters the flood risk was exacerbated by the reduced capacity of the channels caused by vegetation which had colonised the dry stream bed during the drought.
13th: A vigorous Atlantic low pressure system brought heavy rainfall to parts of western Britain. In the Highland Region, Kinlochewe recorded 123.4 mm and Knockanrock 119.5 mm ; return periods for both daily totals exceed 150 years.
17th-19th: Westerly airflows and a cold front brought persistent heavy rainfall to southern England. Over 70 mm fell over Dartmoor on the 17 th and river flows responded accordingly. In Cornwall, the River Warleggan exceeded its previous highest daily flow for December on the 18th, in a record extending back 24 years. Extensive washland inundation occurred in the Midlands.

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either digitally, on a solid state logger, less commonly on punched tape, or continuously by pen and chart. At well over half the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less generally, by radio; on occasions satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level and flow data is enabling hydrometric data acquisition to proceed on a near real-time basis in most areas. Typically, levels are recorded at 15 minute intervals and stored on-site for overnight transmission to allow the initial processing to be completed on the following day. Normally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
i. accuracy and reliability in measuring and recording water levels,
i. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's crosssectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force (emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The National River Flow Archive exists to provide not only a central database and retrieval service but also an extra level of hydrological validation. To further this aim, staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 54 gauging stations; daily naturalised flows are also tabulated for the River Lee (page 56) and River Thames (page 59). Monthly flow data for a further 175 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 10) is provided on page 32 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow tables are given overleaf; those relating to the monthly data are given on page 90.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the River Flow Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain
and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland: Ireland has a unified numbering system from 1 to 40 , commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area. Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or five-digit reference numbers.

Measuring Authority

An abbreviation referencing the organisation responsible for the provision of flow data to the River Flow Archive. A list of measuring authority codes together with the corresponding names and addresses for organisations currently contributing data to the River Flow Archive appears on pages 172 and 173.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square; the standard six-figure map reference follows.
Note: Irish Grid references - which are italicised have only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, or as a result of water transfers - for instance, the use of catchwaters to increase reservoir yields - the actual contributing area may differ appreciably from that defined by the topographical boundary. In consequence, the river flows whether augmented or diminished, may cause the runoff (as a depth in millimetres) values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the River Flow Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in a few areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{-1}$ and sometimes also referred to as 'cumecs') in a water-day, normally 09.00 to 09.00 . The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day has also been used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow (gauged or naturalised in accordance with the daily data) for the month. It is computed using the relationship:

```
Runoff in mm =
Average Flow in Cumecs }\times86.4\times
        Catchment Area (km)
```

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Rainfall: The rainfall over the catchment in millimetres for each month. Each areal rainfall total is derived from a one kilometre square grid of rainfall
values generated from all daily and monthly rainfall data available from the Meteorological Officet. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. A computer program then calculates catchment rainfall by averaging the values at the grid points lying within the digitised catchment boundary. Where, as for instance in some small mountainous catchments, raingauages are few and their siting and exposure are not ideal, great precision in the areal rainfall estimates cannot be expected.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading. Some slight variations from the statistics held by the measuring authorities may occur; these may be due to the different methods of computation or the need for uniformity in presentation.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage* of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stagedischarge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of both the lowest daily mean flow and the 95 per cent exceedance flow's (see opposite) as representative measures of low flow must, therefore, be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

[^3]Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the River Flow Archive*. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Reference to Volume IV of the Flood Studies Report' should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.

10\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the River Flow Archive.

50\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors Affecting Runoff (FAR)

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

Except for a small set of gauging stations for which the net variation, i.e. reservoir storage changes and/or the balance between imports and exports of water to, or from, the catchment, is assessed in order to derive the 'naturalised' flow from the gauged flow, the record of individual abstractions, discharges and changes in storage is not held centrally.

[^4]
CODE EXPLANATION

$\mathrm{N} \quad$ Natural, i.c., there are no abstractions and discharges, or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

H Hydro-electric power. The river flow is regulated to suit the need for power generation.

ABBREVIATED DESCRIPTION

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 176 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the natural flow pattern is significantly disturbed by artificial influences.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydro-
metric Register and Statistics 1986-90' (see page 174). Further details of the net impact of abstractions and discharges on river flow patterns are given in: Gustard, A., Bullock, A. and Dixon, J.M. 1992. Estimating Low River Flows in the United Kingdom. Institute of Hydrology Report number 108.

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

station	river name and station name	SEE
NLimber		PAGE:
3002	CARRON AT SGODACHAIL	91
D 3003	OYKEL AT EASTER TURNAIG	34
4001	CONON AT MOY RRIDGE	91
6008	ENRICK AT MILI. OF TORE	91
D 7002	FINDHORN AT FORRES	35
D 8006	SPEY AT BOAT O BRIG	36
8007	SPEY AT INVERTRUIM	91
9001	DEVERON AT AVOCHIE	92
10002	LGIE AT INVERUGIE	92
11001	DON AT PARKHILL	92
D 12001	DEE AT WOODEND	37
12006	GAIRN AT INVERGAIRN	92
13007	NORTH ESK AT LOGIE MILL	93
13008	SOUTH ESK AT BRECHIN	93
14001	EDEN AT KEMBACK	93
D 15006	tay at ballathie	38
15011	LYON AT COMRIE BRIDGE	93
16003	RUCHILL WATER AT CLILTYBRAGGAN	94
16004	EARN AT FORTEVIOT BRIDGE	94
17001	CARRON AT BEADSWOOD	94
17002	LEVEN AT LEVEN	94
18003	TEITH AT BRIDGE OF TEITH	95
18005	allan water at bridge of alitan	95
18018	KIRKTON BURN AT BALQUHIDDER	95
D 19001	al.mond at craigiehal.l	39
20001	TYNE AT EAST LINTON	95
21006	TWEED AT BOLESIDE	96
D 21009	TWEED AT NORHAM	40
21012	teviot at hamick	96
21018	LYNE WATER AT I.YNE STATION	96
21022	WHITEADDER WATER AT HUITON	
	CASTLE	96
21024	JED WATER AT JEDBURGH	97
D 22001	COQUET AT MORWICK	41
22006	BI.YTH AT HARTFORD BRIDGE	97
23001	TYNE AT BYWEI.I.	97
D 23006	SOUTH TYNE AT FEATHERSTONE	42
23011	KIEL, DER BLIRN AT KIELDER	97
24004	BEDBLRN BECK AT BEDBURN	98
24009	Wear at chester le street	98
25001	TEES AT BROKEN SCAR	98
D 25000	GRETA AT RUTHERFORD BRIDGE	43
25019	Leven at easby	98
25020	SKERNE AT PRESTON LE SKERNE	99
26003	FOSTON BECK AT FOSTON MILL	99
20005	GYPSEY RACE AT BOYNTON	99
1) 27002	WHARFE AT FLINT MILL WEIR	44
27007	URE AT WESIWICK LOCK	99
27025	ROTHER AT WOODHOUSE MILL	100
27030	dearne at adwick	100
D 27035	AIREAT KILDWICK BRIDCE	45
D 27041	DERWENT AT BUTTERCRAMBE	46
27042	DOVE AT KIRKBY MILLS	100
27043	Wharfe at addinghas	100
27047	SNAIZEHOLME BECK at low houises	101
27050	ESK AT SLEIGHTS	101
D 27053	NIDD AT BIRSTWITH	47
27071	Stale at crakehilli.	101
D 28009	TRENT AT COLWICK	48
28015	idle at mattersey	101

station	river name andid station name	SEE
number		Page
28018	dove at marston on dove	102
28024	wreakeat syston mill	102
28026	anker at polesworth	102
28031	manifold at llam	102
28039	rea at calthorpe park	103
28052	SOW at great bridgeford	103
28067	derwent at church wilne	103
28080	tame at lea marston lakes	103
28082	soar at littlethorpe	104
D 28085	derwent at st mary's bridge	49
29003	lud at louth	104
D 30001	witham at claypole mill	50
30004	Partney lymi at partney mill	104
30012	stainfield beck at stainfield	104
31010	Chater at fosters bridge	105
32003	harpers brook at old mill bridge	105
D 32004	ISEBROOK AT HARROWDEN OLD MILL	51
D 35002	hedFord ouse at bedford	52
33006	wissey at northwold	105
33012	kymat meagre farm	105
33024	Cam at dernford	106
33027	RHEE AT Wimpole	108
33032	heacham at heacham	106
D 33034	l.ittle ouse at abbey heath	53
34003	blereat ingworth	106
34004	wenscim at costessey mill	107
D 34006	waveney at needham mill	54
35008	gipping at stowmarket	107
D 36006	stour at langham	55
37001	roding at redbridge	107
37005	colneat lexden	107
37010	blackwater at appleford bridge	108
D 38001	1.Ee at feildes weir	6
D 38003	mimram at panshanger park	57
38018	upper lee at mater hali.	108
38021	turkey brook at albany park	108
D 39001	thames at kingston	58/9
39002	thames at days weir	108
39005	beverley brook at wimbleidon	
	common	109
39007	blackwattr at swallowfield	109
39014	ver at hansteads	109
39016	kennet at theale	109
39019	lambourn at shaw	110
D 39020	coi.n at bibury	∞
39021	Cherwell at enslow mill	110
39023	WYe at hedsor	110
39029	tillingbolirne at shal.ford	110
39049	shle stream at colindeep lane	11
3966	mole at kinnersley manor	111
D 40003	medway at teston	61
40009	teise at stone bridge	111
40010	eden at penshurst	111
D 40011	great stoler at horton	62
40012	darent at hawley	112
41001	Nunningham stream at tilley	
	bridge	112
41006	UCK AT ISFIELD	112
41012	adur east at sakeham	112

station	river name and station name	SEE	Station	river name and station name	SEE
number		PAGE	NUMber		Page
D 41016	CUCKMERE AT COWBEECH	63	60003	TAF AT CLOG-Y-FRAN	124
41019	arun at alfoldean	113	60010	TYWI AT NANTGAREDIG	124
41027	ROTHER AT PRINCES MARSH	113	D 62001	teifi at glan teifi	76
42003	LYMINGTON AT BROCKENHURST PARK	113	63001	YSTWYTH AT PONT LLOLWYN	124
42004	TESt at broadlands	113	64001	DYFI AT DYFI BRIDGE	125
42006	MEON AT MISLINGFORD	114	64002	DYSYNNI AT PONT-Y-GARTH	125
42008	Cheriton stream at sewards		D65005	ERCH AT PENCAENEWYDD	77
	BRIDCE	114	66006	ELWY AT PONT-Y-GWYDDEL	125
D 42010	ITCHEN AT HIGHBRIDGE/ALLBROOK	64	67008	ALYN AT PONT-Y-CAPEL	125
D 43005	avon at amesbury	65	D 67015	dee at manley hall	78
43008	NADDER AT WILTON PARK	114	67018	dee at new inn	126
43007	Stour at throop mill.	114	D68001	Weaver at ashbrook	79
43012	WYI.YE AT NORTON BAVANT	115	68004	WISTASTON BROOK AT MARSHFIELD	
44002	piddle at 8aggs mill	115		BRIDGE	126
44006	SYDLING Water at sydi.ing		69006	BOLLIN AT DUNHAM MASSEY	126
	St nicholas	115	69007	MERSEY AT ASHTON WEIR	126
44009	Wey at broadmey	115	69035	IRWELL AT BURY BRIDGE	127
D 45001	EXE AT THORVERTON	60	70004	Yarrow at croston mill	127
45003	CULM AT WOODMILL	116	71001	RJBBLE AT SAMLESBURY	127
45004	AXEAT Whitroord	116	71004	Calder at whalley weir	127
46003	dart at austins bridge	116	D 72004	luneat caton	80
46005	East dart at belliever	116	73005	KENT AT SEDGWICK	128
D 47001	tamar at gunnislake	67	D 73010	LEVEN AT NEWBY BRIDGE	81
47007	YEAL.M AT PLSLINC.h	117	74005	EHEN AT BRAYSTONES	128
47008	thrushel at tinhay	117	75002	DERWENT AT CAMERTON	128
48004	Warleggan at trengoffe	117	76005	EDEN AT TEMPLE SOWERBY	128
48005	KENDYN AT TRURO	117	D 76007	EDEN AT SHEEPMOUNT	82
48011	FOWEY AT RESTORMEL	118	76010	PETTERIL AT HARRABY GREEN	129
49001	Camel at denby	118	77003	LIDDEL WATER AT ROWANBURNFOOT	129
49004	GANNEI. AT GWIILIS	118	78003	ANNAN AT BRYDEKIRK	129
D 50001	TAW AT UMBERL.EIGH	68	78004	KINNEI. Water at redhall	129
50002	TORRIDGE AT TORRINGTON	118	D 79006	NITH AT DRUMLANRIG	83
D 52005	TONE AT BISHOPS HULI.	69	80001	lirr at dalbeattie	130
52007	Parrett at chiselborough	119	81002	CREE AT NEWTON STEWART	130
52010	brUE AT LOVINGTON	119	81003	LUCE A'T AIRYHEMMING	130
53004	Chew at compton dando	119	82002	dOON at auchendrane	130
53006	FROME (BRISTOL) AT FRENCHAY	119	83003	AYR AT Catrine	131
53007	FROME (SOMERSET)AT TELILSFORD	120	83005	IRVINE AT SHEwalton	131
D 53018	AVON AT BATHFORD	70	D 84005	CLYDE AT BLAIRSTON	84
D 54001	SEVER AT BEWDI.Ey	71	84012	WHITECART WATERATHAWKHEAD	131
D 54002	avon at evesham	72			
D 54008	teme at tenbliry	73	84016	LUGGIE WATER AT CONDORRAT	131 132
54012	TERN AT W'alcot	120			
54019	avon at stareton	120	D85003	Fat.l.och at gl.en falitoch	85
54020	PERRY AT YEATON	120	90003	Nevis at claggan	132
54022	SEVERN AT PI.YNLIMON FI,UME	121	D93001	Carron at new kelso	86
54024	WORFE AT BURCOTE	121	94001	EWE AT POOL.EWE	132
54034	DOWLES BROOK AT DOWLES	121	95001	INVER AT LITTLE ASSYNT	132
54038	tanat at lilanyblodmel	121	96001	halladate at hal.i.adal.e	133
55008	WYE AT CEFN BRWYN	122	101002	MEDINA AT UPPER SHIDE	133
55013	ARROW AT TITLEY MILL	122	D 201005	Camowen at camowen terrace	87
55014	l.UGG A't grton	122	201007	BURN DENNET AT BURNDENNET	
55018	FROME AT YARKHILI.	122		BRIDGE	133
55023	WYE AT REDBROOK	123	D 203010	BLACKWATERATMAYDOWN BRIDGE	88
D 55026	DYE AT DDOL FARM	74	203012	BALIIINDERRY AT BAILIINDERRY	
D 56001	USK AT CHAIN BRIDGE	75		BRIDGE	133
56013	YSCIR AT PONTARYSCIR	123	203020	MOYOLA AT MOYOLA NEW BRIDGE	134
57008	RHYMNEY AT LILANEDERYN	123	D 203028	AGIVEY AT White hill.	89
58009	EWENNY AT KEEPERS LODGE	123	205004	Lagan at newforge	134
60002	COTHI AT FELIN MYNACHDY	124	205005	Ravernet at ravernet	134

Station and catchment dascription
40 m wide river section. Flows fully contained except in exceptional circumstances (e.g. October 1978). Construction of gabion groynes immediately downstream, in Fobruary 1986. has rendered the low flow rating less stable 100\% natural flow regime with litile loch storage. Catchment is typical Highland mix of rough grazing and moorland with some afforestation in the middle reaches

Moesuring authority: HRPB
First year: 1958
Daity mean gouged discharges (cubl metres per

OAY	JAN	FE8	MAA	APP	mar	UN	תu	AUG	SEP	OCT	NOV	DeC
1	82.900	5721	11.750	16740	20160	3596	4562	2679	16.320	89.730	41.920	30670
2	215100	6284	10350	15460	59860	3775	3914	2667	11.000	24.950	55040	75230
3	109700	10040	14.730	16.450	36480	3992	3286	4.563	9483	28990	34890	32380
4	37.270	8.508	11.860	19380	22500	3825	3275	5.084	19920	16580	32710	18570
5	23.570	35.740	11.180	25660	15890	3577	3258	3688	18340	10.830	109.900	13.380
6	99.650	19.360	8137	32.640	11340	3.509	3019	3.738	19700	9078	36210	11000
7	95.970	12560	41.540	20390	11560	3417	2923	2839	45090	7887	18120	11880
8	50.920	10810	24940	17830	10430	3.226	2890	2733	33090	6939	12090	11330
9	29440	9643	15370	17590	15610	3255	2818	3934	19.070	6481	28.500	16.780
10	28510	9121	14910	16760	24460	3394	2.801	10440	11790	5.986	15.680	23740
11	64.570	6.713	17.170	13110	19.990	3.132	2789	4792	B. 970	5.570	11.540	26570
12	31.120	6.578	53730	11870	32.030	3047	2850	10990	23840	5.415	9946	14030
13	19810	10820	22550	10860	18910	3022	2808	26.750	12.130	5.210	9015	42.270
14	17.180	7.564	14.900	10550	10280	3.022	2782	10460	10750	12.940	8355	58400
15	13.200	8.556	11.830	11.100	7413	2845	2776	5855	8.103	31080	7892	46.000
16	11.970	9.018	67.790	13.550	6384	2807	2.762	5238	7.085	40190	8466	26.330
17	13470	7.750	80390	42460	5884	2806	2.753	4985	5443	35590	9.198	22.050
18	12.130	7834	64940	26940	5438	2.790	2.738	8033	4966	22.700	17640	41230
19	14030	6.129	41070	12.520	5024	2788	2734	4437	4688	29980	30.480	20.770
20	11.300	7817	41660	9515	5236	2784	2727	5.487	48800	68.090	15.870	12330
21	9.420	13910	29370	10310	8 701	2764	2627	3890	27480	29830	11.140	11.560
22	6854	109100	27920	13660	10.800	2753	2.623	5.241	36.550	22.830	19770	9924
23	5739	41.110	61320	9444	7258	2.748	2585	21.380	21870	17050	135400	9959
24	6.314	34250	72330	12450	5866	2742	2566	7883	12120	12550	50640	22.760
25	9815	15020	38690	12180	5158	2.974	2582	7.700	9288	9887	44.980	50430
26	8447	13000	39360	11.600	4655	3.193	2.595	6900	7853	8377	24.710	25710
27	5.836	43890	27.690	24690	4209	2.952	2654	5379	7694	9051	64.720	15560
28	6.693	15.210	31.970	17280	4007	3.060	2741	12400	7446	31040	34.690	10510
29	5918	9676	34760	14400	3.909	2883	2748	9988	6179	39.250	18.880	7903
30	5891		22560	18.020	3.724	3553	2.703	18.200	21960	19630	34.560	7133
31	5.717		19200		3.627		2690	19460		13.590		10.250
Averege	34.140	17.290	31810	16850	13120	3141	2889	7929	16500	21840	31770	23.760
Lowest	5717	5721	8137	9.444	3627	2742	2566	2.867	4.688	5.210	7892	7133
Highest	215100	109100	80.390	42460	59860	3.992	4562	26750	48800	89.730	135400	75.230
Peak flow	27070	17090	163.70	8771	7726	407	4.86	6275	14920	21970	183.10	9596
Day of peak Monthly total	2	22	23	17	2	3	1	13	20	1	23	2
(malion cu mi	91.45	4333	8519	4367	3515	814	774	2124	42.77	58.50	82.34	63.65
Runaff (mm)	117	55	109	58	45	10	10	27	55	75	105	81
Reinfoll (mm)	116	73	138	62	60	41	33	114	122	104	138	112

Statistice of monthly data for previous record (Oct 1958 to Dec 1991)

Mean	Avg.	24.380	21270	24860	21300	15590	10790	9873	13.630	15.060	21.150	23.310	24.620
flows:	Low	9429	5259	8615	5561	3838	3320	2743	2478	2864	3.548	9.300	8.333
	(yeer)	1963	1963	1964	1974	1960	1961	1984	1976	1972	1972	1983	1976
	High	51.190	53760	58360	54180	41990	41900	24650	58840	37870	49540	39.710	61.550
	(year)	1983	1990	1990	1979	1968	1966	1965	1970	1965	1981	1977	1968
Runoth.	Avg	84	66	85	71	53	36	34	47	50	72	77	84
	Low	32	16	30	18	13	11	9	8	9	12	31	29
	High	175	166	200	180	144	139	84	202	126	170	132	211
Ramiall	Avg	105	71	90	63	71	80	83	103	99	112	115	106
	Low	34	19	29	13	22	22	26	18	18	26	30	37
	High	201	197	228	136	169	239	167	247	216	223	225	210

Station and catchmant dascription
50 m wide river section in a mobile gravel reach which necessitates frequent recalibration of low flow rating. Flows contained under cableway up to 3.8 m . Adequately gauged to bankfull. 100% natural catchment with minimal surface storago. Other than a narrow agricuttural coastal plain the catchment drains the Monadhitath Mountains with an extensive blanket peat cover

Measuring authority: NERPB \quad Grid roference: 38 (NN) 318518
First year: $1952 \quad 10.10$ Level stin (m OO): 43.10

Dajly mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	May	UN	M	AUG	SEP	OCT	NOV	DEC
1	93.200	28610	43790	70140	62.480	21880	20.950	14150	64.100	158.100	73490	106.400
2	220100	29510	40.880	59490	117.600	22.260	18.900	14.100	48.930	94700	126200	201600
3	339600	34.410	40380	58580	92.080	23.670	17830	17250	39730	110100	98.290	157.900
4	295.700	35.160	40.310	61.360	80400	22150	18340	21910	60.980	81.220	81030	106.200
5	164800	53.790	42.410	73.210	76020	20.770	17.760	19860	52.470	57640	176400	76380
6	141800	48.640	38.870	85.820	59600	20500	16950	18.510	50800	47.160	138500	62.070
7	198200	41.370	75.650	67.560	57030	19.850	16.200	16.700	75080	41.390	98590	62.450
8	217100	37.550	89290	59940	55.150	19.230	16400	15900	79.970	37130	69.930	59970
9	149.300	36510	57.140	60.330	59.950	18.930	16140	21590	62930	35.000	75490	58880
10	110700	36240	57.290	61490	70120	18.750	15.280	34.360	51750	32440	77.300	55310
11	163.500	32910	52660	58.570	67.470	18280	15.150	27650	43.620	30490	60040	71890
12	117.700	31770	105.000	58080	78650	17640	15.670	26.040	51950	29.120	53.720	57630
13	83650	36.730	86.730	53350	64.230	17.570	14.810	36880	52.060	27690	48400	53.830
14	68.630	37.680	62780	48.120	55.400	17640	14280	40230	42.910	35.330	43.830	91.190
15	59240	40000	50.400	46.940	48.120	17.090	14.090	29.620	39.320	89080	40.960	112.100
16	54570	39.600	87.030	47.940	41070	16610	14040	25.590	35.480	106700	40690	128.900
17	52.400	35.510	124.100	73400	37.030	16270	14.230	25.750	31.460	106400	41070	105400
18	49.010	33.240	130400	84300	34.100	16.000	14020	26690	28.700	72.760	40.900	146.100
19	51.130	29010	108.200	59.340	32080	16070	13.960	23.310	27.250	116.600	66430	98590
20	49.630	31.080	100500	47.240	31.360	16.270	13.830	21.760	61.730	139400	54.270	65680
21	44420	37.070	94.930	46540	40.160	15.540	14310	20420	85.900	81.540	44360	54240
22	38.670	119.100	86530	48170	43.580	15.150	14930	23630	93.700	70.860	42.790	50.200
23	35.330	129000	80.860	43.670	36.950	14.900	14360	44510	72400	58.310	168700	45340
24	33550	110000	145.700	51.970	32.180	14.830	14.230	34.390	49520	47.970	160600	57.080
25	37490	80.580	94410	60870	29.830	15.280	15.370	28940	42100	42.070	157.200	112.400
26	36440	58.770	102200	58.930	27610	16680	15.280	29.620	38.920	38040	122.700	84.890
27	31.870	79.960	85360	72630	25.760	15.810	15540	26520	36.270	40100	148300	60500
28	31990	75.030	82.600	77090	24.620	15.610	15.160	37.540	35.150	70460	155.600	48.020
29	30500	51740	94.980	63.560	23870	16140	14880	38.210	31850	84.220	109500	41090
30	29450		86820	66.330	22900	19520	14490	103.700	30900	57.420	100500	33380
31	27.680		84250		22.360		14200	89200		45.810		39910
Average	98620	50710	79.760	60.760	49890	17900	15.530	30.790	50.600	67270	90530	80820
Low0st	27680	28610	38870	43670	22.360	14.830	13.830	14100	27250	27690	40690	33380
Highes:	339.600	129000	145700	85620	117.600	23670	20950	103700	93700	158.100	176.400	201.600
Poak flow	363.80	164.90	178.50	9871	147.40	2404	2144	18330	11690	216.70	221.50	234.40
Day of peek	3	22	24	17	2	3	1	20	20	1	27	2
Monthly total (mibion cu m)	264.20	127.10	21360	15750	133.90	48.39	41.61	8247	13110	18020	23460	218.50
Runoth (mm)	92	44	75	55	47	16	15	29	46	63	82	76
Rainfoll (mm)	112	80	136	76	61	39	44	143	128	108	139	108

Statistics of monthly data for previous record (Oct 1952 to Dec 1991)

Station and catchmont description

Lowest station currently operating on the Spey. Cabloway ratod 65 m wide section with natural control. (limited stability) extreme floods bypass station on left bank. $380 \mathrm{sq} . \mathrm{km}$. developed for hydro-power with diversions and storage: limited net impact on anmual runoff (small loss). Manty granıes and Moinıan metamorphics. Some Dalradian and a litte Oid Red Sandstone. Mountain (inctudes atd northern slopes of Cairngorms) moortand, hill grazing and some arable Forestry

012001 Dee at Woodend

Messuring outhority: NERPB
First year: 1929

Grad reference 37 (NO) 635956 Leval stn. (m OO): 7050

Daily mean gauged discharges (cuble metres per second)

Day	Jan	FEB	MAA	APP	may	JN	Jul	AUG	SEP	OCT	MOV	OEC
1	43.970	17.220	24.580	55.750	38.860	12.400	11.600	6878	40660	65.150	54.730	46.660
2	93.510	17.150	22.100	44780	67.630	13.590	8979	7.599	31.120	39830	87.750	93910
3	87.930	18.050	21.100	39.810	53.460	15.190	8.712	15660	27020	71.410	55.180	50.310
4	42.930	15.420	20.730	40290	53880	12800	12.540	15.350	29030	43.010	45940	35.930
5	32.140	30980	25.300	57.910	54770	11.440	10.190	12730	25.290	33260	138.800	30080
8	40340	24.220	21.590	B1.890	42.440	11.060	8379	11.540	45160	29.400	105.700	31450
7	72.730	21.340	58620	83.060	44690	10.440	7939	9.554	68.930	26480	86.500	51230
8	65.530	20.110	41.270	62.730	37.800	9.949	8.796	8.978	42.120	23.870	45450	38.800
9	43250	23.450	31.990	74030	35340	10020	B 272	22.410	37.760	22480	67.750	34310
10	38.850	22.340	35.030	83.060	35.750	9.882	7.454	30610	32.550	20.770	49.950	30830
11	67.800	17.600	27.600	68.090	37.700	9005	7.159	19.010	47.250	19.410	38050	40720
12	51.270	19.160	49.210	58800	81.610	8.505	7.358	25.120	43190	18.330	31800	28540
13	36.990	28.560	29.410	45660	36000	8.295	6.986	25080	31.710	17380	27.840	29270
14	32.600	19.360	24.410	39040	35.080	8.279	6.541	21.590	27.470	17930	25.700	47.030
15	28.150	19.840	21.130	37.210	32.740	7.972	6.454	16790	25790	32.130	25840	47.320
16	28.220	18060	39810	35.390	27030	7.744	8403	15.720	22.530	44.580	25.520	82.850
17	28.710	15930	81.330	53.360	23.900	7.519	6414	17070	20.080	41.460	23.400	57.320
18	28.190	15.630	60.750	69.090	21.840	7.170	6.375	18100	19.000	34040	23.260	109.100
19	37.980	12.530	42.830	41.810	20.660	7.130	6.345	14.450	17.590	33.960	30500	50.960
20	34060	17.090	45.550	33910	20300	7.025	6266	13.450	44330	38620	22.400	35200
21	27.000	17.330	38.970	37.410	32.610	6.707	7.470	12.780	36290	35.500	19860	32.390
22	20.700	58020	32.880	38.620	22.430	6498	7691	23.220	55590	36060	22.270	30390
23	18.520	43.800	28.080	35.760	19.300	6.435	6.627	43.420	38.980	30.520	167.000	27.900
24	20260	37.570	43.920	108200	18010	6312	8559	22.260	27.920	25.920	92.690	37.010
25	22.940	25.840	31330	60440	17.510	7.209	8.723	23130	29.520	23010	B2.380	52.290
28	18.950	23680	34.860	72.900	16.470	8.318	10850	20.870	25870	21000	47.920	36200
27	14.970	73.970	30820	60.700	15.080	7401	11.030	23.770	24950	33.050	96.580	28470
28	17.360	37.820	30.510	47.930	14.450	6.656	9.154	30.320	22480	40.150	59.330	24290
29	15.730	28.790	49850	39.170	14000	6.929	8.125	22.810	20.190	43.750	39.150	21640
30	15.140		80.870	42.780	13.120	8847	7.656	148.200	38030	29.150	44.690	18.620
31	14.710		76780		12.810		7.119	62.220		24.990		27580
Average	36.750	25.460	38.100	54.180	31520	8.898	8.134	24540	33.210	32790	55460	42.150
Lowest	14710	12.530	20.730	33.910	12.810	6.312	6286	6878	17.590	17380	19860	18.620
Hegheat	93.510	73.970	80870	106.200	67.630	15190	12.540	148.200	68.930	71.410	167000	109.100
Peak flow Day of Daek Monthly tatal	$\begin{gathered} 121.10 \\ 3 \end{gathered}$	$\begin{gathered} 173.30 \\ 27 \end{gathered}$	$\begin{gathered} 113.70 \\ 7 \end{gathered}$	$\begin{gathered} 202.90 \\ 24 \end{gathered}$	$\begin{aligned} & 99.98 \\ & 12 \end{aligned}$	$\begin{gathered} 16.09 \\ 3 \end{gathered}$	$\begin{gathered} 13.19 \\ 4 \end{gathered}$	$\begin{gathered} 32040 \\ 30 \end{gathered}$	$\begin{aligned} & 98.10 \\ & 30 \end{aligned}$	$\begin{gathered} 9691 \\ 1 \end{gathered}$	$\begin{gathered} 24280 \\ 23 \end{gathered}$	$\begin{gathered} 155.90 \\ 18 \end{gathered}$
(mallon cu m)	9843	63.80	10200	14040	84.44	23.06	2179	65.72	8809	8783	143.80	11290
Runotf (mm)	72	47	74	103	62	17	16	488	63	64	105	82 95
Ranfall (mm)	70	60	137	73	54	53	57	150	103	96	107	95

Statistics of monthly data for previous record (Oct 1929 to 0ec 1991)

Station and catchment description
Cabloway rated. fairly stable natural control. Present station, built in 1972, replaced aarlier station flow records from 1929. chart records from 1934) on same reach (Cairnton; c/m measurements at Woodend) - established by Capt. McClean. Earlier staff gauge record dates from 1911 No regulation. little natural storage, minor abstractions. Dalradan and Moinian metamorphic along most of the valley. flanked by igneous intrusive. Mountain. moorland, forestry, pastoral and some arable in the valley bottom

015006 Tay at Ballathie

Massuring authority TRPB
First year: 1952

Grid reforence: 37 (NO) 147367
Level stn. (m OD): 26.30

Catchment area (sq km) 4587.1 Max alt. (m OD): 1214

Daity mean gauged discharges (cubic metres per eacond)

DAY	JAN	FEB	MAA	APR	MAY	JUN	תu	AUG	SEP	OCT	NOV	DEC
1	291400	101900	246000	307100	211400	54490	41970	49.250	306900	284200	170600	368.300
2	670500	104000	211.700	278.100	206600	54460	42360	49.640	276.100	311900	266100	523.300
3	822600	121800	191.700	261400	185.000.	53610	42360	127.900	241100	367.400	220.000	413400
4	613200	118500	181.700	240600	180500	51.310	44.830	92940	219300	278.900	183300	329.000
5	467600	135500	217.600	221.400	171.800	52240	41660	106400	207.600	215400	206800	288400
6	464.300	118800	236600	223.000	153400	50240	40570	116800	307100	147.300	197700	288.700
7	645200	137000	350500	194.400	134.900	49290	40950	78.520	354.500	146700	202500	358600
8	679400	136600	297.200	162300	148000	48880	40800	69.130	292600	142900	165700	304500
9	485.100	154.300	283100	150600	151300	48020	40.060	102.500	297500	129400	184.600	288.600
10	343.500	159.900	301.500	153.700	151900	47.640	39.360	103.500	271.300	135.800	143.900	283.800
11	338.100	131.100	299300	135500	164900	47.070	39.190	80440	285200	138700	176.600	292.500
12	289300	186.400	439600	131200	218600	47.000	40090	115.100	317.700	141.700	199.800	289.300
13	254.200	217.900	370300	143.500	189100	46190	39.150	121.400	267.000	138.500	203100	282.800
14	233900	194300	287200	138.600	178.800	45710	37.350	121.200	259.900	140100	207600	282400
15	221500	204900	253800	128000	161400	44940	36.850	119100	243000	140400	215.500	300.200
16	183700	179300	280.100	122.300	141.900	44150	38380	112.400	207.500	135100	222800	491000
17	177200	180400	275600	121000	129300	45420	40330	112800	193.100	118400	199800	373400
18	205200	177.300	302900	138.200	124300	43640	43980	99.620	155.900	115.200	196900	494.000
19	180.100	161.700	288.300	113.500	117200	42150	44250	75.490	170.500	99.980	195300	348.900
20	166000	127.600	301300	107.300	109.800	41.960	43.670	84020	295600	98.700	151.000	307500
21	132.900	139600	280.500	115100	121.500	41880	44400	93360	242600	101.000	159600	278200
22	134200	354600	262800	111000	111100	41090	46590	99120	251.000	100800	205700	227800
23	136400	382800	215.400	107.200	106200	39860	46640	170800	220000	98.190	513000	210.100
24	123300	365.900	207200	308.700	98.410	39620	57.000	138200	200900	92.930	381.900	215700
25	120.900	294.100	166.500	221900	94630	40360	55210	160200	200300	88.020	374800	230.800
28	113500	279.700	136900	253000	90250	40.890	84.440	150400	169300	88580	330.600	207.200
27	124600	374800	121.900	282.300	83830	41520	63190	207400	173200	123.600	541800	219.400
28	109400	291200	110.000	243300	80650	40510	61.710	248100	162.100	124.600	483800	200000
29	103900	265.300	144900	223300	71820	39230	56.220	196.800	162.800	120.200	395200	183.900
30	105.700		346.600	226.000	63940	40340	53.080	422.800	281800	114.200	357.900	142.200
31	102800		326300		56170		50030	359700		110200		141000
Average	291000	199.200	254700	185.300	135.700	45460	45700	135000	241.100	148.000	255100	294.300
Lowest	102.800	101.900	110.000	107.200	56.170	39230	36850	49.250	155.900	88.020	143900	141.000
Heghest	822600	374.800	439.600	307100	218.600	54490	64440	422.800	354.500	367.400	541.800	523.300
Peak flow Day of peak Monthly totel	$\begin{gathered} 924.30 \\ 2 \end{gathered}$	$\begin{gathered} 50880 \\ 22 \end{gathered}$	$\begin{aligned} & 47060 \\ & 12 \end{aligned}$	$\begin{gathered} 43600 \\ 24 \end{gathered}$	$\begin{gathered} 27220 \\ 12 \end{gathered}$	5531	$\begin{aligned} & 66.77 \\ & 26 \end{aligned}$	$\begin{gathered} 583.30 \\ 30 \end{gathered}$	$\begin{gathered} 43630 \\ 30 \end{gathered}$	$\begin{gathered} 38810 \\ 3 \end{gathered}$	$\begin{gathered} 789.10 \\ 27 \end{gathered}$	$\begin{gathered} 881.80 \\ 16 \end{gathered}$
(mulion cu m)	77930	49920	682.10	480.30	363.50	117.80	122.40	361.60	625.00	39650	681.30	78820
Runotf (mm)	170	109	149	105	79	26	27	79	136	86	144	172
Rainfal (mm)	151	158	200	100	69	31	84	227	181	77	198	138

Statistics of monthly date for provious record (Oct 1952 to Oec 1991)

Station and catchment description
Valocity-area station with cableway. 90 m wide. The most d/s station on the Tay, recordshighest mean flow in UK Since end of 1957 . 1980 sa $\mathrm{km}(43 \%$) controlled for HEP: there was some control prior to this. 73 sq km controled for water supply. Catchment is mostly steep. comprising mountains and moortand: exceptions are lower valleys. Mainly rough grazing and foresiry Geology: mainly metamorphics and granite. but lowe 20\% (Isla valley) is OId Red Sandstone

019001 Almond at Craigiehall

Measuring outhority: FRPB First yeor: 1957

Grid reference: 36 (NT) 165752 Levet stn. (m OD). 22.90

Catchment ares (sq km) 369.0 Max ath (m OD): 518

Dar	${ }_{19}^{\text {JAN }}$	FE8	MAA	${ }_{\text {APR }}$	may	Jun	U	AUG	SEP 6822	$\begin{gathered} \text { OCT } \\ 13280 \end{gathered}$	NOV 28.930	$\begin{gathered} \text { DEC } \\ 11270 \end{gathered}$
1	19.850	2.264	3.944	108.900	6063	1.435	1.805	1.737	6822	13280	28.930	11270
2	10.460	3.538	3.725	23.260	3.721	1.524	1.242	2049	16.210	17.600	58.590	26.390
3	38.230	7.692	4.708	12.850	2.883	1.349	2.940	2.429	9.265	15.320	15.260	15.680
4	18.190	12.180	4570	8.433	2.798	1263	1810	1.969	4387	9541	9.960	13.900
5	10050	8.688	3.701	7.638	2811	1.251	1.254	2.127	2.914	6.921	8870	10520
8	8.294	4.799	3419	6.273	2.743	1.182	1.176	1.628	16.880	5.302	6954	9252
7	25.990	3.931	4761	5.282	2.970	1.203	1136	1.253	14.490	4364	8108	12.390
8	122.300	3.484	4.263	4368	5.048	1.331	1.104	1.498	10.520	3.737	5.491	8.967
8	29.020	4.371	10100	3.854	4.167	1607	1.080	5.413	7073	3.318	14.370	7377
10	12900	8.588	24.200	3.442	3.154	1.645	1089	3637	4.469	2.841	10900	7678
11	10640	6.888	17.480	3089	3.775	1.333	1.488	2.996	6.580	2.554	13730	8.434
12	8.119	7683	28.080	3.025	8857	1.171	1.425	8.799	12.170	2.403	8.860	6444
13	6.780	7.332	14.760	2.848	3.640	1.051	1.285	11120	14.500	2302	5871	6.361
14	5905	8.268	8.609	7933	2.688	1.113	1.246	3.681	13.980	2417	5264	5736
15	5.285	9.884	6.299	7.008	2.142	1.165	1.336	3.070	14810	2207	7.658	4746
18	4.755	6.536	5.126	4.128	1.655	1.133	1.317	3742	6611	2038	9.374	6671
17	4.088	5272	4.336	3.970	1.775	1.138	1361	5046	4464	2.012	6.611	6.338
18	3.710	7027	4761	4.834	1.745	1092	1354	3.546	3.585	1.981	6328	13700
19	3.913	5.687	4.370	3.548	1.678	1.093	1847	2434	3.806	1.876	7101	7046
20	4.604	7943	4.202	2.968	1.651	1.014	1.628	2057	14.350	1.804	7684	4.865
21	3875	7.504	4.890	2840	3.046	1.000	1.514	1812	9.716	1787	10400	4.153
22	3.257	20.910	4.552	2.649	1.927	1061	1.381	3.584	24570	1819	27.200	3898
23	2.877	14.910	3488	2.810	1.660	1043	2.165	5.975	9970	2028	18420	3664
24	2.782	9.251	2.787	3.304	1845	1053	2364	3.628	8.867	2220	11890	5213
25	2.735	7.470	2.718	3092	1.737	1.031	1.478	6602	9.203	2.134	14.650	5235
28	2.570	6458	2.507	14.380	2.922	1.028	1.790	4202	6339	1.975	14580	4.786
27	2.517	6569	2.223	10780	1.893	0998	1.673	10.970	7.847	5.704	42.430	4111
28	2.502	5.338	2253	7.123	1.681	1.035	1.483	8064	5.781	11780	19080	3.542
29	2.456	4.189	2.348	5446	1.610	1.215	1303	4049	4.909	6.991	11060	3.143
30	2.413		2.743	9.157	1.416	2.732	1.247	16.290	36930	4.146	9228	2821
31	2.378		97.640		1.380		1311	20.900		5958		2.692
Average	12.360	7.331	9.463	9.608	2.744	1.243	1.503	4.977	10400	4850	14.100	7646
Lowest	2378	2.264	2.223	2.849	1.380	0.996	1.069	1253	2.914	1.787	5264	2.692
Heghest	122.300	20910	97.640	106.900	6.857	2.732	2.940	20.900	36.930	17.600	56.590	26.390
Poak flow Dey of pesk	$\begin{gathered} 179.90 \\ 8 \end{gathered}$	$\begin{aligned} & 3881 \\ & 22 \end{aligned}$	$\begin{gathered} 183.90 \\ 31 \end{gathered}$	$\begin{gathered} 183.00 \\ 1 \end{gathered}$	${ }_{12}^{9.56}$	30	$3 i^{1.61}$	$\begin{aligned} & 3294 \\ & 31 \end{aligned}$	$\begin{aligned} & 65.80 \\ & 30 \end{aligned}$	$\begin{aligned} & 27.67 \\ & 31 \end{aligned}$	$\begin{gathered} 81.45 \\ 2 \end{gathered}$	$\begin{gathered} 34.35 \\ 2 \end{gathered}$
Montily ioled (millon eu m)	33.11	18.37	2535	24.90	7.35	322	403	1333	2696	1299	3653	20.48
Runoth (mm)	90	50	69	67	20	9	11	36	73	35	99	58
Rainticle (mm)	85	78	142	71	37	24	62	152	144	56	129	59

Statistics of monthly data for previous record fan 1957 to Dec 1981)

Mean	Avg	9781	7.952	6749	4341	3048	2.417	2.383	3.121	4.443	6.405	8945	9317
flowe:	Low	3574	1.782	1.918	1.410	1091	0817	0.950	0869	0668	0.668	1.862	3016
	(year)	1983	1963	1973	1974	1961	1961	1960	1983	1959	1972	1972	1975
	Hogh	18.970	22010	14.300	9840	11.170	8572	9223	8.568	20360	15120	21660	19.860
	(year)	1990	1990	1979	1986	1968	1966	1958	1985	1985	1981	1963	1986
Runoff:	Avg.	71	53	49	30	22	17	17	23	31	46	63	68
	Low	26	12	14	10	8	6	7	6	5	5	13	22
	High	138	144	104	69	81	60	67	62	143	110	152	144
Remial	Avg.	84	59	89	51	59	62	72	83	87	90	88	87
	Low	28	17	22	8	16	15	17	19	14	23	19	21
	High	178	187	127	89	123	136	173	142	195	177	190	179

Summary statistics

$$
\text { For } 1992
$$

	For 1992	
Moan flow (m's m^{-1})	7.186	
Lowest y marty mean		
Highest yearty man		
Lowast monthly meen	1243	
Hugheat monthy mean	14.100	N
Lowest daly maan	0.998	27
Hoghest dely maan	122.300	8
Peak	183900	31
10\% exceedance	14.480	
50\% exceestence	4.165	
95\% exceedance	1.153	
Annual total (mbion cu m)	226.80	
Amual rumotf (mm)	614	
Anmual fantoll (mm)	1039	

Station and catchment description
The recorder is well sited on a straight oven reach with steep banks which have contained all recorded floods. Stable rating over the period of record. Wead growth in summer - some adjustmant to stage is required. Low flows substantially affected by sewage effluent especially from Mid Calder. Abstraction at Almondell to feed a canal. A number of storage reservoirs are situated in the catchment. Geotogy - predominently Carboniferous rocks. Land use - mainly rural. Livingston new town and several small mining towns in catchment.

Mossuring authonty: TWRP Firsi year: 1962

Grid reference. 36 (NT) 898477 Level sin. (m OD): 4.30

Catchment area (sq km) 4390.0 Max att (m OD) 839

Daily maan gauged discharges (cubic metres per second)

DAY	JAN	FE8	MAR	APA	may	JN	U10	Aug	SEP	OCT	NOV	DEC
1	127300	29390	77680	1169000	95550	24390	18940	13590	77920	115.500	160600	311.800
2	115300	30.950	69.770	589600	72650	24050	18190	13050	71.640	89.970	359600	510.800
3	154600	39190	65010	314900	61.750	23.750	18.650	19070	86770	138.100	235200	282.400
4	141800	91360	65.000	225600	58780	24410	21330	27960	60750	100500	174300	197000
5	110700	79820	58920	211.200	59.750	23.210	21.310	28.730	49.580	81.860	142900	156.600
6	97800	57.380	56.700	192.500	52670	22.650	17.070	27.550	46.290	70510	117200	140.000
7	132100	48.770	100.400	158.700	49.970	21.950	15.190	19.300	105.300	61.980	115.100	181.700
8	525100	43.880	80.590	130.300	53610	21080	14440	16920	60.310	55840	96710	160000
9	375500	42.790	73.800	109.300	63190	20820	15.320	17.120	57.810	50.380	192.500	132.100
10	209400	55050	131.300	97.600	58860	19930	16.400	23.020	51.630	45310	193100	116.100
11	163900	47.560	103.400	85.680	63320	20230	14.510	21.600	48480	41.830	146800	115200
12	136100	44030	150400	76320	156.400	19.470	15.840	57.210	56.710	39.370	141.400	102200
13	115300	61.970	133.100	68.310	90600	17020	15660	166600	131000	36.720	112900	93390
14	99.750	53080	100200	83570	68340	16.190	14010	67.860	119.800	35410	97.190	88.400
15	87.600	59570	83.420	113.600	55560	16.020	13.390	44300	106800	39.050	101200	B1760
16	80080	56920	74380	85140	48180	15.790	14.120	47840	81820	52.250	110400	84630
17	73230	49.240	71.040	77120	43.690	15430	16.330	55790	65830	70780	104000	78250
18	67580	50.040	67.370	85920	40.170	15980	14050	50570	58620	50.700	91300	365800
19	63850	50810	70060	71580	37.170	16.770	13.420	36490	52.050	42240	101.800	210.900
20	62000	52.570	65.150	60520	37.750	14900	13460	31.970	60100	38290	87230	140.100
21	56810	74620	63270	58.510	56460	14.650	15.270	27.860	61.220	37.440	88520	112200
22	50180	122.400	62.180	54.740	44880	14480	15.910	26.460	122.400	36.690	161100	97840
23	45370	160.200	56.820	55.360	37590	14250	15.790	41.930	102.900	35.630	273800	87.470
24	47.490	103.500	72080	96.320	35.090	14.000	16.480	38.370	78.810	35.020	192500	82.320
25	43980	94.440	64.230	106.900	33.470	14.130	18.190	35.280	82650	33.070	217.400	80830
26	41.850	82880	57550	117.000	32950	15.380	15.910	38310	66200	36.230	177.400	77.770
27	37340	99320	51.840	165900	29440	13.640	24010	53.160	65.900	48.310	245.800	76.660
28	34.950	95840	47460	138.100	29650	13.220	19.180	81930	59420	104400	252.800	68.270
29	35810	74.990	49.570	102200	28300	12.980	15610	59480	52490	151.400	172.200	58.090
30	33.660		101.900	93450	25640	15720	14.670	125.200	111800	105. 100	197.300	54.900
31	30310		384.600		24710		15020	127600		78.400		61.950
Average	109600	67330	87390	165800	53040	17.880	16.380	46.510	75100	63.100	162000	142.200
Lowest	30310	29390	47.460	54740	24710	12.980	13390	13050	46290	33070	87230	54900
Highest	525700	160200	384.600	1169000	156400	24410	24010	166600	131.000	151.400	359600	510.800
Peekflow	79000	222.70	828.30	134200	21450	26.62	3168	260.20	211.00	182.00	42690	62570
Day of peok Monthly total	8	23	31	1	12	4	27	13	30	28	2	2
(mation cu m)	293.50	16870	234.10	42970	14210	4635	4388	12460	194.70	169.00	419.90	38080
Runotf (mm)	67	38	53	98	32	11	10	28	44	39	96	87
Remfall (mm)	62	70	139	99	48	25	61	149	113	79	136	83

Statistics of monthly data for previous record (Oct 1982 to Dec 1991)

Mean	Avg	127.300	108100	105	100	68620	53410	35960	32750	43.220	52.340	78950	108.000	115.500
Nowe	Low	50.320	37.180		290	25190	17950	15550	11650	9881	10990	10170	24.710	40690
	(year)	1973	1963		73	1974	1980	1974	1984	1976	1972	1972	1973	1975
	Hthah	249700	274200	236	400	142200	153.300	68.200	85.330	148.300	179900	176.300	271700	197900
	(yeat)	1982	1990		63	1979	1967	1981	1985	1985	1985	1967	1963	1979
Runotf.	Avg.	78	60	6		41	33	21	20	26	31	48	84	70
	Low	31	20	16		15	11	9	7	6	6	8	15	25
	High	152	151	14		84	94	39	52	89	106	108	160	121
Reontall:	Avg	98	69	8		59	72	69	74	89	90	95	97	94
	Low	45	15	2		12	20	20	23	21	19	25	16	23
	High	165	176	13		98	181	129	186	188	164	183	224	175
Summ	ary st	istics									ors affect	gr runof		
									1992					
				199			For rocord oceding 19		As \% of pro. 1992		ervoir(s) iraction	catchm or public	ter su	
Mean fiow	W [m' $^{\text {d }}$					77			108				er supp	
Lowest	yaerly	man				33.9		1973						
Highest	vearly	esn				102		1963						
Lowest	monthy	mean				9		91978			ment			
Highest	monthy	mean	165			r 274		b 1990		The	naturalise	runoff to	for 199	
Lowes:	dedr m				29		2728	g 1978		is 6	0 mm			
Highost	dady m		1169			- 1138		ก 1982						
Peak			1342			\% 1518		ก 1982						
10\% exc	coedianc		159			165.			96					
50\% ©x	coedanc					51.3			118					
95\% exc	ceectanc					14			103					
Anmuat	total tm	lon Cu m)	264			2440			108					
Annual	unoff if	(m)				55			108					
Annued	ramfall	nom)	106			98			108					
1941	. 70 raı	fall average	(mm)			100								

Station and catchment description
Lowest station on River Tweed Velocrty-area station at very wide natural section. Complex control. Moderate seasonal weed growth effects on rating. Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows available. Geology: mixed but principally impervious Palaeozoic formations. Moorland and hall pasture pradominatos: improved grasslands and arable farming below Meliose.

022001 Coquet at Morwick

Grid reference 46 (NU) 234044
Level sin. (m OD): 5.20

Calchment area (sq km): 569.8 Mox str. (m OD): 776

OAY	JAN	FE8	MAR	AP9	may	JN	π	AUG	SEP	OCT	Nov	$0 \times C$
1	5.082	2.613	3111	261.500	7.683	2.185	1.449	1031	2.659	6.582	10.100	41830
2	5.115	2.765	2988	48.200	5.791	2.105	1.398	1.102	2.319	4.374	45400	48370
3	4700	3.224	2.873	30.200	5100	2.094	1.581	1.148	4368	9094	20910	25.380
4	4.741	11.880	2.734	21.300	5.092	1.995	2.447	1181	2.798	6.178	11.950	16.280
5	4.305	9330	2.582	34.100	4908	2044	2.257	1.090	2.130	4527	9753	12.310
6	4.878	5.730	2.583	24.900	4.457	2097	1.705	1.068	1.872	3.648	7982	11280
7	4.674	4.699	2.520	20.270	4182	1.974	1.479	1040	2.078	3053	7440	30.910
8	10.390	3.892	2.460	18.990	3.281	1.922	1.417	1.148	2.508	2.804	6428	18030
9	15.360	3.735	2.359	13.670	4290	1.938	1.514	1.477	2.018	2524	B. 309	12.380
10	9.134	3.585	3.153	11.910	5.017	1.826	1.420	1.478	1.853	2.405	11880	10250
11	7805	3.328	3.411	9.571	4.352	1733	1.383	1.344	1.691	2223	8 734	9153
12	7.568	3.233	3.359	8.524	4.529	1.625	1.651	1439	2095	2.148	7.803	8.032
13	8.812	3588	3.726	7.569	3.944	1558	1.563	4.027	3.081	2014	6330	7354
14	5.748	3.364	3.297	35.000	3.455	1.513	1.379	3318	3581	2.043	5.559	6748
15	5. 178	3.830	2.893	29.380	3.084	1468	1.287	2.159	3.211	3746	10800	6084
16	4.859	3.551	2.709	15.520	2.788	1.423	1.312	2076	2.408	13.050	13.540	5741
17	4.543	3.318	2.692	12.220	2.711	1422	1.327	1.964	2088	25520	9.971	5.403
18	4.318	5.092	2.553	10260	2.625	1.345	1.230	1694	2038	10.510	7.795	55900
19	4.168	5.283	2.510	7.732	2.512	1382	1.185	1.536	2.017	7.649	7.162	19100
20	4055	4608	2.501	6.749	2.500	1397	1.191	1.398	1.927	6430	6.168	11110
21	3.818	5.909	2.514	6615	7.722	1.385	1.326	1.303	1.963	6.677	9420	8585
22	3.269	4831	2.760	8.041	5151	1406	1.448	1.433	7.313	6501	21870	7720
23	2822	4.509	2.821	6.059	3.865	1362	1.357	1.797	6809	5908	23460	7.096
24	2.897	3859	4477	6431	3.399	1355	1.225	1.787	4.247	4602	13980	6531
25	3.378	3.681	4.632	7.593	3.114	1.268	1.351	1.458	3.567	4.294	23840	6100
26	3.287	3.509	3.949	8.792	2.767	1.247	1.324	1.488	2986	6568	16.490	7075
27	$2 \mathrm{B4} 1$	3.383	2.755	10.100	2.481	1.211	1.308	1.722	2685	7670	12760	7301
28	2.898	3.584	3059	9.823	2.375	1.225	1305	2.415	2.495	9.147	11.590	6181
29	2.718	3.222	3.469	8.398	2.307	1210	1159	1.916	2.283	15.980	9279	4778
30	2.825		20.620	7.216	2225	1.238	1.077	4.778	3659	9.882	12.990	3884
31	2.530		154.100		2.233		1.047	4.685		7.563		4877
Average	5.029	4385	8.457	23.490	3868	1598	1423	1855	2.892	6623	12660	13.930
Loweat	2.530	2.613	2.359	6041	2225	1.210	1.047	1031	1691	2014	5559	3884
Hrghest	15.360	11.880	154.100	281.500	7.722	2.185	2447	4.778	7.313	25.520	45400	55900
Papk now	20.65	15.50	213.50	341.20	14.80	230	281	1096	1556	4265	5830	9597
Der of peak Monthly total	9	4	31	1	21	3	4	30	22	17	2	18
(mbion cu mi	13.47	10.99	2265	6088	1036	4.14	381	497	7.50	17.74	3280	3731
Runotf (mm)	24	19	40	107	18	7	7	9	13	31	58	65
Rainfall (mm)	27	35	132	121	32	15	60	103	81	89	99	69

Statistics of monthly data for provious record (Nov 1983 to Dec 1991 -Incomplate of missing monithe total 0.2 years)

Station and catchment description
Valocity-area station with 34 m wide concrete Flat V wair (informal design. approx. $1: 20$ cross-slope) made with pre-cast segments (installed 1973). Cableway. Fairty straight section with high banks: Replaced earfier stetion at Guyzance. Responsive natural regime. A predominantly upland catchment draining from the Cheviots. Largely Carboniferous Limestone and Devonian Igneous series. Some afforestation.

023006 South Tyne at Featherstone

Measuring suthority: NRA-NY First year: 1966			Grid reference: $\mathbf{3 5}$ (NY) 672611 Leved stn. (m OD): 13170							Catchment ares (sq km): 321 Mox alt (m OD): 893		
Daily mean gauged discharges (cubic metrea par eecond)												
day	JAN	FEB	MAA	APR	may	JUN	Jul	AUG	SEP	OCT	NOV	OEC
1	4966	2299	12.120	40090	13820	2464	1394	1.644	7.647	6358	36.290	109.900
2	4413	15670	14810	18370	8187	2299	1.294	2.639	15490	17.510	26.420	62470
3	34170	38240	20020	15.460	6337	2.501	2217	7.807	11040	13.980	10650	19420
4	11710	41240	8746	20740	5.161	2291	3814	4.227	5.956	7.731	8627	13890
5	17440	11090	6354	45.980	5441	2.135	2076	3.493	4.469	5485	7782	12800
6	14570	6931	7.099	33.480	5572	2.098	1.562	2.474	20720	4794	9478	17.560
7	7666	5203	5.698	22.330	5.932	1834	1.423	1.970	13.130	4.268	19060	19.830
8	19440	4519	5.311	15.880	7675	1.757	1.344	4.750	18.200	3817	7.737	12.310
9	11.970	4.589	5.227	9718	7693	1685	1.296	5.896	18000	3484	35760	10.320
10	6623	4771	19.880	7.701	9.525	1.524	1.260	3.907	6.720	3237	27160	13.800
11	6.653	4095	35310	5.897	28.630	1.351	1.417	3.115	11.670	3084	22880	28.100
12	5.965	7353	42.340	5927	28540	1.252	1.605	37.100	11.940	2.992	12830	12.000
13	5091	12.160	16.920	9.989	8.241	1.235	1.545	19.680	10.060	2795	8. 169	11.400
14	4.581	9006	9.124	23.290	5371	1.323	1.496	6.192	19.090	14.480	6468	8.892
15	4126	9480	8947	17.090	4622	1.332	1.396	7.152	8.118	6786	7478	8.120
16	4055	5584	16.960	22.550	4.143	1311	1.416	5.523	5.477	5473	14.320	10.250
17	3.841	5. 103	7.373	40.410	3.726	1333	1.500	5.148	4.953	5153	7.960	25.950
18	3.610	5691	14260	21.230	3164	1333	1.873	3.824	4.666	4.838	8.436	53990
19	3507	4.971	10490	8.789	2.888	1333	4264	3028	4.611	4025	7.800	11.280
20	3.431	13400	29600	6455	9.346	1317	2.123	2596	6648	3587	12090	7086
21	2.824	11990	33760	6.120	8 257	1275	2281	2333	22.670	3384	25.030	6062
22	2.175	29670	18620	5.383	4.034	1236	2216	3.331	32.070	3226	27010	5.787
23	2.259	11750	10410	5.731	3322	1205	1.803	5476	9.342	9.643	32870	5.318
24	2.568	9164	9836	6724	3127	1168	1.790	3.509	7.726	10560	31.760	4.964
25	3316	7.726	17.760	5895	12.930	1118	1.700	2862	6823	8128	35350	4.725
26	2.668	5631	9601	16.240	4896	1036	3232	4.227	5.279	10810	23.310	8.299
27	2.424	22.940	6379	16.620	3.147	1030	3.999	5.591	4.765	35.230	57.610	6.522
28	2.120	9044	5.436	11.290	2.749	1128	2.724	13.860	4.222	17610	17080	4.534
29	2.284	5735	7.008	8.544	2670	1.285	1.990	6.313	3.782	15.610	10.210	4014
30	2.188		20620	36.850	2.679	1463	1.730	41.980	11.350	8835	48.790	3.681
31	2.151		77.750		2644		1.555	13.420		14.880		3603
Aversge	6806	11.210	16.570	17020	7.241	1522	1979	7.581	10490	8445	20.210	16.940
Lowest	2120	2299	5227	5383	2.844	1030	1.260	1.644	3.782	2.795	6.468	3.881
Highest	34.170	41.240	77750	45.980	28630	2501	4264	41.960	32070	35230	57.610	109.900
Peak flow	90.17	15960	12840	83.15	11210	305	8.76	68.34	10440	10810	159.00	19600
Day of pook	3	3	31	1	11	3	26	30	21	31	27	1
Monthly total (miltion cu m)	1769	2808	4439	44.11	19.39	3.94	5.30	20.31	27.18	2262	52.39	4536
Punoff (mm)	55	87	138	137	60	12	16	63	84	70	163	141
Remfall (mm)	52	127	192	159	82	17	84	168	129	110	187	138

Statistics of monthily data for previous record tOct 1988 to Dec 1991 -incomplete or miseing monthe total 0.2 years)

Station and catchment description
Compound Crump profile weir. Lower crest 15.2 m , upper crest 29.5 m . Theoretical rating Structure contains all flows. Extreme peaks mey be underestimated. Natural flow regime Linear, northerly trending cetchment in the north Pennines. Geology is mainly Carboniferous Limestone.

025006 Greta at Rutherford Bridge

1992

Moasuring euthority: NRA.NY First yoer: 1980

Gird raference: $45(\mathrm{NZ}) 034122$
Leval stn (m OD): 223.00

Catchment area (sq km): 86.1
Mox alt. (m OO): 596

Daliy mean gauged discharges (cubve metres per second)

DAY	JAN	FEB	MAR	APA	may	NN	M	Aug	SEP	OCT	NOV	DEC
1	0.799	0.329	0838	4.728	1.475	0.178	0099	0.085	0814	1.163	7520	42600
2	0.838	2.842	0.908	3.276	0.757	0.189	0098	0084	3.328	3.172	10110	19990
3	6.376	7.815	0792	4241	0.681	0.224	0.218	0098	1.727	4.725	2.723	7.541
4	3080	9.240	0594	2648	0589	0.172	0599	0109	0685	1.898	1.750	3.620
5	13.620	2.763	0.502	2.512	0.555	0.359	0.265	0.129	0427	1096	1.339	2982
6	4882	1.557	0482	1813	0473	0321	0167	0123	2401	0.771	1.188	6452
7	2.188	1.033	0.483	3.083	0441	0.243	0139	0100	2083	0632	2066	5028
8	6.588	0.817	0.478	2.885	0.511	0.202	0.137	0683	0.988	0.535	1.151	2451
9	4418	0899	0740	1.244	0549	0176	0171	1077	1.116	0.463	8.886	1.867
10	1.882	0.985	3.805	0.844	0.491	0.155	0.163	0.474	0.586	0411	4692	1.521
11	1.868	0.785	4.546	0892	0.507	0.138	0.157	0.268	1.477	0386	6398	3.701
12	1.464	1.584	10.520	0877	3.066	0.120	0475	4.541	4.659	0.365	4.127	2.190
13	1.239	1.735	6.081	2.025	0941	0113	0.226	1819	3.067	0339	1882	1.513
14	0.989	1.939	2.801	9.733	0.488	0.112	0.163	0.621	1.382	2.209	1348	1.312
15	0809	1.769	2.742	7.410	0336	0.111	0.133	0349	0.889	1.356	3.117	1.215
18	0.804	0.978	2.279	3.431	0.278	0.108	0.122	0.270	0.599	0.761	5.677	1366
17	0.781	0827	1.357	5.850	0249	0.103	0114	0.250	0.477	0.589	2324	4.412
18	0707	0818	1.394	3182	0238	0098	0116	0.231	0464	0.486	2.523	21.160
19	0.655	1.049	1.163	1.620	0249	0095	0.492	0177	0467	0415	2400	2727
20	0.629	5.062	1.937	1.100	0237	0094	0.233	0151	0615	0379	4.622	1368
21	0.505	2.521	5.650	0.877	0211	0094	0215	0.145	9.783	0.368	6.573	1.098
22	0.352	3.885	3784	0.784	0.179	0094	0253	0143	8349	0.349	8.496	0.930
23	0.404	2.192	2.034	0709	0.189	0096	0.162	0.170	1.933	1.299	5.072	0.767
24	0.348	1.308	1.347	1.082	0289	0092	0.135	0.182	1.156	3010	4203	0.636
25	0.417	0.928	1.623	0.973	0.223	0087	0.120	0214	0832	2.782	5596	0.602
28	0.358	0808	1411	1.567	0.155	0083	0.128	0.449	0.727	6.609	3.958	1.028
27	0331	1370	0.888	2420	0.133	0.082	0.140	1248	0682	12.210	6251	1.487
28	0.291	1.365	0.748	1.245	0.142	0.084	0.111	1.021	0.594	4.870	3.283	0.724
29	0.321	0.803	1806	0844	0193	0094	0099	0691	0513	2580	2630	0453
30	0.298		18.920	2.209	0.194	0.100	0093	7.244	2307	1547	8311	0459
31	0279		20370		0.178		0089	2.118		1158		0508
Average	1.879	2.062	3.250	2.523	0.490	0.141	0.188	0814	1837	1901	4267	4636
Lowest	0.278	0.329	0.462	0.692	0.133	0082	0089	0084	0427	0.339	1.151	0.453
Heghest	13.620	9240	20.370	9733	3068	0359	0599	7.244	9783	12210	10.110	42600
Peak flow	23.93	25.67	4990	21.82	747	044	078	1428	4549	1754	2371	7642
Day of peok Montinly total	5	3	30	14	12	5	4	12	21	27	1	1
[mullon cu m]	5.03	5.17	8.70	6.54	1.31	036	0.50	2.18	476	509	1106	1242
Runotf (mm)	58	60	101	76	15	4	6	25	55	59	128	144
Rointall (mm)	55	64	127	88	36	21	75	131	113	70	141	130

Statistice of monthly data for provious record (Oct 1980 to Dec 1991)

Mas flows:	Avg.	3815	2977	3.238	2.115	1.232	0.834	0887	1251	1392	2521	3373	3696
	Low	0290	0.280	0.842	0.375	0.148	0130	0092	0098	0110	0195	0951	0.944
	(verr)	1983	1983	1973	1982	1980	1970	1984	1976	1989	1972	1973	1971
	High	7155	8 185	B 928	4882	3951	2.502	2783	4107	4087	6685	6878	6607
	(roes)	1975	1990	1979	1969	1987	1980	1988	1971	1965	1967	1983	1990
Punotf:	Avg.	119	84	101	64	38	25	21	39	42	78	102	115
	Low	9	8	28	11	5	4	3	3	3	6	29	29
	High	223	230	278	141	123	75	87	128	122	207	207	206
Pantar:	Avg.	122	91	99	75	73	71	70	94	90	107	114	122
	Low	38	13	31	10	16	18	20	35	18	21	43	43
	High	208	248	220	136	164	188	194	200	206	269	219	296

Station and catchment deacription
Compound Crump profile weir, total width 19.2 m , low flow crest 3 m broad. Theoretical rating with check gaugings. Responsive, natural regime. An eastward-draining Pennine catchment developed largely on Millstone Grit.

027002 Wharfe at Flint Mill Weir

Measuring authorily: NRA.NY First year: 1936

Gnd reference: $\mathbf{4 4}$ (SE) 422473
Level stn. (m OO): 13.70

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APPR	May	NW	$\boldsymbol{\mu}$	AUG	SEP	OCT	NOV	DEC
1	8161	3299	18860	32.370	39980	3.719	2.575	2.000	14.920	6.389	14.740	88400
2	8.268	3.140	19.350	19150	16830	3658	2.562	1.932	20670	11.440	35.020	171.300
3	18.310	12.770	36910	15460	11.280	4.650	3.129	1.988	18.410	35.300	26210	71.560
4	37500	31000	19590	13950	8.841	4.588	4.366	1.979	9282	18220	15.730	43.310
5	142.000	17080	12.050	11.520	7.565	4492	4873	1941	5.975	10.380	13.530	31.980
6	95630	9.750	9720	11.030	6841	4275	3416	2012	4948	7403	18.900	35.810
7	37.250	7.773	9022	13.040	6494	3999	2784	2099	21.750	6.655	31130	47.200
8	27780	6.128	11270	18.770	8.578	3.683	2.778	3546	14160	5659	16.620	25580
9	28.330	5.457	8.535	12.080	11900	3359	2756	9073	13.450	5.081	27.540	18.670
10	18.090	6.508	17020	9488	11.820	3.212	2.605	6.705	9.382	4583	39.520	15.440
11	14.060	10.030	38740	7986	8.231	3.001	2.600	3889	6.284	4284	45.470	22.780
12	12.320	8350	114400	7067	31.620	2812	2.825	5.925	18.150	4036	32.600	26110
13	11.350	12.420	83700	13550	14550	2.721	3.201	9849	39660	3.798	24.270	19.600
14	9.938	12180	35.530	37640	8742	2.793	3005	5.043	17.760	3818	16.620	30.200
15	8.792	20.880	25.170	46870	6804	2.647	2.663	3.655	12.430	4516	19.460	28.820
16	8.083	12.640	21850	24.230	$56: 3$	2.550	2329	3031	9186	4.410	22.470	19.730
17	7.391	9.178	16340	18840	5203	2.442	2.332	3.401	6.598	3.898	19.720	18.830
18	6486	8562	16190	49270	4748	2.369	2.217	2.920	5.305	3.686	15310	108.400
19	5952	8929	18.190	31.800	4.334	2350	4274	2862	4894	3.501	20580	42660
20	5.898	11.200	26540	17010	4319	2334	6086	2631	5176	3.546	21.300	21.570
21	5.520	22.690	63960	12.570	4.204	2.347	4.008	2.375	6.840	3.416	37170	15.770
22	5152	60870	35390	11.080	4075	2.317	3.153	2.617	33910	3.440	57220	12940
23	4.651	46.650	22.120	11.120	3.833	2304	3046	2599	15760	3.572	49750	10920
24	4.485	21140	15480	9.774	4.121	2382	2572	3686	8775	4.148	28.740	9582
25	4.163	14.000	12480	11.540	3.748	2257	2348	3125	7239	10220	31170	9.280
26	3825	11.160	11530	15.230	3486	2.209	2.258	4.989	6.781	15.560	33.420	8.989
27	3.685	9.605	9.460	18.530	3330	2201	2194	24950	5.475	57200	26.530	8522
28	3.595	12.950	7893	17.500	3.503	2.197	2.241	23620	5.197	48.380	31.310	8.177
29	3445	9.161	8244	12.050	3.968	2.425	2.183	10.690	4.856	29.290	18.900	7.788
30	3.379		20090	31.750	3938	2.377	2.101	35580	5.395	16290	58.900	7.136
31	3.339		75060		4331		2.020	39.470		10860		6.720
Average	17.990	14.670	27.110	18740	8600	2.954	2.945	7.424	11.950	11390	28330	31.760
Lowest	3.339	3.140	7.893	7067	3330	2.197	2.020	1.932	4.856	3416	13.530	6.720
Highest	142000	60870	114400	49.270	39.960	4.650	6086	39.470	39.660	57.200	58.900	171300
Peak now	25360	14440	13790	10850	81.62	5.31	1067	8353	70.25	85.21	9758	19780
Day of peak	5	22	12	30	1	3	19	30	13	27	22	2
Monthly total (mdion cu m)	4819	36.76	7262	4858	2303	7.66	7.89	19.88	3098	3050	7343	85.07
Runoff (mm)	64	48	98	64	30	10	10	26	41	40	97	112
Pantall (mm)	83	89	149	105	51	26	74	140	108	92	165	114

Statistics of monthly data for previous record loct 1955 to Dec 1991)

Mean	Avg	27930	23.820	21570	15.840	10600	7.293	7.561	11.280	12.900	18.010	23.310	27.440
flows.	Low	4472	2.974	6741	4496	2.312	1.545	1.674	0.991	1419	3.026	8.876	10230
	(rear)	1963	1963	1961	1974	1980	1957	1976	1976	1959	1972	1958	1983
	High	44000	54.590	53.940	35.240	26.750	18.530	16.440	41.340	33.520	54000	51.090	62.090
	(yes)	1984	1966	1981	1970	1967	1972	1963	1956	1968	1967	1963	1965
Runots:	Avg.	99	77	76	54	37	25	27	40	44	64	80	97
	Low	16	9	24	15	8	5	8	4	5	11	23	36
	Hugh	155	174	190	. 120	94	63	58	146	115	191	174	219
Rainfall:	Avg.	116	86	92	75	73	77	83	98	99	110	111	125
	Low	41	14	28	8	13	18	20	18	8	32	33	41
	Hagh	217	201	222	147	181	183	185	226	241	225	211	233

Summary statistics

For 1992		For record precerting 1992		$\begin{gathered} 1992 \\ \text { As X of } \\ \text { pro- } 1992 \end{gathered}$
15.320		17.270		89
		11420	1975	
		23300	1986	
2.945	Jut	0991	Aug 1978	
31760	Dec	62.090	Oec 1965	
1932	2 Aug	0.425	23 Jun 1957	
171.300	2 Dec	292100	23 Fab 1991	
253.800	5 Jen	382800	3 Jan 1982	
35540		40980		87
8 972		9509		94
2275		2349		97
484.50		545.00		89
638		718		89
1196		1145		104
		1168		

Factors affecting runoff

- Reservoir(s) in catchment.
- Abstraction for public water supplies.
- Flow reduced by industrial and/or
agricultural abstractrons
- Augmentation from surface water and/or groundwater

Station and catchment description
Broad-crested masonry wair 47 m wide with a current meter cableway $1.5 \mathrm{~km} \mathrm{u} / \mathrm{s}$ (moved to new US station at Tadcaster in 1990). Insensitive at Low flows. Level data only from 1936 to 1955 . Recalibration(from 1965) completed but flows reprocessed from 1982 only. Pre-1965 data less reliable. Regulation effect of headwater reservoirs evident al iow flows. Smail net export of water (inc. Bradrord supply). Mixed geology - mainly Carboniferous Limestone. grits and Coal Measures. Predorninantly rural catchment with moortand headwaters

Gind reference: 44 (SE) 013457 Level sin. (m OD): 87.30

Catchment ares (sq km). 282.3 Mox aht (m OD): 593

Daily mean gauged diecherges (cublc metres per eecond)

DAY	JAN	FEQ	MAR	APP	may	UN	μ	Aug	SEP	OCT	Nov	OEC
1	4.431	1.586	6.449	9701	10.760	1.269	0.521	0.441	4891	2611	7120	41440
2	4.210	2.489	7.481	6.782	6.405	1.415	0480	0432	8024	11.900	18.880	53.260
3	16.710	6.208	12.740	5.381	4.976	1220	2370	0473	5.280	14.330	12050	37920
4	15.670	14.630	7.702	4.507	3.992	1268	2.237	0448	3.015	7.745	9534	30270
5	58490	6678	5901	3.941	3.362	1.683	0.953	0487	2070	4960	8437	22290
6	59.100	4679	5.398	3.953	2.978	1.168	0668	0443	3537	3.669	8.044	19.420
7	34.370	3.768	8.088	4.839	2.946	0962	0582	0414	4.872	2.938	9.768	16.850
8	25.880	3.293	5.538	4877	3500	0.892	0.781	1.808	3.322	2436	6811	11390
9	14.990	3.333	4.702	3620	5.789	0.868	0.889	1.965	2.606	2091	16800	9.100
10	9.895	4559	12.180	3.183	4.801	0.985	0746	0.983	2001	1.809	19.940	7.519
11	8.212	3.858	22.260	2.913	3683	0803	0.757	0.717	3276	1649	20.780	15040
12	6896	4.055	43200	3.176	8.643	0.718	1.159	1.243	7807	1494	25450	11.470
13	5.918	4398	35.220	6.315	4.457	0682	0787	1.308	10.860	1.345	14.710	10580
14	5046	5.497	18.500	15840	3.348	0878	0.602	0.856	6574	1.776	11.400	12.360
15	4443	6522	15.500	11.360	2.595	0.662	0563	0.687	4.500	1.880	12.690	9437
18	4080	8.065	10.890	6.554	2.195	0811	0.557	0.626	3259	1.454	10790	8.284
17	3.604	4.700	8.289	0.151	1.984	0801	0.571	0635	2.658	1.252	8.195	7073
18	3.318	5.847	6.298	17.020	1.818	0.587	0.573	0.597	2274	1.243	7.961	35.770
19	3.119	8.705	7.325	8.994	1.680	0.568	0.884	0.534	2.197	1.122	8.483	15.590
20	2.918	6.527	12.230	6.165	1800	0.584	0.727	0.511	$2 \mathrm{B35}$	1.028	11.210	9.366
21	2.677	7.181	28.370	5.000	1.521	0.586	0.748	0.494	3.059	0.987	21.900	7.062
22	2.398	20.460	17.440	4.635	1444	0.495	0.589	0644	B. 989	1.031	30710	5.897
23	2.181	17.730	11.120	4.023	1.354	0481	0.541	0.632	4464	1.496	20.040	5.159
24	2077	9485	7.954	3.938	1376	0482	0504	0587	3.191	2.304	12.700	4.390
25	2.007	6.914	7.115	3.988	1253	0.450	0.491	0774	2.763	11.240	14.880	3.799
28	1.894	5.607	6158	5281	1.141	0441	0.520	2112	2.342	8.082	14810	3.670
27	1.795	6.522	4.770	4803	1039	0420	0498	8.573	2.068	26.600	14470	3.984
28	1.686	5.743	4.255	4.489	1.079	0733	0.473	4629	1.843	31.120	12.720	3.609
29	1.610	4641	4.720	3523	1.208	0568	0.482	2570	1.748	13.940	9731	3.190
30	1660		8.220	14.820	1.522	0529	0.457	12.050	3221	8.216	33.070	2.823
31	1.608		20.970		1.285		0432	9.783		5.921		2.653
Averege	10.090	6.836	12.160	6393	3.087	0.777	0.744	1884	3987	5798	14400	13.890
Lowast	1.608	1.566	4255	2.913	1039	0.420	0432	0414	1.748	0.987	6.811	2653
Highest	59.100	20.480	43.200	17.020	10.760	1.683	2.370	12.050	10.860	31.120	33070	53.260
Peak flow	6762	30.82	47.49	30.72	1875	1.96	4.47	18.02	18.88	37.62	4416	5896
Dey of peek Montily total	8	22	12	30	1	5	3	30	13	28	30	2
(maluon cu m)	2703	1883	32.57	18.57	6.27	201	1.99	505	10.34	15.52	3733	37.21
Runoff (mm)	96	59	115	59	29	7	7	18	37	55	132	132
Remiall (mm)	89	87	148	92	49	24	74	134	95	94	158	109

Statistics of monthly date for previous record (Dec 1988 to Dec 1991 ——ncomplete or miseing monthe total 0.1 veers)

Station and catchment dascription
Velocity-area stafion rated by current meter cableway 150 m downstrearn Low flow control is the sills of the bridge. Flows below one cumec underestimated - recalibration scheduled. Washland storege. minor reservoirs, and the Leeds-Liverpool Canal can influence the flow pattern but small overall impact: minor net export. Geotogy is mainly Carboniferous Limestone with some Millstone Grit series. Rural catchment draining part of the eastarn Pennines

027041 Derwent at Buttercrambe

Messuring authority: NRA.NY First year. 1973

Grid reference: 44 (SE) 731587
Leval sin (m OD) 9.50

Cotchmont aroe (sq km): 1586.0 Max eht. (m OD): 454

Daily mean gauged discharges (cubic metree per escond)												
day	JAN	FEB	MAR	APR	MAY	ON	(1)	Aug	SEP	OCT	NOV	OEC
1	7.611	6.378	7881	60.110	13.590	5623	3958	3.550	5.578	9803	13.250	53.270
2	7.453	6.549	8852	54.480	12420	5523	4111	3541	4897	10.180	14.620	63.010
3	7.308	7.289	8.203	57.690	11130	5.438	4.578	3.533	5016	23090	14.800	72.350
4	7437	15.550	7521	47.680	10630	6.092	6.052	3.521	4.767	22.370	12.460	71.390
5	11.020	17.020	7273	36.090	10.390	6.189	7378	3467	4342	14850	11250	50.060
6	21.760	12.310	7111	26.930	10.130	6.553	6.439	3.442	4.169	11440	10840	42.670
7	15340	10.360	6970	22.640	10090	6239	5.453	3.420	4.277	9.972	10.290	52.250
8	13.150	9.274	6.856	19.570	9.914	5.917	5.113	3773	4.307	9112	9.853	55.830
9	16.840	9.095	6.578	17.050	9875	5.693	6.081	4.590	4060	8449	11020	47.310
10	15.070	8.719	6639	15.580	9551	5408	6618	5285	3898	7.828	17800	38.190
11	12130	8.234	6596	14560	9289	5.199	5.840	4688	3.769	7451	17230	33.940
12	10830	8.161	6679	14020	9165	4998	5.430	4.258	3.827	7.705	16.390	34.870
13	10.610	8.741	6.924	13.530	8.842	4.774	5.237	4045	4070	7331	13530	30.930
14	10180	8526	6.788	16090	8533	4613	4.876	3.897	4.610	7126	12090	28.940
15	9.523	8.979	6.487	39.460	B. 140	4.596	4484	3.734	4057	7588	14.000	23.970
16	9.245	8853	6.273	41440	7846	4.538	4.330	3.686	3.796	10.370	18.310	22120
17	8.825	9.210	6.059	34.370	7.721	4.408	4.208	3.622	3.673	11890	21.480	20.220
18	8.564	10100	5.975	28640	7634	4.340	4.182	3.586	3.653	11.190	17510	27.100
19	8.385	10.280	5.989	22.130	7.523	4.237	4078	3.530	3691	9.372	15.050	40.360
20	8339	10530	6.113	18740	7338	4.155	4.113	3.456	3.707	8327	13570	28.600
21	8047	10.960	7.290	17.270	7.152	4.070	4.787	3.433	4018	7.906	13.750	22390
22	7603	10890	8.713	15790	6875	4.048	5.111	3.570	6.459	7.735	22200	19.680
23	7.123	10050	9.220	15310	6741	4.019	5.181	3.802	17080	7.560	27.490	18410
24	7.282	9.363	9.170	14.770	6.752	4.026	4.834	3.893	23450	7.348	22.050	17.390
25	7.123	8830	9.195	14.750	6.771	3.954	4.376	3.713	13630	8.546	23030	16.290
26	7.170	8359	10.810	14240	6299	3.645	4.141	3.710	13.070	14.010	21550	15560
27	6.919	8.111	15.110	13770	6028	3.748	4006	4.210	12620	20.270	18.470	15400
28	8458	7.985	14.380	12.690	5.791	3.701	3.881	5088	10070	35.560	17.360	15.140
29	6.724	7831	13650	12030	5734	3.708	3.766	4.480	8 545	25.320	16310	14.890
30	6646		33470	12020	5602	3694	3.742	4.304	8. 163	18.650	33.970	14430
31	6.646		54.600		5871		3657	6.948		14890		13.870
Average	9598	9536	10430	24780	8357	4.778	4.838	3.993	6709	12.360	16710	32.870
Lowest	6.458	6378	5975	12020	5602	3694	3657	3.420	3.653	7126	9.853	13.870
Highest	21760	17.020	54600	60110	13.590	8.553	7.378	6946	23450	35.560	33970	72.350
Poek fow	23.68	19.79	60.65	6129	14.10	6.74	776	769	2759	3764	51.53	77.73
Oay of peak	6	4	31	1	1	4	5	31	24	28	30	4
(million cu m)	25.70	23.89	27.94	6423	2238	12.38	12.98	10.69	1739	3311	43.31	88.03
Runotf (mm)	16	15	18	41	14	8	8	7	11	21	27	56
Ranfal (mm)	34	38	90	79	13	28	84	74	104	83	85	81

Statistice of monthly data for pravious record (Hen 1973 to Oec 1991)

Station and catchment description
Crump weir. 20m wide: high flow rating derived from limited number of gaugings. Pie-October 1973 date (monthly only) of poorer quality. derives from Stamford Br. (27015)-slightiy smaller catchment area (1586.0 sq km). Peak flows from the headwaters upsiream of Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Minor net impact of artificial influences (spray irngation is appreciable). Mixed geology of clays, shales and limestone. Rural catchment draining the North York Moors.

027053 Nidd at Birstwith

Measuring au First year:	rity: NRA		Grid reterence. 44 (SE) 230603 Level stn. (m OO): 67.40							Carchment ares (sa km): $\mathbf{2 1 7 . 6}$ Max att. (m OD) 705		
Daily mean gauged discharges (cubic metres per second)												
day	JAN	FEB	MAR	APA	may	JN	N1	aug	StP	OCT	NOV	DEC
1	2.525	1284	2229	12.080	8.453	1097	0838	0.763	1.412	2.423	4.183	32.500
2	2.616	1.690	2.197	11010	3945	1080	0832	0.781	2.796	5339	5893	89450
3	3.778	2.457	2.822	8.650	2.705	1.538	1.355	0803	1.553	5951	4.981	24520
4	3.545	3285	1.927	5364	2319	1.242	1390	0.775	1.217	3485	4.492	14660
5	41.080	2.038	1.753	4234	2095	1.302	0.990	0794	1.102	2.911	4.185	12890
6	16.580	1.746	1674	4533	2.159	1.193	0898	0.761	1.277	2.635	4.489	14.760
7	12.990	1.580	1798	4558	2.216	1.103	0868	0773	1332	2.469	4878	12.590
8	13.670	1.544	1.699	4.440	2.491	1.077	0.900	1.578	1.332	2.353	4.122	10.900
9	11.690	1.679	1572	3383	2.387	1.021	0922	1624	1.208	2.293	7.491	10240
10	6.285	2.444	2.834	2.781	2.116	0.993	0889	0.968	1.072	2189	8497	6143
11	5.877	2030	5.627	2.468	1.806	0.957	0.927	0874	1.456	2150	7950	7005
12	5.409	2.157	11.030	2.545	2.264	0.925	0.907	1.064	3042	2089	6590	5914
13	5.131	2.469	16560	3.527	1831	0904	0864	1.008	2.639	2.058	5.326	6.133
14	3.889	3475	7611	9682	1545	0899	0834	0843	2247	2119	5.774	6.422
15	3.239	3.135	5.913	12.370	1408	0.898	0.840	0808	2.032	2068	7381	5514
16	3.116	2.682	4885	6095	1304	0886	0.851	0787	1.872	2.017	5724	5.236
17	3.003	2.461	3.899	4579	1295	0.880	0852	0785	1850	1962	4915	5477
10	2890	2.539	4.118	8.247	1.278	0870	0.855	0.838	1.822	1938	4.902	29170
18	2823	3.271	3.984	4.889	1.236	0.868	0.903	0567	1.893	1.309	5475	14.410
20	2.584	3143	7.286	3287	1214	0871	0841	0565	1.871	1113	5.192	10500
21	2.488	2.772	20170	2.848	1.195	0.873	0.891	0.562	6095	1.108	8805	9808
22	2.368	9356	8410	3936	1.175	0868	0830	0620	6.459	1.148	12090	9325
23	2.318	6.027	5386	3422	1.168	0873	0835	0593	5.023	1.101	11660	5.939
24	1.778	4.782	3748	3.133	1.221	0850	0807	0.570	4.353	1.108	13180	4809
28	1.627	4.317	3.455	3.179	1.143	0833	0808	0568	4.297	2.412	11710	4.574
26	1.591	4.036	3.377	6.543	1.099	0.824	0.800	0.799	4.481	2.735	8.062	4.577
27	1.458	2.590	2.443	6.769	1.124	0.805	0.780	1.605	3.138	9433	7357	3114
28	1.339	2.140	2.113	2.650	1.237	0.815	0.767	0.695	2.343	7.605	6.548	2.506
29	1.327	1.924	3524	2.712	1.226	0822	0777	0.773	2.286	4.954	6237	2344
30	1.329		12500	7.997	1135	0828	0768	3.892	2921	4278	20260	2231
31	1.294		43.820		1.108		0.780	1.887		4.001		2.167
Averege	5.530	2.933	6483	5397	1900	0966	0883	0.978	2.547	2.927	7278	12.120
Lowett	1.294	1.284	1.572	2.468	1099	0805	0.760	0562	1072	1.101	4.122	2.167
Heghest	41.080	9.358	43.820	12.370	8.453	1.538	1.390	3.892	8459	94.33	20260	89450
Pask flow	80.82	2018	71.12	17.88	1223	311	2.04	5.45	23.14	1408	27.72	15830
Day of peak	5	22	31	1	1	3	3	30	21	27	30	2
(mullon cu m)	14.81	7.35	17.31	1399	5.09	2.50	2.37	2.62	660	784	1886	3247
Aunoff (mm)	68	34	80	64	23	12	11	12	30	38	87	149
Rentell (mm)	77	89	155	113	48	26	75	156	118	88	167	130

Statistics of monthly data for previoue record (Apr 1975 to Dec 1991 -incornplete or masaing monthe total 0.1 yeere)

Station and catchment description
Velocity-areastation approximately 17 m wide, rated by current metoring to 30 cumecs only) from bridge at the section. Riffle control. may be subject to erosion. Heavily reservoired catchment with substantial effect on flows. Goology is mostly Millstone Grit. Rural catchment

028009 Trent at Colwick

Measuring authority NRA-ST
First year. 1958

Grid roferenco: 43 (SK) 620399 Level sin. (m OO): 1600

Catchment ares (sq km) 74860 Mex att. (m OD): 636

Daity mean gauged discharges (cubic metres per eecond)

DAY	JAN	FEB	MAR	AP9	MAY	JN	π	AUG	SEP	OCT	NOV	OEC
1	45990	40130	43190	135500	49040	77460	54.500	26. 100	60.270	49000	67020	325300
2	43120	37570	62690	113800	50300	83.510	65490	26.180	46950	61770	68840	379000
3	43.140	42020	51870	93260	44060	68510	66240	25.350	45760	176.100	72.220	433.000
4	61690	52290	48940	76290	40250	97610	89410	29170	46240	219800	64290	444000
5	113700	75490	44400	66930	38470	107900	59050	27030	46320	159200	57370	360300
6	153800	52330	41690	66060	38350	81030	42450	25270	41560	92420	53.350	253300
7	108000	46620	41320	74110	38000	58700	35.910	26.200	39.110	70.570	52520	325500
8	102.900	42.910	40090	88980	36550	55070	31910	45350	38.930	60540	48.680	271700
9	255300	42.900	35860	69030	48.150	70180	36370	81420	34270	54420	61.880	194400
10	283900	47710	38670	58.600	61920	53820	52.670	59.330	33.460	49190	142.400	162200
11	250400	49700	42570	53370	45580	54400	43350	43310	32000	44880	212100	147.200
12	145500	48.100	47650	50080	40910	42840	44440	44260	32040	43290	239800	173600
13	107000	50870	68830	53670	39450	38.540	44080	54.340	35.190	42.350	167.400	149600
14	92130	49.830	72480	64210	35460	33140	67950	52560	44.160	41070	123000	132.700
15	79580	49590	85770	96830	36240	32260	61290	42380	35.990	44260	187400	123.000
16	71.480	46640	96390	85100	32060	32130	45150	42.740	32.890	46380	222000	118600
17.	65.940	44470	75.820	68440	33330	30790	40890	41280	32040	40430	213400	120900
18	61.020	47150	65.860	70.730	30.800	30230	35.680	34.760	32490	39.950	171100	164200
19	57.380	55400	64.630	74870	32120	29.260	31.270	31.760	36230	41670	143700	255200
20	54250	54120	57390	62440	31.290	28.950	34.610	30.320	33.280	51.510	118500	179900
21	50840	49420	58430	53780	31430	27.710	61500	28.140	35750	81680	121400	129100
22	47570	47170	118400	50770	30560	28020	55240	28670	58920	58.700	212600	111900
23	46240	44350	162.600	49.870	30500	28.100	40710	31.720	107.500	48.850	249.800	97.970
24	45220	43110	139700	47940	29890	27.500	38030	41630	121900	55.430	179200	88030
25	44790	41980	98470	48520	30440	27680	35290	40410	128100	154.000	245600	79930
26	49010	39570	96960	44970	29590	26810	30780	35790	138900	179000	279100	74420
27	44830	38880	84530	44910	27490	26940	37510	49590	127.300	132.500	228600	71070
28	43.290	43070	70.960	43150	28960	25780	33090	73800	85800	163500	173500	72.250
29	40620	43250	76320	41170	63.940	26680	29650	57110	61750	120600	142.200	73850
30^{\prime}	40990		115600	38770	126.300	31210	27570	71.320	54.830	92.640	192.100	71740
31	40360		180.700		115400		27530	100200		76470		67.880
Avarege	86770	47.130	75120	66200	43450	46090	45150	43470	56660	83620	150400	182300
Lowesl	40360	37570	35.860	38.770	27490	25780	27530	25.270	32.000	39.950	48.680	67.880
Highest	283.900	75490	180700	135.500	126300	107900	B9 410	100200	138900	219800	279100	444000
Peak flow	28840	8808	19360	16450	13240	11620	10000	127.70	15090	22990	29480	45630
Day of peak Monithy total	9	5	31	1	30	5	4	31	25	4	26	4
(milion cu m)	232.40	118.10	20120	17160	11640	11950	12090	11640	14690	22400	38980	48830
Runotf (mm)	31	16	27	23	16	16	16	16	20	30	52	65
Rainfall (mom)	54	31	71	49	57	50	93	119	74	81	114	67

Statistics of monthly data for previous record (Oct 1958 to Dec 1991)

Station and catchment dascription
Velocity-area station in the navigable Trent. Main channel approx 62 m ; cableway span 99 m . Holme sluices 750 m u/s affect water tevels up to medium flows Bypassed at high flows on fight bank when gravel workings inundated. Very substantial fiow modifications owing to imports. WRW's. cooling water and industrial usage. Very large catchmont with the gamut of land usage Piedominantly impervious glacial clay and Trassic Mari, but some sandstone and limestone Extensive terrace gravels and alluvium maintain baseflow

028085 Derwent at St. Marys Bridge

Measuring authority: NRA-ST First year: 1936

Grid reference: 43 (SK) 355368
Lovel stn. (m OD) 44.00
Catchment area (sq km): 1054.0 Max alt. (m OO): 636

Daity mean gauged diacharges (cubic metree per second)

$\underset{1}{\text { DAY }}$	$\begin{gathered} \text { JAN } \\ 12.940 \end{gathered}$	FEE 8007	$\begin{aligned} & \text { MAR } \\ & 9439 \end{aligned}$	$\begin{gathered} \text { APR } \\ 21.800 \end{gathered}$	$\begin{aligned} & \text { MAY } \\ & 10330 \end{aligned}$	$\begin{aligned} & \text { JNN } \\ & 9401 \end{aligned}$	$\begin{aligned} & \boldsymbol{\gamma} .457 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 4193 \end{aligned}$	$\begin{aligned} & \text { SEP } \\ & 7.671 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 6.989 \end{aligned}$	$\begin{gathered} \text { Nov } \\ 13290 \end{gathered}$	$\begin{gathered} \text { DEC } \\ 59.200 \end{gathered}$
2	11800	8065	9.530	19.120	9134	7531	5480	4214	7.978	13.840	14540	99750
3	11730	8748	9.207	16.540	8052	13430	9472	4619	7764	21.800	15380	86370
4	13.810	12530	8 780	14.770	7662	15.130	7513	4212	6948	14.410	13.380	62170
6	30.650	10.920	0.010	13970	7826	12470	6.727	4.057	6453	10460	11730	51130
6	34.350	8867	8 279	13810	8.204	9.167	5716	4022	6.569	8.489	10.980	62000
7	26330	8.488	7994	13880	7706	7311	5265	4117	7164	8323	10080	74.340
8	26.210	8413	7.710	14150	7992	12040	5173	8.460	6.759	8822	9.514	50670
9	34.230	8832	7.983	11030	9692	9.934	6191	8498	5658	8.319	22170	42960
10	24.000	8.778	9.117	10.500	8486	7.318	8098	5.518	6.650	7740	28370	38.420
11	20.110	8.541	9670	9889	8.318	6714	5.941	5.472	4.599	7511	40170	40.230
12	17890	8565	14600	9.547	8676	6555	6408	7131	5760	7.275	38300	41250
13	18.250	8569	26.600	11960	8034	6.307	5.699	6490	7001	7162	32910	36.040
14	15250	9019	21.430	16.540	7751	6063	5.081	5.237	6.207	7213	27890	34450
15	14.200	9.255	34.230	21.310	7137	5874	4.944	4.967	5878	7509	32400	32.860
18	13.590	9.341	26470	15180	6644	5459	5.124	5.135	5576	7012	25.370	31400
17	13.130	8.451	21.450	12950	6624	5476	5356	4.712	5486	6.718	22.010	28.170
18	11.740	8865	19070	19.240	6.569	5.370	4739	4679	5461	6.989	21250	43.050
19	11.360	8.761	17080	22380	6399	5227	4.524	4.300	5464	6.658	22140	30900
20	10570	8.598	15.360	15.550	6.457	5087	5475	4354	5.518	6782	20770	25.850
21	9.281	8.114	15.770	12980	6.372	5142	6749	4.288	5999	6497	29850	24590
22	8056	8282	22.380	12270	5974	5.091	5478	4564	11320	6.313	45.350	23980
23	9.251	8147	23970	11.540	5.888	4.981	5.197	4.916	9463	7.229	36.730	21990
24	9.111	8.116	20780	10350	5808	4956	4806	5.368	7549	14630	39050	20.710
26	8653	7.525	17.430	10010	5472	4889	4503	4.987	10.160	40250	60250	19780
26	8369	7.737	18070	10410	5415	4774	4.412	5505	11.700	25.980	43.410	17.690
27	8216	7916	15.550	9.643	5.406	4645	4285	10140	7937	32690	37.490	17250
28	8.221	7.746	13.190	8327	5.988	4.581	4.270	9272	7.697	29.330	33.590	17.430
29	8.163	7.354	14.670	7894	6651	4620	4065	6325	7272	21930	30910	17110
30	7.869		23.780	8.300	6.822	4730	4046	12.940	7.740	16640	61590	16260
31	8091		27.850		7634		4.029	9889		14.300		15620
Averege	14970	8.640	16.300	13.530	7262	7008	5491	5890	7.113	12.770	28360	38180
Lowest	7.869	7354	7710	7.894	5.406	4.581	4029	4022	4599	6.313	9.514	15620
Highest	34350	12530	34230	22.380	10.330	15130	9472	12.940	11700	40.250	61.590	99750
Pask flow	4991	15.12	44.47	4840	1581	2221	21.74	1884	18.14	48.40	8239	11800
Day of peak	9	4	15	15	7	3	3	30	26	25	30	2
Monthly total (mution cu m)	4011	21.65	4367	3506	1945	18.17	14.71	1577	1844	34.20	73.51	102.30
Runotit (mm)	38	21	41	33	18	17	14	15	17	32	70	97
Pemiall (mm)	56	47	96	66	50	64	88	136	81	104	148	95

Statistics of monthly data for previous record Han 1938 to Dec 1991 -incornplete or mashing months total 0.9 yeara)

Maen	Avg.	29890	28.430	22.960	17990	12560	10060	0.615	8932	10170	13.450	21.030	26000
fowe:	Low	9749	0.084	9.110	7252	4709	4646	4211	3647	3955	4155	4304	8.480
	(yeer)	1963	1963	1976	1990	1990	1990	1976	1976	1959	1959	1975	1975
	High	87000	76780	69.530	39590	26410	20220	28.680	33840	32.940	35.130	54.320	88.690
	(yatr)	1939	1977	1947	1966	1967	1987	1958	1956	1946	1980	1940	1965
Runotf:	Avg	76	66	58	44	32	25	22	23	25	34	52	66
	Low	25	19	23	18	12	11	11	9	10	11	11	22
	High	170	176	177	97	67	50	73	86	81	89	134	225
Rainfall:	Avg.	104	79	77	66	67	71	76	82	80	90	103	102
	Low	33	8	16	8	13	15	16	10	3	17	16	20
	Hogh	215	236	185	132	163	188	158	185	199	178	232	246

Station and catchment description
Ten-channal. interleaved cross path US gauge in the contre of Derby. 1.75 km ds of Longbridge Weir (28010). Record continuous with 28010 Peaks from 1976 only. Derby may flood but bypassing small. Substantial flow modification owing to Derwent reservors, milling and PWS abstractions. Large, prodominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reachos drain Coal Measures on the lb and Triassic sandstones and marls on the right bank. Peat moorland headwaters; forestry. pasture and some areble

Measuring a First year 1	ity. NRA		Grid reference: 43 (SK) 842480 Level stn (mOD) 1690							Catchmont area (sq km): 297.9 Max alt (m OO): 158		
Daity mean gauged discharges (cubic metres per eecond)												
oay	JAN	FEB	MAR	APR	MAY	JN	תur	AUG	SEP	OCT	NOV	OEC
1	0683	1132	1009	2.431	1.100	1386	0668	0.463	0.597	1248	2017	5878
2	0.719	1018	0969	1820	0990	1127	0.642	0448	0.595	2557	2.073	7.582
3	0715	1002	0928	1655	0937	0856	1.158	0412	0845	8.338	1918	6400
4	0.885	1.135	0.885	1.525	0884	1.104	1.535	0.393	0544	5.362	1.863	5.402
5	1.653	1056	0859	1454	0932	1.151	1200	0379	0.498	3.013	1.790	4805
6	1494	1115	0856	1510	0946	1055	0847	0384	0550	2.394	1.787	5947
7	1211	1.101	0822	1526	0938	0946	0716	0.278	0512	2049	1.788	10.310
8	1482	1129	0.806	1434	0936	0.870	0622	0747	0437	1.973	1.734	6287
9	6.725	1156	0796	1382	1587	0838	0.607	1068	0426	1847	2.079	5.091
10	4767	1140	0863	1.441	1034	0.753	1152	0737	0.426	1.730	2.084	4.545
11	2485	1216	0837	1329	1088	0697	0738	0.632	0.433	1674	6807	4659
12	1966	1203	0920	1260	1076	0583	0.774	0.640	0.470	1641	4.295	4.825
13	1.783	1154	0985	1309	0.979	0.588	0727	0.592	0485	1.679	3002	4419
14	1601	1224	0.883	1523	0919	0588	0664	0584	0504	1670	2.703	4.148
15	1.456	1201	1355	1883	0.798	0589	0603	0556	0448	1.608	4744	3889
16	1412	1.126	1082	1602	0742	0512	0569	0798	0.414	1.583	5013	3629
17	1419	1077	1.016	1741	0803	0476	0.711	0563	0414	1578	4.001	3.417
18	1358	1125	0955	4828	0.800	0447	0585	0481	0581	1.563	3.256	4612
19	1.355	1000	0928	5.404	0781	0443	0590	0.475	0550	1523	2.910	4.876
20	1343	0958	0.826	1.898	0689	0480	0864	0485	0535	2374	2826	3830
21	1259	0.920	0880	1212	0653	0.481	1819	0.431	0.560	3.158	3234	3461
22	1.111	0.930	1462	1202	0638	0445	1136	0.421	2043	1956	4672	3145
23	1103	0905	1751	1161	0635	0446	0.834	0.548	7244	1803	4560	2.985
24	1.084	0900	1436	1162	0602	0.477	0740	0535	3760	1851	3548	2818
25	1283	0.965	1462	1127	0589	0482	0746	0574	2.759	3780	3539	2619
26	1223	0901	1.728	1092	0575	0.444	0.678	0547	3157	3300	4.619	2.577
27	1161	0.855	1553	1069	0.622	0.396	0845	0831	2.029	3.353	3.730	2.534
28	1121	0970	1345	1035	0.653	0401	0.564	0753	1858	3591	3228	2.522
29	1099	0926	1507	1.075	0756	0382	0553	0587	1458	2.704	3069	2534
30	1.091		3226	1004	0800	0421	0518	0874	1.518	2271	3862	2457
31	1073		3952		1342		0469	0653		2.033		2339
Avarage	1.585	1.053	1.254	1670	0.865	0682	0802	0576	1.208	2490	3218	4340
Lowest	0.683	0855	0796	1004	0575	0382	0.469	0.278	0414	1248	1734	2339
Heghest	6.725	1.224	3.952	5404	1.587	1.386	1819	1068	7.244	8.338	6.807	10310
Peak flow	833	1.39	467	642	299	209	264	134	8.74	10.48	767	1146
Day of peak	9	1	30	18	9	1	3	9	23	3	11	7
Monthly total (milion cu m)	4.24	264	336	433	232	1.72	2.15	1.54	3.13	667	8 34	1162
Runot (mm)	14	9	11	15	8	8	7	5	11	22	28	39
Ramiall (mm)	52	13	66	33	41	36	99	70	99	80	70	47

Statistics of monthly data for provious record (May 1959 to Dec 1991)

Meen nows	Avg	2811	3229	2896	2380	1734	1115	0777	0763	0706	0932	1.348	2031
	Low	0673	0492	0453	0365	0311	0184	0063	0136	0.232	0218	0278	0.312
	(year)	1965	1976	1976	1976	1978	1976	1976	1976	1959	1959	1959	1964
	High	5857	10690	6995	5.748	4.695	3141	2118	2.376	2886	3906	6525	7879
	(yoar)	1988	1977	1979	1979	1983	1985	1988	1980	1968	1960	1960	1965
Runots.	Avg	25	26	26	21	16	10	7	7	6	8	12	18
	Low	6	4	4	3	3	2	1	1	2	2	2	3
	High	53	87	63	50	42	27	19	21	25	35	57	71
Rainfals.	Avg	54	41	48	50	49	53	50	80	50	49	55	55
	Low	20	3	8	10	11	3	9	5	3	5	24	13
	Hrgh	117	140	92	103	130	148	132	127	127	137	115	142

Station and catchment description

An old weir at three levels with a total width of 24.99 m converted into a standard Lea designed broad-crested werr it is rated theoretically and there is no bypassing or drowning Low flows in summer are moderately influenced by transfer of water from Rutand Water (since 1985) and abstracions for public supply at Saltersford. The catchment is clay (50%) with limestone (40%) and gravel, and is largely rural.

032004 Ise Brook at Earrowden Old Mill

Measuring suthority: NRA.A
First year: 1943

Grid roforence: 42 (SP) 898715 Leval sin. (m OOD): 4530

Catchment area (sq kmi: 1940 Mox att. (m OO): 197

Daily mean gauged discharges (cubtc matrea per second)

OAY	JAN	FEB	MAR	APR	May	JN	NR	AUG	SEP	0×1	MOV	DEC
1	0453	0.738	0.422	2084	0.538	0.522	0457	0.249	0899	1.900	1.485	8.559
2	0448	0747	0.315	0.990	0596	0.612	0.320	0238	0.794	4.273	1.447	6808
3	0.568	0.788	0318	1.324	0.493	0392	0.794	0233	0.710	11.090	2.083	6.728
4	0.633	0745	0.387	1.186	0451	2.241	0697	0.213	0690	9.901	1566	3.910
5	0.688	0.701	0.468	0.914	0482	1.740	0577	0.218	0611	4501	1.297	2.949
6	0.904	0889	0.455	0.968	0.575	0.989	0385	0226	0610	2.951	1.224	6268
7	0777	0.651	0684	1.005	0.555	0749	0.320	0297	0561	2418	1.190	11.080
8	1.355	0.647	0.581	1.192	0.520	0.571	0.305	1.770	0.523	2.140	1.133	4.842
8	11.460	0.712	0430	1039	1.109	0478	0419	1592	0.505	1.954	1.220	3.503
10	11.840	0.702	0.448	0471	0.585	0.543	0.428	0.261	0483	1.764	3039	2.931
11	4.325	0.899	0.359	0571	0.591	0436	0354	0.170	0467	1.649	B 274	2.748
12	2.767	0894	0348	0.689	0.421	0.365	0330	1.119	0447	1697	4.852	2530
13	2.283	0.874	0.318	0714	0.350	0.333	1.549	1.220	0.860	1.326	2.751	2.310
14	1.950	0886	0.344	0.830	0.303	0.331	1.795	1.240	0.651	1.202	2.639	2.111
15	1683	0.844	0.436	1.002	0.264	0.346	1.490	1378	0.721	1.153	3.838	2010
16	1.499	0.784	0388	0844	0.287	0332	0.820	2241	0.569	1083	4675	1.908
17	1.344	0.877	0.374	0850	0.230	0271	0.752	1.429	0575	1.015	4252	1.756
18	1.244	0835	0.547	0.788	0250	0.258	0494	1.003	1.181	0984	3.138	4404
19	1180	0.602	0591	0.739	0250	0.280	0.411	0776	0.944	1039	2.646	3.529
20	1.087	0822	0.419	0.688	0.285	0.305	1252	0.675	0.758	1.625	2.339	2.359
21	0.998	0.598	0.449	0.651	0.282	0305	1.572	0.623	0876	1.438	2.757	2.004
22	0.927	0588	0.785	0.624	0282	0.306	1.519	0.652	5.345	1.259	4.362	1.740
23	0.883	0.573	1052	0595	0249	0.308	0.777	0.921	16.780	1115	3.758	1.620
24	0844	0.558	0.980	0.603	0.248	0305	0.556	1048	14210	1.176	3.145	1.548
25	0939	0.539	0.969	0.697	0.244	0302	0.492	0828	8589	4113	6248	1.473
26	0.851	0.528	1.112	0.653	0.233	0.288	0.491	0825	7.204	3435	7.450	1421
27	0807	0518	1.111	0552	0.244	0285	0426	1.785	4.425	2.261	5.981	1.444
28	0.770	0.323	0.910	0.587	0.297	0.274	0.364	1.552	2.636	2.573	5649	1.501
29	0762	0288	1.032	0490	1750	0.281	0308	1225	2.308	2453	3901	1.447
30	0.751		2.765	0.550	0.842	0.365	0277	1.264	1.779	1994	5.960	1.341
31	0.747		4.508		0.579		0.262	1.132		1.588		1.263
Averege	1.883	0658	0.784	0.828	0462	0502	0.677	0916	2.584	2.551	3.477	3.163
Lowast	0.448	0268	0.315	0.471	0.230	0.256	0.262	0170	0.447	0984	1.133	1.263
Higheat	11.840	0894	4.506	2.084	1.750	2.241	1.795	2.241	16780	11090	8.274	11.080
Pask flow	14.32	1.42	5.57	2.92	3.82	4.49	3.05	4.93	20.55	12.12	9.27	13.85
Day of peak	10	12	31	1	29	4	15	8	23	3	25	7
Monthly total (mithon cu m)	4.99	1.65	210	2.15	1.24	1.30	1.81	2.45	670	683	901	847
Rumoff (mm)	28	9	11	11	6	7	9	13	35	35	48	44
Reinfol (mm)	80	16	61	40	68	57	112	123	123	73	85	42

Statistice of monthly data for previous record (Dece 1943 to Dec 1991 -incomplete or miseling monthe toted 0.8 vaara).

Siation and catchment dascription
Flume with low flow notch and side weir to 1965. compound Crump profile weir to April 1976, and theoretically-rated Flat V weir with 5.94 m crest since. Crump weir modular to 15.6 cumecs, but bypassed at 14.2 m . Flat V also bypassed. Two small storage reservoirs with minor influence on low flows. Undertain by clay (59%) and sandstone (24\%), mostly rural but inctudes Kettering

033002 Bedford Ouse at Bedford

Measuring authority. NRA.A First yoar. 1933

Grid reference: 52 (TL) 055495
Level stn. (m OO): 24.70

Catchment aros (sq km): 1460.0 Max at (m OD): 247

DAY	Jan	FE8	MAR	AMA	may	JN	μ	AUG	SEP	OCT	NOV	DEC
1	4.400	6300	5.600	24.800	5800	20800	4300	1.800	7800	17.600	16900	56.400
2	4500	6.400	8300	14.900	5.600	14.000	6800	1.700	5800	19400	16.900	82.800
3	4.500	6.400	6.200	10900	4.900	9.800	6.700	1.900	4.900	40200	23800	65.400
4	4800	6.700	5600	9400	4500	8.500	6900	2000	5.000	50.200	19400	65900
5	5.300	6.400	5.400	B 200	4.400	6100	7.400	2.200	5.800	57.200	15.500	56.100
6	5.400	6000	5400	7.300	4.300	8.900	6.900	2.100	5600	50.200	15.900	38.900
7	5400	5800	5.200	8. 100	4.200	8.600	5200	2.200	4800	27.100	12.400	57.700
8	6.300	5600	5.000	9.200	3.900	9100	4.100	2400	4.200	20800	11.700	69200
9	37800	5.800	4800	9.400	5.400	8.900	3700	8.600	4100	16.200	11.600	81.100
10	54.400	6.300	4.500	7800	9.900	7800	3.200	14300	3.800	13200	15.300	52.000
11	87.900	6.700	4.800	6.000	7700	4.700	3.500	7.400	3.600	11.700	37.900	32.200
12	58.500	7.400	4.800	8.000	5.700	4.200	3.600	5.000	3.500	11.200	51400	29400
13	26.100	9300	4600	5.800	4800	3.300	5000	5.600	3500	10.700	49300	27200
14	23.800	11700	4.500	5900	3.500	3300	5.900	12900	4.900	10.400	25900	23300
15	22800	11.100	4400	18.000	3.500	3.300	5200	15700	5.600	10.100	26.900	21.900
16	16700	10.100	4500	41.400	3600	3.200	5100	14.400	4.800	9.800	38200	19.700
17	13.800	8.900	4400	24.300	3.500	3.100	3.600	19.000	4.900	8.900	38.300	21.800
18	11.600	6.700	4.300	18.500	3.500	3.100	3000	13.500	6.700	8700	33.800	29000
19	11600	7.200	4200	14.500	3600	3.100	2.500	8.200	11.700	9.000	28.600	52.100
20	10500	7.800	4.200	11700	3.600	3200	5.700	6000	7300	12100	21.900	49.500
21	9800	7.300	4200	10200	3.500	3.200	8600	5.300	5800	29.900	18.600	29.600
22	9000	6.900	5000	9000	3.400	3000	15900	4.900	9.700	24.200	26.600	23.300
23	8.300	6.700	5.200	B. 300	3.300	2.900	10.700	4.800	48.200	16400	38.700	19.900
24	7.200	6.400	5.600	7.900	3200	2.700	5.600	5.400	60.800	15000	30700	17100
25	6.700	5.900	5000	7.600	3.100	2.800	3.900	6.000	86.500	21.100	37900	15.900
26	7100	5.600	5.900	7.000	3200	2.700	3400	6.500	82600	38400	52.600	14.800
27	7100	5.700	5.900	5.700	3200	2.700	3.000	5.900	74400	34.000	61.400	14.800
28	6.700	5.600	5.300	6.300	3.200	2500	2.800	5700	62.600	35000	58.300	15000
29	6500	5.300	5100	8.600	7800	2.300	2.400	7.400	31.800	35.500	60900	14.700
30	6.400		12.100	6200	24.800	2.200	2.200	8.300	21.900	29400	59.500	13700
31	6300		29000		32.100		2.100	7.100		21.100	59.50	12.800
Average	15390	7.034	6.032	11300	6023	5.460	5126	6.929	19760	23.050	31.890	35.590
Lowest	4.400	5300	4.200	5700	3.100	2.200	2.100	1700	3.500	8.700	11.600	12800
Highest	67900	11.700	29000	41.400	32.100	20.600	15.900	19.000	86500	57.200	61.400	81100
Paek flow Day of peak Monthly total	7440	12.40 14	33.80 31	4350 16	$\begin{aligned} & 33.80 \\ & 31 \end{aligned}$	2880	$\begin{aligned} & 16.30 \\ & 22 \end{aligned}$	$\begin{aligned} & 1950 \\ & 17 \end{aligned}$	$\begin{aligned} & 92.60 \\ & 25 \end{aligned}$	$\begin{gathered} 6010 \\ 6 \end{gathered}$	$\begin{aligned} & 6470 \\ & 27 \end{aligned}$	8260
(molion cu m)	41.23	17.63	16.16	29.28	1613	1415	13.73	1856	5121	6175	82.67	95.32
Runotf (mm) Renfal (mm)	28	12 19	11	20 56	11 83	10 37	9 92	13 112	35 110	42 76	57 58	65 48

Statistics of monthly data for previous record (Jan 1933 to Dec 1981)

Station and catchment dascription
3 broad-crested weirs. 30 m . 20 m and 12 m wide supplemented by 3 vertical sluice gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daly gauge board readings and gate openings. flmproved flow record, from 1972. d/s at 33039). Significant surface and groundwater abstractions in catchment for PWS. Muton Keynes effluent now significant. Geology - peodominantly clay. Land use - agricultural with substantial urban development over hast is years.

033034 Little Ouse at Abbey Heath

Moasuring authority: NRA.A

Daily mean gauged discharges (cublc matres per second)

day	JAN	feb	man	APA	may	JN	Ω	AUG	SEP	OCT	NOV	DEC
1	1.510	1.566	1.750	5.225	2205	1.812	1285	1.228	1.160	1.189	1.988	7.276
2	1.435	1.692	1.779	3.834	2.264	1.699	1.200	1207	1.219	1.596	2.084	6.718
3	1434	1.730	1.675	3.359	2.117	1.604	1.370	1.187	1.159	1.427	2.264	7.409
4	1.589	1.732	1.630	2838	2.001	1624	1420	1179	1.156	1.845	2.400	8.179
5	1.594	1.791	1.622	2.618	1.899	1.642	1400	1157	1.118	1.803	2249	6.841
6	1.724	1.723	1600	2.573	1.912	1.632	1400	1.128	1.119	1,480	2.089	6273
7	1.675	1.745	1.582	2.525	1.877	1.599	1.400	1097	1129	1326	1980	7.974
8	1911	1.693	1.580	2.371	1.882	1.540	1.400	1.089	1.116	1312	1.913	10330
9	3.358	1697	1521	1.992	2232	1.465	1.400	1.078	1.099	1.183	2.021	8.709
10	5470	1.785	1.584	2.129	2.608	1.417	1600	1.041	1225	1.205	2.266	7.118
11	4.782	1.782	1.621	2.049	2465	1.347	1570	1.059	1.147	1.248	3.218	6.353
12	3.422	1.817	1.657	2.074	2.282	1285	1.570	0990	1.077	1.232	5885	6.532
13	2.126	1823	1.752	2072	2090	1.239	1900	1.085	1.318	1174	4.983	6.842
14	2.358	1.848	1.891	2.226	2074	1187	1.840	1.033	1.129	1.266	3766	6.442
15	1.902	1820	1.676	2684	1.986	1.094	1.990	1.153	1.125	1.216	3.260	5.522
18	1.860	1.808	1.656	3.135	1.825	1.036	1.868	1.139	1.080	1.239	4.594	5.839
17	1.947	1.801	1.759	2.968	1.790	1.008	1.691	1.129	1.359	1.212	4.205	5446
18	1.845	1.744	1.692	2.857	1.728	0978	1.581	1.112	1.280	1.208	3.855	5.537
19	1.769	1.774	1.591	2.822	1.742	1.310	1.528	1.123	1.400	1292	3.518	5809
20	1825	1.709	1850	2.526	1.668	1.252	1.982	1.181	1.280	1.502	3.108	5.651
21	1.674	1.600	1.764	2.392	1.588	1.444	1.770	1. 155	1.540	1.764	3.191	5.247
22	1.643	1.586	2.181	2.399	1.589	1.278	2.007	1.349	1.680	1.748	4.190	4.966
23	1.617	1.895	2.758	2216	1332	1.182	1848	1365	1.960	1.869	6063	4.731
24	1.815	1.708	2.544	2.210	1.315	1.104	1709	1381	2.920	1.819	5777	4095
25	1.589	1898	2824	2.184	1.374	1.083	1824	1310	2.460	2.065	5568	4.143
28	1.564	1.713	3.573	2.087	1.350	1.018	1.542	1.315	2.090	3.352	7.897	4.132
27	1.580	1.896	4.788	2.030	1.301	0958	1458	1291	1.900	3234	9270	4109
28	1.573	1.895	4.265	2.162	1.347	0.938	1.413	1203	1.600	2951	9964	4001
29	1.546	1.875	3.572	2.213	1.451	0.923	1.358	1.139	1326	2716	9966	3970
30	1.556		3.431	2.193	1.890	0.962	1.360	1.208	1.318	2369	8491	3944
31	1.558		4.729		2.195		1.317	1.147		2118		3819
Aversge	2.026	1.728	2.241	2.563	1.849	1.288	1574	1.170	1415	1.708	4.401	5.934
Lowest	1.434	1.588	1.521	1.992	1.301	0.923	1.200	0.990	1077	1.174	1913	3.819
thagheat	5.470	1.848	4.788	5.225	2.608	1812	2.007	1.381	2.920	3.352	9.986	10.330
Pask flow	8.87	2.07	5.59	630	3.20	1.94	3.69	1.83	4. 10	447	1039	11.53
Day of peak Monithy total	10	3	31	1	9	19	20	24	24	26	28	8
(mition cu m)	5.43	4.33	8.00	6.64	495	3.34	4.22	3.13	367	4.57	11.41	15.89
Punofl (mm)	8	6	9	10	7	5	6	4	5	7	16	23
Remfoll $\{\mathrm{mm}$)	49	19	75	49	53	37	81	64	86	66	91	40

Statistics of monthly data for previous record (Apr 1988 to Dec 1991

Meen flowe:	Arg.	8008	6284	6720
	Low	2046	2.173	1931
	(year)	1973	1973	1973
	Hagh	11270	12010	10.240
	tyear	1988	1979	1988
Rumots.	Avg.	23	22	22
	Low	8	8	7
	High	43	42	39
Rainfall:	Avg.	55	39	47
	Low	18	9	12
	High	114	78	100

4.888	3812	2869
2083	1787	1165
1973	1991	1976
8288	7877	6.851
1979	1969	1985
18	15	11
8	7	4
31	29	25
43	45	56
10	6	10
84	97	137

2133
0798
1978
3603
1985

1.976	1958	2548	3.203	4291
0621	0902	1.154	1264	1500
1978	1976	1991	1990	1991
5210	6635	10.200	9033	7093
1987	1968	1987	1974	1982
8	7	10	12	16
2	3	4	5	6
20	25	39	33	27
48	50	53	61	54
8	2	4	24	27
118	138	123	147	98

Summery statiatics	For 1992		For record proceding 1992		$\begin{gathered} 1992 \\ \text { A\& of } \\ \text { pro. } 1992 \\ 61 \end{gathered}$	Factors affecting runoff	
			- Flow influenced by groundwater abstraction and/or recharge.				
Meen flow (m's ${ }^{-1}$)	2.327				3.793		- Flow reduced by industrial and/or
Lowast yearly mean			1.735	1991		egricutzural abstractions.	
Highest yearty mean			5.670	1989		- Augmentation from effluent returns.	
Lowest monthty mean	1.170	Aug	0621	Aug 1976			
Highest monithy mean	5.934	Dec	12.010	Fob 1979			
Lowest doly mean	0.923	29 Jun	0.482	28 Aug 1978			
Higheat daly mean	10330	8 Doc	24.320	13 Oct 1987			
Peak	11.530	8 Dec	25.290	13 Oct 1987			
10\% exceedence	4.718		7.100		86		
50\% erceedence	1.718		2890		59		
95\% exceedence	1094		1.142		98		
Anmuat total (multion cu m)	73.59		119.70		61		
Annuel nurot (mm)	105		171		61		
Annud ranfoll (mm) 1941.70 ranfall avarage (mm)	710		$\begin{gathered} 599 \\ 618 \end{gathered}$		119		

Station and catchment description
Rectangutar section Crump profile woir with crest tepping. Repleced 33008 in 1968. Weir subject to drowning and spills on rare occasions Since the late 1980s. low flows augmented from groundwater in drought conditions. Geology - Chalk with approx. 85\% 8oudder Clay cover Lend use - prodominately agricultural with large areas of forest and heathland

034006 Waveney at Needham Mill

Measuring authonty: NRA-A
Fist year: 1963
Daity mean gauged discharges [cuble metres per eecond]

day	JAN	FE8	MAR	APA	MAY	NN	ת	AUG	SEP	OCT	NOV	OEC
1	0.443	0528	0469	5.079	1.580	0572	0272	0.279	0254	0423	0797	4.475
2	0.408	0520	0.518	3.709	1479	0.501	0331	0259	0288	0434	0.922	4.381
3.	0.415	0538	0495	3.529	0.942	0441	0395	0247	0324	0628	1257	7.347
4	0429	0652	0.439	2.268	0.777	0.502	0.384	0249	0.260	0.876	1131	8272
5	0.547	0.649	0.444	1.956	0.701	0547	0.360	0.247	0.242	0.706	0907	5067
6	0608	0.575	0.455	1.786	0.642	0532	0.330	0.244	0235	0.579	0770	3670
7	0.583	0558	0.438	1.578	0580	0495	0.318	0241	0239	0.519	0.682	9466
8	0620	0.544	0414	1307	0.558	0472	0306	0254	0.253	0.460	0.639	8048
9	7.580	0.573	0406	1.064	1.075	0404	0.297	0.322	0259	0406	0.701	5.259
10	10.550	0811	0.440	0988	2.182	0.385	0295	0338	0.240	0.399	1.057	3.736
11	4406	0708	0.458	0956	1.289	0.394	0.295	0342	0248	0.380	5.081	3.517
12	2.177	0.800	0476	0.945	0.952	0336	0.278	0.339	0252	0404	5.417	4.354
13	1775	0869	0.523	0.938	0.758	0.300	0.290	0278	0262	0.398	2.833	4.175
14	1.526	0.752	0469	0.978	0.636	0275	0365	0.268	0.263	0485	1.784	3.542
15	1297	0749	0473	3316	0.588	0.280	0444	0.279	0.258	0.568	3240	2903
16	1.166	0683	0.496	3.388	0.508	0.252	0.374	0377	0267	0.565	3808	2625
17	1.021	0611	0462	2.623	0.438	0.249	0.330	0.409	0249	0.547	3174	2.444
18	0.938	0569	0458	2134	0432	0.258	0301	0406	0287	0.528	2.444	2.908
19	0.914	0541	0444	1.694	0.438	0817	0.276	0.371	0427	0.537	1.980	3.414
20	0891	0.530	0.431	1.388	0421	1.158	0.355	0456	0.365	0.924	1.538	2.971
21	0884	0531	0.428	1244	0395	0721	2.049	0.605	0319	1274	1.747	2.516
22	0872	0.531	1.679	1.144	0380	0.498	1.482	0527	0.474	1.044	5.756	2044
23	0.900	0.515	2.219	1.069	0347	0413	0741	0.381	1.089	0.933	6221	1830
24	0833	0.511	2.302	0.968	0323	0.376	0.537	0.357	1.128	0924	4091	1.666
25	0756	0507	2.624	0.798	0.313	0340	0.446	0.391	0.994	2141	4.721	1.533
28	0705	0502	6.994	0.673	0302	0.321	0377	0382	1012	3.008	11530	1.405
27	0688	0.479	6.163	0612	0.298	0301	0328	0342	0856	2.326	10.510	1.304
28	0715	0.460	4575	0.731	0.328	0280	0319	0.308	0.640	2.082	11.890	1.252
29	0604	0443	3.042	0.856	0525	0.262	0.309	0288	0502	1630	9.882	1186
30	0546		3.902	0696	0.797	0.264	0305	0273	0444	1234	5996	1.247
31	0.540		8070		0.881		0292	0.264		0938		1192
Avarega	1495	0.587	1652	1.880	0.705	0431	0444	0.333	0.431	0.912	3750	3540
Lowest	0.408	0443	0408	0.612	0298	0249	0.272	0.241	0.235	0380	0639	1186
Highest	10550	0.869	8070	5.079	2.182	1.158	2049	0.605	1.128	3008	11890	9468
Peak flow	12.04	0.89	911	698	2.61	126	224	066	1.31	378	13.22	1068
Day of poak Moninly total	10	13	31	1	10	20	21	21	23	26	26	7
(miluon cu mi	400	1.47	4.42	435	189	1.12	119	0.89	1.12	244	9.72	948
Runotf (mm)	11	4	12	12	5	3	3	2	3	7	26	26
Rounfan (mm)	50	17	74	55	49	51	89	82	65	- 63	88	36

Statistics of monthly data for previous record \{0ec 1983 to Dec 1991

Station and catchmant description
A compound Crump weir 8.5 m wide in the main channel with a single crested Crump in the mill bypass. Sluice action at a mill 2.4 km upstream is infrequent bul is evident in flow records. Surface water abstractions. and the use of river gravels as an aquifer, influence flows but the overall impact is minımal. Was affected by the Waveney Groundwater Scheme between 1975 and 1979. Predominantly a Boulder Clay catchment with argaly rural land use

036006 Stour at Langham

Mossuring suthority: NRA-A
First yoar: 1962

Daily mean gauged discharges (cubic metrea per second)

day		JAN	Feb	MAA	APP	may	JN	un	Aug	SEP	OCT	NOV	DEC
1		1.334	2.942	3.129	9.580	2483	1640	0.822	0641	2.333	1277	1924	9.673
2		1.348	3082	3.056	3992	3. 199	1.234	0803	0.630	1897	1.455	1.805	8.634
3		1.382	3048	2.964	2.683	2.470	1.483	0.867	0604	1.025	9571	1.968	14430
4		1.455	3.098	2.957	2037	2.070	1.988	0.969	0.577	1070	10.450	1.960	18.010
5		1.701	3320	2.977	1.576	1951	2.003	0864	0.648	0687	3.124	1.678	6.768
6		2.154	3.417	2044	1665	2200	1.958	0805	0822	0834	2.639	1.326	5827
7		2088	3.318	1.999	1.570	2732	2.180	0698	0.970	0.788	1851	1.474	12.570
8		2.404	3.144	2.173	2.093	2.778	1680	0.688	0.965	0830	1.682	1748	13.180
9		4.544	3.272	2.180	2.311	2988	1.565	0755	0.981	0.777	1505	1.688	7303
10		9.797	2810	2.229	2.515	3800	1.390	0.743	1049	0.828	1.408	1853	5.383
11		3.837	2.357	2653	3278	2.969	1.314	0.736	1796	0.791	1.374	8.332	4.365
12		2.752	2.473	3.201	3.020	2.677	1574	0.795	1522	0.673	1.360	15130	8.308
13		2.119	2615	3.182	2.347	2651	1.538	0772	1365	0.733	1.289	5.627	8010
14		1.890	2.835	2.965	2.703	2555	1255	1.045	1421	0738	1.413	3647	5.750
15		1.138	2.805	3.118	5060	2.881	0975	1.172	1.408	0803	1454	6.134	4670
18		1.630	2.690	3.102	5458	2.731	0.826	0949	1.327	0819	1.399	7.803	4.345
17		2.974	2.673	2940	3.571	2.576	0.818	0915	1421	0.841	1.290	7.099	4.250
18		3.321	3.489	2.926	3296	2.605	0671	0812	1237	1.905	1408	5358	6.306
19		2.872	3.139	2.936	2880	2538	0.975	0.783	1068	1086	1403	4.018	8094
20		2821	3.178	2956	2.557	2.703	1683	1.120	1026	1.142	4.050	3167	6.183
21		1.946	2.879	2.948	2.344	2361	1045	2.344	1.330	1.178	10.370	2442	4.864
22		2.844	2.993	3.248	2.581	2.515	0.842	1583	1.570	2.142	2866	5.090	3022
23		3.354	2.992	3966	2.987	2.510	0840	0807	1485	10.550	2.143	10570	2.723
24		2.687	3007	4080	2619	2434	0745	0.715	1570	7.888	2.081	6145	3085
25		2.927	2.984	4.878	2.630	2.480	0.778	0.817	1.503	4.177	6.547	7552	2.700
28		2.914	3.025	7.687	2.715	2.065	0.754	0.808	1.823	3.839	11130	17.670	2.326
27		2.914	2999	10040	2722	1150	0.749	0740	1.830	2956	4787	20380	2320
28		2.911	3007	8131	3124	1.512	0.778	0.743	2.095	1884	4839	16.450	2088
29		2.944	3080	3603	3.307	1658	0750	0734	2294	1836	3.997	11.750	2289
30		2.932		4.549	2.891	2.220	0.853	0.756	2387	1.558	2.674	7.780	2.331
31		3.074		14550		1.931		0893	2413		1.977		2.178
Average		2.729	2.988	3.980	3.070	2464	1.229	0898	1348	1948	3380	6.318	6193
Lowelt		1.138	2.357	1999	1.570	1150	0671	0.668	0.577	0667	1.277	1328	2.088
Higheal		8.797	3489	14.550	9.580	3800	2180	2344	2.413	10.550	11.130	20.380	16010
Peak now Day of peak Monthly total (miluon cu m)		12.40	3.97	1650	15.78	472	2.96	2.81	3.18	12.08	1611	22.46	1809
		9	7	31	1	10	4	21	11	23	4	27	8
		7.31	7.49	1068	7.96	6.60	319	240	361	504	90.5	1638	16.59
Punoff (mm)		13	13	18	14	11	6	4	6	9	16	28	29
Reintal (mm)		35	17	70	54	46	45	71	68	101	74	78	38
Statistics of monthly date for previous record (Oct 1982 to Dec 1991)													
Mean Sows:	Avg	5.447	5.013	4.656	3626	2.376	1.678	1.130	1.152	1.144	1501	2.819	3936
	Low	1.398	0.883	1597	1.217	0758	0.454	0191	0210	0.395	0510	0.578	0.692
	(year)	1985	1985	1976	1974	1974	1965	1976	1976	1984	1970	1964	1964
	High	16.080	12.980	9.775	0.334	7.253	5.999	2.957	6236	4.945	13.170	11.340	10.550
	(year)	1988	1979	1981	1983	1983	1987	1987	1987	1968	1987	1974	1985
Runoff:	Avg.	25	21	22	16	11	8	5	5	5	9	13	18
	Low	6	4	7	5	4	2	1	1	2	2	3	3
	High	75	54	45	42	34	27	14	29	22	61	51	49
Reinfall:	Avg.	49	35	48	45	45	54	46	50	49	50	58	52
	Low	14	13	12	11	7	10	B	11	1	3	20	13
	High	125	70	93	99	100	132	93	105	118	128	155	107

Summary etatistics

Station and catchment dascription
Twin-trapezoidal flume. throat tapping. Spillway channel with weir constructed in $12 / 85$ takes sorne flow above 1.45 m . Bypassing also occurs over oposite benk ebove 1.85 m . More bypessing possible from $0.5 \mathrm{~km} u / \mathrm{s}$ during extreme events. Naturalised flows to $9 / 76$. Occasional hagh paaks due to gato action. Flow augmented by intermittent pumping from Ely/Ouse Transfer Scheme and occasional SAGS borehole pumping Mainly rural catchment. Chalk outcrops in N. London Clay in S. all covered by semj-pervious Boulder Clay

Messuring authority: NRA.T first year: 1951

Grid reference. 52 (TL) 390092 Leval stn. (m OD): 27.70

Catchment srea (sq km): 1036.0 Max ah (m OD) 229

Daity mean naturalised discharges (cubtc metres per escond)

DAY	JAN	FE8	MAR	APA	may	UN	M	AUG	SEP	OCT	NOV	DEC
1	1.370	1300	1580	4.110	3.260	4210	2.260	1.250	1880	2.880	4.490	16.500
2	1340	1.370	1.660	3.060	2.650	3.180	1.800	1260	1710	4.720	6.880	20700
3	1.490	1.430	1540	2.550	2.090	2570	1.860	1.340	2.080	16200	6.120	25800
4	1.650	1.900	1390	2.200	1.990	2540	2.510	1190	3.060	11.800	4.970	17.000
5	1.620	1.820	1.380	1.710	1.700	3. 170	2.430	1.040	2.030	6.150	4350	8.360
6	1.590	1410	1.270	1.880	1700	2.900	1.980	1.040	1.850	4.930	4100	9.280
7	1.480	1.310	1.260	1860	1.560	3.350	1.580	1080	1880	4.160	4040	14.800
8	1.520	1220	1360	1.900	1640	24.30	1.540	1. 180	1560	3.790	3.860	9.850
9	4330	1470	1.480	1.770	2790	2. 100	1.560	1370	1510	3.630	4940	7860
10	4.680	1620	1730	1690	2.710	2120	1760	1.820	1450	3.320	5.900	7.250
11	2520	1.860	1390	1.650	2.290	2040	1880	1.790	1.330	3.260	15100	7640
12	1.830	1.750	1370	1.410	1.910	1890	1.900	1750	1320	3.080	9.390	8.380
13	1640	1.810	1.330	1.420	1.630	1810	1850	3.990	1.720	2.930	7070	7840
14	1730	1.740	1320	2.150	1.520	1650	2.630	4.750	1.790	2550	6.200	7.140
15	1.520	1860	1360	5.440	1.470	1730	1.990	2.800	1.670	2.700	7.790	7.060
16	1.450	1.550	1370	3480	1.560	1.550	1.600	2890	1.480	2.630	B. 720	7.770
17	1.460	1.540	1.300	2.930	1410	1460	1.610	2410	1.540	2.580	9070	7.990
18	1.570	1.500	1210	2470	1.440	1400	1.390	1.690	3. 130	2.580	6710	13.600
19	1490	1450	1.220	2.160	1.390	3.080	1460	1410	2.870	3.630	5700	13300
20	1.490	1.480	1350	1.900	1.250	3280	3.840	1.670	1810	22.200	4.970	9.410
21	1.470	1.470	1750	1.710	1.340	2300	5.890	1.930	1530	17500	5.200	8.250
22	1430	1430	1.980	1.730	1230	1.900	3.820	1640	4.980	8.370	10100	7.580
23	1.380	1430	2270	1620	1190	1570	2010	1.700	15.900	6210	9.390	6.830
24	1.380	1470	2440	1670	1190	1560 .	1.690	2.000	8.870	5310	7.750	6.830
25	1.390	1490	2.400	1.560	1260	1530	1.540	2.190	5.430	15.000	21200	6280
26	1610	1400	3410	1.650	1230	1500	1.520	1.790	4490	13.100	32.600	6090
27	1370	1410	2850	1610	1.160	1.540	1.450	1680	3320	8.650	17.000	6040
28	1390	1.390	2.340	4850	1.680	1520	1400	1670	3240	8090	17200	5800
29	1500	1.350	2230	3.410	8.560	1380	1.380	1.590	2930	7.130	19.200	5.800
30	1.230		3690	2.690	11.300	1750	1.340	2360	2890	5.560	19.000	5.850
31	1.370		6480		6.020		1330	2430		4.870		5760
Averege	1.718	1525	1.926	2.341	2391	2167	2.025	1894	3.041	6.758	9.634	9659
Lowest	1230	1220	1210	1.410	1160	1.380	1.330	1.040	1.320	2.550	3860	5760
Haghest	4680	1.900	6480	5440	11.300	4210	5.890	4.750	15.900	22200	32.600	25.800
Monthly Iotel (milhon cu m)	460	3.82	5.16	607	6.40	562	542	507	7.88	1810	24.97	25.87
Natised runolf (mms	4	4	5	6	6	5	5	5	8	17	24	25
Reinfal (mm)	27	16	54	55	70	40	78	83	98	88	90	42

Statistics of monthly data for previous record (Oct 1883 to Dec 1991 —incomplete or miseing momths total 2.2 vears)•

Station and catchment description
Thin-plate weir (insonsitive - 29m wide) and 3 vertical-lift sluices; built 1978 to improve range and preciston of flow measurement. Model rated All flows (bar lockages) now contained. Pre-1978: barrage of gates/shuces; no peak flows. low flows probably under-estimated. Gauging instigated by Beardsmore in 1850 s . Signficant g / w abstraction, net export from catchment. Naturalised flows (Now Gauge abstraction only) from 1883. A mainty pervious (Chalk) catchment. Predominantly rural headwaters: significant urban growth in lower valleys

038003 Mimram at Panshanger Park

Mossuring zulhorily: NRA.T First year: 1952

Grid reference 52 (TL) 282133 Lavel stn. (m OD): 47.10

Catchment area (sq km): 133.9 Max alt. (m OO): 195

Daity mean gauged discharges (cubic metres per eecond)

Day	JAN	FE8	MAR	APR	may	JNT	Ar	AUS	SEP	OCT	Nov	DEC
1	0.217	0.220	0.246	0.213	0.251	0.272	0.338	0.198	0.200	0230	0.261	0622
2	0.217	0.222	0214	0.208	0.212	0.237	0220	0199	0202	0.369	0.364	0818
3	0.230	0224	0.210	0.202	0.214	0227	0317	0.195	0.305	0398	0272	0724
4	0.248	0.217	0.207	0187	0202	0289	0.284	0.193	0227	0.256	0.288	0624
6	0.229	0211	0.209	0198	0202	0.265	0241	0.193	0.201	0.241	0.263	0.592
6	0.212	0.214	0.206	0.227	0200	0.318	0216	0.194	0214	0235	0297	0.688
7	0.211	0208	0.205	0.212	0202	0.281	0.216	0.192	0203	0232	0.283	0.651
8	0.239	0.206	0203	0202	0.264	0232	0216	0201	0196	0.232	0.262	0602
9	0.315	0258	0.202	0195	0344	0.226	0242	0.232	0.196	0.229	0.332	0.588
10	0.228	0.253	0.213	0.188	0330	0.356	0.222	0.217	0198	0.227	0.329	0.588
11	0.217	0240	0208	0.181	0227	0234	0328	0.267	0.193	0.229	0487	0632
12	0213	0.250	0.205	0.183	0220	0.220	0.227	0208	0.193	0.229	0.330	0.597
13	0.213	0.219	0.204	0.186	0207	0.218	0310	0.588	0.306	0.227	0.318	0.596
14	0.218	0237	0200	0388	0208	0.214	0250	0.249	0.211	0242	0.365	0.598
15	0.215	0215	0.212	0370	0205	0.213	0.210	0.250	0.204	0231	0.388	0.615
16	0.213	0.205	0.203	0222	0191	0210	0222	0.277	0202	0229	0395	0667
17	0.213	0207	0.198	0.223	0185	0.207	0221	0224	0252	0228	0.350	0.610
18	0.213	0216	0194	0201	0187	0.207	0209	0208	0.251	0227	0.360	0785
19	0217	0217	0.190	0.197	0185	0.310	0.212	0.204	0209	0356	0.347	0.683
20	0.212	0215	0205	0.193	0182	0.214	0740	0265	0.209	0.399	0.341	0.624
21	0.210	0215	0307	0.190	0178	0.211	0359	0205	0210	0244	0.377	0618
22	0.209	0.214	0.235	0.189	0177	0.213	0247	0.207	0.700	0237	0443	0616
23	0.211	0215	0.239	0.188	0179	0.216	0238	0244	0505	0.233	0.377	0608
24	0.210	0216	0213	0195	0179	0215	0.225	0257	0319	0265	0.502	0608
25	0.214	0.213	0.296	0188	0176	0.214	0.219	0234	0313	0.459	0.781	0603
28	0.215	0.213	0.234	0214	0171	0.215	0217	0.219	0257	0277	0.544	0.601
27	0.221	0.213	0209	0214	0185	0.210	0211	0207	0246	0293	0.579	0.599
28	0.227	0.220	0204	0421	0.208	0207	0.205	0.204	0232	0278	0587	0600
29	0.223	0207	0.219	0219	1670	0.215	0.204	0219	0223	0.268	0.599	0598
30	0.228		0.334	0.256	0496	0249	0.203	0.258	0.273	0.261	0874	0602
31	0.225		0228		0268		0.199	0204		0.253		0604
Average	0222	0220	0.221	0222	0267	0237	0257	0.233	0255	0268	0408	0630
Lowest	0.209	0.205	0.190	0181	0165	0.207	0199	0.192	0193	0.227	0.261	0.588
Haghest	0315	0.258	0.334	0421	1670	0.358	0.740	0.588	0700	0.459	0.874	0818
Posat how	0.44	036	0.54	0.85	357	079	186	1.54	185	086	148	112
Day of neak Monthly totel	9	10	30	28	29	10	20	13	22	20	30	18
(manion cu m)	0.59	0.55	0.59	0.58	0.72	061	069	062	066	072	108	1.69
Runot (mm)	4	4	4	4	5	5	5	5	5	5	8	13
Rainfol (mm)	29	18	50	59	88	35	87	94	103	73	101	44

Statistics of monthly data for previous record (Dec 1982 to Dec 1991)

Station and catchment description
Critical-depin fume: 5m overall width. Theoretical calibration confirmed by gaugings All flows contained. Appreciabte net export of water (considerable groundwater abstraction in hadwaters). Very high baseflow component. A predominantly permeable catchment (Uppar Chalk overlain by glacial deposits near headwaters), mainly rural but some urbanisation in the lower valley.

039001 Thames at Kingston

Measurang authoity: NRA-T
First yoar: 1883 First yoar: 1883

Grid reference: 51 (TQ) 177698 Lovel stn (m OD) 4.70

Catchment area (sq km): 9948.0 Max alt. (m OD): 330

Daily mean gauged discharges (cubic metres per eecond)

day	JAN	FE8	MAR	APPA	MAY	JN	π	AUG	SEP	OCT	NOV	DEC
1	7800	10300	15800	58300	60400	49.500	7980	5890	20600	64.800	63.100	293000
2	9150	12.800	20300	34500	54.100	36200	8540	8.080	18600	60000	69500	313000
3	8940	19400	13900	34500	30400	32.200	17700	- 560	9280	75.000	121000	364000
4	9.290	17.500	16.500	20.300	28800	36200	25400	4.870	9700	88200	90.700	347.000
5	10900	14700	18400	18400	19.600	14.100	10.500	4170	9120	91.500	58.500	293000
6	11.700	8310	16300	21.700	19.700	14600	6720	5.030	8780	88500	59.900	269000
7	8150	6.370	13600	27.600	14.800	15.300	6260	3.460	8.790	68.800	51.200	289000
6	14.700	7420	12400	48600	15.100	14300	7340	3.990	7.180	71900	48.400	277.000
9	17600	9770	14200	84800	29300	13.300	5850	5960	5320	42.900	57.300	265000
10	65.200	16700	13200	18800	29.900	29.200	8.410	9.180	5750	43.700	90.100	249.000
11	62500	28300	14500	21200	22.100	13000	8610	5.790	7500	33800	125000	240.000
12	75300	42400	17300	25500	20.500	7850	7220	6720	8000	41.500	140000	231000
13	63900	40400	15100	23500	12.100	9020	8500	16.500	9960	27600	112000	198.000
14	52000	38.100	12.500	20.800	12500	9290	7510	18.400	11.800	28.700	96600	167.000
15	40500	32.200	12500	75.700	9310	8.990	7010	12900	9870	23.900	130.000	149000
16	36600	27.400	12600	75.600	9780	7.840	6750	18900	9990	29.500	170.000	142000
17	27.800	23600	10200	72.100	8.560	7960	6810	12.100	13700	27700	168000	148.000
18	19700	15.600	8770	61500	10.600	9750	6590	14500	12300	29.000	140000	183000
19	20.300	21400	12000	45200	10600	12300	6450	6.300	9520	22800	135.000	268.000
20	24500	20300	12000	28900	12.500	7.840	14600	4510	8650	110000	115000	250000
21	18400	26000	12.500	27.300	11.200	11700	15800	7.740	10200	130000	97.500	221.000
22	19200	22.100	12200	28300	9.690	7.900	22400	5300	25600	97.000	101000	181000
23	19.100	22.300	19100	22.400	8.000	9040	9570	5.210	128000	80500	120.000	139000
24	12900	20.300	15700	18.700	9.420	8.840	11200	7290	125000	55.900	116.000	119.000
25	4.230	17.900	12600	22.600	9.150	7.280	7660	12.200	115000	65100	163000	112.000
26	19.000	13.600	22400	25.200	8060	11.400	5000	8.310	126000	78600	261.000	110000
27	22500	12700	23600	23.400	9830	7180	6600	8.860	135000	91.600	239000	96.300
28	20500	19600	17600	61.700	9520	9.050	7.370	8.130	107000	109000	217.000	102000
29	16100	13300	19.900	63000	29.700	10200	8600	11.500	106000	111.000	252.000	99.700
30	10700		45500	34.200	56.300	9.080	7140	32700	-89800	85.400	275000	92.500
31	13.700		68100		24300		6830	21.700		70400		91.200
Average	24610	20030	1)180	37.480	19.870	14.680	9385	9766	39070	65.880	129.400	203.100
Lowest	4230	6370	8770	18400	8000	7180	5000	3.460	5320	22800	48.400	91.200
Highest	75.300	42.400	68100	75700	60400	49500	25400	32.700	135000	130.000	275.000	364.000
Poak flow	7950	7310	9020	11600	10900	7500	6040	5730	17900	16400	29700	38300
Day of peak Monthly toial	12	12	31	15	30	1	4	31	26	21	26	3
(multon cu m)	65.91	5018	4763	9714	5321	3805	2514	26.16	101.30	17650	335.30	54400
Runotf (mm)	7	5	5	10	5	4	3	3	10	18	34	55
Ramtal (mm)	32	28	52	69	57	40	81	114	96	69	124	63

Statistics of monthly data for previous record (Jan 1883 to Dec 1991)

Station and catchment description 1974 multi-path operation from 1986 Full range. No peak flows pre-1974 when drnfs derived from
 sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS absiractions - naturalised flows available. Diverse topography. geology and tand use which - together with the pattorn of water ultisation- has undergone important historical changes.

039001 Thames at Kingston

Moosuring outhority: NRA.T
Fwat year: 1883

Grid rafarence: 51 (TQ) 177698
Levol stn. (m OD) 470

Daily mean naturalised dischafges (cubic metres per aecond)

day	JAN	FEB	Mah	APA	may	MN	Nu	avg	SEP	OCT	MOV	OEC
1	32.200	38.400	45000	85.500	85.900	75.000	20.600	21.700	54300	91800	82.500	313000
2	31800	40.600	49.600	63.800	79.600	64.700	36900	20900	51300	87.500	89.500	333.000
3	32.600	45.600	43.100	64000	52.500	40600	33.300	21.800	40.700	104000	142.000	378000
4	35.200	42.500	42.900	43.300	49.800	58500	50200	18300	44000	115.000	110.000	364000
5	36.100	45.600	42.800	42.500	42.300	42.000	41.200	19.000	39.700	119000	77.100	318000
6	38.500	36.700	39.000	46300	43600	42100	31.100	20.600	40.000	113000	82.700	293000
7	33.900	32.400	38600	53.700	40000	40.600	28. 100	19.300	41.500	92.100	75.000	309.000
8	40.600	38.800	37.500	73.100	39500	39900	22.200	19.300	39.500	98.800	70.700	297000
9	47.800	36.700	37000	89000	54.000	41600	26.900	27000	33.600	66600	74.300	285.000
10	98.100	48.000	39.200	46.700	55400	38100	24000	38000	32900	86600	107.000	271000
11	97300	57.600	39.000	48400	47500	35300	25.800	25.500	25.800	57.200	144.000	286.000
12	106000	67.000	39400	49200	46.800	38.100	30.200	31.200	29.800	65900	158000	256000
13	91.400	66.200	42200	49.800	35.900	30200	26.200	42700	32.100	51.600	136.000	223.000
14	78.800	69.300	37.300	44800	39500	23900	25.900	57.700	35.500	54.900	120000	188.000
15	68.600	83.400	38800	101000	33.200	29.800	29.200	47.200	35.300	50600	154000	169.000
16	62.800	57.600	38400	104000	33.900	21.100	29.100	48.500	29.500	53.200	191.000	163.000
17	58200	53.400	36400	99900	32.000	22600	27.300	43600	34000	50.800	186.000	168.000
18	50.200	46.100	34.300	90200	32400	24400	26.100	42.300	35.100	52.400	181000	208.000
19	50400	52.000	37800	70.100	34.000	27.000	22.100	39.800	33100	48700	156000	290000
20	53.900	52.800	33.200	53500	30500	29200	33.000	32.600	32.100	131.000	141.000	275000
21	48.200	52.700	37.500	52.200	32.100	25800	47.100	28000	32100	150000	123.000	240000
22	48.900	50.400	36600	52000	30.000	29.100	51.900	31800	48600	116000	126000	201000
23	48600	50.600	40.500	48.500	27.700	23000	45500	25000	154000	100.000	140.000	159.000
24	42.300	48.600	39700	45.100	28900	23700	42.200	34.500	154000	70.100	138.000	140000
25	33.100	44.300	39.900	48500	27400	22100	35.500	43.900	140.000	87.500	181000	138000
28	50000	41.300	47.600	51.300	28100	21100	26500	44.200	156.000	99.100	278.000	133000
27	52.500	42.400	48300	49200	27.100	22800	27.900	44.500	165.000	112000	260000	119000
28	50.700	32.300	39.900	88700	26.600	21.600	25.500	40.700	137000	128000	237.000	124.000
29	47.700	40600	42.100	84.900	45.100	21000	24100	41.200	138000	129.000	271000	120000
30	42.100		72.200	61.100	83.800	21.900	25400	65.600	117.000	108.000	291000	112000
31	40800		85100		49800		24.000	54.600		50200		109000
Averege	53130	47.990	42.930	63.340	42.350	33.160	31130	35130	65980	88.920	150000	224.600
Lowes	31.600	32.300	33.200	42500	26.600	21.000	20.600	18.300	25800	48.700	70.700	109000
Hrghest	108.000	69.300	95.100	104000	85.900	75000	51.900	85.600	165000	150.000	291000	378000
Monthly roigl (trulthon Cu m)	14230	120.30	11500	164.20	11340	8595	83.38	9409	171.00	238.20	388.90	60150
Nat'ieed runotf (mm)	14	12	12	17	11	9	8	9	17	24	39	60
Ramital (mm)	32	28	52	69	57	40	81	114	98	69	124	63

Statistics of montily data for previous record (Jan 1883 to Dec 1991)

Mean	Avg	137.200	135000	115700	86.110	64.680	48.600	35.170	32.460	34.080	49.420	82.430	111000
netised	Low	32.210	25.100	27320	26.510	18.200	13.470	10.760	11040	11.230	15.120	17.750	22480
flows	(year)	1905	1905	1944	1976	1944	1944	1921	1976	1898	1934	1921	1921
	1 mgh	332900	348.100	370.900	199800	181.300	178700	88840	88.780	139400	185300	339600	343.900
	(year)	1915	1904	1947	1951	1932	1903	1968	1931	1968	1903	1894	1929
natised	Avg.	37	33	31	22	17	13	9	9	9	13	21	30
runotf:	Low	9	6	7	7	5	4	3	3	3	4	5	6
	Hagh	90	88	100	52	49	47	24	24	36	50	88	93
Rainfall:	Avg.	85	49	53	48	54	53	58	63	57	72	72	72
	Low	14	3	3	3	7	3	8	3	3	5	8	13
	Hagh	137	127	142	104	137	137	130	147	157	188	188	185

Summary etatistica (naturakeed flows)	For 1992		For racord preceding 1992		$\begin{gathered} 1992 \\ \text { As \% of } \\ \text { pre. } 1992 \\ 95 \end{gathered}$
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	73.400		77390		
Lowest yearty moen			30940	1934	
lughaet yoerty meen			131800	1951	
Lowest monthly mean	31130	N	10.760	dut 1921	
Highast monthly mean	224.600	Dec	370.900	Mor 1947	
Lowest dely mean	18.300	4 Aug	7370	9 Jul 1934	
Highast dety maen	378000	300	1065.000	18 Now 1894	
10\% exceedence	154.700		171000		90
50\% exceetance	47.100		53.030		89
95\% exceectance	22.750		18.410		124
Annuel tored (mulion cu mi	232100		244200		95
Annusi runoff (mm)	233		245		95
Annued raniall (mm)	824		716		115
1941.70 rainfal avarage			724		

Factors affecting runoff

- Reservoir(s) in catchment.

Flow influenced by groundwatar abstraction and/or recharge.

- Abstraction for public water supplies

Flow reduced by industrial and/or
agricultural abstractions

- Augmentation from surface water and/or groundwater.
- Augmentation from effluent returns

Ultrasonic station Teddington weir complex (70 m wide); significant stuctural improvements since 1883. Some underestimation of pre-195 1 low flows. Baseflow sustained mainly from the Chalk and the Oolites Runof decreased by major PWS abstractions - naturalisad flows availatio. Diverse topography geology and land use which - together with the pattern of water utilsation - has undergone important historical changes

039020 Coln at Bibury

Measurmg authority: NRA-T First year 1963

Giad roforence 42 (SP) 122062
level stn. (m OD): 100.60

Catchment sien (sq km): 1067 Max alt (m OO): 330

Statistics of monthly data for previous record (Oet 1963 to Dec 1991)

Station and catchmant dascription
Crump weir 19.1 m broad) Modular throughout the range. Some overspill onto floodplain before design capacity reached. Limited impact of artificial influences on river flows - net import (sewage effluent). Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchment on the dip-slope of the Cotswolds: predominantly rural.

040003 Medway at Teston

Moasuring authority: NRA-S First yeer: 1958

Grid reference: 51 (TA) 708530 Leval sin. (m OD): 7.00

Catchment area (sq km) 12561 Max ant (m OO): 267

Dalty mean gauged diechargas (cubic metres per ascond)

day	JAN	FEB	MAR	APA	may	JN	Mu	aug	SEP	OCT	NOV	OEC
1	2.168	2452	3.392	12.440	44.540	2560	1.340	1.813	2.850	2091	3914	47.690
2	2.877	2.458	4.208	13.690	18230	2.755	1.771	1.760	1680	2823	34.740	105.200
3	2409	2.557	3.473	8.784	9.308	2.343	2.466	1655	2.385	8.072	21640	101600
4	2.510	2592	3.119	6.749	6.218	2491	3157	1489	1.603	5075	7811	63040
5	3.427	2.533	3.088	5758	5.440	2.468	2.581	1490	1766	3.461	5471	33280
6	3.385	2.468	3.144	5.425	5.092	2.737	1.717	1.471	1751	2526	4.499	50.080
7	3.281	2.378	3.101	6082	5.030	2.528	2.240	1499	2207	2102	3.641	53720
8	4.112	2389	3.069	7.212	4.620	2444	1217	1.795	2.219	1851	3462	24670
8	5.210	2.494	2.998	3755	5659	2.152	1.386	1.972	2093	1.778	7472	18.310
10	6.888	2711	2.974	4040	5.444	2009	2155	2.800	2.047	1.753	14330	13960
11	5.132	15.320	3.371	3.760	4.774	2.055	1968	2.244	2.030	1.815	34440	12870
12	4.274	9.894	3.068	3.831	3993	1.749	1.843	2.334	2082	1862	14.950	11.330
13	4.799	11.110	3.365	3657	3.828	1.640	1.599	2.946	2281	1.679	6.238	9.996
14	2.673	7.744	3.170	6.423	3434	1.471	1.851	5.098	2267	1.794	5.602	8.433
15	3.415	14.540	3.075	17105	3.217	1.595	1.753	2.448	1686	1.858	35.750	7813
16	3334	7.665	3088	10040	3087	1.482	1.801	2.024	1570	1821	40.170	7.523
17	3.205	5.284	2.938	5.889	2.889	1.367	1793	1.444	2216	1.747	44.690	9.158
18	3.381	5119	2.903	5.171	2.897	1342	1827	1824	1.937	1660	20610	54620
19	3.535	3.614	2.847	4707	2819	1.481	1.778	1.881	1412	3.988	17.520	84.950
20	2.423	3.722	2.762	4.700	2.767	1831	5121	3054	1.896	29.540	12.430	47670
21	4.242	3.605	3.008	4228	3.444	1.853	10.540	2. 199	2312	29490	9.795	27880
22	2.797	3.442	4.122	3.680	1.539	1449	3291	1.972	3.398	7.313	12000	16.170
23	2.379	3348	5.244	3.498	2.322	1.405	1.837	1.884	5472	5042	12.750	13.140
24	2004	3278	5.278	4.170	2.245	1.333	1528	2.389	5840	3025	13.150	11.270
25	2.050	3.253	5.941	5.621	2.111	1.328	1645	3.179	7090	7.454	68380	10070
28	2.965	3.211	16990	5684	2019	1215	1.716	2.338	5.198	8.162	109.200	9.257
27	2.110	3215	9404	8.524	1.996	1359	1889	1.912	3040	13.310	59200	8.788
28	3749	3.134	6341	30.390	2.106	1318	1.670	1976	2.468	18.580	49.680	7.228
29	2.355	3.124	5.334	21750	7381	1272	1.718	1824	2076	13.740	69650	7.053
30	2.404		25.130	8.935	4452	1.112	1.637	4.292	2.136	6.465	56200	6.787
31	2481		39370		3333		1872	3.781		4.471		6.413
Avarage	3.287	4.781	6.106	7.790	5679	1797	2.267	2283	2.633	6.334	26580	28640
Lowast	2004	2.378	2.762	3.498	1.539	1.112	1.217	1.444	1.412	1.660	3.462	6.413
Highest	6888	15.320	39.370	30390	44.540	2.755	10.540	5098	7090	29.540	109.200	105.200
Pesk flow Dey of peak Montily total (miltion cu m)	880	11.98	16.36	2019	15.21	468	6.07	611	682	1896	68.89	7672
Runoty (mm)	7	10	13	16	12	4	5	5	5	14	55	61
Remfal (mm)	18	29	62	78	38	18	68	95	66	91	131	69

Statistics of monthly data for previous record (Oct 1958 to Dec 1991 -incomplete or misaing monthe total 1.5 years)

Station and catchment description
Crump profite weir plus sharp-crested weir superseded insensitive broad-crested weir. Flows greater than 27 cumecs measured at well calibrated river section $\mathbf{2 k m} d / \mathrm{s}$ (East Farleght). updating of primary record incomplate. Responsive regime. Complex water utilisation Significant artificial disturbance: low flow augmentation from Bewl Water (via River feiset): >20 yrs of naturalised flows availabte. Mixed geology: impervious formations constitute up to 50% of the catchment. Diverse land use with significant areas of woodland and orchard

040011 Great Stour at Horton
1992

Measurung authority: NRA.S Fust yoar: 1964

Grud reference. 61 (TR) 116554
Level sin. (m OD): 12.50

Catchment aroa (sa km): 3450
Max alt (m OD): 205

Daiky mean gauged dischargeas (cubic matres par eacond)

DAY	JAN	FEB	MAR	APR	may	JUN	Jul	aug	SEP	OCT	Nov	DEC
1	1.582	1.628	1.488	5812	8.467	1.346	0.802	0860	1590	1315	2362	7.946
2	1587	1.614	1.594	3.759	5.781	1.230	0887	0.826	1.370	1.277	4307	11.110
3	1.594	1.589	1438	3.129	3131	1.150	1075	0845	1220	2.799	5.579	11110
4	1685	1665	1.404	2601	2.345	1. 109	1.336	0842	1.144	2.220	3.385	8.499
5	1676	1.639	1.399	2377	2213	1.130	1.758	0.939	1038	1.710	2583	6813
8	1624	1.586	1.388	2366	1945	1.167	1.388	0.914	0991	1423	2257	6444
7	1661	1.578	1.358	2270	1.789	1.181	1.011	0.902	1070	1.385	2.099	12.520
8	1.740	1617	1.346	2.151	1680	1.236	0994	1.028	1.140	1.293	1973	7.775
9	2555	1.620	1.287	2016	1.944	1.152	0.918	1.058	1033	1.276	2.221	5447
10	3.758	1671	1.457	1891	1990	1.086	0920	1.285	0.923	1.285	3703	4.508
11	2835	4086	1.479	1.858	1.812	1.006	0.920	1.336	0.915	1.529	6.500	4.132
12	2.365	3875	1.406	1.944	1.651	0975	0.926	1.220	0871	1.446	5308	3.930
13	2.153	3.140	1.472	2.008	1.560	0.893	0.957	1.153	0899	1.298	3.219	3.622
14	2042	2.767	1.392	2208	1497	0.886	1054	2.101	0.978	1.254	2750	3.521
15	1.956	3.586	1385	2.912	1.354	0.892	1.102	1.424	1008	1.337	7.425	3.386
16	1911	2.872	1.389	2.528	1.368	0.916	1006	1052	0.921	1.271	8.809	3324
17	1.825	2404	1.376	2.178	1290	0.854	0.970	1.084	0.912	1.145	10370	3.326
18	1.791	2.176	1.321	2.071	1.360	0.797	0.988	1.015	1.198	1.092	7.261	6.205
19	1.762	2022	1.392	1993	1288	0.917	0.989	1.036	1.109	2.224	6338	10460
20	1868	1.906	1.471	1.930	1.285	0946	1.109	1.095	0.991	5.538	5.144	7989
21	1.740	1689	1.451	2.116	1.328	0.912	3.910	1.143	1.100	5.620	4165	6.135
22	1.683	1.822	1.754	1.933	1237	0.850	2.542	1027	3.195	4.160	4747	4775
23	1.644	1.571	1899	1.880	1.187	0.942	1.428	0.927	3839	3.004	4.501	4072
24	1.629	1557	2.217	1931	1127	0.942	0.972	1161	2784	2.196	3882	3708
25	1.581	1529	2.136	1981	1051	0.632	0.904	1.556	2.447	3.319	7998	3495
26	1.590	1458	4.483	2127	0881	0.765	0893	1.291	1.967	3.509	14470	3288
27	1.592	1515	4487	2.152	1.202	0.843	0905	1081	1640	3.277	9.813	3143
28	1647	1488	3695	2.624	1.189	0.818	0.925	1.174	1247	5.171	8552	2.971
29	1.638	1.444	3. 109	3.427	2646	0.798	0907	0.991	1.217	6.708	11.100	2878
30	1.608		5407	2.361	2.060	0.734	1007	1374	1237	4.177	9.304	2.838
31	1629		9.312		1370		0959	2.008		2.767		2.730
Average	1869	2.031	2.198	2411	1969	0.978	1176	1.152	1.400	2.517	5738	5545
Lowest	1581	1.444	1287	1.858	0.881	0.734	0802	0826	0871	1.092	1.973	2730
Highest	3758	4.086	9312	5612	8467	1346	3.910	2. 101	3839	6.708	14.470	12.520
Peak flow	441	632	1119	8.96	1084	1.62	5.41	2.85	464	803	1720	14.88
Day of peak	9	12	31	1	1	12	21	31	22	29	26	7
Monthly total (malion cu mi	501	509	589	6.25	5.27	253	315	3.09	363	674	14.87	14.85
Runotf (mm)	15	15	17	18	15	7	9	9	11	20	43	43
Rainfall (mm)	22	26	71	68	43	15	88	102	69	104	128	62

Statistics of monthly data for previous record (Oct 1964 to Dec 1991 -incomplete or mieeing monthe total 0.2 veers)

Station and catchment description
Brosd-crested weir (width: 10.7 m . insensitive) in (rapezoidal section plus a VA section for flows >20 curnecs EM installed 1992 . All flows containad. Minor impact of artificial influences on runoft (import of 0.03 cumecs in 1988). modest PWS and irrigation abstractions in lower valley. Flood storage reservoirs above Ashford (constructed $1990-2$). U/s mill regulation evident on the hydrographs. The E. 8 W. branches of the Stour flow over Weald Clay: below the confluence (at Ashford) Chalk dominates A rural catchment with mixed land use

041016 Cuckmere at Cowbeech

1992

Moesurimg authonty: NRA.S
First yoar: 1939

Gind reference 51 (TQ) 611150 Level stn (m OO) 2980

Caicfment ares (sq km): 18.7 Maxalt. (m OD). 183

Daity mean gauged discharges (cubic metres per eecond)

day	JAN	FE8	MAR	APA	May	JUN	μ	AUG	SEP	OCT	NOV	OCC
1	0089	0071	0106	0298	0979	0062	0026	0021	0044	0034	0150	0588
2	0089	0070	0102	0209	0350	0057	0030	0021	0.059	0059	1363	2498
3	0089	0069	0090	0189	0.251	0050	0054	0021	0044	0.119	0309	0950
4	0090	0067	0089	0150	0209	0048	0094	0.021	0038	0066	0182	0.989
5	0096	0086	0089	0139	0183	0048	0044	0020	0028	0044	0.143	0499
6	0.120	0085	0081	0153	0166	0050	0.030	0020	0037	0037	0127	1.745
7	0099	0065	0.080	0156	0158	0051	0027	0020	0041	0034	0119	0.791
8	0.117	0065	0076	0128	0141	0050	0027	0020	0030	0033	0109	0.454
9	0354	0.069	0.073	0113	0197	0045	0027	0.020	0027	0034	0290	0363
10	0.212	0105	0091	0106	0158	0044	0032	0021	0026	0030	0.514	0.315
11	0146	0526	0088	0105	0.133	0.039	0033	0021	0024	0036	0976	0297
12	0.122	0.306	0087	0102	0125	0036	0034	0023	0023	0030	0270	0269
13	0112	0.199	0090	0095	0117	0036	0032	0181	0.040	0.027	0.189	0248
14	0107	0233	0081	0296	0107	0036	0.032	0062	0038	0027	0654	0.240
15 \%	0103	0274	0082	0.323	0094	0036	0032	0032	0028	0027	1010	0230
16	0.100	0.165	0080	0177	0087	0034	0028	0034	0.027	0027	1696	0.231
17	0091	0128	0.077	0157	0084	0032	0027	0031	0026	0030	0574	0247
18	0.091	0113	0075	0141	0084	0.032	0027	0.033	0030	0029	0557	1735
18	0091	0101	0073	0.122	0081	0032	0026	0029	0030	0283	0373	0803
20	0087	0100	0073	0117	0.076	0.032	0.187	0040	0027	0198	0.294	0.525
21	0078	0.099	0.076	0109	0071	0032	0104	0031	0028	0.103	0285	0380
22	0.072	0.098	0124	0105	0070	0.032	0040	0027	0039	0073	0290	0307
23	0072	0.095	0122	0103	0065	0032	0030	0.026	0.103	0061	0248	0274
24	0072	0094	0145	0156	0062	0032	0035	0037	0132	0050	0382	0248
25	0089	0092	0268	0147	0059	0030	0028	0073	0134	0073	4011	0232
28	0072	0089	0347	0429	0055	0027	0025	0039	0073	0072	0.804	0217
27	0.072	0087	0170	0238	0053	0027	0023	0031	0050	0428	1193	0202
28	0.072	0085	0135	1415	0053	0027	0021	0.030	0041	0757	1247	0193
29	0071	0084	0.132	0360	0099	0027	0021	0028	0037	0.281	1.502	0186
30	0070		1.334	0950	0068	0026	0021	0091	0036	0144	0873	0173
31	0.076		0665		0057		0021	0092		0106		0170
Average	0103	0.127	0168	0242	0145	0038	0039	0038	0045	0108	0891	0535
Lowest	0069	0065	0073	0095	0053	0026	0021	0020	0023	0027	0.109	0170
Hughest	0354	0526	1334	1415	0979	0062	0.187	0161	0134	0757	4011	2498
Peok flow	060	108	295	399	3.17	0.07	054	049	017	235	1746	557
Day of pook	9	11	30	28	1	2	20	13	24	28	25	2
Montiny total (milson cu m)	028	032	045	063	039	010	011	010	012	0.29	1.79	143
Rumott (mm)	15	17	24	34	21	5	6	5	6	15	96	77
Rainfon (mm)	20	32	65	91	28	10	91	116	72	89	168	75

Statistics of monthly data for previous record wan 1988 to Dec 1991 -incomplete or mising months total 0.2 years)

Station and catchment description
Asymmetrical compound Crump protile weir (crests. 2.13 m and 2.97 m broad) with crest tapping - not currently used. Very limited head during droughts. Siructure capacity exceeded in large floods. Early data (1939-67) is of poorer quality and relates to low flows only. Responsive to rainfall on impervrous fraction of catchment. Flows diminished by surface and groundwater abstractions. A rural catchment developad on mixeo geology (Hastings Beds predominate)

042010 Itchen at Highbridge\#Allbrook

Measuring authority NRA-S First year 1958

Grid reference 41 (SU) 467213 Lovel sin (m OD): 1710

Catchment area (sq km): $\mathbf{3 6 0 . 0}$ Max alt (m OO): 208

Daity mean gauged discharges (cubic metres per eecond)

Statistics of monthly data for previous record (Oct 1958 to Dec 1991)

Station and catchment description
Crump weir 775 m broad (which can drown), superseded, in 1971 , a rated section with weedgrowth problems. Plus than-plate werr (Allbrook) Adl flows contained (rare bypassing resulted from wrong sluice settings). Flow augmentation from GW during droughts GW catchment exceeds topographical catchment Artificial influences have minor. but increasing, impact on baseflow dominated regime. small net export of water. Very permeable catchment (90% Chalk) Land use is mainly arable with scattered settements.

043005 Avon at Amesbury

Measuring authonty: NRA.SW First year: 1965

Gind roference: 41 (SU) 151413 Level sin. (m OD): 67.10

Catchment area (sq km): 323.7
Max alt. (m OD): 294

Daily mean	ed	rges	c metre	secon								
Day	JAN	FEB	MAR	APR	MAY	JN	Mr	AUG	SEP	OCT	NOV	OEC
1	1.668	1855	1843	3.012	2555	1878	1.404	1073	2084	2.151	2.240	9.789
2	1649	1.635	1862	3019	2.488	1.859	1.499	1.088	1.993	2.154	2.453	10.190
3	1.655	1.645	1.845	2706	2.343	1.815	1.700	1027	1.934	2.183	2.639	12.070
4	1672	1.836	1833	2.615	2.271	1.775	1.060	1.011	1.794	2.139	2.614	10.700
5	1.673	1.618	1.841	2.566	2.253	1783	1.560	0998	1.695	2.120	2485	9.825
6	1.876	1.614	1830	2.593	2231	1792	1.436	0998	1.643	2058	2401	10450
7	1.668	1.611	1.837	2876	2.239	1789	1.340	0.996	1.547	2.017	2.332	16.580
8	1.742	1.613	1827	3.766	2.224	1.721	1.300	1017	1490	2003	2310	15.460
9	1957	1.652	1.813	3193	2350	1675	1.399	1068	1.418	1980	2425	12470
10	2063	1.723	1860	2.855	2.383	1644	1.448	1.079	1.388	1.959	2.785	11.410
11	2.006	1.823	1.885	2.792	2.265	1.583	1395	1.119	1.349	1.957	3.172	10.810
12	1.952	1.985	1.937	2.705	2.245	1.553	1.498	1.228	1.331	1.970	3.302	10.280
13	1.907	2.104	1.963	2669	2.213	1489	1.478	1.258	1.378	1.958	3028	9602
14	1880	2.098	1.930	2.740	2.186	1437	1418	1393	1.354	1.987	3.028	9.023
15	1.820	2.056	1921	2.656	2.159	1.451	1395	1.341	1331	1966	4320	8.715
16	1810	1982	1.900	2.601	2.073	1.378	1.348	1.331	1.328	2003	4938	0.535
17	1.768	1.929	1.895	2.633	2021	1366	1.302	1299	1.323	1.970	4.053	8.219
18	1.784	1.929	1.925	2.689	2.027	1.366	1.266	1.264	1386	1972	3.870	11.910
19	1.780	1.918	1.900	2.615	1989	1365	1.284	1.207	1.548	2.024	3.834	15.960
20	1.686	1.882	1.884	2.429	1.940	1.357	1328	1.191	1.631	2.129	3.782	11.120
21	1613	1.841	1.924	2387	1.929	1.338	1.426	1.134	1803	2.138	3749	9.267
22	1613	1.842	1.977	2.310	1891	1.327	1441	1202	1838	2.131	3.870	8489
23	1613	1.841	2053	2.289	1885	1.318	1.416	1188	2.182	2.108	4015	8.101
24	1.613	1.842	2.081	2402	1863	1.318	1.322	1.283	2626	2.091	4136	7.912
25	1.638	1.798	2.096	2.333	1.841	1.290	1277	1.385	2.745	2.090	4970	7.789
26	1757	1.808	2118	2.293	1.830	1.268	1.257	1.394	2.783	2.139	6689	7.653
27	1.777	1804	2.113	2.304	1.758	1223	1.247	1370	2.588	2.307	6.194	7529
28	1.723	1.800	2.104	2.503	1.729	1187	1185	1317	2.364	2.524	6.192	7.350
29	1698	1.803	2182	2.482	1.726	1172	1.115	1.356	2178	2481	7065	7.215
30	1674		2445	2.471	1.729	1.153	1.101	1.712	2.146	2.354	B.558	7.021
31	1664		2594		1719		1.096	1.947		2.283		6903
Average	1.747	1.808	1.974	2650	2076	1.489	1.385	1.233	1.793	2.108	3.914	9.947
Lowent	1.613	1.811	1.813	2.289	1.719	1153	1.096	0996	1.323	1.956	2.240	6.903
Higheat	2.062	2.104	2.594	3.766	2.555	1.878	1.700	1947	2.783	2.524	8.558	16.560
Peak flow	208	2.15	2.64	4.32	2.60	1.92	1.78	1.99		2.80	990	20.28
Day of peak	10	13	31	8	1	1	3	30	28	28	30	7
Monithy total (milion cu m)	468	4.53	5.29	6.87	5.56	386	366	330	4.65	6.64	1015	2684
Runoff (mm) Resfor (mm)	14	14	16 87	21 70	17 20	12 58	11 81	10 128	14	17	31 136	82 86

Statistics of monthly data for previous record (Fab 1985 to Dec 19911

Station and catchment description
Crump profile weir (crast 9.14 m broad) flanked by broad-crested weirs. Small bypass channal approx. $\mathbf{2 m} \mathbf{m} / \mathbf{s}$ of wair - included in rating. Full range station. Bankfull is 1.37 m . During summer flows are nsturally augmented from groundwater draining from northern half of River Bourne Upper Greensand and Gault. Land use-rural. Topographical and groundwater catchments do not coincide

Moasuring authority: NRA.SW First year: 1956

Grid reference: 21 (SS) 936016 Leval sin. (m OD): 25.90

Catchment area (sq km): 600.9
Max att. (m OD): 519

Daity mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	may	UN	0	aus	SEP	OCT	Mov	Dec
1	10180	4769	11790	17.100	20820	5110	2.748	2480	21560	9475	21.630	86700
2	9339	4.717	9.873	14.950	15690	4838	2349	2540	21870	9312	41460	109800
3	8995	4.891	9461	14340	14320	4.188	3621	2701	22700	9451	30.240	83.670
4	11240	4.658	9361	13.500	13.180	3.468	3.594	2.592	21.590	8443	25.740	71550
5	9.420	4.394	9154	12730	12230	3316	2659	2531	19300	7.575	21.440	57.280
6	8391	4.228	8.830	16780	10950	3.631	2.221	3.319	20.180	7112	18.110	55390
7	8.188	4.128	9951	19.060	10.150	3806	2107	2630	17.910	6766	15810	48250
8	15.520	4.052	8637	15.610	9.528	3.647	2.045	2.627	15.640	6.323	14110	39.610
9	27.140	4.877	8.124	14.270	12230	3469	2112	2673	14.380	6149	26070	34680
10	22990	7.848	9901	13.510	10110	3.218	2.387	2.652	12850	5.744	34280	29340
11	21410	13.120	15400	12690	10260	3.085	2833	3012	12.510	5.575	49.300	25.690
12	18970	13.510	31.930	11.830	9.546	3.078	3.279	6883	10.910	5353	40950	22.540
13	16730	12230	24.480	10860	8447	2.907	4.195	26.430	12850	5.053	34.150	19.720
14	14.980	13.730	21.710	13.330	7805	2.697	8.940	18.990	11260	4.993	34840	18.070
15	13340	14.580	18.550	11940	7140	2.651	5.173	13.390	10360	5.402	29.480	16.810
16	12040	13350	16020	9.877	6.727	2.640	4.124	14340	9.601	4.859	30.820	18.030
17	10850	13.110	14230	10550	6370	2.507	3614	10.990	9048	4.677	25640	16480
18	9957	13610	14570	9.420	6059	2.591	3.294	9.458	8.468	5.650	38.570	50.450
19	9263	12.130	12670	8.797	5751	2498	3158	8327	7868	5.509	32.780	34950
20	B 509	11210	12.180	8.404	5.396	2380	5.166	7.459	7.925	18.670	28580	30380
21	7783	10.450	15060	8045	5.142	2.344	4526	7.053	14.530	15.120	36.900	25.510
22	7170	9890	27070	7.943	4.857	2.357	3213	8181	14350	14580	44320	21.130
23	6.850	10.370	22760	8495	4.587	2329	3103	8.199	14220	15.770	41.720	18120
24	6582	9414	20050	9.684	4.400	2.346	3.056	10.640	16.360	16630	42.900	15720
25	6673	8648	18510	9469	4.134	2244	2874	16040	14250	32.800	53.850	13.960
26	6672	8479	18560	10070	3.933	2110	2939	14530	13640	29300	53670	12430
27	5.949	8.339	15100	11.290	3.753	2062	3124	26.580	12.690	35.890	53.300	11.180
28	5637	8.152	13760	17.510	3.832	1.977	2.789	22.370	11.300	41530	56.100	10.190
29	5.407	7603	15.130	13.710	4004	1.862	2.615	20130	11.060	37220	52470	9248
30	5.182		13.640	16210	3799	2.711	2.510	24.700	10.930	31.110	146.000	8.744
31	4.971		14.900		3.588		2.382	19.600		24920		8079
Average	10850	6982	15210	12.400	8.023	2.939	3.315	10.450	14.070	14.100	39.170	33.020
Lownst	4971	4.052	8.124	7.943	3588	1.962	2045	2480	7868	4677	14110	8079
thighest	27.140	14580	31.930	19060	20820	5.110	8940	26.580	22.700	41.530	146.000	109.800
Peak flow	30.75	19.61	4689	2636	31.64	826	1237	83.07	2673	4656	204.50	15040
Day of peak Monthly total	9	11	12	1	1	1	14	14	4	29	30	2
(mmion cu m)	2906	22.51	4073	32.14	21.49	7.62	888	2800	36.47	37.75	101.50	8845
Runoff (mm)	48	37	68	53	36	13	15	47	61	63	169	147
Renfell (mm)	50	67	108	95	35	40	104	185	103	115	243	110

Statistics of monthly data for provious record (May 1956 to Dec 19911

Station and catchment description
Velocity-area station with cabteway. Flat V Crump profile weir constructed in 1973 due to unstable bed condition. Minor culvert flow through mill u / s of station inctuded in rating. Wimbleball Reservort has significant effect upon low flows Control point for Wimblaball Reservoir operational releases. Headwaters drain Exmoor. Goology predominantly Devonian sandstones and Carboniferous Culm Measures. with subordinate Permian sandstones in the east. Moortand, forestry and a range of agriculture

Moesuring suthority: NRA.SW First year. 1958

Grid reforence: 20 (SX) 426725 Level sin. (m OO): 8.20

Catchment area (sq km) 916.9
Max att. (m OD): 586

Daity mean gauged discharges (cubic metres per aecond)

Station and catchment description
Valocity-area station, wide, shallow channel. Cableway span 469 m . Low flows measured at another, narrower, site. High flow gauging difficult : owing to standing wavas. Roadford Reservoir from 1989 may hovo significant affect at low flows. Informal Flat V control installed ig9 . Rural catchment of moderate relief. draining very disturbed lower Carboniforous slates, shales, grits and votcanics. Significant alluvial flats in middle reaches. Devonian slates low down. Fairly responsive. A range of agriculture, grazing and forestry as land use.

050001 Taw at Umberleigh

Measuring suthority: NRA-SW First year 1958

Grid reference 21 (SS) 608 237 Level stn. (m OD): 14.10

Catchment area (sq km) 826.2
Max alt. (m OD): 604

Daity mean gauged discharges (cubtc metret per eecond)

DAY	JAN	FEB	MAA	APR	mar	JUN	Ur	AUG	SEP	OCT	Nov	DEC
1	9.248	4846	13.110	24390	29.250	5.506	1.412	1637	20.750	7191	23.820	91.930
2	8.381	4779	10.260	21.390	20970	6495	1419	1.714	21.470	7335	57.420	133.100
3	7.947	4.867	9325	18040	18.110	4.394	2.154	1.850	21.770	8.432	35.820	92540
4	12620	4777	9.170	15.750	15650	3.385	3.154	1.687	20750	7.623	28620	91780
5	$1: 130$	4409	9.121	14050	13880	3050	1878	1671	17600	6402	23.290	76960
6	9.086	4.168	8.733	15850	11870	3.029	1551	2074	17660	5.898	19.410	72.770
7	8.615	4.040	9979	17.950	10.700	3039	1.332	1643	16.640	5.548	16.970	69090
8	22610	3985	8.732	14520	9.703	3807	1.380	1.767	13.680	5271	15.120	51470
9	48680	5.569	8017	12.030	11410	2.992	1.437	1753	12480	5.160	32120	42.740
10	32920	14.500	9.579	11.080	10410	2520	1.683	1.755	11.040	4820	48.040	33310
11	27.000	23720	12.750	10330	10580	2.286	2018	2.199	11.270	4589	67440	28290
12	21.930	22740	28.640	9825	8.722	2.100	2.316	4052	9.767	4.347	52130	24.870
13	18.470	19170	18.540	8913	7773	1975	2451	24.630	10400	4073	39570	21.740
14	15.880	18.870	18750	11380	7.349	1.942	4877	22.130	9.946	4023	43.100	19880
15	13820	19950	14740	11.570	6803	1.872	3.497	13.770	9.101	4341	36280	18.780
16	12300	16280	12.940	8.405	6291	1.768	2.589	13420	8.322	4010	48360	26.600
17	10.810	15420	11730	10810	5948	1.705	2.186	9883	7855	3.844	46.130	21000
18	9739	16.940	11.830	8784	5.612	1627	2.023	8. 196	7.363	7.452	95430	73370
19	9015	14410	10630	8.067	5.229	1609	1947	6960	6807	6451	65480	41690
20	8256	12880	10.180	7.618	4.924	1586	3824	5.975	7.479	10570	45770	33350
21	7434	11750	12.800	7276	4.639	1.515	4.279	5233	10820	9.675	52.350	26740
22	6886	11000	24330	7148	4.326	1496	2421	6090	11320	9192	60620	21510
23	6452	10840	19.470	7216	4053	1.474	2259	6748	9.009	11400	49.540	18080
24	6.162	9917	17490	8518	3.841	1.445	2.262	7.839	12.560	16160	51.500	15.500
25	7690	9018	16410	9131	3.667	1.337	2042	14.870	10.060	40.680	77.830	13.710
26	7.865	8.465	19400	9039	3.442	1300	2.111	11.290	9414	31.540	78.570	12.280
27	6316	8094	14.960	10510	3277	1.253	2.311	24.590	9.542	43.900	67930	10920
28	5795	8112	13.710	23660	3.755	1204	1.984	20940	8572	64.830	83170	9.793
29	5.522	7.437	15660	14.530	3.797	1186	1808	17440	8.158	54220	90.160	9049
30	5.242		15.470	20090	5025	1196	1.700	24050	8.214	38.110	185.700	8.478
31	4.994		20030		4738		1636	18.800		28.140		7.791
Average	12.540	11070	14020	12600	8.572	2336	2250	9247	12000	15010	54450	39330
Lowest	4994	3985	8017	7.148	3277	1186	1.332	1.637	6807	3844	15.120	7.791
Hughest	48.880	23720	28.640	24390	29250	6495	4677	24.630	21.770	64.830	185.700	133100
Peak flow	5657	39.39	39.53	45.84	45.25	792	805	54.75	29.88	78.63	235.90	183.80
Oay of pook Monthly total	9	11	12	1	1	2	21	14	4	29	30	2
(multon cu m)	33.59	27.73	37.54	3265	2296	606	603	2477	3111	4020	141.10	10530
Runotf (mm)	41	34	45	40	28	7	7	30	38	49	171	127
Reantall (mm)	48	60	88	91	42	32	92	175	81	102	225	106

Statistics of monthly dats for previous record (Oct 1958 to Dec 1991)

Station and catchment description

Velocity-aree station, man channel 34 m wide. cableway span 54.9 m . Rock step downstream forms control. Bypassing begins at about 3.7 m on right bank. but a good rating accommodates thas. Significant modification to flows owing to PWS abstiection. Some naturalised flow data available. Large rural catchment - drains Dartmoor (granite) in south and Devonian shales and sandstones of Exmoor in north. Central area undertain mainly by Culm shales and sandstones (Carboniferous). Agriculture conditioned by grade 3 and 4 soils.

052005 Tone at Bishops Rull

Massuring authority: NRA-SW First year 1981

Grid reference: 31 (ST) 206250 Leval sin. (m OO): 16.20

Cotchment ares (sq km) 202.0

Oaily mean gauged discharges (cubic metres per second)

oay	JAN	feb	man	APP	may	ON	M	AUG	SEP	OCT	NOV	DEC
1	2.005	1.524	2.280	2.774	1.761	1.771	0864	0.534	1083	1219	2525	16090
2	1.925	1.537	1981	2.152	1.576	1.118	0700	0.568	1.149	1.368	4.161	35.690
3	1.971	1.538	1.863	1914	1487	0944	1019	0.562	1.155	1.463	2952	17240
4	2.137	1.500	1.799	1.804	1.438	0921	0808	0540	1226	1.515	2.582	13.980
5	1.940	1.453	1.797	1.772	1.464	0.856	0641	0542	1.040	1435	2.339	10.650
8	1.854	1.438	1.717	2.373	1.382	0.894	0.560	0.490	1.150	1.392	2.188	13.680
7	1.923	1.435	1.902	4.225	1.360	1.075	0.553	0.503	1033	1.376	2.090	10220
8	11.320	1.444	1.691	2842	1.351	0920	0605	0552	0945	1.396	1.988	8.032
9	8.346	1.708	1.654	2.805	1482	0856	0.808	0.567	0902	1.403	3800	7054
10	4.343	2.251	1.785	2.207	1.709	0793	0764	0.585	0899	1.364	4573	6132
11	3.742	3.128	1.894	2.103	1.479	0.749	0790	0749	0.954	1395	6212	5450
12	3.328	3.542	3.784	1.957	1.370	0.699	0884	0.757	0.853	25.630	4559	4971
13	3.030	2.807	2517	1874	1.325	0648	0.944	1527	0.877	8.070	3861	4.483
14	2.811	2.959	2290	2.379	1252	0.629	0928	0921	0870	0.919	4.289	4.114
16	2.859	3.134	2.179	1.995	1.202	0.863	0642	0626	0839	0874	4037	3841
18	2.510	2.574	2047	1.761	1125	0636	0619	0685	0.809	0.950	4080	3.809
17	2.377	2.430	2.017	1.959	1.135	0.583	0513	0604	0809	0997	3.359	3.506
18	2.298	2.680	2.110	1.748	1.069	0805	0.497	0560	0.853	1.095	3.681	21.610
19	2.197	2504	1921	1663	1003	0591	0565	0598	0.812	1.116	3.283	6.763
20	2017	2.327	1860	1617	0.993	0585	0841	0630	0823	3.618	2952	5.699
21	1.928	2192	1877	1505	0981	0581	0679	0569	2.241	2.494	3.687	5.054
22	1854	2.159	2.344	1.507	0952	0.603	0.549	0851	2.816	2.327	4580	4383
23	1.808	2089	2.120	1468	0.986	0.612	0585	0.801	2.593	2.046	4.130	4.090
24	1.772	2.038	1.910	1.810	0937	0.573	0.539	1063	2.331	2.039	6753	3.599
25	1.847	1.959	1.847	1623	0.891	0550	0.530	1343	1.598	2.954	10.150	3.494
28	1.828	1.951	1.975	1.770	0869	0.587	0.546	0995	1480	2.538	7902	3283
27	1.732	1.979	1770	1987	0.844	0544	0517	1.607	1.440	4.442	7.485	3065
28	1.688	1.879	1763	3491	0907	0564	0553	1098	1359	4548	10.540	2906
29	1.687	1.819	2.286	1.862	1.049	0553	0575	1606	1.328	3.797	10.760	2.781
30	1.607		2120	1.797	0939	0.822	0576	2.272	1283	3.245	64.620	2.728
31	1.557		2.244		0.863		0534	1108		2.873		2.565
Average	2.714	2.137	2043	2.091	1199	0.750	0656	0852	1.252	2.971	6.689	7.773
Lowest	1.557	1.435	1854	1468	0.844	0.544	0497	0490	0809	0874	1.988	2.565
Hughest	11.320	3.542	3.764	4.225	1.761	1.771	1.019	2.272	2 B 16	25.630	64620	35.690
Peak flow	31.78	502	511	6.33	230	258	136	5.22	583	3222	11060	47.77
Day of peok	8	12	12	7	10	1	13	29	22	13	30	18
Monthly total (milmon cu m)	7.27	5.30	5.47	5.42	3.21	1.94	178	228	324	7.96	1729	20.82
Runotf (mm)	38	27	27	27	16	10	9	11	18	39	88	103
Remiall (mm)	46	49	66	74	29	45	62	131	83	82	177	83

Statistics of monthty data for previous record (Feb 1961 to Dec 1991

Maen	Avg.	8.030	6.152	4364	3003	2.049	1356	- 1.153	0923	1.178	1.996	3263	4.941
Howe:	Low	1.248	1.746	1.552	1.176	0.734	0.458	- 0326	0.286	0.501	0.580	0651	1821
	(year)	1976	1985	1962	1976	1976	$1976{ }^{\circ}$	- 1976	1976	1964	1978	1978	1975
	Hegh	14.580	14.160	9259	6655	6562	2.770	5628	1685	4.892	9873	7.611	11.280
	(rear)	1984	1990	1981	1966	1983	1972	1968	1965	1974	1976	1982	1965
Rumotr:	Avg.	80	74	58	39	27	17	15	12	15	26	42	66
	Low	17	21	21	15	10	8	4	4	6	B	8	24
	H	193	170	123	85	87	38	75	22	63	131	98	150
Remfari:	Avg	114	84	84	62	63	60	59	67	80	94	98	111
	Low	25	6	5	6	9	8	18	19	8	8	:31	34
	High	250	194	170	150	137	147	144	126	202	249	192	205
Summ	ary st	istics								3 affec	runof		
								1992					
				1992		record		As \% of		voir(s)	csichm		
						ding 19		pre 1992		raction	public	or supp	
Masm flo	ow (m)							86					
Lowest	yeorly						1964						
Highest	yearly						1974						
Lowest	monthl	man					1978						
Hugheat	monts	meen					1984						
Lownt	dally m						1976						
Highest	donly m						1978						
Peak			110	30	112		1968						
10\% ex	ceeden							65					
50\% :x	ceedan							97					
95\% *x	ceectan							92					
Annual	totel im	on cu mb						86					
Annual	runots (40		47			86					
Annual	reintall		92		97			95					
194	1.70 ral	avaroge											

Station and catchment description
Pre $3 / 68$ velocity area station: flows unreliable below 1.42 cumec Now Crump profile weir (braadth 12.2 m) with crast tapping (not operationel) Full range station. Clatworthy and smailer Luxhay Reservoir in headwaters. Compensation frow maintains low flows. Reservoirs not large onough $t 0$ influence fairly rapid response to rainfall. Minor surface water abstractions for PWS. Catchment geology - predorntinantly sandstones and marls. Land use - rural

053018 Avon at Bathford

Messuring authority: NRA-SW First year: 1969			Giid reference: 3) (ST) 786671 Level stn. (m OO) 18.00							Cotchment ares (sq km). 1552.0 Max ath (m OD) 305		
Daily mean gauged discharges (cubic metrea per aecond)												
Day	JaN	FEB	MAR	APR	may	תNN	M	AUG	SEP	OCT	NOV	DEC
1	8671	9193	9.966	15860	10380	6.938	7.257	1.483	15.300	11320	12.790	144.000
2	8422	9186	10.260	13950	8412	6.506	5.983	1.666	12970	11.460	33.300	135.000
3	8413	9176	9500	10300	7.577	4941	8.456	1719	11.510	15.520	29990	135600
4	8779	8921	9.060	8786	7.129	4.141	6.882	1671	11240	18240	20.620	87370
5	8.402	8636	8.811	8070	6815	4332	4760	1.532	9095	14.080	18.300	56310
6	7953	8344	8.656	13.520	6.500	4.590	3.900	1.729	8531	11700	15.700	77.520
7	8030	7.957	8547	31070	6158	4.125	3.369	1542	9.180	10460	14.870	135.200
8	12.620	7798	a 176	33390	6255	4163	3083	1.709	8.033	9.822	13950	74220
9	33810	8.758	7835	18390	8444	3831	3038	2.041	7150	9565	24380	44.320
10	25920	9637	8260	14630	7889	4024	3238	2.603	6648	8915	38.540	36.580
11	18.500	19.700	8054	12520	6897	3.244	4.900	4410	8.867	8.513	52540	32650
12	15.990	18740	13.070	11.170	6742	3125	6.576	8015	6131	8479	33780	29.830
13	14.580	21.000	11.590	10530	6257	3.339	4450	8301	6306	8101	24.330	26.770
14	13.460	17.030	10120	11360	5836	3102	4566	10.540	6.429	7755	28.030	24900
15	12.850	17420	9336	11090	5522	2655	4224	6.688	5.978	7658	58850	23.260
16	12.160	14.450	8621	9408	5. 185	2.852	3509	6844	5264	7.801	38.330	22600
17	11.370	13210	B 152	9878	4.965	2364	3.123	6.365	5083	7242	30290	23.190
18	10980	14.870	8.469	9.343	4.925	2.364	2.797	4745	65520	7.116	29.720	83.250
19	10610	14.790	8287	8.645	4771	2873	2537	3879	37710	7591	28580	72.780
20	10230	13.140	8003	8.178	4257	2598	3.419	3.681	17.490	10290	25100	36.510
21	9656	12.190	8.541	7958	4344	2.339	7.499	3.652	13.610	10570	30710	29900
22	9095	11.630	11.550	8.136	4051	2.324	6.538	3.605	12160	8.937	43.870	26.390
23.	8845	11.420	9.629	7912	5.541	2.784	4240	4.232	17950	8414	38.660	23500
24°	8.854	10.760	6461	8454	5369	2357	3291	5310	25.580	8367	33.920	22.080
25	10260	10.350	7.643	8135	6099	2.295	2.704	9.335	21010	12.140	71080	20.620
26	14.310	10.130	7799	8.091	4.521	2506	2823	8086	19.580	14160	89480	19.760
27	12400	9.686	7.247	8.048	4.072	2.508	2.548	12850	15.830	20.450	82.940	18.550
28	11.220	9.555	6762	11.230	3.909	2007	2377	18.710	13.040	25290	82860	17.800
29	10.530	9304	7297	8738	3872	1895	2407	13.750	11.640	19010	118700	17.020
30	10070		8.355	8545	4291	2.781	2.289	18380	11.580	14.970	148.300	16.380
31	9.683		8.244		4.169		1.888	16910		13210		15720
Average	12.140	11.960	8.848	11840	5844	3.330	4.073	6.257	14.150	11.520	43.750	49.340
Lowest	7.953	7.796	6762	7912	3.872	1895	1898	1.483	5.083	7116	12790	15720
Highest	33810	21.000	13070	33.390	10380	6938	7499	18.710	65.520	25290	148300	144000
	4006	24.55	14.66	4825	1135	8.38	882	2010	10740	2758	186.60	17380
Day of peak Monthly total	9	11	12	7	1	1	1	30	18	27	30	1
(multon cu m)	32.53	29.98	23.70	3070	1565	8.63	10.91	16.76	3667	3086	113.40	132.20
Punotf (mm)	21	19	15	20	10	6	7	11	24	20	73	85
Reintall (mm)	38	34	52	68	32	51	70	141	87	55	154	73

Statistics of monthly dats for previous record (Dec 1969 to Dec 1991)

Man	Avg	32290	32040	25.610	16670	11650	9.082	5.621	5.415	6196	10520	18.360	27.530
flowe	Low	9.227	11370	10080	7719	5048	3897	2.410	1715	2699	3.115	4.406	10.290
	tyear)	1976	1976	1973	1976	1976	1976	1976	1976	1990	1978	1978	1991
	Hrgh	51270	67.120	54.230	26520	31.020	30.110	9.956	13830	25450	28.180	39.810	48270
	(yoar)	1984	1990	1981	1987	1983	1971	1973	1985	1974	1976	1986	1976
Punotf	Avg.	56	50	44	28	20	15	10	9	10	18	31	48
	Low	16	18	17	13	9	7	4	3	5	5	7	18
	High	88	105	94	44	54	50	17	24	43	49	66	83
$\begin{aligned} & \text { Rainfall. } \\ & \$ 1970- \\ & 19911 \end{aligned}$	Avg.	88	62	75	49	56	67	55	63	73	76	78	88
	Low	18	7	17	2	7	5	25	17	15	6	35	20
	Hhgh	148	143	163	110	142	151	115	140	178	149	178	155

Summary statistics					
	For 1992		For record precedeng 1992		$\begin{gathered} 1992 \\ \text { As \% of } \\ \text { pro- } 1992 \end{gathered}$
Mean frow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	15240		16680		91
Lowest yearty mean			10.360	1973	
Hughest yearty mean			22160	1977	
Lowest monthly meen	3330	Jun	1.715	Aug 1976	
Heghest monity mean	49.340	Dec	67120	Fob 1990	
Lowest doly moen	1.483	1 Aug	1093	27 Aug 1976	
Highest daly meen	148.300	30 Nov	253.600	28 Dec 1979	
Paek	186600	30 Nov	300.500	28 Dec 1979	
10\% excmedance	30120		35810		84
50\% exceedance	8.828		10620		83
95\% exceerance	2.398		3019		79
Annuel total (mulion cu mi	48190		526.30		92
Annual numotf (mm)	311		339		92
	855		830		103
1941.70 ramfel average (mm)			840		

Factors affecting runoff

- Flow influenced by groundwater abstraction and/or racharge.
- Abstraction for public water supplies
- Augmentation from surface water and/or
groundwater
- Augmentation from offluent returns.

Station and catchment description
Velocity-ares station with cabloway (Replacement station for Bath St James). Upstream of the city of Bath. Situated immediately downstream of confluence with Bybrook. Section by ralway bridge; area widely inundated in flood conditions, but all flows contained through bridge. Flows below 5 cumecs are inaccurate. Flows augmented by groundwater scheme in catchment. Mixed geology - predominantly clays and limestione with eastern tributaries rising from Chalk. Land use - mainly rural. some urbanisation.

054001 Severn at Bewdley

Dalty mean gauged discharges (cubic metres per second)

Day	Jan	FEB	MAR	APA	MAY	JN	$\boldsymbol{\pi}$	aug	SEP	OCT	NoV	DEC
1	48.340	22410	38.560	65.290	27.800	24.930	12.930	11.030	123800	27.170	69540	234.200
2	49.630	21.860	37.910	78.890	37.780	67.180	14440	10.890	83570	29080	69.490	259000
3	43.000	22.540	35680	80220	31.940	113700	17.470	11.480	81.780	38890	90990	270600
4	42.710	23740	40740	59.780	26820	70.890	17530	11.480	82.740	51.990	88100	298.600
5	71.170	25.500	41640	49040	23.660	76770	18.950	11300	80040	43.760	88.840	282.800
6	135.400	29.600	35340	44.830	22480	73.260	17.550	12.540	63940	34.640	58090	236.100
7	129.100	24.380	34.810	45540	21.480	61.390	13.070	17.460	51.930	30460	49.610	199.700
8	93.530	21.440	33530	48.420	20140	48.970	11450	33.130	56270	27.600	44.440	185.400
8	158.700	21.510	34.830	50950	20020	91360	11.580	109600	47.210	25.660	43.510	153.300
10	179.200	22740	30.680	41.040	22790	98.380	15.580	128.100	38560	24.570	55120	126.600
11	138.700	29160	42.800	35210	28.040	78070	19690	70.180	35.740	24.100	113400	104.400
12	94080	27.700	47460	32.920	22.690	52480	17070	46.840	34010	23.170	148300	100.400
13	75.130	27.860	84.830	32.470	40830	38180	14520	63.950	62.830	22680	133.500	97.600
14	65.530	51.830	110800	49.400	40600	31.090	15490	61.220	118.300	22.730	107.400	82.570
15	57.770	56.930	88.260	55400	28.150	26590	17380	49.850	84.590	25.990	122300	75.130
16	51.300	62.590	71810	68120	23310	24.510	19680	39.180	59680	29830	168000	72.480
17	46.580	38.510	59840	49.370	21800	21.800	14880	33.900	47770	27480	147500	75.380
18	42.710	36.190	48.390	43220	20.260	20280	12.410	30100	49.330	24060	132.500	103.300
19	37.250	39.170	46.110	40430	18.960	18.350	12.280	25.330	54200	25.380	111.000	173.500
20	36.170	36.900	45960	37.420	18050	16520	13370	22.390	46320	30.150	92.890	148.700
21	33.450	33.770	40.530	32.990	16.810	15110	17.180	20010	43.770	26940	73.260	102.900
22	31.600	31.160	55390	31090	15.750	14.840	14.690	18.790	62210	25.350	120100	83.250
23	29.700	31.940	163000	30090	13870	14550	13850	18.580	73.780	22780	191500	76.120
24	28990	69420	161.900	28140	14.520	14.220	13780	20670	55540	21.910	200.900	69.180
25	26.980	96.750	112.400	28.200	15850	12.890	11650	22.950	44.820	39.390	199.500	63410
26	27.130	53040	81560	32850	16.380	11.680	12380	24.780	39.530	112.500	198100	54.160
27	27.610	42030	80.610	30840	13.670	10380	11040	28.100	36400	100.100	175400	48.630
28	26.080	36.680	67.950	41620	15.810	10070	12.320	75.790	34470	124.700	146200	46.590
28	24.830	45.380	55860	34580	21.380	10110	11730	94.440	31.980	132600	121.000	45.260
30	24.670		54.810	29.260	38.170	11.190	11.700	75.300	27.780	106.400	141.700	43.240
31	24.600		60500		34.700		12310	118800		76.370		41040
Avorago	61.290	37.330	62.650	44.190	23.690	39320	14.510	42390	58.430	44530	116100	127.500
Lowest	24.600	21440	30660	28.140	13.670	10.070	11040	10890	27780	21.910	43510	41.040
Haghent	179200	98.750	163000	80.220	40830	113.700	19690	128.100	123.800	132600	200900	298.600
Peak flow	185.20	111.10	180.50	8839	52.57	23150	23.26	158.20	143.50	144.70	214.10	307.90
Day of peak Moninty total	10	25	23	3	13	3	16	9	1	28	24	4
(mulion cu m)	184.10	93.55	167.80	11450	6346	101.90	3888	11350	15140	11930	30090	34160
Rumoti (mm)	38	22	39	26	15	24	9	28	35	28	70	79
Reintol (mm)	80	44	86	60	68	75	71	181	79	77	141	73

Statistics of monthly data for previous record (Ape 1921 to Dec 1991)

Maan Hows:	Avg.	115.100	102500	75.020	52.910	38.040	29040	22.680	27.710	35790	53.680	89230	100.300
	Low	22100	21200	23.200	15880	10230	9.804	9587	7461	7.668	10490	21730	17.850
	(year)	1983	1934	1943	1938	1938	1976	1976	1976	1949	1947	1942	1933
	High	250800	232.300	261.900	112.400	131.600	117400	91240	92.360	128.700	140.700	238.300	297.400
	(vear)	1939	1946	1947	1947	1989	1931	1968	1927	1846	1967	1940	1985
Aunotf:	Avg.	71	58	46	32	24	17	14	17	21	33	53	62
	Low	14	12	14	10	6	6	6	5	5	7	13	11
	Hogh	165	130	162	67	81	70	57	57	76	87	143	184
Renfoll:	Avg.	93	69	64	60	68	61	71	77	77	85	96	95
	Low	23	8	3	5	11	5	10	13	5	13	13	10
	High	228	170	175	128	186	136	193	160	209	174	244	294

Summary statistics						Factors affecting runoff	
	For 1992		For record		$\begin{gathered} 1992 \\ \text { AB \% of } \\ \text { Dre. } 1992 \\ 91 \end{gathered}$		
			- Reservoir(s) in catchment.				
			preced	1992			
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	55.960			61640			and/or recharge.
Lowest yearty mean			36460	1964		- Abstraction for public water supplies.	
Highasl yearty mean			94.740	1960		- Flow reduced by industrual and/or	
Lowest monthly mean	14.510	Jul	7461	Aug 1976		agricultural abstractions.	
Highoat monthly mean	127.500	Dec	297.400	Dec 1965		- Augmentation from surfece water and/or	
Lowest dely mean	10070	28	5.990	4 Sop 1978		groundwater.	
Hrgheat demy mean	298.600	4 Dec	637100	21 Mar 1947		- Augmentation from effluent returns.	
Poak	307.900	4 Dec					
10\% exceedance	120900		148000		82		
60\% exceedence	39270		37.130		106		
95\% oxceedanco	12.490		10960		114		
Annual total (milion cum)	177000		194500		91		
Ansual runotf (mm)	409		450		91		
Annual rainfall (mm)	995		$\begin{gathered} 916 \\ 936 \end{gathered}$		109		

Station and catchmant description
Volocity-area station with rock control. Peak flows from 1972. Stage monitoring site relocaled in 1950 and 1970, Lowest fows not relable in oarliar record. US gauge since 1988 Sig exports for PWS and CEGB; minimum frow maintained by Chyedog releases. Naturalised iow series occommodates major usages Diverse catchment; wet western 50% from impermeable Palaeozoic rocks and river gravels: drier northern 50% from Drift covered Carbonifarous to Liassic sandstones and marls. Moortand, forestry. mixad farming.

Station and catchmant dascription
Volocity-area station. Rocording site, control and gauging site are widely soparated; recording at a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to flow regime from abstractions and returns Large catchment of low relief. draining argilaceous rocks almost exclusively. Contains many large towns. but chief land use is agriculture.

054008 Teme at Tenbury

Mossuring authorily: NRA.ST first yorr: 1956

Grid reference: 32 (SO) 597686 Lavel stn. (m OD) 4800

Catchment ares (sq km): 11344 Maxalt (m OD) 546

Daily mean gauged dischargee (cubic matras per aecond)

day	Jan	FEB	MAR	APR	may	JuN	NL	AUG	SEP	OCT	NOV	DEC
1	7423	7.067	7792	18900	6.724	8009	2814	1932	20650	6314	11.960	109200
2	6.991	6.958	7437	21.960	6.184	12.100	2.799	1926	17.770	6360	11.950	136700
3	8.821	6.959	7.093	17.850	5.755	7883	4.077	2053	16.220	8.112	11.080	114.700
4	7094	6.695	6.967	15.570	5.491	7.426	3.810	1.985	15.100	9.598	10250	75950
6	12240	6.298	6894	13.990	5291	7.970	3099	1.940	12.910	7452	9475	58060
8	12.330	6.022	6.806	13.450	5.051	7.495	2.674	1.866	12.150	6818	8.945	55.270
7	10.250	5.834	6.662	15.250	4.903	8.736	2.489	2.232	12.490	6.403	8.681	55.420
8	15090	5.781	6428	14200	4873	6879	2509	20360	10310	6217	8 226	42730
9	140000	6.122	6.131	11.670	5.788	8.158	2910	29.040	9.247	6.114	9.735	35.540
10	80.530	6.235	6370	10800	6170	9681	3116	14710	8503	5874	13.960	29850
11	47.840	6.121	6214	10.260	5.204	6703	3.138	10820	8283	5.683	33.580	26.490
12	37.330	8.279	6919	9.721	4897	5651	3018	13060	7791	5528	26950	23300
13	33.700	7.876	7.988	10.790	4.725	5090	3721	12.580	11780	5285	21460	20570
14	29.660	7.611	7.855	11.250	4.435	4681	4.681	13.150	10120	5171	20030	18760
15	25290	7.767	7.271	11980	4.196	4404	3.383	9.976	8825	5.405	30200	17320
18	21.740	7.349	6946	10.190	3.986	4.210	2848	9689	0008	5408	27.350	19050
17	18610	7.314	6703	10.100	3.903	3.979	2.547	8.240	7.756	5.131	24.640	17150
18	16.460	8.755	6.906	9.647	3.848	3.787	2.355	7.123	9351	5066	21.360	71280
18	14860	8.684	6895	9093	3.778	3.639	2233	6414	8.533	5001	18590	51.180
20	13.500	8.331	6646	8.658	3.684	3486	2.885	5.898	7.661	4.980	16380	34.900
21	12.100	7.921	7.548	8.371	3.602	3388	5262	5.461	8449	5.295	17.910	27760
22	10890	7.815	14620	8.109	3.537	3358	3.595	5532	14.220	4.968	26630	23030
23	10.060	8681	16990	8108	3.478	3306	2.932	6034	9.775	4.860	27330	19750
24	9.501	8.041	16.330	8.210	3583	3164	2737	6948	8783	5041	32210	17540
25	9.621	7.648	14050	8.184	3.585	3039	2508	6560	8. 184	14550	62590	15.700
28	9.378	7.498	15.050	7.973	3.258	2.875	2.560	6.005	7793	12020	49.500	14320
27	8.510	7.380	12.700	7.403	3.042	2.756	2.455	10870	7.580	16.600	38.690	13.650
28	8098	8. 108	11340	7.008	3.178	2642	2.216	17630	7041	20070	31.660	12970
29	7.794	7.620	11470	6585	4446	2.716	2.114	13880	6619	17540	27330	12280
30	7.629		12.160	6.496	5.960	2925	2.066	37.190	6.603	14.600	81.790	11.650
31	7.319		13.280		5.258		1.968	31.240		12.880		10.920
Average	21.250	7267	9.178	11.060	4574	5271	2952	10400	10280	8076	24680	38480
Lowest	6.821	5.761	6131	6.498	3042	2642	1.968	1.866	6603	4860	8.226	10920
Heghesi	140.000	8.755	16990	21.960	6724	12100	5.262	37.190	20650	20070	81.790	136700
Pook flow	17960	9.59	2008	25.43	7.09	1671	6.01	45.28	24.40	23.51	108.00	14570
Day of peak	9	23	23	2	10	2	21	30	1	27	30	2
(milion cu m)	58.91	18.21	2458	2867	12.25	1366	7.91	27.85	2665	2183	6397	103.10
Funoty (mm)	50	18	22	25	11	12	7	25	24	19	56	91
Rainfall (mmy	74	36	61	51	51	61	89	170	63	60	118	76

Statistics of monthly data for previous record (Oct 1958 to Dec 1991)

Station and catchment dascription
Velocity-area station with a gravel control. Upstream shoaling may render low flow rating variable from year to year. Rerely goes out of bank Adjustments small and dispersed: natural catchment. Left bank characterised by high relief hills and broad valleys Steep and nartow on the right bank. Geology mainty Palaeozoic sediments with Pre-Cambrian crystalline rocks of the Longmynd. Relatively Orift free: some valley gravel and Boulder Clay th the lower reaches. Forestry. grazing.

Mossuring euthority. NRA.WEL First year: 1937

Grid roference. 22 (SN) 976676 Leved sin. (m OO): 192.80

Catchment area (sq km) 174.0 Max alt. (m OD): 752

Daity mean gauged discharget (cubic metris per eecond)

DAY	Jan	FE8	MAR	APP	May	JN	KR	aug	SEP	OCT	NOV	OEC
1	3293	1199	4.795	6255	6.943	10570	0.483	0.517	10720	2.010	9964	48720
2	3986	1.351	5424	5359	4.736	8731	0.445	0549	12050	3238	15.490	90.210
3	9019	2.090	13740	4413	3.734	6859	2081	0629	43520	4.723	10730	41.950
4	15840	4561	7030	3910	3282	6048	1479	0.554	21110	3.221	8588	22490
5	35900	3037	6344	3.532	2.985	5.330	0.843	3.739	10940	2496	7007	15.690
6	14540	2418	5.510	3688	2591	4.390	0.586	1.941	10030	2098	5725	28420
7	8.551	2.143	5.852	5.129	2.415	3.633	0.478	1.947	8454	1.857	6.165	17.650
8	14080	1.999	4717	3968	2399	4.257	0485	54.970	6563	1.719	4990	11.920
9	31.750	4.511	3.993	3361	5.798	4065	1.298	12200	5577	1685	12640	8.978
10	13.880	3.785	5780	3039	3443	3.259	0.909	7.233	4520	1.467	14430	8937
11	8885	3597	13430	2839	8156	2633	1.269	6.500	8198	1354	21030	20160
12	7087	6.106	22600	3632	17540	2.242	1290	17.940	18720	1252	14900	10.970
13	6098	6797	25.010	5.885	7.018	1943	5177	12.890	18.420	1.147	9.997	8.801
14	5062	6.645	13090	8918	5.116	1.731	4.250	8.474	9.622	3630	13.250	7.710
15	4352	6067	11430	7.122	4.135	1672	2351	7413	6.745	3.986	14.760	6.608
16	3.823	5.317	8282	5.161	3569	1.486	1.817	6558	5.200	2.728	18120	10.690
17	3441	5312	6172	8.080	3118	1.276	1.780	5.208	4.356	2.539	18.090	8.972
18	3070	5726	6646	5.419	2765	1131	1.699	3894	4.154	3.917	12540	33.730
19	2779	4.451	5119	4378	2494	0994	1.682	3.186	3880	2.845	9592	13470
20	2525	3.850	5926	3867	2.244	0871	1.630	2.700	4044	2.392	16550	9.056
21	2.250	3.619	74.470	3.264	2002	0802	1.544	2.442	4.778	2.282	15410	7020
22	1875	5.620	110.900	3093	1776	0.753	1188	2.564	4881	2.244	15250	5625
23	1842	11.970	30050	3054	1.618	0686	1143	3548	3587	4.573	13.170	4.387
24	1784	5.957	14630	4325	1.480	0.625	1045	3605	3471	10.210	23.140	3.717
25	2328	4926	12.550	4046	1.302	0554	0954	3.353	3.152	27.070	24.580	3.223
26	2.196	4405	12050	4986	1.131	0493	0899	3239	2889	12710	24960	2.989
27	1767	6161	8197	4023	0825	0456	0907	27.900	2717	23.320	15950	2.808
28	1629	5044	6.670	3.528	2595	0.413	0731	12430	2.437	22.680	10760	2.527
29	1.543	4.047	6790	3.293	2022	0.381	0845	12.850	2.273	14800	13800	2.283
30	1436		6.558	7831	3974	0550	0.572	41.450	2.326	10.380	32660	2.139
31	1.259		5.422		2417		0.494	18.940		8330		2050
Avarage	7028	4578	15.130	4.640	3730	2.561	1359	9.334	8 311	6.093	14470	14830
Lowest	1.259	1.199	3.993	2839	0825	0381	0445	0.517	2273	1.147	4990	2.050
Heghest	35900	11970	110.900	8.918	17.540	10570	5177	54.970	43.520	27.070	32.660	90.210
Paek flow	82.96	2881	42540	1652	5723	2534	11.73	137.20	7988	56.31	4191	173.60
Day of peak Monthly 10 isd	5	22	22	30	12	1	13	8	3	25	24	2
(multon cu m)	18.82	1147	40.54	12.03	999	684	364	2500	21.54	16.32	3752	39.73
Punoff (mm)	108	66	233	69	57	38	21	144	124	94	216	228
Rashfall (mm)	98	103	222	113	88	71	97	259	133	138	262	165

Statistics of monthly data for previous record (Oct 1937 to Dec 1991 -incomplete or misaing months total 0.2 years)

Station and catchment description
Initially, gauged noarby al Rheyoder (55005.1937-69), resited as velocity-area station with a rock bar as control, Informal Fiat Vinstalled 1972. Bankfull widit -30 m . Cableway span 54 m All but exceptional floods contained. Lowest g / s on Wye unaffected by large water supply res (flows from the Elan valley complex enter just d / s). Wet. upland catchment draiming impermeable. metamorphosed Silurian sediments. High relief. headwaters reach over 600 m , and feature steep sided and high gradient streams. Moorland and forestry.

Messuring outhority: NRA.WEL First year: 1957

Grid reference: 32 (SO) 345056 Level sin. (m ODI: 22.60

Catchment ares (sq km) 911.7
Mex alt. (m OD): 886

day	JAN	FEB	MAR	APA	may	JuN	UR	AUG -	SEP	ост	Nov	OfC
1	15.200	11.880	22.140	31.410	18.800	11.060	4.494	4.281	40250	11.930	22.600	321.300
2	14730	11.530	21.430	26.250	18.800	15.690	4.423	4246	45980	12000	82.690	470300
3	19.590	12.080	20.880	21.770	15170	9.174	5.447	4.382	41.640	13690	38090	194.000
4	27.610	12.300	18.960	19.500	14.110	8.288	6265	4602	38380	11.930	29130	118500
5	33.920	11.880	17.330	18080	13.230	8.008	4.767	4.571	31600	10700	24880	81.700
6	27.160	10780	18.120	21.180	12.390	7.791	4.204	7.459	44730	10040	22200	110200
7	22.680	10.200	18.930	24510	11.910	7.287	4.071	5.544	55290	9633	20490	87.030
8	55.390	9.984	17.480	21.510	11.340	8333	4090	64.570	32.810	9.344	19.010	63040
9	170.300	12200	15.750	17.550	14.010	8.389	4.303	29830	26.750	9.185	42.390	53.990
10	71.430	14.990	29.430	15.980	13980	7170	4.321	18.840	23340	8.808	39.970	46.280
11	49870	13.890	23.190	15060	11.620	6.659	4.955	18.070	23.230	8547	81.940	42.890
12	43.180	21.550	34.290	14.190	24.640	6.197	5.750	65.420	20.360	8321	51510	39.170
13	41.180	23.420	28820	14.870	19.680	5.859	6005	59.650	80360	7.959	38.510	34700
14	40230	25.430	25.380	30.650	14.480	5605	14.710	44.860	37.450	7765	42.750	32.430
15	36.180	24.540	22.660	30660	11.890	5.439	9.130	29040	30220	8427	41.530	30.310
16	33.020	19440	20.120	20.730	10800	5.378	6.699	31.940	24.540	8606	43.730	38.350
17	29.880	18.110	18.190	20820	10.190	5214	5.837	24.480	21.810	7.867	54.800	33.990
18	28.860	21800	18270	18.710	9.770	5.080	5.709	19440	19.890	7.908	50.140	203.500
19	24.950	20.750	19.260	16.740	9.296	4941	5.413	16.170	18.060	7.894	41.930	74.860
20	23.980	18.780	17470	15.870	8.782	4.813	7.735	14020	17.930	7.717	35.580	52.870
21	21.260	17350	18.400	14.740	8.411	4.712	13350	12490	21.830	7.448	48350	43720
22	18.970	17.170	61.090	14.110	6.030	4721	8443	12.190	32.230	7182	75910	37.000
23	17.380	21.730	42.410	13.980	7.702	4.675	6.922	18.210	20.210	7.189	84970	32280
24	18480	18.880	31.320	29.840	7.508	4.611	6272	22.600	18.530	7944	91.520	28950
25	18.940	18420	26.290	22.670	7.255	4.517	5.783	23230	16630	29340	179600	26400
26	17.330	16.390	28.700	29820	6790	4.368	5821	20270	15.220	22.050	127.700	24340
27	15.220	18640	23.690	28.480	6.498	4.247	5.538	103600	14.610	35.300	91.300	22.870
28	14.360	28330	21.510	25.740	7.260	4.166	5.141	75670	13.400	35.580	71.180	21.210
29	13660	20.410	23.230	20150	8.792	4.096	4.820	55.070	12.720	31.850	75.870	19840
30	13080		24750	19680	7.484	4.269	4.815	110000	13020	23.540	275.300	18.810
31	12.400		22.780		7952		4.453	55660		20360		17.830
Averege	31.750	17.300	24.290	21.090	11.500	6.358	6073	31.550	28.430	13.420	64850	78150
Lowest	12.400	9.984	15.750	13.980	6.498	4098	4071	4.246	12.720	7.182	19010	17.830
Heghest	170.300	28.330	81.090	31.410	24.640	15.690	14.710	110.000	80360	35.560	275.300	470.300
Paek how Day of peak Monility total	284.10 9	4789	$\begin{aligned} & 89.98 \\ & 22 \end{aligned}$	$\begin{aligned} & 60.49 \\ & 24 \end{aligned}$	${ }^{34} 1292$	2426	2074	$\begin{gathered} 165.20 \\ 30 \end{gathered}$	$\begin{aligned} & 180.00 \\ & 13 \end{aligned}$	$\begin{gathered} 6629 \\ 27 \end{gathered}$	$\begin{gathered} 36470 \\ 30 \end{gathered}$	${ }_{2}^{56270}$
(milion cu m)	85.05	43.34	8508	54.68	3081	1648	16.27	64.52	73.70	35.95	16810	209.30
Runotf (mm)	93	48	71	60	34	18	18	93	81	39	184	230
Reinfall (mm)	98	71	109	86	52	44	102	247	106	78	250	158

Statistics of monthly data for pravious record (Mer 1957 to Dec 1991)

Station and catchment description
Velocity-area station; permanent cableway. Low flows moasured at complementary station downstream (560 10 - Trostrey weir). There is a partial impact on flows resulting from three large oxisting public water supply reservoirs in upper catchment. Intake to canal upstream of gauge Some naturalised flows avaitable. Geology - mainly Otd Red Sandstone. Hill farming in uppar areas. with dairy or livestock farming below; forest 3%. Peaty soils in uplands. seasonally wet.

062001 Teifi at Glan Teifi

Measuring suthority: NRA.WEL First year: 1959

Grice reference 22 (SN) 244416 Level stn (m OO): 5.20

Catchmont area (sa km): 893.6
Max aft (m OD) 593
Daity mean gauged discharges (cubic metres per eacond)

DAY	JAN	FEB	MAR	APP	MAY	JN	Mr	Aug	SEP	OCT	Nov	DEC
1	13.490	9.780	37640	41.750	29.340	23080	4.859	3.545	68440	13.560	40480	144.800
2	13220	9.687	34.180	38.660	28280	26090	4.880	3.528	62810	14290	47820	302500
3	14.470	10.150	36550	31.770	25.560	20170	5493	3.528	54.980	23870	39970	226500
4	26.580	11000	35940	28830	22.780	18060	6.177	3.526	53.980	20620	34.630	157900
5	44590	10460	30.610	26440	22040	17.140	5.605	4138	46650	18.360	30290	100300
6	34.230	9647	30.100	28.610	20040	15880	4.996	3690	49990	14810	26.940	113.700
7	31.260	9069	41060	39500	18580	14.430	4.509	4015	49540	13.920	24.800	108400
8	43860	9.298	34340	35.930	17.690	15810	4270	14.770	40.700	13280	24400	88.050
9	74.400	14480	34.110	28.820	20.310	18.560	4.230	21820	33870	12.820	56.260	71640
10	55.610	18.390	40370	26.280	23.000	35270	4.336	15.790	28480	11980	57.380	58.260
11	45820	15.080	37280	24.510	20360	19.870	4839	13970	29220	11.280	68.450	51220
12	38.660	29060	40310	23.390	29.580	15810	5197	23.440	30.550	10770	56400	50000
13	32660	30820	43.000	22.140	26.380	13.270	8.928	38190	45.540	10.280	49.190	44.810
14	28.360	33.260	41.410	36.200	21960	11.840	18.990	36.080	38.810	10830	46160	41890
15	25110	32.120	36.800	43910	18.750	11.210	13.320	28.420	33.330	15.180	48.020	40.510
16	22.700	27.690	32440	34860	17.330	10.480	9.483	30.760	27210	20280	51230	64450
17	20.620	27590	29040	44.340	16340	9.656	7673	26.230	23.240	15.550	52010	70.150
18	19020	30.820	31040	39930	15.460	9.100	7010	20630	21380	19.520	59780	237400
19	17.730	26.990	28.740	34150	14730	8.627	6.807	18.890	20750	18.000	54700	146.600
20	16.530	23820	25900	29.920	14.090	B 229	6340	14.730	24.020	15.250	46.090	85230
21	15.280	22.030	29550	27060	13.540	7.988	5776	13510	24850	19.350	48.030	61.550
22	14080	21.080	54.480	25.330	12.990	7.783	5.321	13850	28.790	21770	81.560	49.590
23	13.210	30.660	58920	25.410	12.280	7.465	5194	15.530	22.370	21.340	93.310	42400
24	12.690	27470	51.470	48.150	11.720	7.153	5.063	17.580	19550	22930	95670	36.520
25	14350	22.350	44.660	40400	11250	6.881	4.819	15040	17.990	52380	92.000	31250
28	15.690	21480	53.120	40.730	10.590	6.277	4.685	17890	18850	49.060	88670	27710
27	13.380	37.660	49440	35050	8955	5.899	4471	58850	16060	49.190	82.160	25.390
28	11.950	43.550	44.150	30.680	11.770	5.595	4250	57.170	14890	49.730	71390	23090
29	11.230	35410	48.510	27.920	10.460	5054	3777	62200	14.730	56220	71810	20430
30	10560		45.800	27.610	21410	4902	3.672	131.900	14800	46030	113.100	18.900
31	10090		41.530		16720		3.592	89740		39390		17.800
Averege	24560	22440	39.430	32.870	18.200	12920	6083	26.480	32.480	23540	58.360	82550
Lowest	10090	9.089	25.900	22.140	8.955	4.902	3.592	3.526	14.730	10260	24.400	17.800
Hightest	74.400	43550	58920	48.150	29.580	35270	18980	131900	68.440	56.220	113.100	302500
Peak flow Day of poak Moninty total	$\begin{gathered} 8555 \\ 9 \end{gathered}$	$\begin{aligned} & 5128 \\ & 27 \end{aligned}$	$\begin{aligned} & 63.07 \\ & 23 \end{aligned}$	$\begin{aligned} & 54.02 \\ & 24 \end{aligned}$	$\begin{aligned} & 31.96 \\ & 30 \end{aligned}$	$\begin{aligned} & 5150 \\ & 10 \end{aligned}$	$\begin{aligned} & 2308 \\ & 14 \end{aligned}$	$\begin{gathered} 13880 \\ 30 \end{gathered}$	75.38	$\begin{aligned} & 7035 \\ & 25 \end{aligned}$	$\begin{gathered} 11960 \\ 30 \end{gathered}$	$\begin{gathered} 32800 \\ 2 \end{gathered}$
(milion cu mi	6579	5624	105.60	85.20	4875	3349	16.29	70.93	8419	6306	151.30	221.10
Runott (mm)	74	63	118	95	55	37	18	79	94	71	189	247
Rainfall (mm)	71	94	132	109	70	52	86	235	106	113	202	183

Statistics of monthly dạta for provious record Wul 1959 to Dec 1991 -Incomplete or misaing months total 0.2 years)

Moun	Avg	48.730	39.290	32.080	22440	17.050	10800	8319	11980	16160	35.270	48300	52010
flows	Low	7086	11140	8.280	7481	4228	2.975	1819	1.127	1073	3886	18060	17270
	(yas)	1963	1965	1962	1974	1984	1984	1984	1976	1959	1972	1983	1991
	High	108000	87130	96730	41810	36.780	41.700	24930	39.210	48680	102000	85.130	93960
	(year)	1974	1990	1981	1985	1979	1972	1968	1985	1974	1981	1986	1965
Punotf	Avg	146	107	96	65	51	31	25	36	47	106	134	156
	Low	21	30	25	22	13	9	5	3	3	12	47	52
	High	318	236	290	121	110	121	75	118	141	306	247	282
Pasunfat	Avg.	148	97	105	85	78	81	80	98	114	153	152	158
	Low	28	2	25	10	17	17	25	18	10	40	75	28
	High	326	213	312	163	168	148	166	180	242	293	279	315

Summary statistics						Factors affecting runoff		
	For 1992		For record preceding 1992		1992			
			As \% of pro- 1992	- Reservoir(s) in catchment. - Abstraction for public water supplies.				
Mean How ($\mathrm{m}^{\mathbf{3}} \mathbf{3}^{-1}$)	31680				28340		112	
Lowest yeaty mean			18860	1964				
Highest yeorly mean			38.230	1974				
Lowest monthly meen	6083	Sul	1073	Sop 1959				
Highest monthly mean	82.550	Dec	106000	den 1974				
Lowest doly mean	3.528	4 Aug	0.731	25 Aug 1976				
Hightess dady meen	302500	2 Dec	373600	18 Oct 1987				
Poak	328.000	2 Dec	448.800	18 Oct 1987				
10\% exceodance	56940		64.050		89			
50\% exceedence	24030		18.460		130			
95\% exceedance	4827		2.949		164			
Annuel toted (milwon cu m)	1002.00		89430		112			
Annual runoff (mm)	1121		1001		112			
Annual carnfall (mm)	1453		1347		108			
1941.70 ramial everage (mm)			1364					

Station and catchment description
Velocity-area station. Straight reach (width. 35m), natural control Flood flows spill over right bank. Public water supply trnpounding reservoirs in upland area where thers is mostly tull farming. Tregaron bog (10 sq km .) has partial effoct on flows; sensibly natural regirne Geology - mainly Ordovician and Silurian deposits Oairy farming predominetes in southern area. Forest: 5\%. Peaty soils on hills. seasonally wet. Apart from Tregaron bog, most of the lower areas hove soils with permeable substrate.

065005 Erch at Pencaenewydd

Messuring outhority: NRA.WEL first vear: 1973

Grad reference 23 (SH) 400404 Loval stn (m OD): 56.10

Carchment ores (sq km): 18.1 Max alt. (m OD): 564

Daily mean gauged discharges icubic matree per escond)

Day	JAN	FEB	Mar	APR	MAAY	JWN	\%	AUS	SEP	OCT	NOV	DEC
1	0.259	0234	1956	0.591	0579	2215	0.168	0.143	0.850	0.355	0820	3.540
2	0262	0.268	1.092	0.527	0445	0762	0217	0139	0.905	0699	0677	5.701
3	0.608	0313	1005	0490	0399	0.584	0332	0.149	1030	0871	0468	1.624
4	0.597	0320	0.690	0455	0417	0.635	0.187	0.217	0.649	0.427	0602	1.949
5	1.288	0.258	0.708	0477	0413	0553	0.165	0.233	0.510	0.339	0.526	1.235
6	0.554	0.238	1.043	0.636	0.417	0393	0.157	0150	1.804	0308	1.040	1.968
7	0459	0.225	1.795	0.933	0.406	0333	0.153	0137	0742	0.290	0.905	1.224
8	0.558	0.263	0.741	0544	0382	0321	0.151	0.151	0539	0.290	0.624	1.058
8	0.417	0514	2394	0.445	0497	0.370	0.157	0.242	0.488	0309	3312	0.985
10	0355	0.295	1.458	0413	0.557	0.328	0.151	0167	0488	0.274	1810	0901
11	0348	0.265	0946	0415	0895	0.281	0244	0.478	0.594	0265	1587	1518
12	0336	0.687	1.310	0395	0.663	0264	0200	0487	3.110	0.257	0.882	0.921
13	0328	0417	0927	0436	0439	0257	0.219	0247	1.105	0253	0782	0792
14	0317	0685	0804	1551	0.371	0.262	0.164	0.192	0.812	0398	1403	0921
16	0.309	0.382	0796	0.727	0339	0250	0163	0526	0.648	0.407	1.222	1.013
18	0302	0.298	0861	0.795	0321	0236	0184	0277	0.560	0.361	1.359	1.140
17	0.294	1.936	0609	0807	0.308	0223	0.173	0211	0521	0397	0848	1824
18	0.288	0981	0.869	0.514	0295	0216	0337	0.173	0.496	0354	1.424	5.320
19	0.281	0.537	0640	0455	0.288	0.209	0.363	0.161	0504	0296	0.744	1186
20	0.272	0482	1135	0.436	0278	0204	0197	0152	0.462	0268	0.670	0998
21	0259	0496	1187	0.421	0272	0202	0167	0149	0.458	0333	1.536	0.929
22	0.248	0.530	0890	0428	0266	0194	0.167	0.312	0.484	0405	3.358	0835
23	0245	0546	0.913	0.433	0254	0190	0149	0222	0400	0.336	1.652	0.751
24	0250	0428	0.639	0802	0248	0184	0141	0200	0378	0776	1992	0.685
25	0.514	0387	1383	0.708	0243	0.182	0.148	0187	0347	1.314	1.275	0.634
26	0.321	0.465	0864	0621	0230	0:78	0.143	1.841	0342	1.138	0946	0.597
27	0.278	1.328	0620	0441	0219	0171	0.131	1.448	0331	1.289	1.211	0.550
28	0259	0619	0.639	0386	0398	0.187	0.127	0479	0.311	0.726	0.911	0503
29	0.249	1.073	1121	0405	0310	0.168	0.127	1.368	0484	0530	1298	0.488
30	0.238		0.909	1410	1.088	0174	0.123	2255	0438	0.450	2.341	0.455
31	0.230		0.701		0817		0.123	0883		0439		0.449
Average	0.372	0533	1014	0603	0415	0.356	0.182	0.444	0893	0489	1.274	1.377
Lowast	0.230	0225	0609	0.386	0219	0167	0.123	0137	0311	0253	0468	0449
Highest	1.288	1.936	2394	1551	1088	2.215	0.363	2255	3.110	1.314	3358	5.701
Pask How	2.11	6.13	5.39	3.22	3.91	6.44	125	5.37	7.76	388	7.94	1460
Der of peak Monthly total	5	17	9	14	30	1	18	30	12	24	9	18
(mulion cu mi	1.00	1.33	2.71	156	111	092	049	119	1.80	131	3.30	369
Rumots (mm)	55	74	150	86	61	51	27	66	99	72	182	204
Rainfall (mm)	57	126	186	111	87	73	101	194	125	126	230	164

Statistics of monthly data for provious record Nan 1973 to Dec 1991)

Station and catchment description
A 6 m wide Crump profile weir with high wing walls containıng wide range of flows. Check gauged up to medium flows. A typical impervious Lowland caichment on the Lleyn peninsula covered with Boulder Clay

067015 Dee at Manley Hall

Maasuring authority. NRA.WEL First year: 1937

Gind reference $\mathbf{3 3}$ (S.) 348415
Level sin. (m OO): 25.40

Catchment area (sq km): 1019.3
Max alt (m OD): 884

Daily mean gauged discharges (cublc metrea per second)

DAY	JAN	FEB	MAA	APR	may	JUN	un	AUG	SEP	OCT	Nov	DEC
1	20810	10300	24.210	37830	26570	23.580	10.170	10.210	46.590	12.590	44.330	107.500
2	20.270	10420	23.070	33.040	31.140	41.470	10050	10050	45.690	12320	52.410	183.500
3	21.960	11.580	24.830	27250	28050	41.930	12.320	10360	41.950	15.290	50.960	165600
4	32.350	15.100	24.290	23.130	21.810	39.590	12.350	10480	34.850	13.970	45960	136.400
5	57.450	14620	21.570	21080	21170	39.390	10870	10.920	30.190	12.090	40.630	100300
6	64770	12620	20550	20250	19040	37.190	10.040	11.080	28.200	11.090	36.420	104600
7	81.520	11.500	22.240	22.370	13.030	31.270	9.962	10.890	31960	10.560	33.360	98.030
8	57940	10.790	21.960	21.530	12.080	27.210	10.990	19.930	29.710	11.340	31.640	81030
9	58.880°	11.380	19.630	19530	15.160	24.960	15.430	18.560	25.480	11.760	41.290	66.580
10	44.960	12050	27.920	18.300	15.950	21.580	12.680	15.670	19950	10.920	46940	53.980
11	38.850	11.170	36.570	18.930	18.810	18.370	11.340	12.970	18440	10.320	53200	49.530
12	34950	12030	64320	15.810	44.220	16.280	11.720	30.840	30470	9.719	54170	50.790
13	31.480	15.900	80.930	20.960	44.450	14.940	11.370	36.110	70010	10.560	50420	45.160
14	28.700	18.040	76.310	30.070	25.630	14.850	10.880	23.290	60.190	12.000	47.570	40440
15	26.510	22.490	76.190	40420	18.680	15.120	9.907	14.920	51600	17.530	55590	35.960
16	24.820	22.450	61.650	40.250	14.840	13.140	9851	13.680	38950	15.660	52820	35.880
17	23.280	21.120	50090	33130	12780	12.210	10080	13.320	31.080	14.480	52.530	33.770
18	20.540	21.770	44.830	31.720	11.510	11.440	10460	10.960	30050	17.450	47780	128200
19	17.770	19770	40.450	31.360	10.980	11.000	10.190	10.220	25350	18.390	42.210	91.970
20	16.010	17.990	39.460	25.610	10.960	10.560	10.300	9.980	24.080	14.410	38420	75670
21	14.030	16.440	42.630	19.060	10.680	11.080	10270	10090	23.790	13.460	48010	57.400
22	12.290	16510	67.550	17720	10480	10.720	10080	10.770	29.600	13.440	82.420	45240
23	11.040	24.760	85.360	15.890	10.580	10470	10010	11320	23320	14.020	90.540	38.970
24	11.510	21.440	71000	21.360	11.690	10.210	9.910	11.190	21100	17.680	92.700	34270
25	13.300	18930	57.150	23840	11970	10.150	9976	10070	19.320	54.990	95.670	30140
26	12.570	17320	58030	28620	10.700	10.090	10.360	13.050	17.880	53.880	88140	27.770
27	10.750	24710	48.100	28.500	10650	10080	10000	31.030	16.770	81.010	68.740	26.130
28	10800	31.680	42.660	22.480	15.270	10.040	9945	41810	15330	77.940	57.430	24.480
29	9606	26070	40.480	20.360	25.820	9.905	10.490	33.060	14070	73830	50.760	23.250
30	9577		38550	18720	21.290	10.190	10.580	58.040	13.610	57.070	82.920	21.740
31	10.500		39.180		16870		10330	55220		46.980		19810
Average	26700	17270	44.900	24.890	18400	18960	10730	19040	30.320	24.670	55830	65.620
Lowest	9.577	10.300	19.630	15.690	10480	9.905	9851	9980	13610	9718	31.640	19.810
Highest	64770	31860	85360	40420	44.450	41.930	15.430	58.040	70010	81.010	95.670	183.500
Pack flow	7828	4620	92.37	44.32	49.83	51.98	19.39	68.18	96.53	97.26	10840	203.10
Doy of peak Monthly total	5	27	23	16	12	3	9	30	13	27	22	2
(maluon cu m)	71.50	4328	12020	64.52	4929	49.14	28.75	5100	78.59	6607	144.70	17570
Runoff (mm)	70	42	118	63	48	48	28	50	77	65	142	172
Ramfed (mm)	70	87	170	95	101	75	79	185	121	134	202	139

Statistics of monthly data for provious record tOct 1937 to Oec 1991)

Station and catchment dascription

Asymmetrical compound Crump profile weir, checked by currant meter. Orowns at flows above 200 cumecs Low flows maintained by releases from major river regulating res. (Calyn and Brenig). Data prior to February 1970 is poorer quality -based on d/s Erbistock (67002 , area: 1040.0 sq. km.) flow record. D/s flood attenuation is notable Geology is 75\% shales. slates. mudstones and paleoozow grits: 25\% extrusive igneous and Carbontferous rocks 80% grazed open moortand. 12% forestry, remainder arable, urban negligible

068001 Weaver at Ashbrook

Daily mean gauged dischargas (cubic metres per second)

day	JAN	FEB	MAR	APR	MAY	NN	תK	AUG	SEP	OCT	NOV	DEC
1	2.384	2241	6.868	10.760	2479	2804	1730	1.111	1788	1.633	4.902	29.040
2	2290	2.283	5.836	7446	2167	3262	1.492	1.030	1.747	3324	4666	40530
3	5.797	2.533	5608	5648	2006	3.786	3.318	1.036	2.415	8956	4.547	39970
4	0725	4.827	4.222	4.468	1.923	7811	2428	1034	3459	10270	3.708	28850
5	16.040	4.415	3844	4055	1.843	6011	1739	1472	2.720	4816	3.192	16700
6	11.240	3.505	3454	4511	1878	3757	1475	1117	2272	3277	2.917	15.570
7	6579	2.983	3.054	5495	1878	2.714	1.385	1218	1.991	2.519	2860	18490
8	5.847	2720	3178	5.266	1946	2292	1470	8.347	1.720	2177	2647	12.650
9	11.030	2775	2925	4.225	2.839	3665	3.185	7192	1514	1.986	5583	9.903
10	8470	2673	3308	3709	2266	4552	1.855	4197	1386	1818	9088	8523
11	5164	2.729	3.237	3.339	1.973	2.715	1903	2873	1581	1720	17750	11320
12	4471	2841	3479	3180	1916	2070	1950	2.858	1.737	1.654	14280	12170
13	4286	2.846	3707	3760	1869	1740	1873	2110	2.998	1.596	9.278	9.480
14	3946	2.739	3.550	3424	1739	1594	1.749	1722	2372	1921	6640	0043
15	3604	2.730	4208	4684	1556	1.554	1568	1555	1.924	2.578	10.840	6880
16	3347	2.637	4871	3753	1450	1.535	1.508	1471	1601	2056	20680	10500
17	3.049	2526	4319	5193	1.416	1.511	1472	1577	1608	1854	31240	9007
18	2.828	3.101	4.403	4543	1.400	1511	1297	1396	2086	2.117	27.510	30.390
19	2.793	3015	3993	3951	1.376	1.494	1238	1.323	1958	1867	16060	24430
20	2.754	2.878	3.893	3.395	1.388	1488	1817	1366	1.914	1712	10.910	13120
21	2531	2.698	4.947	3088	1309	1460	2668	1369	2331	1648	13950	9302
22	2350	2.567	20440	2859	1315	1480	1933	1927	3022	1711	31360	7600
23	2.269	2.918	24.380	2744	1227	1426	1646	2185	2721	2.203	24.220	6.422
24	2.295	2653	16430	2741	1.175	1363	1494	1986	2134	3466	16950	5283
25	2.388	2484	10130	2698	1162	1340	1370	1654	1.905	14.760	25.520	4593
28	2347	2428	8760	2488	1.156	1.266	1.311	1698	1.723	8804	18.750	4381
27	2.300	2820	6.256	2.323	1.163	1199	1282	2046	1608	18520	12.990	4442
28	2269	3.819	4.838	2221	1.394	1.135	1217	2193	1.559	16040	11020	4786
29	2261	3385	6851	2.121	6467	1135	1201	1915	1570	10820	9203	4.669
30	2228		13.870	2.375	4.405	1.135	1152	2469	1810	7419	26280	4.366
31	2236		17220		3007		1102	2.117		5295		4091
Averege	4.520	2.923	6970	4015	1971	2360	1704	2179	2039	4.856	13.320	13340
Lowest	2.228	2241	2925	2121	1158	1.135	1102	1030	1386	1596	2647	4091
Higheat	16040	4827	24380	10.760	6.467	7811	3318	8347	3459	18520	31360	40530
Peak flow	16.96	5.20	25.50	13.92	997	1013	4.98	1310	4.32	24.75	40.13	4570
Day of peek	5	4	23	1	29	4	9	8	13	27	22	2
Monthly total (million cu m)	1211	7.32	1867	1041	528	612	456	584	529	1301	3452	3572
Rumotf (mm)	19	12	30	17	8	10	7	9	9	21	56	57
Rainfal (mm)	37	35	77	44	53	48	55	106	63	80	104	57

Statistica of monthly data for previous record tOct 1937 to Dec 1991 -incomplete or miseing monthe total 18 vears)

Station and catchment description
Initally a river soction (from 1937). Earty gaugings lost, rating accuracy unknown. Mobile control. Data betore 1972 , particularly low flows unreliable. Unstable low flow rating led to rolocation $400 \mathrm{~m} \mathrm{~d} / \mathrm{s}$ with an informal Flat V control and cableway in $8 / 78$. Prone to weed and algal growth. High flow rating (above 40 cumec) has yot to be defined. Flat calchment includes western half of Crewe. Post glacial deposits over (mostly) Kouper Mari

072004 Lune at Caton

Measuring a First year	ority NRA 9	NW			id referen Loved s	$\begin{aligned} & 34 \text { (SO } \\ & \mathrm{mOO} \end{aligned}$	$\begin{aligned} & 529653 \\ & 070 \end{aligned}$			Catchme	t area (sq Max att.	$\begin{aligned} & \text { (m). } 9830 \\ & \text { OD). } 736 \end{aligned}$
Daily mean	uged	charges	Ubic metr	per meco								
DAY	JAN	feb	MAR	APA	MAY	Juw	Ju	AUG	SEP	OT	NOV	
1	20860	5479	86580	27640	56.310	6130	3129	2.504	28320	18720	94910	301100
2	19.550	12960	60310	19640	29010	7.210	2540	2513	82190	59040	150800	353400
3	105200	48530	109500	16820	21510	6595	3172	3167	41240	60130	62.750	126.500
4	59740	79020	53430	14860	18150	5920	5497	4.674	23010	31710	43900	84980
5	237300	27460	33490	13270	17150	6355	4144	7641	16190	21.940	36.800	71.290
6	105000	18280	32180	15630	14.570	5.631	3017	5593	51940	17320	82130	89.020
7	49430	14520	43.750	15520	18440	4798	2672	3.594	55.370	14290	89210	75670
8	80310	12390	30140	17810	23760	4248	2508	7769	37.930	12510	41340	43980
9	42330	13070	43820	12560	27550	4035	2580	16000	68640	11260	151200	34680
10	28790	15970	100900	10510	19500	4109	2.584	8831	25760	10150	105500	30920
11	23770	15250	142600	9624	55830	3431	2.778	7335	36420	9.357	104900	78570
12	21100	19860	210.200	11080	156000	3226	5190	75570	77750	8.436	93.600	45320
13	18660	27430	103700	49170	40100	3094	5025	35630	73450	7889	53100	38460
14	16530	43670	56930	121500	24340	3013	3351	14910	70640	10180	37260	45810
15	14910	43980	51450	57590	18140	2981	2753	11170	44820	11720	36560	45960
16	13.900	24660	31980	30590	15080	2883	2540	15060	28.840	9.014	43430	58560
17	12730	19130	28000	35800	13010	2805	2634	13600	21620	8143	30900	41800
18	11950	25710	50800	66820	11450	2724	10930	11470	18240	8011	33110	285600
19	11220	25.240	45250	30.560	10030	2634	57590	8219	16.080	7235	31420	69.880
20	10450	35.850	108800	21760	9211	2581	13340	6734	27020	6613	53.000	40180
21	9546	38420	129900	18990	8619	2.554	8355	5689	19700	6788	76350	29120
22	8372	205300	73310	18480	7938	2548	6559	5.518	64220	8235	139200	24200
23	7690	88890	43410	17650	7300	2260	4809	7185	27190	11120	117100	20790
24	7803	46660	29840	22700	6916	2230	4124	6800	21490	20.910	66090	18090
25	7721	38410	27390	19480	8369	2368	3690	8429	23940	53660	74500	15.870
26	7375	29.450	25390	21970	7593	2395	5772	27640	17420	50120	61.590	14820
27	6579	44750	19.460	28860	5.784	2351	6010	53.450	14980	146400	82.850	15650
28	6346	38.160	17050	27300	5572	2.314	4477	65460	13160	100100	59.550	13.330
29	6068	26420	24690	17840	6018	2286	3500	31210	12010	56450	37670	11110
30	5773		35220	155500	5631	2424	2936	121300	23.910	32320	137800	10.320
31	5343		50030		6027		2.717	53470		24.620		10470
Average	31690	37410	61470	31580	21770	3604	6159	20930	36120	27560	74280	69210
Lownst	5343	5479	17050	9624	5572	2230	2508	2504	12010	6613	30900	10320
Heghest	237300	205300	210200	155.500	156000	7210	57590	121.300	82190	146400	151200	353400
Peak flow	38200	38620	34080	34780	41930	789	10790	18120	19010	21870	29740	53920
Day of neak Monthly total	5	22	12	30	12	2	19	30	12	27	9	1
(million cu m)	8487	9374	16460	8187	5832	934	16.50	5605	9361	7382	19250	18540
Rusolf (mm)	86	95	167	83	59	10	17	57	95	75	196	189
Rasinall (mm)	77	138	177	122	72	22	99	170	143	119	219	170

Statistics of monthly data for previous record (Jan 1959 to Dec 1991 -incomplete or missing months total 4.0 years)

Station and catchment description

Bazin type compound broad-crested weir operated after 10/6/77 as full-range station. Previously used for low/medium flows: hygh flows from Halton 3 km downstrearn. High flows inundate wide floodplair. Transfors to river Wyre under Lancs. Conjunctive Use Scheme Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines. Mixed geology Carboniferous Limestone. Silurian shales. Millstone Grit and Coal Measures. substantial Drift cover. Agriculture in valleys; grassland rising to peat moss in highest areas

073010 Leven at Newby Bridge

Mossuring outhority. NRA-NW
First year: 1939

Grid roference. 34 (SD) 367863
leval stn. (m OD): 37.30

Catchment aroa (sq km) 247.0 Max alt. (m 00): 073

Daity mean gauged discharges (cubtc metrat per second)

DAY	JAN	FEE	MAR	APR	may	תN	0	AUG	SEP	OCT	NOV	DEC
1	13540	1.648	23.840	11.790	19490	2.284	0.724	3427	26650	8081	26.840	42.840
2	10.950	2180	24800	11.170	18.470	2315	0678	3.288	28.880	7.568	37.090	68.200
3	12230	5.988	28.310	10300	16040	2.679	0.745	5145	30.010	10.370	38100	65670
4	13940	12.330	28020	9.374	14.420	2.840	1.036	8.872	26.340	10850	33210	55.330
5	16.740	13620	25.090	8.679	12.720	3.003	0.810	9479	22.100	9.944	29750	46.020
6	19.580	12.110	22890	9.281	11.300	2.242	0758	9.479	23400	8842	27.800	40.640
7	19520	10.590	23.820	9531	10.540	1.957	0759	8 258	30650	7.774	27.880	39.470
8	22.450	6.957	23.010	9.412	10340	1.777	0.712	7.353	28860	7.067	25.220	33.450
9	21.680	8.598	23980	8.728	10030	2.491	0696	6.449	28800	6.212	30.490	28.410
10	18.970	8.571	31.920	7981	9237	2.822	0.703	5.775	25.990	5.013	36260	24.030
11	16.440	7.823	34180	7274	10710	2431	0.777	5.692	23310	4390	35.550	21.460
12	14.070	7.416	49.030	6922	24.580	2.028	0820	15.690	22.310	3622	35280	19.060
13	11.940	8.976	50.120	7.678	26030	1.584	0894	22.380	23930	3.038	30.980	17220
14	10260	10990	43010	13.430	22.820	1.346	0891	20.830	24.320	3348	27.380	15.960
15	8.698	14.230	34.640	15.300	19.510	1.552	0877	19.470	23.550	3680	23.970	17.620
16	7405	14.380	28.440	14.050	16.730	1.366	0963	20.620	21.360	3.439	21.430	19.100
17	6424	13080	23.330	13.620	14000	1.127	1.168	18810	18.560	2.952	19.270	18.540
18	5.370	12.060	22.680	14.890	11.750	1.158	4020	10.080	16070	2.705	17.700	33.480
19	4.889	10820	22.470	14.300	9.777	0.887	11.960	14020	13.910	2.482	17240	36.480
20	4.234	9519	23860	12770	8439	0981	12610	11.900	13.100	2392	17040	30.730
21	3.759	9597	26580	11.600	7.126	1042	10790	9.930	12200	2171	18400	25.980
22	3.306	23.090	25.910	10.520	6366	0.868	9.059	9.058	11230	2.043	21.800	21.910
23	2814	38160	24050	9.283	5.759	0859	7416	10000	9.951	2.189	27.780	18.490
24	2.406	35.850	20660	10110	4591	0.748	6519	9640	9200	3.530	32.210	15.550
25	2.243	31.390	18.010	11.040	3822	0726	5816	8.868	8.704	5.943	32.290	13.170
26	2012	28.620	16.680	12320	3896	0.717	5.958	8.691	7.840	7.580	30.260	11.250
27	1.718	24390	13.400	13000	3393	0713	6.159	9.928	7005	16620	28000	9.642
28	1.444	22720	11120	12.990	2.726	0.707	5808	14.720	6.198	22.570	28420	8.298
29	1.453	20000	10380	11.960	2619	0.694	5200	16010	5501	23.960	26.370	7062
30	1.590		10700	15.560	2.417	0699	4367	22.480	5.848	21920	34.170	6098
31	1602		11.280		2184		3.771	28.240		19.530		5.308
Average	9.151	14870	25040	11.160	11030	1.555	3660	12.200	18.530	7.729	27.940	28.270
Lowest	1.444	1.848	10380	6922	2.184	0694	0.678	3288	5.501	2.043	17.040	5.308
Highest	22.450	38.160	50120	15560	26030	3003	12.610	28240	30650	23.960	38100	68.200
Peak how	23.91	39.29	53.10	19.14	26.98	445	1412	28.90	3184	24.58	39.95	7101
Day of peak	8	23	13	30	13	5	22	31	7	29	2	2
Monthly totel (milion cu m)	2451	36.78	67.06	28.93	2953	4.03	9.80	32.67	4802	2070	7242	70.38
Runotf (mm)	99	149	272	117	120	16	40	132	194	84	293	285
Remial (mm)	88	244	278	160	104	36	157	284	208	187	338	222

Statistics of monthly data for previous record (Jan 1939 to Dec 1991)

Station and catchment description
Level record since 1939 from lour different sites at Newby Eridge. All flow records from 1939 to 1974 combined into a single sequence. Since 5/5/71 compound Crump profite weir - incrassed sensitivity at low flows. Full-range. Just d/s of Lake Wundermere - haghly regulated compensation flow. Major abstractions for PWS, sewage effluent from Ambleside Predominantly impervious. Borrowdale Volcanics in north and Silurian glate in south. Boulder Clay atong river valleys. Mainly grassland, very wooded in lower reaches

076007 Eden at Sheepmount

Grid reference: 35 (NY) 390571 Level stn. (m OO) 700

Catchment ares (sq km): 2286.5 Max alt (m OO): 950

Daily mean gauged discharges (cubic metrea per eecond)

DAY	JAN	FEB	MAR	APP	may	JN	M	AUG	SEP	OCT	NOV	OEC
1	41620	15670	48.800	195100	79.610	14.470	9.340	11.550	52.390	33.200	137.400	301.400
2	38.720	21.760	46600	91330	49710	14.640	9.643	11.490	54.420	42.590	198300	494500
3	58.460	48.130	51.390	67520	39.870	14.390	11260	13850	66360	68.130	105.400	217.000
4	87.390	111000	48000	57.170	34780	13980	12010	15.170	43.920	43740	74.200	155600
5	84430	59630	39.010	60330	33.700	14.170	12.140	18.480	32.650	31450	62.930	124.000
6	94.160	38670	38180	55.150	31030	13780	10.550	16.430	36340	25660	52810	109.800
7	83450	30840	40.510	47.800	30.760	13.280	9.729	14.710	88.430	22.260	83.880	127.500
8	91.290	26.890	40220	46.270	31.790	13060	9387	14050	57.360	20.380	54750	92050
9	81.440	28.380	42.230	40460	31.150	13300	9.147	16.850	68.110	18890	110700	75.910
10	56.040	29.530	113600	37660	31330	13.100	9.139	17.170	47.220	17.640	131600	67.630
11	47.260	27.910	94.630	35.630	39620	12.350	9.940	15.310	41.500	16.820	127700	81.790
12	43.810	28.390	169.500	36060	149.600	11.960	10.730	40840	65840	16.080	97.460	75.740
13	39.050	43440	125.400	39.610	66340	11.730	10.970	70.800	79.430	15.470	71540	63400
14	35080	40710	81.690	77580	47260	11.580	9.998	31.760	80940	18.970	57.850	57.200
15	32.030	57.410	70440	90070	37.240	11.280	9464	25.920	61.470	20.720	56.480	57530
18	30.070	42.460	66.320	57760	31.400	10930	9543	26.350	48.380	17830	62.140	58710
17	28040	33910	54.880	68200	27.690	10.740	9659	23850	37.670	19.080	56.410	57160
18	28.480	39.580	60.220	64.940	24610	10480	9998	22.040	33.180	16940	47.120	273.500
19	25.450	37.350	60220	45.250	22.250	10.240	19.970	18.990	29.950	16.030	51.640	124.400
20	23.890	40360	64.620	35.790	22.160	10.110	19.500	17.230	34.040	15.100	50.210	78.650
21	22.130	48640	109.500	33.730	34110	10040	16.010	16.090	32840	14750	73.610	62080
22	20.390	140.500	87.010	31.810	22820	9.885	15.790	17.090	94.580	14.470	124100	53850
23	19.190	118000	64.930	30920	19.590	9.739	14060	22090	53690	15.610	142.800	47.810
24	18.510	82.000	55230	34.350	18750	9.552	14420	19.530	37880	23.470	116.900	43420
25	19.060	68260	54.390	39.390	18130	9.464	13.680	17.310	35050	29.760	146.500	38.470
26	18.560	50.830	54630	52.600	18.190	9330	13080	17.400	29.750	34780	119000	38.580
27	17740	73.240	42.810	58990	16.140	9.157	14950	24.590	26250	112900	149000	40.430
28	17.380	68.000	37450	56.800	15.460	9.088	14360	45100	23450	111.300	134.500	35400
29	16.650	48.800	36450	47.580	16.110	9337	13.010	34.150	21.730	92000	86390	30040
30	16.360		48.800	93880	15290	9.200	12.180	73.330	40.610	58.240	141.400	27.560
31	15840		159.600		14.960		11.620	83.460		46.600		27.060
Average	39.680	51670	67.910	57580	34560	11.480	12.110	26.150	48440	33.830	97.480	101.300
Lowest	15840	15670	36.450	30920	14960	9.088	9.139	11490	21730	14.470	47.120	27.060
Highast	94.160	140500	169.500	195.100	149.600	14840	19970	83.460	94.560	112.900	188.300	494.500
Pack fow Day of peak Monthly tote	13220	$\begin{gathered} 213.30 \\ 22 \end{gathered}$	$\begin{gathered} 21880 \\ 31 \end{gathered}$	$\begin{gathered} 254.10 \\ 1 \end{gathered}$	$\begin{aligned} & 210.10 \\ & 12 \end{aligned}$	$\begin{gathered} 14.8 t \\ 2 \end{gathered}$	$\begin{aligned} & 3088 \\ & 19 \end{aligned}$	$\begin{gathered} 11060 \\ 31 \end{gathered}$	$\begin{gathered} 135.90 \\ 22 \end{gathered}$	$\begin{gathered} 181.40 \\ 27 \end{gathered}$	$\begin{gathered} 287.90 \\ 2 \end{gathered}$	$\begin{gathered} 57690 \\ 2 \end{gathered}$
(mulluon cu m)	106.30	12950	181.90	149.30	9257	29.75	3242	7005	125.60	90.62	252.70	271.20
Punotf (mm)	48	57	80	65	40	13	14	31	55	40	111	119
Pranfal (mm)	44	101	133	99	63	21	81	146	115	95	177	117

Statistics of monthly date for previoue record (Oct 1987 to Dec 1991 -Ancomplete or masing mortha total 3.0 years)

Maan	Avg	88630	70430	60.090	40810	27100	22.300	22900	25540	36840	62.470	74.180	77.090
nows	Low	39.880	28440	24.360	13.070	11050	10420	8.377	7023	9216	7.961	30430	32.490
	(year)	1985	1986	1975	1974	1974	1973	1984	1976	1972	1972	1973	1971
	Hgh	151.200	210700	119700	63.970	69.120	50.380	59240	92.380	105400	225.000	128.400	143.100
	(year)	1975	1990	1988	1970	1983	1972	1988	1985	1985	1987	1984	1988
Runotf:	Avg.	104	75	70	46	32	25	27	30	42	73	84	90
	Low	47	28	29	15	13	12	10	8	10	9	34	38
	High	177	223	140	73	81	57	69	108	120	264	143	168
Rainfall:	Avg.	133	88	101	68	68	74	85	91	108	132	124	128
	Low	50	13	43	8	19	27	22	19	25	31	54	43
	Hagh	232	279	179	111	133	126	221	211	231	307	208	371

Station and catchment description
Velocity-area station. Permanent cableway. Full-range. Most floods contained in immedrate channet. Pre-1970 (when floodbanks constructed) bypassed via Caidew floodplain. Highly influenced by Uliswater, Howeswater and Wet Sieddale especially at low fiows. Rural except for Carlisle. Ponrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to east, impervious Lower Palaeozoics of Lake District massif to west: moorland. Extensive Boutder Clay covered Permo-Triessic sendstone in Vale of Eden. Arable and grazing.

079006 Nith at Drumlanrig

Station and catchment dascription
Velocity-area station on tong straight raach at particularty well confined site. Cableway. Gravel and rock bed. Natural channel control. Sensibly natural flow regime. Afton Reservort has small influence

084005 Clyde at Blairston

Measurng euthority CRPB
Fust yoar: 1958

Grid reference: 26 (NS) 704579 Level stn. (m OD): 17.60

Catchmant ares (sq km): 1704.2 Max alt (m OD): 732

Daity mean gauged discharges (cuble metres per eecond)

DAY	JAN	FE8	MAR	APR	MAY	JN	\cdots	Aus	SEP	\propto ¢	NOV	DEC
1	163.700	14650	66.420	255000	56.790	13550	8.813	8396	61.330	46910	208.900	121300
2	95.090	23980	57.360	102.000	38.470	11530	8.482	9670	89220	68.550	296800	208700
3	225.400	48.000	69.210	58800	30.650	10180	10.740	16260	62.100	71710	159.300	148400
4	129600	82520	54.470	47420	29.730	9.393	9.590	26370	36.960	45340	124500	112.200
5	79.130	48340	40.270	45430	35.940	9.185	7.899	38.410	28.580	35810	89390	99.400
6	64520	30830	46450	41.560	40870	8.936	7083	21.030	100100	30.670	74680	97.560
7	124900	25050	101600	36.280	37.740	8643	6.530	12780	86.480	27090	85350	137300
8	425.200	25.740	59.060	30970	88180	8415	6582	11500	77.130	24320	54400	82.380
9	281.900	33.310	142.500	27.880	61980	10.240	6313	30.880	61.700	22.610	144000	65800
10	105.900	54.070	192.500	25.690	44320	10090	6009	22.160	40.500	20.740	142600	60.480
11	76.380	46300	150.500	23.370	62.910	8.988	7.213	17450	69.280	19400	131300	71.820
12	66820	46.990	256900	22.840	95.830	8.239	6984	58.650	68360	18240	106200	57190
13	51980	62.930	148.100	22.720	50.070	8.099	6.878	82880	97.030	17180	68.880	51400
14	44.500	61.710	86920	41.750	36230	7.864	5698	30760	103.900	18.700	54360	46380
15	38.580	70.220	68.330	40.680	29.760	7.772	6105	29.770	112.500	20.420	57.160	40.970
16	34.300	51030	65.910	26.250	24.980	7490	6.431	41.410	60890	17.310	65210	46.650
17	29730	37.580	56070	31.910	22.440	7.196	6.397	44.360	44.660	16.140	53740	52490
18	28790	36.110	73.170	57.000	20.470	6.888	8.889	33030	36770	15480	57.070	157.000
19	25240	31.100	60100	32.310	18.870	8.845	7194	22.570	34950	14530	72.130	79.820
20	28550	36.680	60940	25220	18.400	6448	6.710	20810	97.890	13870	74.850	52.360
21	26.170	50310	63.800	23.760	21360	6.657	6811	17.060	68.580	14.000	B1590	42.910
22	21530	232.600	63.700	21250	18.260	6.723	6.246	25.760	73.780	15.370	160500	39730
23	18.850	165700	45.810	21810	16230	6.258	8012	67440	54050	24870	143.200	36390
24	18.870	90240	35620	61.520	15.500	8.248	15070	35.910	66270	38.820	105.400	38.940
25	24600	66.310	31840	50.490	17.970	6.183	10950	47.970	56350	32120	113.300	40.390
26	20550	61.930	29.390	98870	16950	6085	9777	37050	52.400	27.710	95900	37.140
27	18.350	79320	26960	90.440	13300	6.140	14.920	65.570	58.550	65.750	192.900	31870
28	16970	61.190	26260	68.000	12.760	6.227	10.990	67.760	37.760	144.600	144.400	27420
29	15960	47.910	25.650	46520	12.150	6232	8.854	41830	32.570	86.750	88450	23230
30	14.810		30.030	63.820	11.360	8.887	7.529	68090	67130	47910	84390	20360
31	14350		93190		11.590		6994	120.300		79630		21980
Avorage	75130	59400	75000	51.390	32650	8054	8086	37.800	64.590	36790	111000	69.350
Lowest	14350	14.650	25650	21250	11.360	8065	5.698	8.396	28.580	13870	53740	20360
Highest	425.200	232600	258.900	255000	95.830	13.550	15070	120.300	112.500	144600	296.800	208.700
Peak fow	49650	332.50	289.50	26880	119.70	1513	17.91	16710	16910	19530	363.20	23240
Day of peak Monthly toial	9	23	13	2	13	1	25	31	7	31	3	3
(miluon cu m)	20120	148.80	20090	133.20	8744	20.88	2168	101.20	18740	98.54	28780	18580
Runots (mm)	118	87	118	78	51	12	13	59	98	58	169	109
Rainfa (mm)	100	123	168	94	59	28	81	192	149	89	193	94

Statistics of monthly data for previous record (Oct 1958 to Dec 1991)

Station and catchment dascription
Recorder moved to present position in Nov 1974 from opposite bank. Section is natural with steep grass and tree covered banks. Velocity profile shightly uneven due to upstream bend. Control - piers of redundent ral bridge, $300 \mathrm{~m} \mathbf{~} / \mathrm{s}$. Section rated by current meter to 3.4 m , just below max. recorded stege. Some naturalised flows available. Very mixed geology with the ofdar formations (Ordovician/Silurian) to the south. Hill pasture and moortand predominates but some mixed farming and urben development is found in the lower valley.

085003 Falloch at Glen Falloch

Mossuring authorty: CRPB first year: 1970

Daily mean gauged dischargea (cubic meves per eecond)

OAY	JAN	FEB	MAR	APR	may	JUN			SEP	OCT	Nov	DEC
1	72.370	2742	7396	2.403	3.699	0389	0.249	4.843	16.940	3.181	16.950	17.790
2	115800	14.420	20.260	1.550	1645	0516	0.190	26130	6674	12.500	11.960	18510
3	20.520	7.404	7.972	1.322	2.058	0.353	1.333	23800	2.588	4.851	6383	6841
4	6.469	16.200	18490	2.279	3.869	0.271	0596	13680	1430	2203	10450	4771
5	6.781	4.513	9752	4.917	15.900	0.220	0.290	7.300	1.910	1.533	4.125	4.140
6	45.770	3.722	32.690	4.894	23.590	0.186	0.395	2.625	38.990	1.244	11.810	17010
7	23470	15850	13.780	2408	12.830	0160	0448	1329	28680	1.021	3.279	6442
8	11.180	12720	3.908	1.711	7.604	0.148	0.403	1.857	22.220	0.933	10600	3.846
9	2.696	12.100	21.900	1616	4027	0157	0380	8504	11.840	0.753	16640	3.188
10	4.233	8.962	8450	2.383	2884	0.143	0.346	2.132	7.520	0.673	15140	21.790
11	4.334	4.421	40160	2802	21.800	0117	1.111	9387	17.530	0.627	10.310	7.117
12	2.036	26.490	13.300	4.954	6.201	0102	1.190	18450	11.230	0618	4799	5.227
13	1.602	7.180	3862	2.435	3.513	0.117	0.968	3.411	12.580	0.889	2.187	27.570
14	1273	8317	2647	2421	1.621	1.885	0.710	1.419	13.700	2.681	2.185	11.600
15	1.101	8024	2.758	1.440	1267	0614	0.624	4845	16.930	1.053	2600	23210
16	1.127	3.011	23.990	1.657	0.889	0.306	2.297	6463	2.950	0.768	3604	6422
17	1.212	2053	24170	16860	0640	0208	9115	6.871	2.052	0.702	2.019	34050
18	2.473	1.523	18.910	3.973	0.492	0.163	4596	2.100	1535	0842	19.670	6018
19	1.492	1509	40630	1443	0414	0.132	3541	3.261	3.385	0.590	5687	2.565
20	1.122	7713	10430	3101	1.023	0.116	2785	2.846	10410	0.548	7.288	1722
21	0838	33200	11.770	3932	3616	0.108	2414	1.887	2.343	0879	2.911	1.541
22	0601	75.010	5.787	2.098	0816	0.097	1.587	29.340	1604	1.329	34010	1.712
23	0.524	20.810	3.943	22.730	0.522	0094	20560	12.370	1.220	3074	31.170	1897
24	3.900	8613	2.198	19730	0402	0139	3423	9944	2.670	1.743	15690	5612
25	5.324	6.744	3.662	14.610	0400	0.369	9.934	9.697	3.836	1106	12070	4785
28	1.098	26.120	2.378	16780	0.326	0.359	6.101	9.333	2.329	11.580	15550	2287
27	0771	17910	1498	15800	0235	0350	5.090	13130	2858	7.401	28.140	1.534
28	0.752	3027	2850	5.414	0218	0262	1808	5235	1.721	3.317	5.612	1.147
29	0608	17.360	14.440	5.192	0.209	0.208	1208	9.148	12.900	1501	10.160	0793
30	0.551		9224	12.080	0.183	0.246	0.982	33.740	13.820	1.407	13.160	0864
31	0847		7168		0414		1406	50120		25.250		1.313
Average	11.060	12950	12.590	6.184	3.978	0284	2776	10810	9213	3.115	11.200	8.171
Lowost	0524	1.509	1498	1.322	0.183	0094	0190	1.329	1.220	0546	2.019	0.793
thghest	115800	75.010	40830	22.730	23.590	1.885	20.560	50120	38.990	25.250	34.010	34050
Peak flow	173.80	168.80	138.50	88.29	115.60	3.49	7452	14980	150.20	7866	107.80	111.90
Day of peak Monthry iolad	2	23	12	24	12	15	24	3	7	31	24	18
(malion cu m)	2982	3246	33.73	15.98	10.85	0.74	7.43	28.96	23.88	8.34	2904	21.89
Aunoff (mm)	369	404	420	199	133	9	93	361	297	104	382	273
Rainfoll (mm)	354	439	475	218	162	45	188	444	339	133	410	277

Statistics of monthly data for previous record tOct 1970 to Dec 1991 -inoomplete or miseing months total 0.3 yearol

Station and catchment description
Volocity-ares station with artifial tow flow control (tong broad-crested weir with rectangular low flow notch) - installed 1975. Damage to part of the high flow crest rosults in a smald discharge bypassing the central notch. All but very high flows contained. No sugnificant abstractions or discharges. Very responsive flow regime. A very wat mountainous catchment developed on ancient metamorphic formations-some Orit cover.

093001 Carron at New Kelso

Measurng authority HRPB First year. 1979

Gind reference 18 (NG) 942429 Level stn. (m OD): 5.60

Catchrmant ares (sq km): 137.8
Max at (m OD): 1053

Daily mean gauged discharges (cubic metres per eecond)

day	JaN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	119100	2744	19.760	4.670	36500	0.958	1.648	5.780	77.950	25.950	23.580	26.530
2	203900	20.670	25.060	3415	22510	0968	1380	9863	17.780	11320	13590	40920
3	42900	11470	17.390	2.867	18.120	0.941	1.224	30.570	18.300	8.140	12890	19300
4	14.500	22.720	17.710	5.152	35980	0.912	1085	20130	22310	5472	17270	12420
5	11960	12630	18080	9.156	24.930	0873	0.939	19.180	14.260	3.951	29.340	9.934
6	92.450	12220	18.750	5.925	37.650	0.817	0.894	13.440	19.850	3.180	61.760	11.840
7	43.220	34.250	15.010	4139	26920	0.791	0888	6.116	36860	2.719	12.330	8644
8	10920	16280	7.904	3.127	15060	0.736	0898	3.987	28.390	3.958	10.140	9.233
9	6.213	26800	21.020	3.258	11.980	0.713	0.945	3.532	50500	3270	27.550	10840
10	5.391	12.530	18.470	7435	8644	0692	1184	3. 105	23150	2.600	21.310	34550
11	6360	9.168	40.780	11.250	10150	0.850	1540	2653	12500	2267	24820	22990
12	5324	10420	23.140	14620	21570	0619	4.054	27500	15.230	2.038	15.010	18.010
13	4890	25730	9.383	8.524	23.580	0.729	13.230	15520	17.440	3461	8.863	131800
14	4444	15260	8.435	5.300	7.434	2442	8097	6336	21080	15.030	5.800	107800
15	3716	22.980	5284	3584	6158	2.960	3.915	11.250	31.120	9.314	4.540	37.510
16	3626	11230	35100	4442	4.823	2.001	2.970	10.630	11.390	6.932	13.790	13680
17	3292	9226	28.500	53560	3139	1444	7384	11820	6387	8540	9.225	34880
18	3.330	7.222	31.220	23090	2.406	1130	11.730	6.650	4.869	8.508	29.510	24.930
19	4094	4818	63.760	7880	1.955	0.952	7.890	5662	4.188	13490	17.170	9.239
20	3623	8.854	28390	5.050	1.736	0.838	7.384	4.728	9.474	7.514	12.360	5.734
21	3092	35.370	16920	8.332	1641	0818	5.183	4.243	7.677	7.347	7027	4.931
22	2656	113.400	17.950	5.139	1.502	0.784	5.702	11.010	4.815	8455	44230	4353
23	2.367	41.960	18470	3.540	1360	1.060	8.128	18.990	3.563	15.140	43.460	7.805
24	6548	28.560	10.540	8.273	1310	3.577	6.792	15.830	3.395	9.520	19.210	27890
25	15.930	10.840	23.910	7974	1302	4.002	6.576	20.450	3.122	5.575	25.620	19.900
28	5.998	14.000	18090	23850	1309	9.616	9.443	12690	3.177	6.903	20.830	8.869
27	3.903	14.670	9.962	31070	1193	7.238	16010	10.500	6052	11.020	48230	5.402
28	3.261	766 t	B 890	12970	1087	3.375	9.948	9.594	4.498	10.050	14.370	4.152
29	2832	26660	7.783	9.547	0.973	2.305	7179	10490	3338	6.167	8554	3.334
30	2458		8258	22860	0921	2054	6.322	18.580	19.110	5.348	10900	2.728
31	2289		6517		0885		3.973	103.500		27040		4.118
Average	20.790	20.350	19270	10670	10800	1900	5.308	14660	16.730	8.394	20.440	22.070
Lowest	2289	2744	5.284	2.867	0885	0.619	0.888	2853	3.122	2.038	4.540	2.728
thighest	203900	113.400	63.760	53560	37.650	9.818	16010	103500	77950	27040	61.760	131800
Paek frow	303.60	178.30	107.30	7727	5736	11.59	19.44	15250	15010	52.49	123.10	188.00
Day of peak Monthly totel	1	22	19	17	6	26	13	31	1	31	6	13
(mrilion cu m)	55.69	5099	5162	2765	2892	4.92	14.22	39.25	43.35	22.48	52.99	59.10
Aunoff (mm)	404	370	375	201	210	36	103	285	315	163	385	429
Reentall (mm)	336	424	365	285	196	65	172	384	351	189	397	418

Statistics of monthly data for previous record Wan 1979 to Dec 1991)

Station and catchment description
40 m wide river section with floodbank on night. Any bypassing in extreme floods will be over 30m wide floodplain on left bank. Unstable gravel control requires rogular calibration of low flow range. Adequately gauged to bankfull Computed flows are 100% natural. 70% of catchment drains through Loch Dughaill with littie additional surface storage Typical mix of rough grazing and moortand. One of the wetter Highland catchmants currently gauged.

201005 Camowen at Camowen Terrace

Moasurng authority: DOEN First yoer: 1972

Grid reference 23 (1H) 460730
Leval \sin. (m OO): 66.00

Catchment area (sq km): 274.6 Mox stt. (m OOf: 539

Daity mean gauged dischargas (cubic metres per second)

day	JAN	FEB	MAP	APP	may	JUN	\boldsymbol{u}	AUG	SEP	OCT	NOV	DEC
1	7427	2.138	8.161	14.720	9.822	2.298	1496	1.708	9.284	3319	20210	17.820
2	7.332	2.785	6295	8.909	8.227	5.674	1.330	1.671	8014	8.272	22.830	19.750
3	18.870	5412	6.730	6.639	6053	2.916	2.033	2.840	5840	6.733	14.750	14.290
4	11.110	9.831	5.701	5.749	9.313	2.186	1805	2.646	4.908	4.700	11460	14260
5	11.140	4.383	11.880	5658	7.534	2.005	1451	4.307	4.172	3810	9.046	12.480
6	9.298	3.426	13.400	8479	6070	1.927	1.375	2500	5.022	3.343	7.146	24.730
7	41.840	2.890	35.440	6.297	5659	1.702	1.342	1.778	7.644	3.183	7.439	13.030
8	60800	5.808	10.570	5.762	7.438	1.673	1.353	1.521	7.620	2.916	6289	12.600
9	17.330	7.987	11.860	4687	6.909	1.685	1301	1492	5397	2.824	14.160	10.900
10	10780	9087	18.430	4.328	6.634	1590	1.049	1.338	8.874	2.628	10510	9.028
11	8.434	5847	18300	6.149	7604	1468	1.054	1848	35060	2864	12070	18.500
12	7.771	9.273	22250	14.810	9.377	1.367	1049	4.888	14.990	2.523	11.460	10500
13	6.348	9.478	16760	16050	5.756	1.403	1051	2809	10.570	2.375	7.976	8515
14	5.564	11050	11.370	13.950	4.637	1.404	1079	1.931	9.820	4.010	13.150	7.228
15	4.983	11.780	10.720	7011	3.898	1.418	1253	4909	7.735	5.828	11.030	10410
16	4.568	10.710	8 285	6.113	3.511	1.372	1.229	3546	5.717	4.583	11.960	11.370
17	4.233	17.070	8.919	7.901	3.297	1326	1.697	4.101	5034	3.790	10500	19080
18	3.925	10710	7887	8.186	3.069	1.334	1.791	2681	4.385	3.618	9209	13.940
19	3.702	8.768	6.857	6611	3355	1.348	1.482	2.039	3857	4.151	10310	8.212
20	3.485	6038	6.996	0.354	2947	1340	1520	1.780	3.507	5.858	11010	6.562
21	3.289	6.238	11.310	5.850	2.728	1.360	1.370	2.237	3.289	5.454	24.990	8.934
22	3.044	27.300	15700	5.201	2.515	1.283	1484	25.550	3.014	6.809	23.420	6579
23	2.812	13.220	17330	11.480	2.417	1.247	2.337	10910	3.195	9.803	20.340	5416
24	2819	11.380	0.311	22.070	2.232	1.504	2830	5613	7.633	15.220	18.310	5.542
25	3.691	8.650	14.380	10010	2119	1.496	1.867	5.422	4.734	18.210	13600	5.498
26	3.161	8.559	15.180	14430	2005	1.295	2.253	5.593	4002	10.380	12.240	5.106
27	2.941	10.620	8.457	17470	1859	1334	2113	12.840	8.097	10.780	20300	4.578
28	2.645	8477	9017	9.040	1.859	1.290	1574	8.017	5.350	0.011	11890	4.239
29	2.502	7.914	9917	7.690	1.833	1.407	1331	11380	4.275	5.945	10.230	4.148
30	2.325		8621	13.240	1808	1883	1.200	49.420	3664	4.931	15.400	3.893
31	2.191		11.130		2.335		1.321	13.780		6233		3.831
Average	9.112	8.716	12.060	9.361	4672	1.716	1.529	6.545	7.157	5.892	13.440	10.220
Lowest	2181	2.136	5.701	4.328	1.808	1247	1049	1.338	3.014	2.376	6289	3.831
Hugheat	60800	27300	35440	22.070	9.822	5.674	2830	49.420	35.060	18.210	24990	24.730
Peak flow	92.88	39.87	6709	40.23	13.15	8.27	333	77.38	56.29	35.19	44.10	42.19
Dey of peak	8	22	7	24	4	2	24	30	11	25	21	8
Monthy totel (milwon cu m)	24.41	21.84	3229	2428	1251	4.45	410	17.53	1855	15.78	34.84	2738
Rumotf (mmen)	89	80	118	88	46	16	15	64	68	57	127	100
Reinfell (mm)	87	117	144	118	53	45	94	181	93	89	151	80

Statistice of monthly deta for previous record (May 1972 to Dec 19911

Meen	Avg.	12.610	9.342	8.909	5096	3455	2.695	2.242	3.715	4899	7749	9174	11.130
flows:	Low	7.334	2.992	2210	1.701	1076	0.911	0.554	0.927	0680	1.215	3757	5.000
	(year)	1889	1986	1973	1974	1980	1974	1989	1983	1972	1972	1983	1989
	High	19140	. 19580	13.630	9.785	9.152	5.471	5542	13.070	14.560	14.560	18020	17.330
	(year)	1984	1990	198%	1988	1986	1981	1985	1985	1985	1980	1979	1978
Runoff:	Avg.	123	83	87	48	34	25	22	36	46	76	87	109
	Low	72	26	22	16	11	9	5	9	6	12	35	49
	High	187	173	133	92	89	52	54	127	137	142	170	189
Rainfan:	Avg.	128	84	108	63	68	72	73	94	99	118	108	120
	Low	55	4	38	20	11	28	20	20	13	55	45	39
	High	194	199	156	123	145	129	146	188	177	208	182	183

Summary statistics

					$\begin{gathered} 1992 \\ \text { As \% of } \\ \text { pre- } 1992 \\ 112 \end{gathered}$
	For 1992		for record preceding 1992		
Meen flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	7.524		6.748		
Loweat yoarly mean			4.102	1975	
Hughoat yoarly meen			8435	1986	
Lowest monitly meen	1.529	Jul	0.554	Jut 1989	
Aghest monthly mean	13440	Nov	19.580	Fob 1990	
Lowest deity meen	1.049	10 Ju	0.367	14 Jot 1989	
Highast denty meen	60800	B tan	139.600	21 Oct 1987	
Peak	92880	B Jon	180.200	$210 c t 1987$	
10\% exceectance	14870		15.430		96
50\% exceedance	5.822		4145		140
95\% exceedence	1331		1016		131
Ammal total (milion cu m)	237.90		212.90		112
Annual runotf (mm)	886		775		112
Annuse rainfoll (mm) 1941.70 rainfall avarage (mm)	1252		$\begin{gathered} 1133 \\ 1183 \end{gathered}$		111

Station and catchment dascription
Velocity-area station with cableway and wair control - informal broed-crested structure (for angling enhancement), dimensions not known. The net affact of abstrections for public water supply and augmentations from effluant returns is minor. Catchment geotogy: mixed impermeable rocks (granita. schist and eneiss, and sandstone) overtain by substantial deposits of till, sand and gravel. Largely upland given over mainly to gresstand or heath.

203010 Blackwater at Maydown Bridge

Measurnhy suthority. DOEN First year: 1970

Grid roforence: 23 (IH) 820519 Level stn. (mOO): 15.00

Caschment ares (sq km): 9514 Max alt. (m OO): 380

Daily mean gauged discharges (cublc metres per aecond)

DAY	Jan	FEB	MAR	APA	may	JW	Mr	aug	SEP	OCT	NOV	DEC
1	15200	6838	18.070	38360	21.890	4356	2.133	1868	25.690	6.429	22180	84740
2	15760	6980	15.810	35240	18.160	16.930	1.942	2020	22250	11830	57680	79.000
3	31.230	8.978	15.520	21.930	14.110	10910	2527	2.501	18.880	13620	35.090	44070
4	27320	14.350	20.340	17.190	14.750	6.698	3.102	2835	15.540	10020	21.490	33.910
5	42.690	12070	23390	15.440	19410	5015	2.515	4.520	12.290	7.979	17830	30940
6	37.730	9494	27.960	26.080	14.490	4271	2.089	4009	11.980	6.782	15050	51.700
7	50850	8228	54.410	20540	12860	3826	1.939	2.687	14.440	6004	14810	47.640
8	134.600	9007	28.710	19440	15.810	6.206	1.944	2.157	13.620	5.383	13.890	28.200
9	122.600	21060	24.560	15500	15390	6.370	1918	1.951	10.960	4.902	32.150	24.960
10	67.520	14.130	30020	13310	14.630	4.011	1850	1.833	9.704	4.455	25.240	20.980
11	33.380	11590	37960	13130	17.180	3363	1844	1810	58.420	4.319	27610	32390
12	23370	13.930	55.720	17670	17890	2974	1.857	6.117	29.500	4.152	31.600	31430
13	19.270	15.480	46380	48040	13.670	2731	1731	7969	20920	3970	22.300	22.630
14	16740	19140	31.260	35280	11.100	2600	1.652	4.082	22.270	4655	32570	19460
15	14.840	22.800	26.960	21.590	9.082	2.477	1.759	6436	16.260	7813	41.640	18.190
16	13.400	21.480	21.430	15870	7.853	2.345	2.032	8.932	12.670	6872	32470	23.830
17	12.290	22380	17.660	16950	7.115	2.245	1.992	6.343	11030	5.514	26.730	32.830
18	11450	28760	18.950	18300	6443	2.192	1.987	5.082	9.786	4961	23.790	60.640
19	10.690	17.590	16.790	17030	5.925	2.124	2010	3426	8.641	4467	25.730	25660
20	9.986	14950	17.420	14.660	5624	2.032	1.941	2.776	7.625	5.415	21290	18610
21	9.304	13640	24620	13970	5.122	1.985	1.828	2712	8.875	5.842	59.250	18580
22	8.577	17590	62780	12.520	4.536	1946	1781	26040	6.165	6493	64900	16970
23	8039	27450	45.910	16410	4257	1914	1.867	24450	5633	14230	51.540	14780
24	7.869	23.640	28220	60080	4006	1889	3519	10560	10.440	29970	56.530	14.070
25	11.260	22080	22030	26800	3.794	1864	2.952	8.860	9286	77030	63.130	13.560
26	11.090	22.120	27.690	26.280	3.573	1.834	3.110	10.020	7.524	31.100	41.180	12.780
27	9.365	26010	19.920	27.700	3349	1.781	5.144	20.850	9.702	27.140	46680	11.970
28	8.719	18.830	18.850	22670	3302	1.759	2.934	24.800	9.751	22.140	40.170	11070
29	8.211	15800	21400	17.580	3.339	1.808	2262	15.090	8079	16470	27650	10260
30	7673		27.110	20730	3389	2245	1976	87.980	6953	13.270	29.680	9.446
31	7.141		28080		3.417		1832	50910		11840		9033
Average	28.070	16.770	28.190	22.880	9.854	3757	2257	11660	14.430	12.420	34060	28.130
Lowest	7.141	6.838	15.520	12.520	3.302	1759	1.652	1.810	5.633	3970	13.890	9.033
Highest	134600	28.760	62780	60080	21890	16930	5144	B7980	58420	77.030	64.900	84.740
Pask frow	136.70	3665	7589	76.39	26.53	1889	662	10180	78.70	9439	9037	10440
Day of ponk Monithy total	8	18	22	24	1	2	27	30	11	25	21	1
(milion cu m)	6983	4202	75.51	5930	2639	974	6.05	31.24	3740	33.27	88.29	7535
Rumotf (mm)	73	44	79	62	28	10	6	33	39	35	93	79
Roinfal (mm)	74	70	121	104	45	49	75	165	77	75	141	69

Statistics of monthly data for previous record (Jut 1970 to Dec 1991)

Station and catchment description
Velocity-area station with cabloway and natural control flows influenced by major arterial drainage scheme - started in 1988 . A substantial portion of the catchment is in the Irish Republic where some groundwater may be abstracted but its hydrological significance is uncertain. Geology: Carboniferous Limestone and Millstone Grit with sandstones ovartan by substantial amounts of till A predominantly rural catchment with limited afforestation Monaghan Town tpop. 5.000) - in the Irish Republic - is the only significant urban centre

203028 Agivey at White Hill

Moosuring authorily: DOEN Fwat yoar: 1972

Gnd roforence: 24 (IC) 883193 Lovel stn. (m OD): 17.00

Catchment ares (sq km). 98.9
Max att. (m 00). 461
Daily mean gauged discharges (cubic metras per second)

DAY	JAN	FE8	MAR	APR	MAY	UN	JUL	AUG	SEP	OCT	NOV	DEC
1	1949	0784	2676	8574	4.106	0723	0.456	0551	2.654	1.160	4.441	3.996
2	2370	1888	2662	3418	3382	2.865	0.435	0.591	4.110	5504	10.160	7.222
3	9.374	6.890	2.153	2318	2084	1.239	0767	1.210	2262	6986	3.973	3.800
4	3017	6.946	1820	1890	2.429	0839	0646	1.594	2.828	2.450	2.834	3.560
5	2.144	2.604	3.239	1.820	2.165	0.754	0526	1.501	1759	1615	2.137	6024
6	2029	1.807	4.769	2.740	1.846	0721	0468	0.746	3.165	1292	1852	23.050
7	16830	1.479	15.490	3056	1.741	0.630	0403	0.578	2.950	1.104	2.654	8630
8	21.230	2.781	3.094	2.788	2.357	0578	0412	0547	1969	1027	1.934	6.252
9	4615	3795	3009	1.826	1.893	0665	0400	0.481	1.500	1001	5040	4151
10	2.575	4.584	8.682	1.584	2.106	0.594	0382	0445	6328	0.927	2.475	2.994
11	2460	2.589	7.733	2333	3.077	0.571	0402	0.488	10.190	0881	5.420	5452
12	2.298	8.719	13.150	3516	2340	0536	0.427	1.403	2.566	0.782	5.987	4487
13	1884	3.743	9.616	6507	1.603	0.516	0379	0.948	1.995	0753	3217	3.145
14	1678	4.413	7.432	4.840	1308	0511	0363	0596	2616	3.263	8449	2.557
15	1.497	3159	10370	2.158	1090	0.529	0450	0.748	2.144	3506	5.152	12.120
18	1.390	3654	4212	1.752	1.015	0.480	0.451	0.715	1.527	2.233	6.621	7.310
17	1.308	8.467	2.711	2.342	0914	0458	0415	0815	1.296	3021	7945	25.100
18	1.254	4.189	2620	3481	0.851	0.463	0.427	0576	1.163	4715	3.992	6.677
19	1.214	2.331	2.343	2.067	1.186	0.446	0402	0.503	1039	5897	3552	3214
20	1.188	2010	2.109	1822	1060	0436	0385	0469	0975	3484	3.116	2.375
21	1.084	1.774	2.742	2.312	0.920	0427	0445	0.544	0878	4753	11890	2687
22	0.955	3.637	6.696	1757	0852	0418	0593	11820	0806	5826	5.325	2.443
23	0922	2774	5693	8968	0812	0429	1536	3.292	0803	7496	6.036	1.985
24	0923	2.379	2604	8019	0747	0432	0903	1953	1540	8632	7.669	2.042
25	1138	2993	0546	3401	0711	0429	0625	2.449	1.198	11110	4689	1939
26	1.019	4.117	5.526	5178	0638	0421	0708	1.251	1358	3.168	4.825	1.770
27	0914	5599	2702	4508	0602	0408	0669	5815	5.988	3562	8361	1.584
28	0913	2298	5890	3050	0604	0.412	0.573	3.923	2.140	2.902	4070	1.429
29	0885	2.282	5.612	2.598	0641	0.437	0494	7.973	1622	2024	6370	1362
30	0827		4.309	6065	0.627	0.495	0443	23.100	1336	1667	6201	1236
31	0803		9.602		0.618		0451	4278		1.547		1.209
Average	2.990	3.539	5.407	3.556	1.494	0.629	0530	2641	2423	3.364	5.208	5219
Lowott	0803	0.784	1.820	1.584	0602	0408	0363	0445	0803	0.753	1.852	1.209
Hingrest	21.230	6.467	15490	8968	4106	2865	1.536	23.100	10190	11.110	11.890	25.100
Paok flow	5138	20.08	41.73	3310	508	493	266	81.49	42.15	37.91	36.00	78.06
Day of pask Monthy iotel	7	17	7	23	1	2	23	30	10	25	21	17
(million Cu m)	801	8.87	14.48	922	400	163	142	7.07	628	901	1343	1398
Runoft (mm)	81	90	146	93	40	16	14	72	64	91	136	141
Rainfall (mm)	87	98	191	106	47	44	79	184	96	121	147	108

Statistics of monthly data for previous record (Dec 1972 to Dec 1991)

Station and catchment description
Velocity-aroa station with cabloway. Geology: mainly basalt overiain by till with some peat. Significant proportion of upland. predominantly grassland or heath No urban areas or major indusiry

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals.

A 'comment' - appearing at the end of the station entry-may be used to draw attention to any particular factors influencing the accuracy of the data for the featured year or, more generally, to indicate that the published hydrometric data are subject to review.

Monthly and yearly statistics for previous record

Monthly mean flows (average, low and high) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). An asterisk indicates an incomplete rainfall series; the first and last years of data are given in parentheses. Due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantancous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the carlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is
exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a ' d ' flag. An examination of the quality of the peak flow figures is underway and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors Affecting Runoff

Code letters are used as described in Part (i).

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows.

B Broad-crested weir
C Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station
EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MIS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

003002 Carron at Sgodachail

Mesasuring outhority: MRPB
First yoar: 1973
Hydrometric statistics for 1992

	JAN	FEB	MAR	APP	May	UN	Me	AUG	SEP	OCT	NOV	DEC	Yom
Flow: Avg.	14250	10320	14860	9053	6336	0957	1.267	8850	15.590	8881	18.150	17900	10.531
$\mathrm{m}^{2}-1 \mathrm{l}$: Peak	217.60	115.70	98.82	127.90	69.66	483	467	20730	12180	5534	13600	153.90	217.60
Runotl (mm)	158	107	185	97	70	10	14	98	168	99	195	199	1381
Reantall (mm)	219	201	312	167	120	41	75	223	265	179	316	246	2364
Monthly and yearly statistics for previous record (Jan 1974 to Dec 1991)													
Mean Avg	14.380	10.010	11.400	7.386	4.648	4188	3.641	4381	8466	11940	12.880	13.150	8871
flows Low	7.226	1.944	3.680	1.294	1.020	1.105	1142	0983	3659	3963	4228	5595	6.848
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{j}$ High	29.740	25.850	33.120	15030	10.110	10270	9.481	10680	17670	29.670	25410	28120	12.192
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	28180	264.70	22500	9861	101.20	14040	16520	11200	34030	28890	219.10	255.70	340.30
Punott (mm)	160	101	127	79	52	45	40	49	91	133	138	146	1181
Rantal (mm). $\cdot(1981.1991)$	265	166	234	92	93	99	93	124	205	254	229	243	2097
Factors affecting runoff: H Stetion type: VA										1992 runoff is 119% of previous mean ramfall 113\%			

Caichment area (sq km): 2411 Max alt (m OO) 954

004001 Comon at Moy Bridge

Moasuring outhority: HRPB
Firsi yoar: 1947
Hydrometric etatistics for $\mathbf{1 9 9 2}$

		Jan	FEB	MAA	APA	may	UN	M	AUG	SEP	OCT	Nov	DEC	Yam
Flows	Avg.	101900	73600	82.580	62470	48390	23.120	29660	40750	79050	63.800	111300	117.700	69.510
$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Peok	61700	224.60	169.30	11380	112.40	59.18	72.19	162.30	22240	18180	24350	39250	617.00
Runott (mm)		284	192	230	168	135	62	83	113	213	178	300	328	2285
Rainfall (mm)		219	228	268	150	120	38	69	227	231	139	311	260	2260

Monthly and yearly statistics for previous record (Oct 1947 to Dec 1991 —Incomplete or missing months total 5.7 years)

Mean	Avg.	69.210	61.740	59.940	42260	31.230	21.900	21360	27.930	40900	55670	64610	71.600	47.308
flows	Low	31690	25.810	18.670	13940	10940	8861	2.959	8162	12510	23.090	24090	27.970	29.991
$m^{2} s^{-1}$	High	138.300	164.600	191.500	75.730	53.050	47.560	40010	45140	94870	94030	121.700	165.100	77.537
Peak flow	$\left.\mathrm{n}^{3}-1\right)$	486.20	703.90	507.00	20390	23220	165.20	247.40	25490	22370	32480	411.60	107600	1076.00
Runotf imm		193	157	167	114	87	59	59	78	110	155	174	199	1552
Ramfall [m		197	140	170	102	101	96	108	125	168	214	203	225	1847

Grid reference: $28(\mathrm{NH}) 482547$
Leval sin. (m OO): 1000

006008 Enrick at Mill of Tore

Monsuring outhonty: MRPB
First year: 1979
Hydromatric statiatics for 1992

	JAN	ftit	MAR	APA	MAY	JUN	μ	AUG	SEP	OCT	NOV	1*C	Yose
Flows Avg	7.910	5.212	5.671	1718	1771	0087	0054	1099	3819	4004	9382	7812	4.042
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$. Ponk	5660	2827	1709	3.47	638	0.24	008	809	3232	42.39	5459	3891	56.60
Aunoti (mm)	200	123	143	42	45	2	1	28	93	101	230	198	1207
Rainfal (mm)	202	169	180	86	78	30	42	153	187	103	251	189	1670
Monthly and yearly statistics for previous record (Dec 1979 to Dec 1991)													
Mean Avg.	5.704	5010	4829	1.945	1.305	1.029	1062	0990	2298	4407	4643	5248	3.200
fows Low	1.947	0707	1.154	0.422	0.184	0.119	0070	0.020	0398	2654	1685	1422	2.118
$\mathrm{m}^{2} \mathrm{a}^{-1} \mathrm{l}$ High	9679	18220	13880	3.466	4.386	1.959	3332	3.235	3.994	7068	7526	9554	4.986
Pask flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	54.72	77.98	51.08	2017	1865	1934	5966	1583	5130	5041	6067	4972	77.98
Runofl (mm)	144	115	122	48	33	25	27	25	56	111	114	133	954
Remfall \{mm\}	181	115	159	62	69	79	72	86	137	170	158	184	1472

Faciors affocling runolf: \mathbf{N}
Station typo. VA

Grid reterence: $28(\mathrm{NH}) 450300$
Level sin. (m OD) 10940

Catchment area (sq km) 1059 Max alt (m OD) 678

992 runoff is 127% of previous mean rainfall 113\%

008007 Spey at Invertruim

Measuring outhority: NERPB
First year. 1952
Girid reference: 27 (NN) 687962
Level sin. (m OOf: 242.50

Calchment areo (sq km) 4004 Max alt (m OD): 951

Hydrometric statistics for 1992

	JAN	FEB	MAR	APA	may	JN	\cdots	AUG	SEP	OC ${ }^{+}$	NOV	OfC	Yasr
Flows Avg	19330	B404	7.436	4.170	3700	1.681	1.578	3.613	5736	4821	12050	10790	6.946
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$: Peak	222.80	118.80	51.68	1961	1729	247	2.31	25.19	29.86	17.55	8949	6370	222.80
Runott (mm)	129	53	50	27	25	11	11	24	37	32	78	72	549
Rainfall (mm)	220	176	186	106	81	32	58	201	191	93	265	189	1798
Monthly and yearly statistics for previous record (Oct 1952 to Dec 19911													
Mean Avg	9270	7.496	7.556	4.233	3.558	2.967	2869	3321	4.732	6914	7500	9.341	5.811
flows Low	3.314	1.953	2.722	2075	1.413	1.123	1042	0.852	1.454	1638	3235	3.518	3.935
$m^{3} \mathrm{~s}^{-1} \mathrm{~J}$ Hegn	23.280	39.990	42.630	7.126	6210	6269	5021	7.545	14650	14830	15960	24970	11.121
Peak flow ($m^{2} \mathrm{~s}^{-1}$)	264.50	269.10	274.50	61.90	43.92	45.93	72.83	7500	10800	10690	170.60	25950	274.50
Aunots (mm)	62	46	51	27	24	19	19	22	31	46	49	62	458
Rantall (mm)	168	113	130	74	85	77	86	103	135	169	160	179	1477
Fociors affocting runoff: H Sistion typo: VA										1992 runotf is 120% of previous mean ramiall 122\%			

009001 Deveron at Avochie

Measuring authority. NERPB
First year: 1959
Hydrometric statistics for 1992

actors affecting runoff. N Stathon type: VA

Grid reference: 38 (NJ) 532464
Level sin. (m OD). 81.80

Catchment ares (sq km): 4416 Max alt. (m OO): 775

010002 Ugie at Inverugie

Measuring authonty NERPB
First year 1971
Hydrometric statistics for 1992

Station type VA

Grid reference: 48 (NK) 101485
level sin. (m OD): 8.50

Catchment area (sq km) 325.0 Max alt. (m OD): 234

011001 Don at Parkhill

Measuring aulhorily NERPB Grid roferenco. 38 (NJ) 887141 Catchment area (sq km) 12730
First year 1969
Hydrometric statistics for 1992

		JAN	feb	MAR	APR	may	JuN	rr	AUG.	SEP	OCT	NOV	DEC	Ye
Flows	Avg	14610	11000	13.710	23830	17080	8412	7567	10180	11910	25380	26760	20310	15.902
$m^{3} s^{-1}$	Peak	42.60	2524	86.00	8154	4182	1667	1120	6961	28.77	6159	6646	5707	8800
Runotf (mm)		31	22	29	49	36	17	16	21	24	53	54	43	395
Remfall (mm)		41	32	106	64	55	58	51	122	80	112	58	58	837

Monthiy and yearty statistics for previous record (Dec 1989 to 0ec 1991)

Factors affecting runoff: \mathbf{N}
Station type VA

012006 Gairn at Invergairn

Measuring authonty: NERPB
First year: 1978
Grid reference. 37 (NO) 353971 Level stn, (m OD): 217.70
Hydrometric statistics for 1992

	JAN	FEB	man	APA	may	JN	Mr	AUG	SEP
Flows Avg.	3.591	2.372	3.822	5.489	3.207	0.952	0802	2315	2767
$\mathrm{m}^{\prime} \mathrm{s}^{-1}$). Poak	9.40	14.84	16.12	1221	17.19	1.54	1.82	6569	1221
Runot (mm)	64	40	68	95	57	16	14	41	48
Rainfall (mm)	54	42	120	64	45	43	48	132	91
Monthly and yearty statistics for previous record (Now 1978 to 0ec 1991)									
Mean Avg	4630	4353	5742	5261	3807	2.839	1.920	2.080	2.531
Nows Low	2.698	1.548	3.565	2.110	1.732	1.215	0.743	0.612	0999
$\mathrm{m}^{\prime} \mathrm{s}^{-1} \mathrm{~J} \mathrm{Hegh}$	8.758	7.692	7.418	9.595	7.605	5.608	3036	5.057	6.389
Poak llow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	37.70	3888	8891	37.34	2741	47.25	24.92	6518	5809
Rumatf (mm)	83	71	103	91	68	49	. 34	37	44
Ranfell (mmi*	102	76	90	56	64	75	62	74	91

Faciors affecting runoft: N
Station type: VA

Catchment aras (sq km) 150.0 Max alt (m OD) 1171

OCT	NOV	DEC	Year
4160	4978	3625	3.174
1133	1886	12.07	65.69
74	86	65	689
104	85	75	903
4467	4455	4817	3.807
1319	1.257	1.832	2.338
12.420	12.420	7.661	4.871
9509	61.22	4855	95.09
80	77	86	822
117	102	87	996
1992 runoff is 81%	of provious mean		
rainfan	91%		

013007 North Esk at Logie Mill

Moasuring suthortly: TRPB First yoar: 1976
Hydrometric statistics for 1992

Monthty and yaarly statistics for pravious record (Jan 1978 to 0 ec 1991 -incomptate or missing months total 0.1 years)

013008 South Esk at Brechin

Moosuring outhority: TRP8
Gnd reference: 37 (NO) 600596 Leved stn. (m OD): 18.00

Catchment area (sq km) 490.0 Max alt (m OD) 958
Hydrometric statistics for 1992

Mossuring outhority: TRP8 First yoar: 1983			Gnd raference: 37 (NO) 600596 Level stn. (m OD): 18.00							Catchment area (sq kmi 490.0 Max alt (m OD) 958			
Hydrometric statistics for 1992													
	JAN	FEB	mar	APR	MAY	JN	Jul	AUG	SEP	OCT	mov	$0 \in C$	Year
Flows Avg.	9.894	7268	11340	16720	7.693	2.652	2639	9235	12.820	10.450	16440	17240	10.363
$m^{3} s^{-1}$: Paak	43.38	2801	91.69	63.54	29.72	3.92	856	10720	4901	3066	5858	7544	107.20
Runotf (mm)	54	37	62	88	42	14	14	50	68	57	87	94	689
Rointall (mm)	54	60	153	75	45	33	75	181	110	76	110	95	1067
Monthly and vearly statistics for previous record (Jan 1883 to Dec 1991)													
Mean Avg.	16.280	15.030	18.210	13.370	10430	6752	5305	6995	7.510	12.730	15.190	14.650	11.859
flows Low	10.600	7.069	9.773	6.356	3.478	3.316	1685	1405	2.401	3494	3.949	7894	8.317
$\mathrm{m}^{3}-11 \mathrm{Hagh}$	21.180	34.820	28.630	21.340	28180	11120	10010	25920	21.860	28.630	49350	23.650	14.856
Pook flow ($\mathrm{m}^{2} \mathrm{c}^{-1}$)	104.60	102.20	107.00	9085	9629	8802	5663	117.70	122.50	170.60	144.30	149.70	170.80
Runoti (mm)	89	75	100	71	57	38	29	38	40	70	80	80	784
Renfall (mm)	131	87	105	68	72	81	69	89	88	128	107	106	1127
Factors affocling runoff: I Station typo: VA										$1992 \text { n }$	off is 88	of prov	us mean

Grid roforence 37 (NO) 699640
Lovel stn. (m OD): 10.60

Catchment ares (sq km): 730.0 Max sh. (m OD): 939

014001 Eden at Kemback

1992
Moosuring authority: TRPB
Grid reference 37 (NO) 415158
level stn. (m OD) 6.20
Cotchment area (sq km) 307.4 Frat yoar: 1967

Hydrametric statistics for 1992

	JAN	FEB	MAM	APA	May	JN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.326	2639	4074	6.287	1.988	1.381	0.962	1.473	3524	3186	4728	5375	3410
$\left.m^{2} s^{-1}\right\}$: Peak	40.56	365	64.71	6206	295	192	207	508	931	956	12.09	1487	04.71
Runolf (mm)	46	22	35	53	17	12	8	13	30	28	40	47	351
Rainfol (mm)	57	40	129	48	25	30	54	134	111	36	89	52	805
Monthly and yearly statiatics for provious record [Oct 1967 to 0ec 1991]													
Mean Avg.	7.032	6.446	5.104	3672	2974	2179	1537	1672	1.958	3.130	4.407	5.540	3.792
Kows Low	2.546	2170	1.408	1199	1.408	1.077	0861	0.799	0749	0833	0830	1731	1.448
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	10890	19460	8238	7.243	0.335	6.651	3.390	6038	11.260	6880	14440	12390	5.593
Paak flow (m^{3} - ${ }^{\text {- }}$)	5905	7131	5489	52.69	4748	41.93	2620	17.19	5364	3597	3937	4782	71.31
Runotf (mm)	81	51	44	31	26	18	13	15	16	27	37	48	389
Reuntoll (mm)	86	58	65	45	62	59	58	60	71	78	72	73	787

Station type: VA
1992 runoff is 90\% of previous mean rainfall 102\%

015011 Lyon at Comrie Bridge

Moasuring outhority: TRPB
First your: 1958
Grid coforence: 27 (NN) 786486 Lovel stn. (m OD): 9210

Catchment area (sq km) 391.1 Makalt (m OD) 1215
Hydrometric statistics for 1992

	JAN	FEB	MAR	APA	May	UN	Jul	AUG	SEP	OCr	Nov	OEC	Year
Flows Avg.	22.360	15990	17720	10880	7.928	3.471	3623	12060	18730	B 010	19350	16180	13008
$m^{2} s^{-1}$: Pook	21760	158.20	108.70	85.44	9116	775	1294	12380	10560	49.72	177.60	15930	217.60
Runoif (mm)	153	102	121	72	54	23	25	83	124	55	128	111	1052
Rainfall (mm)	271	269	301	135	108	26	113	281	268	97	260	194	2323
Monthly and yearly statistics for previous record (Jen 1958 to Dec 19911													
Mean Avg.	17.670	14.810	15880	10190	9349	6524	6214	7.412	10220	15040	14.610	15700	11.965
lows Low	3.596	3198	4219	4002	3.537	3.514	3062	2.221	2.843	3662	5320	6182	8.330
$\left.\mathrm{m}^{2}-\mathrm{t}\right) \mathrm{Mkh}$	43.920	54.190	67.160	17.390	24520	18870	20800	28940	28.120	29.930	30.550	32.780	19.871
Peak flow ($\mathrm{m}^{2} \mathrm{~g}^{-1}$)	254.70	37790	31130	12900	12490	109.70	15470	128.70	145.10	191.90	27130	19960	377.90
Rumatt (mm)	121	92	109	68	64	43	43	51	68	103	97	108	985
Remifol (mm)* $\cdot(1971.1891)$	271	159	211	88	100	91	103	122	184	222	231	239	2021
Foctors offocting runoff H Staton type: VA										1992 runoff is 109% of previous mean ranfall 115\%			

016003 Ruchill Water at Cultybraggan

Moasuring authonty: TRPB
First year: 1970
Hydrometric statistics for 1992

		Jan	FEB	MAR	APR	may	JuN	u	AUG	SEP	OCT	NOV	cec	Year
Fiows	Avg	8.766	7661	8988	4.782	2.536	0381	1165	7.090	9622	3.491	9751	6885	5.915
$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Posk	123.60	79.99	7778	4355	10210	087	41.04	100.50	9306	63.27	14080	69.93	140.80
Runot (mm)		236	193	242	125	68	10	31	191	251	94	254	185	1880
Raunfall (mm)		243	267	293	130	93	23	123	299	287	105	299	168	2330
Monthly and yeasty statistics for previous record (Oet 1970 to Dec 1991 -incompiete or missing months total 0.2 years)														
Mean	Avo	7.992	6544	6877	3160	2560	1886	1.851	2.539	4.674	6327	7296	7324	4.914
flows	Low	2.263	1.050	1802	0.758	0304	0402	0239	0.164	0.345	0.789	2306	1630	3.281
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	ring	15240	20280	13.660	7109	10.120	4562	5.739	9246	10260	12130	16550	12.350	6.588
Posk flow (m	m^{-1}	250.40	18920	16530	8732	16500	22130	16000	143.00	227.30	17650	18330	17450	250.40
Runoti (mm)		215	161	185	82	69	49	50	68	122	170	190	197	1559
Ramfall (mm)		247	169	189	93	110	99	115	134	192	215	225	230	2018
Factors affocing runoff. N Station type VA											1992 runoff is 121% of previous mean rainfall 115\%			

		Jan	FEB	MAR	APR	may	JuN	u	AUG	SEP	OCT	NOV	cec	Year
Fiows	Avg	8.766	7661	8988	4.782	2.536	0381	1165	7.090	9622	3.491	9751	6885	5.915
$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Posk	123.60	79.99	7778	4355	10210	087	41.04	100.50	9306	63.27	14080	69.93	140.80
Runot (mm)		236	193	242	125	68	10	31	191	251	94	254	185	1880
Raunfall (mm)		243	267	293	130	93	23	123	299	287	105	299	168	2330
Monthly and yeasty statistics for previous record (Oet 1970 to Dec 1991 -incompiete or missing months total 0.2 years)														
Mean	Avo	7.992	6544	6877	3160	2560	1886	1.851	2.539	4.674	6327	7296	7324	4.914
flows	Low	2.263	1.050	1802	0.758	0304	0402	0239	0.164	0.345	0.789	2306	1630	3.281
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	ring	15240	20280	13.660	7109	10.120	4562	5.739	9246	10260	12130	16550	12.350	6.588
Posk flow (m	m^{-1}	250.40	18920	16530	8732	16500	22130	16000	143.00	227.30	17650	18330	17450	250.40
Runoti (mm)		215	161	185	82	69	49	50	68	122	170	190	197	1559
Ramfall (mm)		247	169	189	93	110	99	115	134	192	215	225	230	2018
Factors affocing runoff. N Station type VA											1992 runoff is 121% of previous mean rainfall 115\%			

rid reference: 27 (NN) 764204 Leval sin. (m OD) 6230

Catchment area (sq km). 99.5 Mar alt (m OO): 985

ranfall 115%

016004 Earn at Forteviot Bridge

Measuring authority. TRPB
Grid reference 37 (NO) 043184
First vear: 1972
Lovel stn. (m OO). 780
Catchment area (sq km). 7822
Hydrometric statistics for 1992

		JAN 50910	FEB 31390	MAR 46.620	APR 33390	MAY 12730	JW	N066	AUG	SEP 50430	OCT 28180	NOV 45810	DEC	Year 31399
Flows	Avg	50910	31390	46.620	33390	12.730	4192	4056	21.250	50430	28180	45810	48090	31399
$\mathrm{m}^{3} \mathrm{~s}^{-1}$!	Peak	21880	13650	14680	11070	9081	633	19.19	112.80	147.50	14700	216.20	14810	218.80
Punoti (mm)		174	101	160	111	44	14	14	73	167	97	152	165	1269
Ramiall (mm)		153	160	206	93	58	21	85	214	213	73	204	119	1599

Monthly and yearty statistics for previous record (Oct 1972 to Dec 1991 -incomplate or missing months total 0.2 years)
Menn

Factors affecting runoff $P \mathrm{H}$
Station typa VA

017001 Carron at Headswood

Measuing authority FRPB
First year: 1969
Hydrometric statistics for 1992

	JAN	FFB	MAR	APA	MAY	JUN	un	AUG	SEP	OCT	NOV	OEC	Yeat
Flows Avg.	8139	5.456	7.641	2397	1961	0664	0712	2833	5249	2650	6166	4572	4.033
m's-'). Poak	107.30	8640	3821	1128	3038	107	165	2296	9279	3050	36.23	35.71	107.30
funotf (mm)	178	112	167	51	43	14	16	62	111	58	131	100	1043
Rainfall (mm)	140	191	209	93	86	23	99	248	234	106	229	116	1774
Monthly and yearly statistics for previous record (Aug 1969 to Dec 1991)													
Meen Avg.	5.953	4.355	4207	2109	1465	1183	1137	1.585	2933	4024	5.122	5.225	3.272
flows Low	1943	1018	1232	0807	0590	0580	0549	0557	0.467	0424	1412	1084	2.108
($\mathrm{n}^{3} \mathbf{s}^{-1}$) High	11.300	14.130	9819	4616	5724	2834	4650	8092	16.720	10270	9.759	10470	4.606
Peok flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	138.10	147.70	13290	4362	b 135	3374	6538	8448	124.30	12480	10580	14790	147.90
Runotf (mm)	130	87	92	45	32	25	25	35	62	88	109	114	844
Rantall (mm)	180	118	146	77	84	89	89	114	152	167	176	170	1582
Factors affecting runoff: SE Station type: VA										1992 runot is 124% of prevrous mean rainfall 114\%			

017002 Leven at Leven

Moassuring suthorily: FRPB
First year: 1969
Hydrometric statistics for 1992

018003 Teith at Bridge of Teith

1992

Moosuring oulhority FRPB
First yoar: 1957
Hydrometric statistics for 1992

018005 Allan Water at Bridge of Allan

Moasuting suthority: FRPB
First yoor: 1971
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	JN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	13380	9783	13240	8.628	3.964	1339	1336	5791	15180	5621	12290	9229	8.296
$\mathrm{m}^{3} \mathrm{~s}$-1: Pask	10000	79.10	61.19	3407	40.52	2.32	465	3466	76.33	59.77	68.50	5002	100.00
Rumolf (mm)	171	117	169	108	51	17	17	74	187	72	152	118	1248
Rainfall (mm)	151	153	206	85	53	19	89	188	202	74	190	98	1508
Monthly and yearty statistics for previous record (Jul 1971 to Dec 1991)													
Muan Avg.	11.410	9067	9301	4835	3608	2636	2293	3061	4858	7.298	8.922	9.862	8421
flows Low	4.751	3631	3152	1654	1.189	0945	0726	0.648	0.907	0.971	3642	3.709	4.269
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{~s}$ High	18.550	22270	18170	9.120	15.430	5423	6.309	12390	14600	12420	17760	17.140	9.090
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	13680	81.93	8343	6963	72.11	6186	6637	6748	105.60	11100	9789	11260	138.80
Aunotf $\{\mathrm{mm}$)	145	106	119	60	46	33	29	39	60	93	110	126	965
Remial (mm)	153	100	125	64	75	76	81	94	125	136	135	143	1307
Factors affocting runoff: I Stalion typo: VA										1992 runoff is 129% of previous mean rainfall 115\%			

Stalion typo: VA

Grid reference: 26 (NS) 786980
Level stn (m OD) 1120

Cotchment aroe (sq km) 2100 Max alt (m OD): 633

018018 Kirkton Burn at Balquhidder

Moosuring outhority: IH
First yoor: 1983
Hydrometric statistics for 1992

Factors affectung runoff N
Station typo: C

Grid reference: 27 (NN) 532219
Lovel stn. (m OD) 24600

Catchment area (sa kmf 6.8 Max alt. (m OD) 852

020001 Tyne at East Linton

Moasuting outhority: FRPB
Fursi yoar: 1961
Hydrometric statistice for 1992

	JAN	fcb	MAR	APP	MAY	JuN	Jul	Aug,
Flows Avg.	3.740	2.607	3.231	7168	0886	0666	0744	0.981
$\mathrm{m}^{2} \mathrm{~s}^{-1}$: Poak	55.41	822	11880	14300	143	1.13	121	553
Runotl (mm)	33	21	28	61	8	6	6	9
Rainfal (mm)	51	44	113	52	20	32	48	125
Monthly and yearty statistics for previous racord (Jan 1981 to Dec 1991)								
Moen Avg.	4.649	3.928	3.954	2.783	2.328	1445	1279	1613
flows Low	1.032	0783	0531	0644	0.781	0.586	0.500	0468
$\mathrm{m}^{\prime} \mathrm{s}^{-1} \mathrm{l}$ High	11.540	8625	8.789	7824	11600	6.142	4.393	9855
Peok flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	93.02	53.51	6617	5088	11970	5912	7018	112.70
Runoff (mm)	41	31	34	23	20	12	11	14
Raintall (mm)	64	44	58	48	58	55	61	75

Factors allecting runoff El
Station type: VA

Grid roforence: 36 (NT) 591768 Leval stn (m OD) 16.50

Catchment area (sq km). 307.0 Max all. (m OD): 528

Measuring authortty: TWRP First vear: 1961
Hydrometric statistics for 1992

021012 Teviot at Hawick

Measuring authority: TWRF
First yose: 1963
Hydrometric statistics for 1992

flows$m_{s}{ }^{-1}$		JAN	1 fr	MAR	APR	MAY	JW	Nr
	Avg	14000	8166	13380	14200	6860	1354	1375
	Peak	19800	5523	112.30	12910	8004	308	1131
Rumofi (inm)		116	63	111	114	57	11	11
Reantall (mm)		84	99	168	130	59	27	78

Monthly and yearly statistics for provious record (Oct 1963 to Dec 1991)

Mesn	Avg	14200	11640	10.450	6206	5.260	3832	3414	4532	5938	9964	12410	13640	8.447
flows	Low	6981	4234	2991	2189	1296	1099	0675	0734	0915	0818	2.555	4522	4183
$\mathrm{m}^{3}-1$	Hegh	28560	34800	21640	13030	17.340	10500	12300	19.120	18.980	25690	29930	25.460	10.959
Peak fow	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	25740	23530	182.40	17900	117.00	8941	14830	17860	18560	27340	18860	23000	273.40
Rumpif (m		118	88	81	50	44	31	28	38	48	83	100	113	825
Rainfall (m		121	84	104	65	84	79	86	99	103	120	121	125	1191

Factors affecting runoh: N
Station type: VA

Grid reference. 36 (NT) 522159 Level \sin (m O0): 90.10

Catchment area (sq km) 323.0 Max alt (m OD): 608

AUG	SEP
6829	12.050
7939	71.70
57	97
186	154
4532	5938
0734	0915
19.120	18.980
17860	18560
38	48
99	103

1992 runoff ts 121% of provious mean rainlall 116\%

021018 Lyne Water at Lyne Station

Measuring authority TWRP
First year: 1968
Hydrometric statistics for 1992

Flows Avg	JAN 6378	$\begin{aligned} & \text { FEG } \\ & 4111 \end{aligned}$	MAR 4834	APA 6084	MAY 2387	JUN 0963	π 0744	AUS 3025	$\begin{aligned} & \text { SEP } \\ & 4602 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 3477 \end{aligned}$	$\begin{aligned} & \mathrm{NOVV} \\ & 7.724 \end{aligned}$	orc 4902	Yoar 4094
m's-1. Poak	5231	1266	4121	4108	23.79	194	114	15.02	14.40	11.99	2383	1326	52.31
Runotf (mm)	98	59	74	90	37	14	11	46	68	53	114	75	739
Remiall (mm)	85	85	142	90	35	29	56	191	129	67	139	63	1111
Monthly and yearty statistics for previous record (Jan 1982 to Dec 1991. peak frowe trom Oct 1968)													
Mean Avg	4984	4291	3.930	2.754	1.978	1514	1385	1722	2.468	3.447	4446	4570	3.119
flows Low	1666	1416	1491	1.197	0.881	0795	0609	0522	0542	0540	1100	1756	1.899
$\mathrm{m}^{3} s^{-1}$) Hrgh	8991	11260	7613	5173	4.907	2.738	4433	5606	10660	11320	9.053	8581	4.304
Payk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	47.50	4155	27.65	21.46	17.36	1646	3172	2077	58.74	73.75	5360	37.98	73.75
Runnots (mm)	76	60	60	41	30	23	21	26	37	53	66	70	583
Reanfall (mm)	91	64	79	55	64	68	70	86	97	98	96	90	957

1992 runotf is 131\% of provious mean reinfall 116\%
Factors affocting

Gind reference: $\mathbf{3 6}$ (NT) 209401
Level stn. (m OD) 16800

Catchment area (sq km): 1750 Max alt (m ODi: 562

Comment: Monthly naturalised flows used

021022 Whiteadder Water at Hutton Castle

Hydrometric statistics for 1992

Comment Monthly naturalised flows used

021024 Jed Water at Jedburgh

Moosuring suthority: TWRP
Fir 1 yoar: 1971
Hydrometric statistics for 1992

Foctors affocting runoff: N
Station lype: VA

Grid raference: 36 (NT) 655214
Level \sin (m OD) 67.50

Cotchment orea (sq km): 1390 Max alt. (m OOf: 553

2 runoff is 97% of previous mean
rainfall 103%

022006 Blyth at Eartford Bridge

Moasuring oulthorily: NRA.NY First yoer: 1966

Grid reference: 45 (NZ) 243800 Level $\sin (\mathrm{m}$ OD): 24.60

Catchment ares (sq km): 269.4 Maxalt. (m OD) 259

Hydrometric atatistics for 1992

	JaN	feb	mar	APA	may	JN	ar	AUG	SEP	OCT	NOV	Occ	Year
Flows Avg.	1.351	1612	1.915	10360	0421	0162	0.154	0.202	0.298	0.708	3.238	4.142	2.033
$m^{2} s^{-1}$): Poak	608	702	4835	162.80	093	0.30	081	1.28	1.79	1.76	1063	2002	162.80
Rumotf (mm)	13	15	19	100	4	2	2	2	3	7	31	41	239
Rainfall (mm)	44	58	98	108	13	14	59	95	83	64	79	51	762
Monthiy and yearly statistics for previous record (Oct 1988 to Dec 1991 -incomplete or missing months total 0.4 years)													
Mnan Avg	4.412	3.750	3.625	2145	1297	0.589	0436	0.630	0680	1555	2324	3.500	2.073
Hows Low	0.587	0398	0245	0359	0.212	0.177	0096	0.067	0.107	0.111	0.162	0.274	0.537
	10.150	7.997	11090	6.281	4.948	1895	1800	2363	2695	9680	5.735	12500	3.410
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14660	5952	15020	8031	3888	3154	2152	6109	3002	5684	6920	122.30	150.20
Runotf [mm)	44	34	38	21	13	6	4	6	7	15	22	35	243
Remfall (mm)	65	48	61	43	54	52	57	68	60	61	65	64	698
Factors affocting runoff. E Station type: $f V$										1992 runoff is 9B\% of previous mean ramfall 109%			

Station type: FV

023001 Tyne at Bywell

Moosuring outhority: NRA.NY
First yodr: 1956
Hydrometric statistics for 1992

		JAN	FEB	MAR	APA	Mar	JN	JuL	AUG	SEP	OCT	NOV	OfC	Yoer
Flows	Avg	39.440	45830	55.230			8.619	9032	19760	33.960	44480	108000	78.230	
$m^{3} s^{-1}$)	Pook	156.10	288.20	60710			2178	26.17	18180	26840	132.10	29530	56800	
Runoff (mm)		49	53	68			10	11	24	40	55	126	96	
Remiall $\{\mathrm{mm}$		41	73	141	119	50	18	73	128	115	87	143	87	1075

Monthly and yearty statistics for provious record (Oct 1956 to Dee 1991 -incomplete or misaing monthe total 0.2 years)

Moen Avg	74220	62070	57020	37960	24.330	17.850	19360	28390	33570	46050	61.140	68.860	44.173
flows Low	19220	14360	20.150	8461	7.248	4910	5199	3403	4155	4727	18090	23080	25.849
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{j}$ High	150.800	182800	150900	75.620	60.650	50010	58000	77360	106800	147.200	147000	112.000	63.834
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	152500	119800	1472.00	905.60	476.30	44030	110500	156100	124300	158600	1382.00	1317.00	1586.00
Punotf (mm)	91	70	70	45	30	21	24	35	40	57	73	85	841
Ramial (mm)	105	77	88	82	67	69	82	95	88	96	103	108	1038
Factors affocting	off: S										not		

flows Low	19220	14360	20.150	8461	7.246	4910	5199	3403	4155	4727	18090	23080	19
$m^{3} a^{-1}$ High	150.800	182800	150900	75.620	60.650	50010	58000	77360	106600	147.200	147000	112000	63.834
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	152500	119800	1472.00	905.60	476.30	44030	110500	156100	124300	158600	1382.00	1317.00	1588.00
Punots (mm)	91	70	70	45	30	21	24	35	40	57	73	85	841
Ramisil (mm)	105	77	$\theta 8$	82	67	69	82	95	88	96	103	108	1038
Faciors affocting	noff: S									199	unotf	of pr	us moe

factors affocting runotf: S
Station type: VA

023011 Kielder Burn at Kielder

Moosuring suthority: NRA.NY
Fuat yoor: 1970
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	JuN	Nr	AUG	SEP	OCT	NOV	OEC	Yeer
Flows Avg.	1.761	1.592	2818	3209	1.224	0.349	0480	1.443	2.288	2.130	3.758	2.530	1.982
$m^{2} s^{-1}$: Peak	3658	818	3648	27.94	2561	051	484	5165	25.21	31.72	3768	4315	51.65
Rumotf (mm)	80	68	128	141	56	15	22	66	101	97	166	115	1055
Rainfall (mm)	62	77	150	148	68	20	84	141	140	127	163	104	1284
Monthly and yearly statistics for previous record (Jut 1970 to Dec 1991 -incomplete or misaing montha total 2.2 years)													
Meen Avo	3032	2.490	2.487	1.457	1.132	1.067	0889	1.203	1322	2038	2.642	2.814	1.879
Hows Low	1646	0722	0945	0389	0331	0316	0302	0.243	0316	0247	0694	1.011	1.201
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{y}$ thgh	4893	6.677	4.882	2.842	2.605	2.134	2632	4407	3.296	3.589	6.000	4.705	2.470
Paek flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	83.02	73.28	44.44	35.55	6014	95.07	39.21	138.90	58.88	128.80	118.70	6789	138.90
Rumotf (mm)	138	103	113	64	52	47	41	55	58	93	116	128	1009
Renfall (mm)	140	101	116	67	75	77	90	102	100	124	134	142	1288
Foctors offocling runoff: N Station typo: FVVA										1992 runott is 105\% of provous mean rainfall 101\%			

024004 Bedburn Beck at Bedburn
1992
Measuring authority: NRA -NY First year: 1959
Hydrometric statistics for 1992

		JAN	FE8	MAR	APR	may	JuN	un	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg	0927	0626	1.212	2161	0427	0.200	0.222	0240	0525	0.923	1.586	1939	0.918
$\mathrm{m}^{\mathbf{s}} \mathrm{s}^{1} \mathrm{l}$:	Peak	4.29	138	2568	910	0.99	051	169	557	9.36	8.25	4.51	1548	25.66
Runoff (mm)		33	21	43	75	15	7	8	9	18	33	55	69	388
Rantall (mm)		35	46	99	103	26	29	63	93	96	72	101	74	837

Monthly and yearty statistics for previous record (Oct 1959 to Dec 1991 -incomplete or missing months total 0.2 yeare)

024009 Wear at Chester le Street

Measuring authority: NRA.NY First yoar 1977

Grid reference: 45 (NZ) 283512 Level $\sin (m$ OD): 550

Catchment area (sq km) 1008.3 Maxalt. (m OD): 747

Hydrometric statistics for 1992

025001 Tees at Broken Scar

Measuring authority: NRA.NY
First year: 1956
Hydrometric statistics for 1992

		JAN	fer	MAR	APR	MAY	Jun	Mr	AUG	SEP	OCT	NOV	OEC	Year
Fows	Avg	15.620	14930	28090	28.160	7955	4369	4809	8509	11.680	12360	28240	34680	16.610
$\mathrm{m}^{\mathbf{s}} \mathrm{s}^{-1}$	Poak	10280	122.80	289.40	10450	5747	5.99	14.90		13540	10890	107.90	35090	
Runots (mm)		51	46	92	89	26	14	16	28	37	40	89	114	642
Rannfill (mm)		48	72	133	102	35	19	74	116	108	91	138	114	1050

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1991 -incomplete or mieelng months total 0.1 years)

Comment. Augusi 1992 mean flow estimeted

Grid reference: 45 (NZ) 259137
Leval sin (m OD): 3720

Catchment area (sq km). 8184 Max alt (m OD) 893

025019 Leven at Easby

Measuring authority NRA.NY First year 1971
Hydrometric statistics for 1992

	JAN	fe8	MAR	APR	MAY	JUN	M	AUG	SEP
Hows Avg	0160	0125	0139	0336	0093	0058	0061	0048	0076
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{j}$, Pook	092	039	183	3.98	0.18	017	027	016	085
Runoty (mm)	29	21	25	59	17	10	11	9	13
Renfoll (mm)	46	34	83	95	12	34	80	78	92
Monthty and yearly statistics for provious record (May 1971 to Dec 1991)									
Mean Avg	0294	0292	0288	0238	0168	0.123	0.103	0122	0.112
thows Low	0082	0094	0076	0066	0.069	0062	0044	0038	0039
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{t}$ High	0630	0729	0821	0771	0544	0.239	0.189	0427	0532
Poak llow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	356	4.38	568	936	758	1.99	314	1553	1283
Runot (mm)	53	48	52	42	30	22	19	22	20
Ramidul (mm)	77	53	70	56	57	63	60	72	68

Factors affecting runoff N
Station type FV

Grad reforence: 45 (NZ) 585087
Level sin. (m OOH 101.30
Catchment area (5 cq km . 148 Max alı (m OD) 335

025020 Skerne at Preston le Skerne

Mossurang outhority: NRA.NY
First yoer: 1972
Hydrometric statistics for 1992

	Jan	FEB	MAR	APA	may	NiN	以	AUG	$\mathbf{S \in P}$	OCT	NOV	OEC	Yeat
Flows Avg.	0.337	0349	0.259	1817	0132	0.101	0095	0099	0.146	0269	0.663	1.627	0.490
$m^{2} s^{-1} 1:$ Peak	1.90	236	4.04	1666	029	086	043	048	1.57	1.93	229	1037	16.68
Rumoty (mm)	6	6	5	32	2	2	2	2	3	5	12	30	105
Rainfall (rmil)	27	31	53	84	15	18	60	74	81	69	62	56	630
Monthty and yearly statistics for previous record (Dec 1972 to Dec 1991 -incomplete or missing months total 0.3 years)													
Moan Avg.	1.521	1278	1.320	0911	0627	0426	0.376	0367	0313	0731	0809	1310	0.831
flows Low	0.338	0481	0293	0162	0.168	0112	0121	0077	0082	0.099	0129	0325	0.268
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	3.378	2.731	4.824	2.734	2. 106	1004	1125	0.943	0.745	4290	1.962	4.658	1.510
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2008	12.93	2658	19.20	1193	1654	15.92	13.69	933	21.71	1740	2482	26.58
Runolf (mm)	28	21	24	16	11	8	7	7	6	13	14	24	178
Rainfall (mm)	58	40	54	43	49	54	48	60	55	59	57	59	638

Foctore sffocting runolf: E
Station iypo: VA

Gind reforence 45 (NZ) 292238
Level stn. (m OD): 6750

Catchment area (sq km): 147.0 Max sit. (m OD): 222
\qquad

026003 Foston Beck at Foston Mill

Meosuring authority: NRA.NY
Grid reference: 54 (TA) 093548
Catchmont area (sq km) 572
First yoor: 1959
Lovel sin (m OD). 640
Max alt. (m OD): 164
Hydromatric statistics for 1992

026005 Gypsey Race at Boynton

Measuring outhority: NRA.NY
Firsi yore: 1981
Hydrometric statistics for 1992

		jan	reb	MAR	APr	MAY	JUN	un	AUG
Flows $\left.m^{\prime} s^{-1}\right):$	Avg Poak	$\begin{array}{r} 0008 \\ 002 \end{array}$	$\begin{array}{r} 0.008 \\ 001 \end{array}$	$\begin{array}{r} 0006 \\ 004 \end{array}$	$\begin{array}{r} 0015 \\ 003 \end{array}$	$\begin{array}{r} 0002 \\ 001 \end{array}$	$\begin{array}{r} 0000 \\ 0.00 \end{array}$	$\begin{array}{r} 0001 \\ 001 \end{array}$	$\begin{array}{r} 0000 \\ 000 \end{array}$
Runoff (mm)		0	0	0	0	0	0	0	0
Ronfall (mm)		31	30	75	65	10	37	103	76

Monthly and yearty statistics for previous record (Feb 1981 to Dec 1991)

Meon Avg.	0177	0329	0.356	0465	0427	0.259	0147	0066	0031	0014	0013	0034	0192
Nows Low	0006	0005	0006	0002	0000	0000	0000	0000	0000	0000	0000	0003	0.004
$\left.\mathrm{m}^{2}-\mathrm{s}^{\prime}\right) \mathrm{High}$	0475	0887	0.872	1585	1217	0623	0.351	0184	0098	0055	0033	0082	0.349
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	0.72	100	1.86	187	1.58	086	060	028	0.29	0.14	008	028	1.87
Rumoti (mm)	2	3	4	5	5	3	2)	0	0	0	0	25
Reonfall (mm)	64	52	69	49	46	55	49	55	52	64	87	64	686
Foctors affocting Stotion type: FV	ff: G									199	notl is fall 10	of pre	s mear

Catchment area (sq km) 2400 Max alt. (m OD). 21

SEP	OCT	NOV	OEC	Yoat	
0003	0011	0019	0033	0.008	
002	003	004	010	010	
0	0	0	0	1	
101	84	75	61	748	
0031	0014	0013	0034	0192	
0000	0000	0000	0003	0.004	
0098	0055	0033	0082	0.349	
0.29	0.14	008	028	1.87	
0	0	0	0	25	
52	64	87	64	886	
	1992 runoti is 4\% of previous mean				
rainfall 109%					

027007 Ure at Westwick Lock

Moasuring authorily: NRA.NY First yoar: 1958

Grid reference: 44 (SE) 35667
Leval sin. (m OD): 14.20
Caichment area (sq kmi: 9146 Max alt. (m OD): 713
Hydrometric statistics for 1992

		JAN	FEB	MAR	APR	may	JUN	M	avg	SEP	OCT	NOV	DeC	Yoa
Flows	Avg.	19.340	19770	29.420	24380	10790	3677	4.545	10800	18.590	13.060	35560	47.140	19.747
$m^{3} s^{-1}$)	Pook	186.10	144.40	15830	10300	104.40	747	2659	81.45	10620	7672	109.70	32080	320.80
Runotf (mm)		57	54	86	69	32	10	13	32	53	38	101	138	683
Rainfoll (mm)		60	76	134	94	51	27	76	131	116	75	148	121	1109

Monthly and yearly statistica for previous record (Oct 1958 to 0 ec 1991 -incomplete or miasing months totel 05 yeara)

027025 Rother at Woodhouse Mill

Measuring authority. NRA.NY
First year: 1961
Hydrometric statistics for 1992

	JAN	FEB	MAA	APR	May	JN	NK	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	3086	1790	2835	2.212	1388	1.940	1.752	2016	2.341	3598	7.830	8841	3.308
$m^{\prime} s^{-1} \mathrm{l}$: Poak	16.68	286	870	4.74	816	11.66	11.27	1264	1968	2022	3888	46.03	46.03
Rumoti [mm)	23	13	22	16	11	14	13	15	17	27	58	67	297
Reinfoll (mm)	36	25	65	39	48	64	78	104	72	69	113	69	782
Monthly and yearty statistics for previous record (Oct 1981 to Dec 1991 -incomplate or missing montts total 2.5 years)													
Mean Avg.	6.971	6824	6294	5151	3.642	2868	1951	1947	2070	2809	4.364	6.211	4.248
ftows Low	1.287	1.424	1830	1400	1.257	1186	0.934	0.760	0712	0693	1023	2393	2.540
$m^{3} s^{-1} 1 \quad \mathrm{Hrgh}$	13000	22440	14330	13160	10110	10.840	4907	3323	7786	7.600	8.200	18.140	6.364
Poak flow $\left\{\mathrm{m}^{2} s^{-1}\right\}$	60.30	78.80	5321	78.14	6140	105.40	4563	33.55	4559	4174	5055	9146	105.40
Runoff (mm)	53	47	48	38	28	21	15	15	15	21	32	47	380
Rentall (mm)	72	59	66	62	60	65	53	60	60	65	72	76	770
Factors affecting runoff: SRPGEI Station type VA													

Station type VA

Grid reference: 43 (SK) 432857
Level \sin (m OD) 28.70

Catchment area (sq km): $\mathbf{3 5 2 . 2}$ Max alt. (m OO). 367

027030 Dearne at Adwick

Measuring authority NRA.NY First year: 1963
Hydrometric statistics for 1992

Grid referonce: 44 (SE) 477020 Leval stn. (m OO): 12.70

Catchment area (sq km): 310.8 Max att (m OD): 381
runaff is 66%

027042 Dove at Kirkby Mills

Mossuring outhority: NRA.NY
Firsi year: 1972
Hydrometric atatistics for 1992

	JAN	FE8	MAR	APR	may	JN	M	AUG	SEP
Ftows Aug.	0.736	0684	1061	1831	0.461	0257	0269	0260	0515
$m^{3} g^{-1}$]. Peak	2.55	179	1184	10.91	1.17	078	085	188	6.18
Runatf (mm)	33	29	48	80	21	11	12	12	23
Rainfall (mm)	40	46	120	91	11	24	78	90	109
Monthly and yoarty statistics for previous record (Fet 1972 to Dec 1991)									
Mean Avg.	1.662	1640	1651	1.175	0782	0808	0.501	0534	0608
flows Low	0.589	0541	0347	0376	0329	0279	0211	0.161	0170
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{l}$ High	2.861	3.180	4701	2915	1.702	1099	1.021	1.397	2.743
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	37.45	4151	4093	27.63	3001	743	19.33	3236	5638
Aunotf (mm)	75	68	75	51	35	27	23	24	27
Resnfall (mm)	93	64	85	59	62	65	67	73	79

Factors affecting runoff: N
Station type FV

Grid reference 44 (SE) 705855
Level sin (m OD): 3560

Catchment area (sq km) 59.2 Max alt. (m OO): 433
\qquad

OCT	NOV	OEC	Year
0965	1.279	2.115	0.869
6.79	755	2695	28.95
44	58	96	484
91	108	71	879
0953	1147	1.593	1.089
0.251	0499	0.664	0.576
2683	2032	3237	1.554
24.71	2385	53.38	56.30
43	50	72	570
91	85	93	918
1992	runoff is 81%	of prevrous mean	
rainfall	96%		

1992

027043 Wharfe at Addingham

Mossuring outhority NRA.NY
Fust year 1974
Hydrometric statistics for 1992

		JAN	FEB	MAP	APR	may	Jun	M	AUG	SEP	OCT	MOV	Dec	Yose
Flows	Avg	13.710	12540	24030	15580	6830	2.244	2.368	7.228	10900	9418	23710	24270	12.733
$m^{2} s^{-1}$.	Peak	26860	15300	130.90	11680	8674	438	13.35	8806	75.30	75.76	9361	200.60	288.60
Runott (mm)		86	74	151	95	43	14	15	45	66	59	144	152	943
Remfall (mm)		98	121	185	133	56	25	81	166	124	103	201	150	1443

Monthly and yaarty statiatics for provious record (Jan 1974 to Dec 1991 —incomplate or misaing months total 0.2 years)

Mean Avg.	25.180	18490	20370	10200	6.568	5. 109	4.912	B 390	11490	17470	21360	24.150	14.471
nows Low	10840	5157	6391	2453	1.623	1.722	1.245	1143	2359	6422	8263	5.972	10.487
	33.790	37.780	52490	21.970	16100	10320	12.730	26.270	23.460	37310	32450	44680	19.543
Peak flow ($\mathrm{m}^{3} \mathrm{c}^{-1}$)	509.00	39100	55260	205.10	100.90	114.70	163.80	273.80	244.90	37000	40000	320.30	552.60
Runotf (mm)	158	106	128	62	41	31	31	53	70	110	130	151	1070
Reinfed (mm)	164	105	132	73	72	85	80	113	123	145	146	171	1409
Factors affocting runoff: S P Station type: C VA										1992 runoff is 88% of provrous mean ranfall 102\%			

027047 Snaizeholme Beck at Low Houses

1992
Measuring outhority: NRA.NY First yoer: 1972
Hydrometric statistics for 1992

	JAN	feb	MAR	APR	MAY	JUN	Jur	AUG	SEP	OCT	NOV	OEC	Year
Flowe Avg	0.428	0.651	0.909	0573	0259	0025	0.118	0.565	0641	0383	1113	0957	0.551
$m^{3} s^{-1}$ \}: Poak	1019	10.47	7.78	854	1153	026	2.74	7.40	10.11	6.94	1093	1485	14.85
Punots (mm)	112	160	239	146	68	6	31	148	163	101	283	251	1708
Ranfall (mm)	94	167	230	154	80	25	118	226	178	118	262	222	1874
Monthly and yearty statistics for previous record (Aug 1972 to Dec 1991 -Incomplete or missing monthe total 1.0 yeart)													
Mean Avg.	0.938	0.769	0.730	0344	0231	0209	0.227	0.328	0488	0.693	0.870	0973	0.588
flows Low	0.443	0.222	0.224	0.047	0024	0029	0021	0029	0049	0153	0.389	0.376	0.425
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ Hogh	1.498	1.774	1.689	0700	0.724	0.510	0798	0738	0995	1124	1365	1611	0.044
Peak llow $\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$ \}	14.82	15.46	1445	1266	1467	1158	10.47	14.90	1574	12.22	16.10	1460	18.10
Rumotf (mm)	246	184	192	87	61	53	60	86	124	182	221	256	1752
Rainfall (mm)	198	138	162	84	87	97	104	137	151	177	210	217	1782
Fectors affecting runatf: N Station type: FV										1992 runoft is 98% of provious mean rainfall 106\%			

027050 Esk at Sleights

Mebsuring outhorily: NRA.NY
First yoer: 1970
Hydrometric statistica for 1992

		JAN	FEB	MAR	APR	may	Jun	NL	AUG	StP	OCT	NOV	OEC	Yeer
Flow:	Avg	3.445	2.973	5.199	8948	1278	0748	1079	0.690	3.777	5860	6.510	11.790	4.359
$m^{2} s^{-1}$]:	Peek	1969	10.43	8697	10320	345	197	8.58	401	11500	6144	8205	119.70	119.70
Runots (mm)		30	24	45	75	11	6	9	6	32	51	55	103	448
Ramiall (mm)		42	45	98	93	11	35	87	79	121	101	94	83	889

Monthly and yearty statistics for previous record tOct 1970 to Dec 1991 -incomplete or misaling months total 1.6 yeara)

(1980.1991)

Foctors affocting runotf: \mathbf{N}
Station type: B VA

Grid reterence 45 (NZ) 865081
Lovel stn (m OD). 4.90

Catchment area (sq km): 3080 Max att. (m OO): 435

Gird reference. 34 (SO) 833883
Leval stn. (m OD): 260.00

Cotchment ereo (sq km): 102 Max alt. (m OD): 668

027071 Swale at Crakehill

Moasuring outhorily: NRA.NY First yoar: 1980

Grad reference: 44 (SE) 425734
Leval sin. (m OO). 12.00

Catchment ares (sa km): 1363.0 Max olt (m OD): 713

Hydrometric statistics for 1992

		JAN	FEB	MAR	APR	MAY	JUN	M	AUG	SEP	OCT	MOV	0×1	Year
Flows	Avg	16.850	14.880	17.760	26.760	8374	3.774	4493	7487	12710	11.820	26.670	44.470	18.317
$m^{2} s^{-1}$]:	Peek	9468	64.89	15640	152.30	4394	6.74	11.48	51.99	8201	6553	73.44	21940	219.40
Punots (mm)		33	27	35	51	16	7	9	15	24	23	51	87	379
Remiall (mm)		44	45	90	77	30	26	70	98	95	68	99	84	824

Monthly and yearty statistics for previous record (Nov 1955 to Dec 1991 -incomplate or misaing months total 0.2 years)

Maen	Avg	33.150	29.10	26860	19.220	12.860	9435	8.582	11.880	11.350	18.570	23460	29080	19.435
flows	Low	6.908	5465	7.465	7.120	4585	3739	2.712	1959	2082	4.270	7131	9.007	11.155
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	56.800	64050	71680	46690	32.370	23.110	21.790	50.310	33.140	53.710	52200	62830	26.046
Poak flow	3^{-13}	230.70	225.50	25570	18330	16590	12980	136.50	19980	175.10	23270	19790	20750	255.70
Runotf (mm		65	53	52	37	25	18	17	23	22	36	45	57	450
Rainfall (mm		85	83	87	56	57	62	68	82	70	75	79	86	848

Fectors sffecting runolf; N
Station typo: C VA

028018 Dove at Marston on Dove

1992

Firsi year. 1961
Grad refarence 43 (SK) 235288
Cotchment ares (sa km): 8832

Hydrometric statistics for 1992

	JAN	FEE	R	APPA	MAY	JN	以近	AUS	SEP	OCT	NOV	OEC	Yoer
Flows Avg	12230	10230	18000	12.800	7525	6841	4466	5858	6.422	12380	22.920	25890	12.139
$\mathrm{m}^{3}{ }^{\text {¢ }}$] Peak	42.08	3752	6016	24.39	1695	1840	972	4259	1162	6236	8595	12550	125.50
Runoty (mm)	37	29	55	38	23	20	14	18	19	38	67	79	435
Rainfal (mm)	55	45	86	58	63	67	85	141	74	96	136	83	989
Monthty and yearty statistics for previous record lOct 1961 to Dec 1991 -incomplete or missing months total 0.1 years)													
Mean Avg.	22350	19700	17710	14370	11400	8796	7332	7435	7.972	10580	16090	21100	13.713
flows Low	7822	4615	8943	6195	4831	3.452	2434	1913	2777	3222	5684	7.907	7.724
$\mathrm{m}^{3} \mathrm{~s}^{1 /} \mathrm{H}$ Hogh	32880	55910	36570	24.550	22.480	16280	15530	14630	29350	22.830	31070	56460	19.411
Peak flow (m's ${ }^{-1}$	191.40	19460	12970	12100	12140	7302	7710	11360	11390	132.10	13080	22340	223.40
Punotf (mm)	68	54	54	42	35	28	22	23	23	32	47	64	490
Renial (mm)	91	68	77	66	70	77	66	78	77	83	93	96	942

Factors affecting runoff. SRPG
1992 rumoff is 89% of provious mean
Station type: FVVA

028024 Wreake at Syston Mill

Measuring authority NRA.ST
First year 1967
Hydrometric statistics for 1992

		JAN	FEB	MAR	APR	Mar	JUN	Mr	AUG	SEP	OCT	NOV	$0 \times C$	Yoer
Flows	Avg	4.143	1450	2703	1.961	0846	1177	1476	1255	4841	6.311	7618	7.594	3.454
$m^{3} s^{-1} \mathrm{f}$	Pask	34.14	2.10	1204	7.31	236	7.29	5.96	289	32.52	32.40	31.13	3576	35.76
Runott (mm)		27	9	18	12	5	7	10	8	30	41	48	49	284
Aantull (mm)		52	17	72	39	40	42	113	86	96	81	84	49	771

Monthly and yearty statistics for previous record (Aug 1987 to Dec 1991 -incomplete or misaing monthe total 1.6 years)

Mean	Avg	5627	5.998	4750	3452	2.075	1.134	0901	O814	0.754	1318	2306	4.159	2.759
flows	Low	0959	0.619	0.494	0358	0286	0222	0.138	0122	0.254	0264	0418	0745	0.923
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$	High	10150	21740	12630	8772	8.117	2.776	4547	3.230	5.367	6.897	7087	11850	4.398
Poak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	43.11	7337	9982	9707	5183	39.17	2688	3044	2161	3168	5025	5295	99.82
Runoff (m)		36	35	31	22	13	7	6	5	5	9	14	27	210
Rainfall (m		54	46	52	47	49	60	45	57	51	52	50	56	619

Grid reference: 43 (SK) 615124 Leval stn. (m OD) 4770

Catchment area (sq km). 413.8 Max oft (m OD). 230

992 runoff is 125\% of prevrous mean rainfall 125\%

028026 Anker at Polesworth

Mesasuring authority NRA.ST
First year: 1966
Hydrometric statistics for 1992

		JAN	Fci	MAR	APP	MAY	JN	Jul	AUG	SEP	OCT	Nov	DeC	Year
Flows	Avg	5149	1604	2389	2501	1.418	1050	1690		3363	3849	. 7309	8632	
$\mathrm{m}^{3} \mathrm{~s}^{1 /}$	Peak	58.78	224	13.53	10.67	1444	474	576		3759	2846	31.17	4385	
Rumoff (mm)		37	11	17	18	10	7	12		24	28	51	63	
Rainfall (mm)		60	21	60	45	61	37	109	110	78	74	98	58	811

Mas	Avg	5246	5392	4210	2850	2.273	1.773	1342	1.341	1.235	1845	2.493	4037	2.828
flows	Low	1298	0953	0650	0657	0686	0484	0343	0405	0711	0728	0855	1.175	1.213
m's ${ }^{-1}$	Hugh	9572	16.200	9.233	6.629	8.389	4650	5580	4173	3.274	4611	5.537	9.473	3.724
Poak flow	m^{-1})	7563	73.18	56.09	4584	5977	5268	5934	4503	3134	36.25	4577	7401	75.63
Punoti (mmen		38	36	31	20	17	12	10	10	9	13 -	18	29	242
Rentall (m		58	52	54	45	49	62	47	54	58	55	50	60	644

-\{1971.1991\}
Fectors affocting runoff: GE
Stathon type: C VA
Comment: Channel enginaoring undertaken in Augusi 1992

Grid reference 43 (SK) 263034 Level stn. (m OD) 6040

Catchment aroa (sq km): 3680
Max alt (m OO): 278
\qquad
028031 Manifold at Ilam

Moasuring authority NRA-ST
First year: 1968
Hydrometric statistics for 1992

	JAN	FEB	MAA	APR	MAY	UN	Ju	AUS	SEP	$0 \times T$	NOV	$0 \in C$	Year
Flows Avg	3429	3257	5411	3402	1868	1429	0855	1.793	2018	4400	7045	6950	3.473
m's' '). Peak	2085	2139	2729	-10	487	346	180	3483	528	3850	3959	5312	53.12
Runotf (mm)	62	55	98	59	30	25	15	32	35	79	123	125	739
Rainfoll (mm)	61	54	99	67	68	75	92	161	81	111	158	99	1124
Monthty and yearty statistics for provious record (May 1988 to Dec 1991 - incomplete or misaing months total 0.1 years)													
Mean Avg.	6189	5113	4964	3657	2.352	1857	1503	1.758	1.716	2915	4849	5358	3.513
flows Low	2581	2489	2528	1.277	0812	0745	0493	0386	0458	0716	1555	2135	2.241
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{H}$ ($\mathrm{Hgh}^{\text {c }}$	8522	12710	9.455	6200	5.713	5150	3506	4560	4147	6697	8198	9995	4.806
Peok flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	80.13	1453	6672	4736	5240	39.58	37.29	13700	45.69	75.78	9161	160.50	180.50
Runott (mm)	112	84	90	64	42	32	21	32	30	53	85	97	747
Reniall (mm)* $\cdot\{1969$ 1991)	120	84	97	73	70	83	11	77	82	98	115	113	1083
Factors affecting runoff. PE Station type C										1992 runoff is 99\% of previous mean rainfall 104\%			

028039 Rea at Calthorpe Park

Meosuring authority: NRA.ST Fural year: 1967

Hydrometric statistics for 1992

	JAN	$5 E 8$	MAR	APR	May	JuN	Nr	AUG	SEP	OCT	NOV	OCC	Year
Flows A	1.108	0.464	0574	0615	0737	0.444	0.957	0905	0612	0825	1453	1495	0.852
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l}$: Peak	26.20	165	3.32	8.54	28.75	648	17.58	19.17	7.16	1206	1561	2696	28.75
Aunotf (mm)	40	16	21	22	27	16	35	33	21	30	51	54	368
Ranntall (mm)	79	28	61	53	78	43	104	137	65	79	118	73	918
Monthly and yearty statistics for previous record (May 1987 to Dec 1991 -incomplate or mikeing momhe total 1.1 years)													
Meen Avg.	1.198	1062	1021	0802	0.715	0656	0530	0625	0.604	0.674	0844	1.079	0.817
flowe Low	0483	0549	0475	0.316	0.319	0287	0257	0.287	0295	0320	0493	0.380	0.602
$\mathrm{m}^{2} s^{-1}$) Prgh	1.985	2.610	2101	1489	1.780	1.324	1018	1368	1423	1408	1.753	1934	1.058
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	38.71	2744	2864	25.15	3037	3744	46.86	4638	4085	2468	2497	5402	54.02
Runolf (mm)	43	35	37	28	26	23	19	23	21	24	30	39	348
Rainfal (mm)*	77	60	66	57	62	64	56	70	66	64	70	76	788

Foctors affocting runoff: E
Station typo: BC
Commont: Novombor 1992 mean flow estimated

Grid reforence. 42 (SP) 071847
Level stn. (m OD): 104.20

Catchment area (sq km): 74.0 Max alt (m OD) 291

1992 runaff is 105\% of previous mean rainfall 116\%

028052 Sow at Great Bridgford

Moosuring authority: NRA-ST
First year: 1971
Hydrometric statistics for 1992

	JAN	FE8	MAR	APA	Mar	JNW	Ω	Aug	SEP	OCT	NOV	DCC	Yes
Flows Avg	0.914	0625	1.143	0856	0.596	0.668	0419	0524	0.539	0829	2461	2209	0.982
$m^{3} s^{-1}$: Paok	371	080	3.98	204	3.18	2.38	097	2.28	072	362	951	1019 .	10.19
Rumotr (mm)	15	10	19	14	10	11	7	9	9	14	39	36	191
Rainfoll (mm)	53	40	79	50	70	52	76	133	61	80	118	60	872
Monthty and yearly etatistics for previous record ifun 1971 to Dac 1991 -incomplate or misaing months total 2.5 vears)													
Moan Avg.	1.868	1898	1.630	1.241	0895	0769	0.596	0742	0.543	0820	1.002	1.534	1.125
flows Low	0.753	0789	0832	0520	0474	0315	0174	0.138	0277	0317	0379	0524	0.711
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	2.715	4607	3448	2258	1.925	1.426	1388	3047	0.818	1731	2030	2561	1.593
Paek flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	1107	18.82	921	986	18.05	9.78	1089	15.11	3.51	9.55	7.20	12.72	18.82
Runoff (mm)	31	28	27	20	15	12	10	12	9	13	16	25	218
Rainfoll (mm)	70	57	63	47	55	64	53	58	70	66	69	71	743
Fectors aflocting runolf: GE													

Gnd reference: 33 (SN) 883270
Lavel stn. (m OD): 77.10

Catchment aros (sq km): 163.0 Max slt. (m OD). 168

Factors affecting runolf: GE ramfan 117\%

028067 Derwent at Church Wilne

Moosuring outhority. NRA.ST
First yoar: 1973
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	may	JN	0	AUG	SEP	OCr	Nov	DEC	Yee
Flowe Avg.	16.620	10020	18540	16060	8.918	8.710	7098	7.546	8787	15.510	31.270	41340	15.897
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	5407	16.61	45.12	3121	1587	2593	19.28	19.21	2581	5311	8303	134.10	134.10
Rumolt (mm)	36	21	42	35	20	19	16	17	19	35	69	94	427
Rainfor (mm)	55	45	92	64	50	63	88	134	79	101	143	92	1008
Monthly and yearty statistics for previous record (May 1973 to Dec 1991)													
Moen Arg.	34.150	32.130	29.280	21950	14090	11350	8770	8.108	8174	13.310	18.560	27.300	18.874
flow L Low	13.270	13050	10210	7891	6652	5411	4.445	3965	4429	4933	5.152	9.272	10.267
$m^{3} z^{-1} 1 \quad \mathrm{Hagh}$	52.530	81.270	59.290	40.240	28060	23060	22.050	16600	14200	31.970	35.860	46.890	25.542
Peak fow ($\mathrm{m}^{2} \mathrm{i}^{-1}$)	194.10	215.70	173.80	15840	142.20	118.70	158.20	153.60	71.96	146.50	9466	214.70	215.70
Runotf (mm)	78	67	67	48	32	25	20	18	18	30	41	62	506
Roinfall (mm)	110	79	92	64	62	78	61	73	78	95	91	110	993
Foctors offocling runoff: SPEI 1992 runoff is 84\% of previous													

Stotion type: FV

Grad reforence 43 (SK) 438316
Leval sin. (m OO): 3100

Catchment area (sa km): 11775 Max alt (m OD) 636
moff is 84\% of previous moan rainfall 101\%

028080 Tame at Lea Marston Lakes

Moasuring outhority: NRA-ST
First yoar: 1957
Hydrometric statistics for 1992

		JAN	FEB	MAR	APA	may	JN	Ju	AUG	SEP	$0 \subset 1$	NOV	$0 \times C$	Year
Flow:	Avg.	18.200	10240	11.380	12050	12130	11.350	14.540	13.440	10850	14360	21450	23.630	14.328
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$:	Peak	125.90	2042	26.81	40.72	101.20	59.27	67.41	57.85	33.38	5994	6907	117.30	125.90
Runotf (mm)		54	32	38	39	41	37	49	45	35	48	70	79	587
Reinfell (mm)		66	26	59	49	73	40	101	126	66	75	112	62	855

Monthly and yearly statiatics for previous record (Oct 1957 to Dec 1991 -incomplete or misaing monthe total 0.2 years)

028082 Soar at Littlethorpe

1992

Measuring authority: NRA.ST
First year: 1971
Hydrometric statistics for 1992

	JAN	feb	MAR	APA	MAY	JuN	Nr	AUG	SEP	OCT	Mov	OEC	Year
Flows Avg.	1.743	0.713	1064	1073	0541	0452	0603	0643	1771	1.786	3278	3.354	1.420
$m^{2} s^{-1} \mathrm{y}$. Peak	16.55	107	661	486	3.73	221	1.80	2.09	14.47	9.47	1204	15.28	16.55
Rumoff (mm)	25	10	15	15	8	6	9	9	25	26	46	49	244
Rainfall (mm)	56	20	61	45	58	33	117	107	88	75	100	52	810
Monthly and yearly statistics for previous record (Aug 1971 to Dec 1991 -incomplete or misaing monthe total 0.2 yeara)													
Mean Avg.	2.673	2.644	2.270	1537	1026	0919	0.536	0651	0.535	0866	1233	2233	1.422
flows Low	0.713	0568	0424	0346	0350	0245	0.164	0.225	0307	0.338	0.398	0.553	0644
$\mathrm{m}^{2}-{ }^{-1} \mathrm{l}$ High	4681	6.868	5031	3105	2.654	2346	1447	2.242	1.608	2921	2.714	5101	2.133
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	23.49	2447	2078	21.18	1493	15.78	13.71	2041	1594	1981	1659	22.46	24.47
Punoff (mm)	39	35	33	22	15	13	8	9	8	13	17	33	244
Rentall (mm)* $\because\{1972-1991\}$	56	46	51	44	49	64	46	57	52	54	51	61	831
Factors affocting runoff: E Station typo: EM										1992 runoff is 100% of previous mean rainlaf 128\%			

Factors affecting runoff: E
Station typa: EM

Gind reference 42 (SP) 542973
Lovet $\sin .(\mathrm{m} \mathrm{OO}): 61.40$

Caschment ares (sq km): 1839
Mox aht. (m ODI. 151

029003 Lud at Louth

Measuring authority: NRA-A
First year 1968
Hydrometric statistics for 1992

030004 Partney Lymn at Partney Mill

Measuring authority: NRA.A
First vear: 1962
Hydrometric statistics for 1992

Monthty and yaarly statistics for previous record Jun 1962 to Dec 1991 —heomplete or miasing months total 0.3 years)

Mean Avg.	0822	0755	0701	0.598	0443	0316	0265	0275	0273	0378	0522	0689	0.502
fows Low	0351	0300	0276	0220	0.192	0116	0088	0.083	0.119	0.134	0190	0.210	0.224
	1.574	1838	1.538	1.518	0888	0691	0883	0.593	0.917	1144	1112	1804	0.754
Pank flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.01	1259	771	1334	1130	8.13	13.38	7.06	684	807	1017	848	13.38
Rumoff (mm)	36	30	30	25	19	13	12	12	11	16	22	30	257
Ronfall (mm)	61	47	59	52	55	58	51	63	52	53	68	62	681

Factors affecting runotf: PI
Station typa. C

Grid reference: 53 (TF) 402676
Level \sin (m OO): 1490

Cutchment area (sq kmi 616 Max alt. (m OO): 142

Hydrometric statistics for 1992

1992 runoti is 71% of previous mean
reinfall 111%

030012 Stainfield Beck at Stainfield

Level sin. (m OD) 7.70
Catchment area (sq km). 374
First year. 1970
Hydrometric statistics for 1992

		JAN 0276	$\mathfrak{F E B}$ FEB	MAR 0164	APA 0207	MAY 0044	ON 0023	NL 0031	AUG 0026	SEP 0.088	$\propto \boldsymbol{\top}$	Nov 0418	DEC 0656	Year 0.190
m ${ }^{\prime}{ }^{\prime}-1$)	Pepk	4.69	050	1.71	101	0	0.12	0.23	0.07	056	2.51	2.85	783	7.83
Runoff (mm)		20	9	12	14	3	2	2	2	6	15	29	47	161
faxicil (mm)		60	24	66	36	35	31	107	87	64	57	70	48	685

Monthly and yearty statistics for previous record (Dec 1970 to Dec 1991 -incomplete or miseing monthe total 0.7 years)

Meon Avg.	0554	0555	0476	0271	0173	0087	0070	0045	0046	0131	0195	0383	0.248
flows Low	0093	0114	0078	0050	0032	0019	0006	0004	0007	0.009	0017	0024	0081
$\mathrm{m}^{\prime} s^{-1}$) $\mathrm{H}_{1} \mathrm{~g}^{\text {h }}$	1.050	1.521	1078	0.838	0496	0202	0.524	0.181	0197	0.780	0.729	1084	0414
Peak flow ($\mathrm{m}^{3} \mathbf{3}^{-1}$)	2153	11.04	10.00	1242	858	423	17.57	5.91	393	1233	641	749	21.53
Runoty (mm)	40	36	34	19	12	6	5	3	3	9	13	27	209
Recnfall (mm)	53	44	58	45	48	54	43	53	48	52	54	57	615
Factors affecting runotf. N Station type: CC										1992 runoff is 77% of previcus mean rainfall 111\%			

031010 Chater at Fosters Bridge

1992

Masasuring authority NRA.A
First year: 1988
Hydrometric statistics for 1992

	JAN	FE8	MAR	APR	may	Jun	NL	AUG,	SEP	OCT	Mov	DeC	Year
Flows Avg.	0590	0206	0451	0337	0124	0140	01.39	0.191	0883	1.188	1.343	1.253	0.571
$\mathrm{m}^{\prime} \mathrm{s}^{-1 \mathrm{~J}}$: Posk	8.58	027	2.36	110	042	109	113	061	15.04	9.04	638	719	15.04
Aunoti (mm)	23	7	18	13	5	5	5	7	33	46	51	49	282
Romisa (mm)	59	16	71	39	47	54	110	110	117	92	88	40	843
Monthly and yearty statistics for provious record (Feb 1968 to Dec 19911													
Hean Avg.	0.941	0960	0838	0641	0440	0284	0191	0.179	0170	0291	0418	0705	0.503
flow: Low	0147	0106	0090	0065	0051	0033	0.024	0044	0061	0048	0073	0098	0.198
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{~J}$ Hegh	1.724	3094	1677	1670	1471	0.717	0867	0818	0.997	1018	1.208	1468	0.828
Poak llow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	15.99	1608	1577	1507	1644	1178	2064	2076	425	683	1248	1100	20.76
Punot (mm)	37	34	33	24	17	11	7	7	6	11	16	27	230
Ramiser (mm)	58	46	53	51	52	59	51	62	51	51	58	58	850
Factors affecting runoff: \mathbf{N} Station typo: CC										1992 runoff is 114% of previous mean rainfall 130\%			

032003 Harpers Brook at Old Mill Bridge

1992

Morsurng outhority: NRA.A
First yoar: 1938
Grid reference 42 (SP) 983799
Level sin (m OO) 3030
Catchment area (sq km): 743

Hydrometric statistics for 1992

	JAN	feb	MAR	APR	Mar	תN	Ω	AUG	SEP	OCT	NOV	DeC	Year
Flowe Avg	0.608	0.162	0281	0238	0126	0185	0.181	0371		1005	1220	1.117	
$m^{2} z^{-1}$). Poak	14.27	048	309	088	1.10	281	123	485		10.23	746	12.38	
Rumolf (mm)	22	5	10	8	5	6	7	13		36	43	40	
Reanfall (mm)	63	14	58	35	58	57	111	122	112	80	83	40	831
Monthly and yoarty statistics for provious record (Dec 1938 to Dec 1991 -incomptate of missing monthe total 0.6 years)													
Mgan Avg.	0.770	0.801	0.702	0487	0303	0196	0144	0150	0140	0210	0415	0573	0.406
flows Low	0.097	0080	0076	0066	0056	0049	0052	0.048	0049	0057	0069	0.077	0.159
$\left.m^{3} a^{-1}\right) \quad H_{1}\left(g^{+}\right.$	2.768	2485	2.363	1.334	1.248	0606	0.685	0791	1147	1176	1688	1.762	0.676
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1608	18.58	1701	2200	18.65	10.54	1249	2050	6.80	16.58	1174	1790	22.00
Punotf (mm)	28	26	25	17	11	7	5	5	5	8	14	21	172
Rainfall (mm)	58	42	48	45	50	52	52	61	49	53	60	56	626
Factors affocting runofi: N Station typo: CC										1992 runotf is \% of pravious mean ranfah 133\%			

033006 Wissey at Northwold

1992

Mossuring outhorily NRA.A
First yoar: 1956
Hydrometric statistics for 1992

		JAN	fe8	MAR	APP	MAY	UN	JuL
Flows	Avg.	0903	0909	1026	1.288	0795	0490	0409
$m^{3} s^{-1}$	Poak	2.97	111	2.45	2.37	1.37	0.70	085
Rumotf (mm)		9	8	10	12	8	5	4
Rointall (mm)		41	23	71	46	47	23	83

Monthly and yearty statistics for previous record (Mar 1958 to Dec 1991)

Mean	Avg.	2.902	2991	2.708	2417	1.837	1362	1100	0.920	0877
flows	Low	0.970	1245	1.295	1.015	0.767	0.579	0319	0.264	0228
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	Migh	5422	5.288	4.702	4.586	3.833	2592	2.234	2.229	2.481
Paek flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	9.31	1129	1223	847	582	3.50	339	400	4.06
Runotl (m		28	27	26	23	18	13	11	9	8
Rainfal (m		57	41	47	45	46	57	58	57	55

Reunofl (mm)
Reinfol (mm)
Factors allocting runoff. PGEI
Stalion typo: FL

Grid reterence: 52 (TL) 771965
Level stn. (m ODI. 5.30
Catchment area (sq km): 2745 Max alt. (m OO) 95

033012 Kym at Meagre Farm

Moesuring outhority: NRA.A
First year: 1960
Hydrometric statistics for 1992

		JAN	FEB	MAR	APPA	MAY	JN	Pu	aug	SEP	0 Cl	NOV	OEC	Year
Fhws	Avg.	0648	0082	0259	0280	0098	0291	0149	0.207	1.685	1.582	2492	1634	0.783
$m^{2} s^{-1} 1$.	Poak	14.90	0.12	4.08	1.84	0.92	603	2.10	1.71	23.40	16.60	13.70	1485	23.40
Rumoff (mm)		13	1	5	5	2	5	3	4	32	31	47	32	180
Rainfall (mm)		60	11	54	43	70	53	89	104	115	76	82	36	793

Monthly and vearty statistics for previous record (May 1980 to Dec 1991 -incomplete or misging months total 0.1 vaars)

Moan Avg.	1325	1.360	1.129	0.777	0351	0224	0132	0099	0053	0383	0.598	0.952	0.612
fows Low	0074	0047	0044	0041	0024	0009	0001	0004	0017	0015	0022	0050	0.103
$\mathrm{m}^{2} \mathrm{a}^{-1}$) Hagh	3.296	5577	3474	2.107	1.469	1489	2438	1.096	0158	3.515	3718	3.328	1.048
Paok flow (m^{3} - ${ }^{\text {- }}$)	25.26	22.70	3024	30.75	2061	24.10	1668	2342	210	2591	34.71	33.98	34.71
Punoty (mm)	26	24	22	15	7	4	3	2	1	7	11	19	140
Ramiall $\{\mathrm{mm}$ \}	49	39	46	49	50	58	49	34	47	51	53	55	600

Factors affocting runoft: El
Station typo: CB
Comment: May and June 1992 flows estimated

Grid raforence. 52 (TL) 155631 Levet \sin. (m OD): 1720

Catchment area (sq km): 137.5 Maxalt (m ODI: 101

033024 Cam at Dernford

1992

Measuring authnerity NRA-A
First year: 1949
Grid roforence: 52 (TL) 466506
Level sin (m OD): 1470

Catchment area (sq km) 1980
Hydrometric statistics for 1992

		JAN	FE8	MAR	APR	MAY	UN	\bigcirc	AUG	SEP	OCT	NOV	OfC	Yoer
Flows	Avg	0.284	0302	0353	0350	0.294	0240	0219	0.254	0415	0953	1317	1368	0.530
$\mathrm{mb}^{3}{ }^{-1}$	Peyk	076	0.45	207	0.89	0.46	042	041	044	1.48	564	631	367	6.31
Runotf (mm)		4	4	5	5	4	3	3	3	5	13	17	19	85
Reantall (mm)		38	15	62	48	50	36	75	76	92	95	71	37	695

Monthly and yearty statistics for previous record (Mer 1949 to Dec 1991 —incomplate or misaing months total 1.2 years)

Mean	Avg	1.419	1.477	1338	1183	0.968	0771	0622	0589	0.562	0.733	0920	1136	0.974
flows	Low	0363	0400	0447	0432	0.403	0318	0184	0248	0155	0.217	0271	0233	0.333
m^{2} - ${ }^{\text {d }}$	Hryh	3.592	2.703	2.608	2431	2.144	1.338	1608	1.542	1.965	2.970	2.790	3492	1.508
Peak flow	$\mathrm{n}^{2}-1$	13.30	1409	10.22	994	1363	694	528	10.70	1099	12.70	1250	1206	14.09
Runotf (m		19	18	18	15	13	10	8	8	7	10	12	15	155
Rainfall (m		49	39	43	41	45	50	53	57	51	53	57	54	592

- 1950.1991)

Faciors affecting runoff GEI
1992 runoff is 55% of previcus mean Station type TP

1992

033027 Rhee at Wimpole

Measuring guthority. NRA-A First year 1965
Hydrometric atatistics for 1992

Monthly and yearly statistics for previous record Hul 1865 to Dec 1991 —incomplete or miseing months total 0.1 years)
 Station type: FL

Grid reference 52 (TL) 333485
Level stn. (m OD) 1790

Calchment area (sq km): 1191 Max alt (m OD): 168

033032 Heacham at Heacham

1992

Measuring authority. NRA.A
First year 1965
Hydrometric statistics for 1992

Factors affocting runott: GI
Stathon iype: C

Grad reference. 53 (TF) 685375
Level stn (m OD) 9.40

Catchment area (sq kmi: 590 Max all (m OD) 88

034003 Bure at Ingworth

Measuring authority: NRA.A
Firsi year: 1959

Grid reference: 63 (TG) 192296
Lovel sin (m OD). 12.20

Cotchment ared (sq km). 1647
Mox att (m OO): 101
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	may	JUN	un	AUS	SEP	OCT	NOV	DEC	Year
Flows Avg.	0951	0792	0952	0.869	0649	0.510	0.621	0.519	0584	0701	1178	1.344	0.808
$\mathrm{m}^{\mathbf{2}} \mathrm{s}^{-1}$): Peak	2.81	085	236	1.52	094	068	1.25	1.13	079	122	226	331	3.31
Runoff (mm)	15	12	15	14	11	8	10	8	9	11	19	22	155
Rainfal (mm)	39	26	82	35	42	19	92	74	60	73	97	52	891
Monthly and yearty statistics for previous record (Jun 1959 to Dec 1991)													
Maen Avg	1535	1446	1286	1202	0.973	0795	0773	0791	0836	0987	1.209	1366	1.099
flows Low	0844	0844	0779	0.688	0600	0495	0493	0472	0548	0649	0688	0.827	0.752
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{~J}$ Higk	2.450	2.954	2115	2.322	1.639	1168	1158	1955	1.823	2428	2024	2.560	1.488
Poak flow (m) m^{-1})	827	1065	645	18.30	607	379	347	1282	926	1017	1005	963	18.30
Runotf (mm)	25	21	21	19	16	13	13	13	13	16	19	22	210
Rainfall (mm)	61	42	49	49	45	50	57	59	56	62	72	65	667

Factors affocting runoff: G I
Station typo: MIS

[^5]
034004 Wensum at Costessey Mill

1992
Measuring suthority. NRA-A
Grad reference 63 (TG) 177128 Loval stn. (m OD): 520

Catchment area (sq kmp 536.1
Hydrometric atatistics for 1992

Monthly and yoarty etatistics for previous record (Feb 1900 to Dec 1991 —incomplete or miacing momthat total 0.2 yeart)

Foctors affecting runolf: G I
Station typa CE
1992 runoff is 56% of previous mean rainfall 107\%
Comment: November 1992 mean flow eslimaled

035008 Gipping at Stowmarket

Measuring authority NRA.A First year 1966
Hydrometric statistics for 1992

037001 Roding at Redbridge

1992

Measuring authority: NRA.T
Firsi year: 1950
Hydrometric statistics for 1992

	JAN	FEB	MAR	APP	MAY	JUN	\cdots	Aug	Scp	OCT	Nov	OEC	Yoen
Flows Avg.	0382	0379	0.574	0704	0721	0371	0435	0472	1320	3620	6249	4239	1.623
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$: Peak	119	126	353	361	1050	2.57	717	558	10.80	1880	2180	1750	21.80
Runotf (mm)	3	3	5	6	6	3	4	4	11	32	53	37	169
Roinfall (mm)	16	18	56	55	58	36	64	80	97	99	88	39	706
Monthly and yearty statistics for previous record (Feb 1950 to Dec 1991)													
Mean Avg	3761	3483	2.725	1903	1181	0834	0624	0655	0807	1361	2075	2.813	1.844
flowe Low	0675	0608	0537	0482	0.280	0226	0202	0224	0197	0283	0364	0392	0.801
$\mathrm{m}^{\prime} \mathrm{s}^{-1} 1$ liggh	10920	10.670	6862	6.768	4.045	2.953	1.975	3925	4009	7883	10340	9455	2.809
Pook flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	4200	4010	3810	2770	3270	2170	2450	3130	2560	3560	62.40	3640	62.40
Runolf (mm)	33	28	24	16	10	7	6	6	7	12	18	25	192
Rainfal (mm)	53	42	46	43	47	52	52	56	56	56	61	56	620
Factors affectung runoff: SEI Station type: EW										1992 runoff is 88% of prevrous mean rainfall 114\%			

037005 Colne at Lexden

1992

Meesuring euthority. NRA.A First year 1959			Grid reference: 52 (TL) 962261 Level stn. (m OD) 820							Catchment erte (sq km) 238.2 Max olt (m OD) 114			
Hydrometric statistics for 1992													
	JAN	FFB	MAA	APA	May	JUN	JUL	AuG	SEP	OCT	Nov	DRC	Year
Fhowe Avg	0594	0450	0714	0671	0421	0337	0315	0297	0753	1427	2581	2340	0.909
$\mathrm{m}^{2} s^{-1} \mathrm{l}$ Pook	219	071	5.23	3.90	136	167	197	086	563	699	1044	9.34	10.44
Runoti (mm)	7	5	8	7	5	4	4	3	8	16	28	26	121
Rainfall (mm)	27	16	65	54	43	49	75	65	101	73	77	38	683
Monthly and yearty statistics for previous record (Oct 1959 to Dec 1991)													
Moen Avg	2015	1789	1625	1205	0770	0495	0370	0357	0383	0736	1107	1451	1.022
flows Low	0460	0346	0380	0358	0229	0146	0101	0088	0175	0188	0288	0.352	0.362
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	6543	4684	3556	3344	2353	1528	0.907	1558	1099	4838	5521	4200	1.732
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	21.13	2265	2068	1334	1256	807	641	886	1050	2481	21.29	2058	2481
Runotf (mm)	23	18	18	13	9	5	4	4	4	8	12	16	135
Rainfoll (mm)	49	35	43	43	43	49	47	48	50	53	57	53	570
Foctors affecting runoff RP I Station type. FL										1992 runoff is 89% of previous meen rainfall 120%			

037010 Blackwater at Appleford Bridge

1992

Messuring suthonity: NRA-A
First year 1962
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	May	JUN	M1	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	1.378	2116	2244	1523	1515	0626	0493	0461	0860	1453	2434	2318	1.449
$\mathrm{m}^{\prime} \mathrm{s}^{1}$) Peak	285	276	662	407	217	140	258	093	494	682	1091	990	10.91
Rumbit (mm)	15	21	24	16	16	7	5	5	9	16	26	25	185
Rainfall (mm)	26	15	66	54	49	41	68	71	94	82	76	37	679
Monthly and yearty statistics for previous record (Oet 1982 to Dec 1991)													
Moun Avg	2114	1959	1814	1476	1033	0809	0582	0516	0528	0817	1184	1628	1.207
flows Low	0532	0460	0479	0479	0341	0356	0182	0161	0.215	0288	0325	0379	0.822
${ }^{6} \mathrm{~m}^{3} \mathrm{~s}^{-1} \mathrm{H} \mathrm{High}$	7.181	4889	3583	3843	2800	1771	1359	$1 / 38$	1651	4955	4676	4307	1.659
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2680	2160	2000	1231	1780	776	410	13.75	1525	2608	20.20	2160	26.80
Runote (mm)	23	19	20	15	11	8	6	6	6	9	12	18	154
Rannall (mm)	49	35	46	44	45	53	46	49	49	49	57	51	573

Factors affecling runoff RPG I
Station type FL
Comment: Runoff augmentod by Ely/Ouse I ransfer Scheme

Grid reference 52 (TL) 845158 Level stn (m OD): 1460

Catchment area (sq km). 247.3
Max alt (m OO) 127

038018 Upper Lee at Water Hall

1992

Measuring authority: NRA-T
Firsi year 1971
Hydrometric statistics for 1992

Station type C

Grid reference 52 (TL) 299099
Level stn (m OD): 4360

Catchment area (sq km) 1500 Max alt (m OD) 229 runoff is 89\%
rainfall 120%

038021 Turkey Brook at Albany Park

Measuring authority NRA-T First year 1971

Hydrometric statistics for 1992

	JAN	FEB	MAR	APA	MAY	JUN	M	AUS	SEP	OCT	Mrov	OfC	Yasr
Flows Avg	0019	0022	0040	0060	0077	0034	0065	0038	0119	0234	0572	0383	0.139
$\mathrm{m}^{3} \mathrm{~s}$ ') Peak	011	015	039	105	198	055	164	104	374	235	6.18	3.34	6.18
Rumoff (mm)	1	1	3	4	5	2	4	2	7	15	35	24	104
Rainfal (imm)	16	18	43	64	66	48	86	79	95	81	100	44	740
Monthly and yearly statistics for previous record (Sep 1971 to Dec 1991)													
Masm Avg	0432	0364	0340	0.221	0161	0091	0042	0050	0053	0169	0223	0308	0.204
flows Low	0037	0042	0024	0020	0009	0021	0009	0008	0 008	0013	0019	0022	0057
m's 't High	1180	0988	0811	0626	0626	0240	0087	0171	0228	0941	1158	0704	0339
Peak flow (m's ${ }^{1}$]	10.50	1150	768	772	2069	1530	238	276	755	1070	1280	1050	20.69
Plunotf (mm)	27	21	22	14	10	6	3	3	3	11	14	20.	153
Rantall (mm)	63	44	57	48	54	56	45	51	51	62	59	62	658
Factors affecting runoff. PG Station type: FV										1992 runoff is 68% of previous mean rainfall 112\%			

039002 Thames at Days Weir

Mesesuring authortly NRA-T
First ynar. 1938
Grid reterence. 41 (SU) 568935 Levelsin. (m OD). 4600

Catchment area ($\mathbf{s q} \mathrm{km}$) 3444.7
Max alt (m OD): 330

Hydrometric stetistics for 1992

Fuctors affecturg runoff PEI
Station type MIS

039005 Beverley Brook at Wimbledon Common
 1992

Moasuring authority: NRA-T
First year. 1935
Hydromatric statistics for 1992

		JAN	fe8	mar	APR	may	JuN	Jul	AUG	SEP	OCT	MOV	DEC	Year
Flowe	Avg	0386	0439	0469	0558	0.581	0.491	0633	0.639	0620	0699	0.910	0.721	0.598
$m^{3} s^{-1}$)	Pask	077	282	2.61	660	841	608	1120	9.35	872	666	11.10	8.15	11.20
Runotf (mm)		24	25	29	33	36	29	39	39	37	43	54	44	432
Remifal (mm)		11	21	41	63	56	42	72	95	71	73	100	51	698

Monthly and yearfy statistice for previous record (Mar 1935 to Dec 1991 -incomplete or miseing months total 23.4 years)

Moan Avg.	0715	0617	0566	0.553	0.480	0484	0.441	0444	0490	0514	0.578	0632	0.542
frows Low	0.280	0244	0.290	0.257	0.214	0157	0.211	0.189	0224	0161	0.274	0247	0.291
$\left.m^{2} s^{-1}\right)$ High	1.237	1208	1023	1.538	1092	0956	0920	0970	1.340	1.321	1415	1057	0.695
Peak flow ($\mathrm{m}^{3}{ }^{-1}$)	1090	14.10	7.51	22.40	1480	12.90	18.51	17.30	1650	1590	1090	1400	22.40
Punoti (mm)	44	34	35	33	29	29	27	27	29	32	34	39	392
Rantall (mm)	59	39	45	43	49	54	49	55	56	61	62	62	634

Factors affecting runofi: GE
Station type: FL

Grad reference 51 (TQ) 216717
Level stn. (m OD): 11.00
Catchment area (sq km): 43.6 Max alt (m OD): 190
$49 \quad 54 \quad 49$
1992 nunoff is 110% of provrous mean ranfall 110\%

039007 Blackwater at Swallowfield

Messuring euthority: NRA-T
First year: 1952
Hydrometric statistics for 1992

039014 Ver at Hansteads

1992

Flows Avg	JAN 0079	fEB 0.076	MAR 0074	APA 0093	MAY 0082	JUN 0.126	JuL 0137	AUG 0.116	SEP 0116	OCT 0141	NOV 0205	OEC 0295	Yoar 0.129
$m^{2} \mathrm{~s}^{-1}$ \%. Pook	011	0.019	022	051	068	0.126 039	0.35	0.28	032	029	0.56	048	0.88
Runotf (mm)	2	1	2	2	2	2	3	2	2	3	4	6	31
Roinfal (mm)	24	22	52	70	93	37	82	111	111	73	122	49	846
Montily and yearly statistica for previous record \{Oct 1958 to Dec 1991\}													
Mean Avg	0464	0529	0556	0.531	0.467	0405	0.339	0297	0.264	0287	0.336	0388	0.405
fows Low	0.126	0176	0139	0114	0069	0.045	0.028	0016	0025	0057	0039	0048	0.095
$\left.m^{3} s^{-1}\right) \mathrm{Hrgh}$	0981	1336	1.312	1.254	1.028	0857	0.651	0564	0.660	0668	0791	0977	0.752
Pask flow ($\mathrm{m}^{3} \mathrm{a}^{-1}$)	177	1.91	188	1.90	207	165	144	113	234	1.50	2.31	264	2.64
Rumall (mm)	9	10	11	10	9	8	7	6	5	6	7	8	97
Reinfall [mm]	65	48	56	52	53	60	53	57	60	67	65	72	708
Factors affocling runoff. G Statron typo: CC										1992 runoft is 32% of provious mean ranfall 119\%			

Mossuring authority: NRA-T
First year: 1956
Hydrometric statistics for 1992

Factors affacling runoff. G
Station typo: CC

Grid reterence: $52(\mathrm{TL}) 151016$
Level stn (m OO) 6130

Catchment areo (sq km): 132.0 Max alt. (m OD) 243

[^6]
039016 Kennet at Theale

Mossuring outhority: NRA.T
First yoar: 196 : First yoar: 1961

Grad refarence 41 (SU) 649708
Levol cin. (m OD): 43.40

Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	may	JuN	Ω	Aug	SEP	OCT	Nov	DEC	Year
Flows Avg.	4.317	5.122	5151	6.555	4.959	3805	4436	4262	6456	6588	12440	23850	7.341
$\mathrm{m}^{3}-1.1$. Peak	687	7.70	8.71	1080	805	618	1040	740	2200	16.80	32.60	3920	39.20
Runoff (mm)	11	12	13	16	13	10	12	11	16	17	31	62	225
Ranfoll (mm)	28	33	61	72	32	47	88	129	108	62	146	78	884
Monthly and yaarty statistics for previous record (Oct 1961 to Dec 1991)													
Moan Avg.	12.950	14.700	14.550	12.520	10.160	8.427	6.383	5601	5237	5983	7.668	9852	9.473
flows Low	4.144	4.401	4.190	3.429	2.739	2041	1620	1.377	2.787	3596	3.943	4333	4.056
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l}$ High	22680	27460	22010	19790	15430	18600	11120	9.542	10000	13970	17.710	18.240	12.882
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	48.30	4480	44.30	3690	3010	7000	1900	2050	3340	2960	4350	47.30	7000
Aunotf (mm)	34	35	38	31	26	21	17	15	13	16	19	26	289
Raintal (mm)	78	52	68	51	59	62	49	64	64	68	73	80	786
Foctors affecting runoff: RGI Sistion type: C										1992 runoff is 78\% of prevrous mean rainfall 115\%			

039019 Lambourn at Shaw

1992

Measuring authority: NRA.T
Fusi year. 1962
Hydrometric statistics for 1992

	JAN	FE8	MAR	APR	MAY	Jun	\boldsymbol{u}	AUG	SEP	OCT	NOV	OfC	Yoer
Flows Avg	0797	0787	0795	0.812	0.731	0655	0680	0682	0765	0885	1221	3200	1.002
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{y}$. Peak	095	101	102	1.00	089	085	0.94	0.92	2.25	128	244	4.15	4.15
Rumoff (mm)	9	8	9	9	8	7	8	8	8	10	14	37	135
Ruinfal (mm)	27	31	53	60	39	44	90	120	123	66	140	71	864
Monthly and yearly statistics for previous record (Oct 1982 to Dec 1991)													
Mean Avg.	1.708	2.189	2.449	2.381	2.108	1.817	1.493	1.268	1.148	1122	1196	1358	1.683
flows Low	0826	0.796	0.743	0.695	0.639	0.573	0538	0485	0681	0683	0757	0710	0.739
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ Hogh	3.410	3719	3.583	3.550	2.979	2.764	2.359	2.048	1.699	1921	2.392	2551	2.151
Poak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	3.93	4.20	4.39	408	3.76	434	306	354	3.75	317	5.02	372	5.02
Punoff (mm)	20	23	28	28	24	20	17	15	13	13	13	16	227
Ranfall (mm)	69	50	64	49	57	60	50	60	60	63	71	75	728

Factors affecting runotf. R G
Staton type: C

Gind reference: 41 (SU) 470682
Level sin. (m OD) 75.60

Catchmont area (sq km): 234 Max att. (m OD): 26

039021 Cherwell at Enslow Mill

Moasuring suthonity: NRA-T
First year: 1965

Grid reference. 42 (SP) 482183 Level stn. (m OD): 65.00

Catchment ares (sq km) 551.7
Max att. (m OD): 239

Hydrometric statistics for 1992

	JAN	FEB	MAA	APP	MAY	JN	u1	Aug
Flows Avg.	4702	3176	2969	4.345	2267	2.571	2062	2.635
$m^{3} z^{-1} \mathrm{j}$ Peak	1780	488	9.70	11.03	8.96	9.47	5.80	637
Rumoff (mm) Rainfol (mm)	23	14	14	20	11	12	10	13
	60	27	56	64	90	30	105	124
Monthty and yeasty statistics for previous record (Fet 1985 to Dec 1991)								
Mean Avg	7.174	7139	6270	4.390	3.252	2.325	1485	1.377
flows Low	0.919	0905	0754	0.566	0.445	0309	0.156	0.132
$\mathrm{m}^{3} \mathrm{~s}^{1 /} \mathrm{Hugh}$	12040	15900	12090	8 710	8674	6632	4997	2618
Pask flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	27.70	26.70	20.70	19.30	1760	24.50	1030
Rumorl (mm)	35	32	30	21	16	11	7	7
Rainfall (mm)	61	46	55	45	56	61	55	61

Factors affecting runaff. PE
Station type: CC

1992
039023 Wye at Hedsor

Grid reference: 41 (SU) 896867 Level stn. (m OD). 26.80

Catchment ares (sq km). 1373
Muasuring authority: NRA.T
First year 1964
Hydrometric statistics for 1992

		JAN	FE8	MAR	APA	MAY	JN	un	AUG
Flows	Avg.	0464	0.487	0.467	0489	0.462	0549	0650	0607
m's-')	Peak	068	099	144	1.34	174	159	1.48	2.08
Runoff (mm)		9	9	9	9	9	10	13	12
Rainfall (mm)		25	32	63	87	78	32	86	131

Monthly and yearty statistics for previous record (Deec 1984 to Dec 1991)

Mean	Avg	0954	1059	1148	1174	1134	1097	0.995	0.940
Hows	Low	0419	0484	0488	0470	0432	0380	0370	0314
$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	1.518	1933	1.976	1891	1842	1582	1434	1317
Poak flow	$\mathrm{m}^{-1}{ }^{-1}$	349	2.92	3.21	3.26	3.98	351	294	417
Munoth (m)		19	19	22	22	22	21	19	18
Ramfall (m		72	51	60	53	60	63	56	63

Statm type: C

Catchment area (sq km): 59.0 Max alt. (m OOf: 294

Grid relerence: 51 (TQ) 000478 Leval sin. (m OD). 3170

Hydrometric statistics for 1992

Factors affecting nunoff: N G I
Station Iype: C
1992 rumolt is 64% of provious mean rainfall 105\%

Moasuring authority: NRA.T
First year: 1973
Hydrometric etatistics for 1992

Flows		JAN 0093	$\begin{aligned} & \text { feB } \\ & 0110 \end{aligned}$	MAR 0137	APA 0.189	May 0191	JN 0221	$\begin{aligned} & \text { M } \\ & 0236 \end{aligned}$	Aug 0187	$\begin{aligned} & \text { SEP } \\ & 0505 \end{aligned}$	$\begin{aligned} & \text { OCT }^{(0.297} \end{aligned}$	NOV 0.592	$\begin{aligned} & \text { DEC } \\ & 0.361 \end{aligned}$	Yoer 0.280
$m^{2} s^{-1}$:	Peak	176	1.55	187	3.13	9.04	12.73	1449	714	1720	300	652	3.31	17.20
Runatf (mm)		9	9	13	17	18	20	22	17	45	27	53	33	283
Rainfall (mm)		16	21	47	58	83	52	82	85	113	69	105	41	772

Monthly and yearly statistics for previous record (Dec 1973 to Dec 1991 -incomplete or miesing monthe total 44 years)

Mean Avg	0378	0301	0330	0.258	0224	0.199	0.144	0122	0123	0287	0301	0307	0.248
Hows Low	0159	0.102	0104	0030	0035	0061	0047	0.053	0057	0.082	0096	0096	0.178
$\mathrm{m}^{2}-\mathrm{l} \mathrm{l}^{\text {mingh }}$	0.790	0.742	0.677	0.574	0602	0.643	0248	0204	0363	0904	1086	0.659	0.314
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	900	18.90	889	1026	3980	3280	1650	3050	2790	4050	2430	36.31	40.50
Runoti (mm)	35	25	30	23	21	18	13	11	11	27	27	28	270
Rexnfall (mm)	64	42	59	49	60	60	49	50	59	71	58	61	682
Factors affocting Station type: FV										$1992 \mathrm{r}$	$\begin{array}{ll} \mathrm{H} \text { is } & 105 \\ \text { ffal } & 113 \end{array}$	of pro	mean

039069 Mole at Kinnersley Manor

Measuring outhority: NRA.T First yoar: 1972

Hydromatric statistics for 1992

	JAN	FEB	MAR	APA	may	JUN	Mr	AUG	SEP	OCT	NOV	OCC	Year
Flows Avg.	0.940	1.619	1.768	2.853	1612	0667	0829	1035	0865	2.297	5.894	5.384	2.145
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$: Peok	275	10.00	1240	1890	2110	374	9.84	8.40	4.74	31.20	5670	41.70	56.70
Runotf (mm)	18	29	33	52	30	12	16	20	16	43	108	102	478
Rainiml (mms	15	33	56	91	24	24	60	93	65	99	133	77	772
Monthly and yearty statistics for previous record (Dec 1972 to Dec 1991 --incomplete or miacing monthe total 1.5 vears)													
Mean Avo	3.928	3.155	2.637	1852	1385	1.058	0794	0.791	0.943	1.904	2246	3.323	1.998
lowe Low	1.281	0829	0833	0388	0305	0221	0296	0.169	0.281	0.207	0.260	1.071	0.950
$m^{3}-1 / \mathrm{High}$	9375	8.634	4688	3.666	3.552	2.225	2818	2.864	5419	8486	5668	5474	2.424
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	4230	46.50	2230	4700	3290	23.30	28.90	2980	4070	5640	5810	68.50	68.50
Punnotf (mm)	74	54	50	34	26	19	15	15	17	36	41	63	444
Reanfall $\{\mathrm{mm}$ \}	83	56	65	49	53	62	48	54	64	89	76	89	788

Factors affocting runoff- E
Station lypo: MIS

Grid referonce 51 (TQ) 262462
Levol sin. (m OO): 48.00

Catchment area (sq km): 142.0 Max alt. (m OO): 178

Monthly and yearty statistics for previous record (Dec 1972 to Dec 1991 -mocomplete or miading monthe total 1.5 years)

[^7]
040009 Teise at Stone Bridge

Station tyoo: \mathbf{B} VA
1992 runotf is 61% of provious mean
rainfall 103%

040010 Eden at Penshurst

Measuring outhorily: NRA.S
Gid reference: 51 (TQ) 520437
Level sin. (m OD): 2780

	JAN	FEB	Mar	APR	may	un	Nr	aug	SEP	OCT	Nov	OfC	Year
Flows Avg	0.551	0.514	0791	1.051	0955	0.389	0431	0411	0428	0810	4.771	5200	1.380
$m^{\prime} s^{-1}$): Peek	121	2.44	5.77	1240	1863	0.81	2.12	162	138	4.77	3881	3068	38.81
Punoty (mm)	7	6	9	10	8	5	5	5	5	10	55	62	192
Aaniall (mm)	15	31	62	85	38	28	65	88	62	106	131	71	782
Manthly and yearty statistics for previous record (Oct 1981 to Dec 1991 -incomplete or miastrg monthe total 1.0 years)													
Maon Avg.	3.869	3.323	2681	1.789	1295	0920	0.500	0.522	0712	1206	2.332	2764	1.819
flows Low	0.412	0629	0.605	0.398	0283	0193	0182	0201	0223	0.265	0314	0672	0.810
$\mathrm{m}^{3} \mathrm{~s}^{-1} 1 \quad \mathrm{Hogh}$	9.957	8.346	6040	4.373	4.842	4.132	2125	1.438	5243	4276	8909	7.260	2.827
Pask fow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	45.56	64.44	3228	34.03	3916	3185	2470	1742	22.02	31.43	5521	6000	64.44
Rumotf (mm)	46	36	32	21	15	11	6	6	8	14	27	33	256
Renfall (mm)	75	50	60	54	55	57	51	55	68	73	78	77	753

Factors affocting runoff SE
Station typo: C
1992 runofi is 75% of previous mean rainfall 104%

040012 Darent at Hawley

1992

Measuring authority NRA.S
First year: 1963
Hydrometric statistics for 1992

	JAN	FEB	MAR	APA	may	JN	JL	AUG	SEP	\propto	NOV	DEC	Year
Flows Avg	0054	0032	0.034	0068	0111	0052	0052	0043	0069	0257	0.790	1 126	0.225
$\mathrm{m}^{\mathbf{2}} \mathrm{s}^{-1}$) Puak	012	010	041	040	059	010	018	012	014	091	293	258	2.93
Rumatf (mum)	1	0	0	1	2	1	1	1	1	4	11	16	37
Ranfal (mm)	13	28	62	76	54	29	71	86	60	115	123	59	776
Monthly and yearty statistics for previous record (Dec 1963 to Dec 1991)													
Mean Avg	0949	1.001	0.902	0800	0604	0451	0309	0272	0286	0373	0516	0728	0.597
flows Low	0.194	0219	0124	0143	0.076	0041	0000	0000	0.000	0000	0000	0011	0.101
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{~J}$ Higth	2060	2076	1804	1.515	1509	0982	0617	0690	1817	1516	1448	1674	1.067
Peak flow (m's.')	579	3.99	405	309	1310	306	235	227	1005	377	4.91	436	13.10
Runoff (mm)	13	13	13	11	8	6	4	4	4	5	7	10	98
Roinfall (mm)	72	49	58	54	54	57	54	55	66	66	71	72	728

Factors atfecting runoff G
Station type C

Grid reference 51 (TQ) 551718
Level stn (m OD): 11.20

Catchment area (sq km) 191.4 Maxalt. (m OO). 251

1992 runoff is 38% of previous mean rainfall 107\%

041001 Nunningham Stream at Tilley Bridge

Measuring authority NRA.S
First year 1950
Hydrometric statistics for 1992

	JAN	rcb	MAR	APR	may	JuN	\cdots	AUG	SEP	OCT	NOV	DeC	Year
Flows Avg	0067	0096	0137	O134	0081	0018	0024	0022	0028	0075	0.626	0462	0.147
$\mathrm{m}^{\mathbf{s}}{ }^{-1}$) Puak	0.16	102	247	189	1.89	003	035	023	009	134	879	596	8.79
Runoti (imm)	11	14	22	21	13	3	4	4	4	12	96	73	275
Remfall (mm)	14	27	61	79	23	7	81	110	66	86	146	64	784
Monthly and yearty statistics for previous record (Apr 1950 to Dec 1991)													
Mean Avg	0432	0.335	0239	0143	0078	0054	0035	0038	0050	0123	0282	0350	0.179
fows Low	0062	0094	0054	0034	0023	0012	0010	0008	0009	0013	0019	0033	0.053
m's-') High	1. 108	0.958	0577	0390	0195	0319	0.210	0125	0359	0576	1.017	1082	0.308
Poak fow $\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$ \}	8.84	860	849	594	8.20	7.92	189	932	8.92	882	11.90	884	11.90
Runati (mm)	68	48	38	22	12	8	6	6	8	19	43	55	335
Raintal (mm)	85	59	60	50	50	58	57	68	73	91	97	92	840

Factors affecting runoff: R
Station tyoe MIS
Grad reference: 51 (TQ) 662129
level sin (m OD) 380
Catchment area (sq km) 169 Max alt (m OO): 137

1992 runoff is 82% of previous mean rainfall 91\%

041006 Uck at Isfield

Mensuring authority NRA.S

Gind reference 51 (TO) 459190 Level stn (m OO) 1130

Catchment ares (sq km): 87.8 Max alt (m OD): 232

Hydrometric statistics for 1992

Station typu. C

041012 Adur E Branch at Sakeham

1992

Measurim outhority: NRA.S
First year: 1967

Grid relerance 51 (TQ) 219190 Leval stn. (m OD): 310

Catchment area (sq km). 933 Maxalt (m OD) 248

Hydrometric statistics for 1992

	JAN	FE8	MAR	APR	May	JUN	N	AUS	SEP	OCT	MOV	OEC	Year
Flows Avg	0457	0687	0593	1096	0.740	0228	0308	0343	0382	1195	3181	3161	1031
$\mathrm{m}^{\mathbf{3}} \mathbf{- 1}^{1} \mathrm{j}$. Peak	2.28	312	4.57	1387	1685	061	3.24	239	190	1601	2908	2642	29.08
Runotf (mm)	13	18	17	30	21	6	9	10	11	34	88	91	349
Rumfall (mm)	18	30	53	96	18	19	79	107	71	102	145	82	820
Monthly and yoarly statistics for previous record (Aug 1987 to 0ec 1991 -incomplete or mitsing months total 0.2 years)													
Mean Avg	2571	1.937	1519	1008	0.643	0483	0350	0301	0490	1157	1611	1902	1.181
flows Low	0346	0526	0379	0266	0196	0.141	0112	0076	0.144	0131	0162	0398	0.479
m's-1 Hegh	5835	5803	3642	2337	1567	1339	1464	0.882	2.877	7901	4596	4064	1.716
Posk flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	31.50	38.13	23.43	3065	1453	2427	19.58	2404	3181	39.35	3826	4434	44.34
Hunotf (mm)	74	51	44	28	18	13	10	9	14	33	45	55	393
Raintall (mm)	93	58	67	52	55	60	49	56	71	92	88	83	824
Factors affocting runof E Station type CC										1992 runotf is 89% of prevrous mean roinfall 100\%			

041019 Arun at Alfoldean

1992

Mossuring outhority: NRA.S
Firgt yant: 1970
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	May	JUN	Ω	AUG	SEP	OCT	NOV	OfC	Year
Flows Avg	0.528	1.174	1.020	2.161	1285	0313	0344	0391	0413	1053	5165	5974	1.650
$m^{\prime} s^{-1}$]: Poak	1.56	762	10.54	2121	32.71	207	289	201	1.72	729	7494	6449	7494
Runoth (min)	10	21	20	40	25	6	7	8	8	20	96	115	375
Reanfall (mm)	16	37	56	96	25	26	69	101	64	79	138	83	790
Monthly arsd yearty statistics for provious record (May 1970 to 0ec 1991 -incomptate or missing months total 0.1 yeara)													
Moan Avg.	3.886	2.788	2331	1.633	1019	0.702	0361	0374	0598	1.606	2335	2811	1.700
flows Low	0.621	0689	0.469	0277	0223	0.131	0.138	0078	0.161	0.150	0167	0.492	0589
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	10.770	9827	4.413	3.829	3313	3055	1.274	1.618	5.443	11.580	10030	6.152	2.845
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	6863	67.53	5445	7697	4748	4654	1002	23.86	56.14	71.12	6914	7765	77.65
Aunoff (mm)	75	49	45	30	20	13	7	7	11	31	44	54	386
Plointall (mm)	87	53	68	51	53	60	47	55	66	83	B2	83	788
Faciors affecting runoff: E Staton type: CC										1992 runoff is 97% of provious mean rainfall 100\%			

041027 Rother at Princes Marsh

Moasuring authority: NRA-S
First yoar: 1972
Hydromatric statiatics for 1992

	JAN	FEB	MAR	APA	may	JN	M	AUG	SEP	OCT	NOV	DEC	Yosr
Flowe Avg.	0.258	0.370	0.320	0.495	0.296	0.199	0188	0213	0225	0292	0979	1384	0.435
$m^{\prime} s^{-1}$) Peak	086	169	139	260	204	065	060	084	088	1.56	1362	2262	22.62
Punoti (mm)	19	25	23	34	21	14	14	15	16	21	68	100	370
Ramid (mm)	24	47	62	107	27	38	69	131	77	75	186	115	938
Monthly and yearty statistice for provious record (Nov 1972 to Dec 1991 -incomplete or missing monthe total 0.2 years)													
Maon Avg	0.864	0765	0670	0487	0366	0273	0.213	0215	0256	0452	0553	0738	0.487
flows Low	0.273	0320	0237	0194	0.158	0.121	0.120	0106	0.140	0165	0.167	0.248	0.288
$\mathrm{m}^{\prime} \mathrm{s}^{-1} \mathrm{l}$ High	1485	2.228	1220	0694	0841	0471	0300	0493	0949	1088	1855	1300	0.696
Pask flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	1563	17.79	10.71	8.75	7.20	4.68	2.17	4.55	12.97	6803	16.60	22.19	68.03
Runotf (mm)	62	50	48	34	26	19	15	15	18	33	39	53	413
Raintal (mm)	100	65	81	48	57	58	55	58	74	95	82	103	876
Faciors atfocting runoli: $G E$													

Faciors affecting runoli: GE
Siation type. C

Giod reterence: 41 (SU) 772270
Leval sin. (m OO): 56.40

Catchment aros (sq km). 37.2 Max all. (m OO): 252

042003 Lymington at Brockenhurst Park

Moasuring authority: NRA.S
First yoar: 1960
Hydromotric statistics for 1992

	JAN	fer	MAR	APA	May	AN	un	AUS	SEP	OCT	NOV	OEC	Year
Flowe Avg	0439	0.770	0.660	1630	0337	0093	0126	0.141	0303	0356	1834	1784	0.703
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{~J}$: Peat	225	5.57	698	9.98	5.40	1.93	240	160	395	332	1001	1011	10.11
Punotf (mm)	12	20	18	43	9	2	3	4	8	10	48	48	225
Pounial (mm)	23	40	72	89	16	44	61	102	87	63	155	105	857
Monthly and yearly statistics for previous record (Oct 1900 to Dec 1991 -incomplete or miseing months total 0.2 veera)													
Mean Avg	1848	1680	1469	0998	0743	0437	0238	0242	0401	0955	1297	1531	0.984
tlows Low	0330	0439	0327	0188	0.128	0042	0013	0.014	0042	0128	0198	0.522	0.407
$m^{3} s^{-1} \quad \mathrm{rmgh}$	3.723	3.680	3089	2.169	1.569	1.247	1.603	0.847	2.308	4.841	5283	3294	1.340
Peak How ($\mathrm{m}^{1} \mathrm{~s}^{-1}$)	1013	1362	1013	1013	1398	994	1138	8.16	847	1128	1354	1491	14.91
Runotf (mm)	50	41	40	26	20	11	6	7	11	26	34	41	314
Rainfolf (mm)	90	62	70	52	58	58	44	59	71	89	88	91	832
Factars effecting runoff: \mathbf{N} Station typo: TP										1992 runoff is 72% of provious mean ranilal 103%			

Factors effecting runoff: N
Siation typo: TP

Grid roference: 41 (SU) 318019 leval sin. (m OD): 6.10

Catchment aroa (sq km) 989 Max alt (m OD): 114

042004 Test at Broadlands

1992

Measuring authority: NRA.S
Fust year 1957
Gird rotorence: 4) (SU) 354188 Level stn. (m OD) 10.10

Catchment aro3 (sq km) 10400 Max alt. (mOD) 297
Hydrometric statistics for 1992

Factors affocting runoff: N
Staton type: VA

042006 Meon at Mislingford

1992

```
Measuring authority NRA.S First year. 1958 Hydrometric statistics for 1992
```

Grid reference: 41 (SU) 589141

Lovel stn (m OD). 2930
Catchment area (sq km); 72.8

Fbows$m^{2} s^{-1}$	JAN	FEB	MAR	APR	MAY	Jun	μ	AUG	SEP	OCT	NOV	DEC	Year
	0332	0353	0356	0427	0460	0364	0266	0199	0.193	0227	0442	1.964	0.467
	039	051	050	074	113	051	041	030	024	056	133	281	2.81
Runoff (mm) Rainfall (men)	12	12	13	15	17	13	10	7	7	8	16	72	203
	22	52	61	109	21	40	72	129	73	81	163	104	927
Monthly and yearty statistics for previous record (Oct 1958 to Dec 1991)													
Moen Avg.	1474	1782	1629	1.376	1013	0.730	0517	0387	0338	0497	0781	1053	0.980
flows Low	0355	0467	0427	0335	0164	0120	0079	0068	0102	0110	0.124	0.179	0.334
m's ${ }^{-1 /}$ High	3470	3310	2820	2.024	1738	1.220	0827	0657	0882	2309	4126	3917	1.813
Peak flow (m^{3} 's ${ }^{1}$)	384	427	326	283	207	150	123	1.08	098	188	283	3.77	4.27
Punotif (mm)	54	60	60	49	37	26	19	14	12	18	28	39	416
Reenfall (mm)	99	63	76	58	62	60	55	68	78	94	96	101	910

Factors affecting runoff: G
Station type FL

042008 Cheriton Stream at Sewards Bridge

1992

Moasuring authority NRA-S First year: 1970
Hydrometric statistics for 1992

	JAN	HEB	man	APA	may	JN	un	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	0335	0328	0342	0364	0363	0271	0266	0267	0311	0310	0431	0.910	0.376
$\mathrm{m}^{\prime} \mathrm{s}^{-1}$). Pook	045	046	041	052	059	045	046	048	050	064	089	1.49	1.49
Runotf (mm)	12	11	12	13	13	9	9	10	11	11	15	32	158
Rainfall (mm)	26	49	63	102	19	47	71	127	71	82	164	108	929
Montily and yearty statistics for previous record Jul 1970 to Dec 199\%)													
Mean Avg	0789	0943	0898	0829	0672	0550	0455	0390	0361	0406	0496	0648	0.618
flows Low	0.393	0.435	0.409	0.320	0.271	0.218	0.183	0165	0207	0215	0.254	0309	0.408
$\mathrm{m}^{3} \mathrm{~s}^{1 /} \mathrm{H}$	1.293	1.562	1410	1065	0857	0959	0797	0708	0.560	0672	0980	1278	0.768
Pask flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	169	2.06	168	1.39	1.26	202	125	128	077	091	124	185	2.06
Rumotf (mm)	28	31	32	29	24	19	16	14	12	14	17	23	260
Rainfall (mm)	100	67	79	50	56	62	56	60	71	89	91	99	880
Factors affectung runoff. N 1992 runotf is 61\% of previous mean													

Factors affecting rumoff. N
Station type. C

Grid relerence: 41 (SU) 574323 Leval stn. (m OD) 55 BO

Catchment aros (5 akm) 75 Max alt. (m OD): 233 raınfall 106\%

043006 Nadder at Wilton Park

Measuring authority NRA.SW First year: 1966
Hydrometric statistics for 1992

043007 Stour at Throop Mill

Measuring authority: NRA.SW
Gind reference 40 (SZ) 113958 Level stn. (m 00): 440

Catchment ares (eq km): 10730 Max alt (m OOf 277
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	UN	UK	AUG	St.P	OCT	NOV	DEC	Year
Flows Avg.	9264	10410	7.738	12.218	6414	4108	3760	3.658	8.190	5805	21170	42.950	11.311
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) Peak	3608	3160	1394	42.21	13.21	7.83	7.32	6.78	2622	1295	6757	12680	128.80
Punoti (mm)	23	24	19	30	16	10	9	9	20	14	51	107	333
Remial (mm)	30	45	57	84	18	52	63	119	101	43	148	109	875
Monthly and yearty statistics for previous record (Jan 1973 to Oec 1991)													
Maan Avg.	23950	26.120	20890	14290	9321	6385	4.451	4095	4720	8314	12580	21070	12.958
flows Low	4319	6826	7.548	4483	3.157	2.231	1.614	1.358	1.892	2716	2823	6386	6.138
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	38.730	69370	32620	27.070	18900	16940	7.932	8.998	20.340	29.770	36.730	40270	17.377
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11660	137.70	11020	88.24	15000	18000	4760	3241	9033	101.90	133.40	28000	280.00
Aunots (mm)	60	59	52	35	23	15	11	10	11	21	30	53	381
Ramfal (mm)	91	71	78	46	55	57	50	60	73	87	76	104	848
Factors affecting nunoff: PGE Station Irpe: CC										1992 numoff is 88% of previous mean rainfall 103\%			

043012 Wylye at Norton Bavant

Factors affocing runotf: E
Station typo: C
rainfall 105\%

044002 Piddle at Baggs Mill

Measuring authority: NRA-SW
Grid raferance: 30 (SY) 913876 Level stn (m OD): 2.10

Catchment aros (sq km). 183.1
Hydrometric statistics for 1992

		JAN	FEB	MAA	APA	may	JN	Ω	AUG	SEP	OCT	NOV	DEC	Yetor
Flows	Avg.	1.751	1.786	1.679	2.055	1636	1.183	1018	0.978	1.196	1.144	2021	5545	1.835
$m^{3} a^{-1}$.	Paok	2.45	2.63	2.16	409	284	1.71	1.52	145	2.45	148	645	8.19	8.19
Runoth (mm)		26	24	25	29	24	17	15	14	17	17	29	77	313
Rainfall (mm)		32	53	61	98	19	31	57	133	99	41	171	116	911

Monthty and yearty statistics for provious record (Oct 1963 to Dec 1991 -incomplete or miasing monthe total 0.1 yeara)

Mean	Avg	3.533	4398	3.885	3008	2163	1.648	1.226	1.058	1064	1395	2.027	2.782	2.338
flows	Low	1045	1020	1.093	0.945	0.757	0.571	0.483	0433	0598	0707	0.721	0.853	1.328
$m^{3} s^{-1}$	High	5.959	8.785	6.202	4.782	3376	2.907	1.755	1.526	2.300	3106	5047	5654	3.233
Poak flow	$n^{3} s^{-1} 1$	11.87	10.02	9.37	6.48	811	9.23	4.79	4.50	8.18	9.29	9.20	862	11.87
Punoft (m)		52	59	57	43	32	23	18	15	15	20	29	41	403
Rainfall (m		109	83	86	53	63	60	48	82	81	96	101	111	953

Factors affecting runotf: G
Ststion type: FL

1992 runoff is 79% of provous mean rainfall 96\%

044006 Sydling Water at Sydling St Nicholas

Measuring suthority: NRA.SW
Finst year: 1969
Hydrometric statistics for 1992

	JAN	feb	Mar	APR	may	JUN	Nr	Aug	SEP	OCT	NOV	OEC	Yoer
Flowe Avg.	0.102	0114	0105	0142	0119	0090	0.081	0071	0071	0071	0132	0414	0.128
$\mathrm{m}^{2} \mathrm{~s}^{-1}$): Poak	013	015	014	023	014	012	012	0.12	011	009	048	079	0.79
Runoff (mm)	22	23	23	30	26	19	17	15	15	15	28	90	322
Runial (mm)	45	60	72	115	18	37	56	146	100	42	177	131	897
Monthly and yoarty statistice for pravious record (Dec 1969 to Dec 1991)													
Mran Avg.	0271	0.325	0290	0227	0169	0.139	0.108	0.090	0086	0.105	0142	0207	0.179
Hows Low	0060	0070	0092	0087	0069	0060	0051	0.045	0052	0053	0048	0057	0.103
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0423	0.599	0426	0.356	0.244	0.282	0155	0.121	0211	0.317	0329	0.386	0.225
Pask flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	0.93	1.03	0.92	047	157	102	0.37	079	0.39	064	060	122	1.57
Runotf (mm)	59	64	83	48	36	29	23	20	18	23	30	45	458
Reinfoll (mm)	128	91	98	57	67	64	51	67	88	95	107	123	1036
Fectors affecting runoff: N										1992 runoff is 71\% of previous mean			

Fectors affecting runoff: N
Station type: C

Grid reference 30 (SY) 632997 Leval stn (m OD): 109.70

Catchment area ($\mathbf{s q} \mathbf{k m}$): 12.4
Max alt. (m OO): 262

044009 Wey at Broadwey

Moasuring outhority. NRA.SW First year: 1975
Hydrometric statistics for 1992

	JAN	FEB	MAAR	APA	may	JN	U	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.203	0.199	0.203	0220	0.213	0.169	0.139	0108	0094	0.085	0174	0.555	0.197
$m^{3} s^{-1}$) Peak	026	0.28	0.32	0.38	0.28	026	026	0.20	0.17	0.12	1.00	1.545	1.545
Runotf (mm)	78	71	78	81	82	63	53	41	35	33	64	212	891
Rainfall (mm)	31	40	66	95	14	30	46	112	73	46	168	101	022
Monthly and yeafly statistics for previout record (Jut 1975 to Dec 1991 -incomplete or misaing morths total 0.1 vears)													
Mean Aug.	0.434	0552	0.541	0.456	0.307	0.247	0186	0148	0.123	0.144	0195	0312	0.302
flows Low	0.100	0.100	0126	0.117	0099	0.093	0095	0085	0076	0.067	0070	0076	0.188
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l}$ High	0.698	0.970	0.898	0730	0.488	0.450	0.318	0.211	0178	0290	0.390	0698	0.410
Payk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1.46	1.79	2.86	1.23	331	3.18	229	1.25	065	0.70	126	2.35	3.31
Runotf (mm)	168	192	207	169	118	91	71	56	46	55	72	119	1383
Remintal (mm)	89	87	92	48	53	54	50	55	70	98	79	106	881

Factors atfocting rumotr: N
Station type: FV

Gik reference: 30 (SY) 666839 Level stn. (m OD): 17.80

Catchment aroa (sa km). 70 Max ah (m OD): 183

1992 runotf is 65% of previous mean rainfall 93%

045003 Culm at Wood Mill

Measuring authorty: NRA-SW First year: 1962	Grad reference 31 (ST) 021058 Level stn. (m OD): 4400

		Jan	FE8	MAR	APA	May	JN	תr	AUS	SEP	\propto ¢	NOV	OCC	Yosr
Flows	Avg	3.190	2.579	2.533	2944	1456	1095	1144	1.644	1.888	2.372	7206	6.689	2.892
$\mathrm{m}^{3}{ }_{3}-1 /$	Peak	31.60	963	7.89	1770	346	3.46	3.05	14.89	13.57	1390	116.20	6071	186.20
Ruxoth (mm)		38	29	30	34	17	13	14	19	22	28	83	79	405
Rainfall (mm)		48	49	64	82	27	45	56	140	85	77	164	87	924
Monthly and yearly statistics for previous recosd (0ct 1962 to Dec 1991)														
Mosn	Avg.	6.647	6471	5070	3.425	2.712	1965	1738	1.562	1.856	2.953	4.326	5.875	3.705
flows	Low	1.930	2.251	2.392	1318	1085	0803	0.650	0.569	0.971	0971	1287	2479	2.277
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	12870	13320	9184	7445	6337	4449	5200	2.787	7328	11430	8.191	11880	4.840
Peak flow (m	$\mathrm{m}^{\mathbf{3}}{ }^{-1}$	11070	10010	5011	6198	3382	3058	20220	5862	9418	49.07	134.50	14280	202.20
Runot (mm)		79	70	60	39	32	23	21	18	21	35	50	70	517
Rainfall (mm)		110	84	86	59	63	64	60	65	77	91	95	109	965
Factors affocting runoff PGEI Station type. FV VA											1992 runoff is 78% of previous mean rainfall 96\%			

Station type. FV VA
\qquad

045004 Axe at Whitford

1992

Mensuring authority: NRA.SW
First year: 1964
Hydrometric statistics for 1992

	JAN	FEB	MAR	APA	MAY	JUN	$\boldsymbol{\Omega}$	AUG
Flows Avg	3617	4071	2807	5143	1884	1.197	1196	1849
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{y}$ Peak	4091	2392	3353	3898	609	261	287	1039
Rumatf (mm)	34	35	26	46	17	11	11	17
Prantelat (mm)	43	53	71	85	15	34	43	127
Monthly and yearty statistics for previous record (Oct 1984 to Dec 1991)								
Masn Avg	9294	8506	6597	4.255	3.521	2516	1.977	2063
flows Low	1891	2448	2551	1.567	1.176	0817	0626	0554
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) Hrgh	15.740	18.730	11.690	8346	7274	4.678	5.312	4.941
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11060	11460	93.02	7542	173.40	7504	228.80	12800
Runots (mm)	86	72	61	38	33	23	18	19
Rentall (mm)	122	88	83	57	67	66	59	69

Station iype: CC

Grid ruference 30 (SY) 262953 Level stin (m OD). 7.30

Catchment area (sq km). 2885
Max all (m OD) 316
SEP
3248
5681
29
103

2482
1.224
9.909
88.95
22
80
OCT MOV

OCI	NOV	DEC	Year
2471	9472	11220	4.006
1042	10590	15250	152.50
23	85	104	439

4.189	5.659	8.147	4.920
1243	1714	2832	2.669
16440	11.980	14440	6.409
9972	11690	244.00	244.00
39	51	76	538
96	93	116	998
1992 runoff is 82%	of prevous mean		

rainfall 91\%

046003 Dart at Austins Bridge

046005 East Dart at Bellever

Measuring authonty: NRA.SW
First year: 1964 Level stn. (m OD) 309.00

Catchment area (sq kmp: 215 Max ali (m OD) 604
Hydrometric statistics for 1992

Flows$m^{2}-1$	JAN	FEB	MAR	APR	MAY	JUN	Jut	$A \cup G$	SEP
	0764	0941	1181	1376	0638	0266	0375	1.244	1.138
	4.24	10.65	603	7.62	324	055	312	28.74	7.71
Runotf (mm) Raniall (mm)	95	110	147	166	79	32	47	155	137
	75	149	180	197	53	24	139	324	150
Monthly and yearty statistics for previous record (Apr 1964 to Dec 1991)									
Mean Avg	2116	1836	1449	0952	0736	0640	0.548	0606	0758
frows Low	0.719	0468	0600	0348	0250	0185	0126	0104	0.203
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3830	5103	3639	1.990	1605	1589	1.303	1571	3306
Penk flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	50.12	4563	32.53	2680	1889	4789	6513	5401	53.35
Runotf (mm)	264	208	181	115	92	77	68	76	91
Rainfall (mm)	259	185	188	116	114	119	112	127	154

Factors affecting runotf. N
Station type: VA

Measuring authority. NRA.SW First year 1958
Hydrometric statistics for 1992

		JAN	FEB	MAR	APA	MAY	JUN
Fhows	Avg	7156	7.506	7943	10310	5344	2135
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	Paok	28.34	5788	2316	3446	2458	520
Runotf (mm)		77	76	86	108	58	22
Aountall (mm)		65	124	133	159	38	28

Monthly and yearty statistics for previous record (Oct 1958 to Dec 1991)

Grid reforence 20 (SX) 751659
Level stn. (m OD): 2240
Catchment area (sq km) 247.6 Max alt. (m OD) 604

Factors sffecting runoff: SR Station type VA

Catchment area (sq km) 2261 Max alt (m OO) 293
runof is 78% of previous mean
rainfall 96%

047007 Yealm at Puslinch

047008 Thrushel at Tinhay

Measuring authortiy. NRA.SW
First yoar: 1969
Hydrometric etatistics for 1992

	JAN	FEB	MAA	APPA	may	JN	8	AUG	SEP	OCT	MOV	$0 \times$	Yoar
Flows Avg	1.888	1.601	1.642	1.946	0.946	0860	1.241	1822	1.083	1.517	5648	5853	2.171
m's ${ }^{-1}$ l: Peak	11.70	10.18	8.01	12.56	5.29	130	195	946	389	15.16	35.95	49.49	49.48
Punotf (mm)	45	36	39	45	22	20	29	43	25	36	130	139	609
Ramias (mmi	51	64	76	97	38	18	88	172	75	96	203	142	1120
Monthly and yeaply statistics for previous record (Nov 1989 to Dec 19911													
Mean Avg.	5.033	4.072	3.105	1.622	1.039	0.688	0443	0738	0.997	2.401	3653	4528	2.354
Hows Low	1.317	0.951	1.150	0.481	0.237	0.110	0028	0019	0116	0069	0442	1662	1.840
$m^{2} s^{-1} / \mathrm{Hegh}$	9701	8.826	7477	4038	4209	2.491	1.417	2.916	6671	6878	7.195	B 122	3.780
Pask fiow (m) m^{-1})	53.32	61.78	61.46	2772	38.72	57.13	10.91	33.64	75.12	6618	5707	12440	124.40
Rumofl (mm)	120	88	74	37	25	16	11	18	23	57	84	108	659
Reinfell (mm)* $\because 1970.1991$	145	103	101	61	63	76	69	85	92	119	127	135	1176
Factors affecting runoff. S H Station typo: CC										1992 runoff is 92% of provious meen rainfall 95\%			

048004 Warleggan at Trengoffe

Measuring authority. NRA.SW
First yeat. 1969
Hydrometric atatistics for 1992

	JAN	FEE	MAR	APA	MAY	UN	תu.	AUK,	SEP	OCT	NOV	DEC	Year
Flowe Avg	0548	0.539	0568	0650	0559	0278	0299	0389	0719	0730	1427	1892	0.717
$m^{2} \mathrm{~s}^{-1}$]: Pook	103	1.34	0.99	1.78	1.41	0.37	0.96	148	1.28	153	531	7.21	7.21
Aunotil (mm)	58	53	60	67	59	28	32	41	74	77	146	200	898
Rainiall (mm)	52	92	86	115	37	7	152	214	114	125	258	160	1412
Monthly and yearly statistics for previous record (Oct 1989 to Dec 1991 -Incomplete or micaing monthe totel 0.2 vaers)													
Meen Avg.	1441	1.386	1052	0.730	0508	0410	0350	0377	0440	0670	1023	1 289	0.803
fows Low	0648	0751	0.588	0.403	0.275	0.208	0151	0118	0177	0.208	0.233	0681	0.610
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) Hegh	2.584	2.906	1.588	1.234	0.978	0904	0688	0950	1677	1557	1.775	1.949	1.228
Paak flow ($\mathrm{m}^{3}{ }^{-1}$)	14.31	1485	527	4.59	3.19	5.98	436	8.60	1485	786	1538	1125	15.38
Runotf (mm)	153	134	111	75	54	42	37	40	45	71	105	137	1002
Renfall $\{\mathrm{mm}\}^{*}$ - 1970.1991 \|	183	127	129	73	75	91	90	102	118	149	163	169	1469
Factors affocling runotf: N Station type. CC										1992 runoff is 89\% of previous moan rainfall 96\%			

048005 Kenwyn at Truro

048011 Fowey at Restormel

Mossuring authority: NRA.SW
Fusl year: 1961
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	may	תN	Ω	AUG	SEP	OCT	Nov	Oct	Year
Flows Avg	2.267	2704	2595	3066	2.434	1173	1187	1.988	4.081	3.840	10100	12850	4.025
$\mathrm{m}^{2} 3^{-2}$. Peak	4.09	5.76	3.89	825	861	198	435	9.70	771	8.94	64.91	70.65	70.65
Runolt (mm)	36	40	41	47	39	18	19	31	63	81	155	203	752
Rainfal (mm)	50	87	82	114	33	8	145	215	115	124	257	162	1392
Montily and yearty statistics for previous record (Oct 1961 to Oec 1991)													
Mean Avg.	9.217	8.399	6.210	4051	2.890	2117	1.845	1.988	2471	4.377	6637	B 725	4898
flows Low	3071	3304	2.727	1684	1034	0693	0.562	0343	0.673	0617	0.921	2.947	3.391
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l} \quad \mathrm{Hogh}$	17.330	21.780	12.130	7641	6447	5479	4859	6044	10490	11720	15450	20890	7.440
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	104.80	111.90	4562	2452	2262	3944	31.10	48.51	70.02	3507	223.70	126.60	223.70
Runotf (mm)	146	121	98	62	46	32	29	31	38	69	102	138	914
Remfall (mm)	181	126	132	80	87	91	93	104	118	143	167	177	1499
Factors affecting runoff: SRP Station type: CC										1992 runoff is 82% of provious mean rainfall 93\%			

Grad relerence: 20 (SX) 098624 Level sin. (m OD): 9.20

Catchment area (sq km): 169.1 Max alt. (m OO): 420
rainfall 93\%

049001 Camel at Denby

1992

Moasuring authority NRA.SW
First year 1964
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	JN	rr	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.819	4070	3.929	4386	3668	1548	1.789	3572	5628	5202	14140	16960	5.727
$\mathrm{m}^{\prime} \mathrm{s}^{-1}$! Paek	7.16	737	631	1935	1530	250	7.04	2505	12.17	13.43	77.12	7362	77.12
Runots (mm)	49	49	50	54	47	19	23	48	70	67	176	218	867
Remental (mm)	52	84	79	114	37	10	142	201	116	115	236	139	1325
Monthly and yearty statistics for previous record (Sep 1984 to Dec 1991)													
Mean Avg.	11.330	9.982	7.290	4.562	3199	2.365	2.288	2424	2.825	5368	7945	10570	5.831
flows Low	4833	4249	2835	2.081	0960	0888	0.582	0.421	0.798	0.882	1371	4184	4.081
$m^{3} \underbrace{-1})^{\text {Hagh }}$	19.600	23260	16.420	9395	8.491	5463	7.322	7.858	11.920	16.640	17.990	19.110	8.185
Peak flow (m) m^{-1})	73.18	8021	94.75	3542	23.98	4533	4059	63.98	12580	92.14	94.75	227.90	227.90
Rumoff (frmi)	145	117	94	57	41	29	29	31	35	69	99	138	881
Raunfall (mm)	188	113	119	73	78	88	92	98	112	140	151	160	1392
Factors alfecting runoff SRP E Stetion type VA										1992 runotf is 98% of previous mean ranfal 95\%			

049004 Gannel at Gwills

Measuring authority NRA.SW First year. 1969

Hydrometric statistics for 1992

		JAN	FEB	MAR	APA	MAY	JN	Jut
Flows	Avg	0426	0444	0384	0465	0.372	0211	0147
$\mathrm{m}^{3}-{ }^{\text {c }}$)	Peak	099	119	094	226	090	1.65	0.56
Rumotf (mm)		28	27	25	29	24	13	10
Rainfal (mm)		38	61	53	95	16		73

Monthly and yearly statistics for previous record (Oec 1989 to Dec 1991 -incomplete or misaing months totel 0.1 yeera)

Mean Avg	1427	1420	1017	0631	0372	0.280	0.191	0187	0207	0465	0833	1213	0684
flows Low	0.534	0646	0422	0338	0188	0153	0092	0068	0081	0077	0096	0494	0.489
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{l}$ High	2395	2.775	1.650	1069	0.857	0625	0394	0473	0740	1.161	2044	2.211	0.948
Paek flow ($\mathrm{m}^{3} \mathrm{c}^{-1}$)	1676	1830	1497	833	1144	2305	329	9.00	10.57	2668	2446	2449	26.68
Runotf (mm)	93	85	68	40	24	18	13	12	13	30	53	79	526
Rantall (mm)	134	95	93	54	56	66	57	73	81	106	121	122	1058
Factors affecting runoff: GEI Station type: C										1992 runoff is 80% of previous mean ranfall 90\%			

050002 Torridge at Torrington

1992

Measuring authority. NRA.SW
Furst year. 1962
Hydrometric statistics for 1992

	JAN	fEB	MAR	APR	MAY	JUN	un	AUG	SEP	OCI	mov	OEC	Year
Flows Avg.	10.030	10710	10950	12370	6255	1530	1480	12.680	10.760	14100	48910	34950	14.540
$\mathrm{m}^{\mathbf{s}} \mathrm{s}^{-1}$: Peak	6990	4268	4195	5446	6091	711	804	10090	3395	9863	257.20	186.70	257.20
Runot (mm)	41	40	44	48	25	6	6	51	42	57	191	141	694
Ranfall (mm)	48	68	84	98	42	21	97	198	83	107	229	114	1189
Monthly and yearty statistica for previous record (Oct 1982 to Dec 1991)													
Mean Avg.	30.660	25390	18840	10.930	1600	4484	4350	4843	6879	15.690	26.330	30390	15.477
flows Low	5018	4695	5792	3082	1399	1092	0443	0252	0954	0668	3798	10270	8.988
$m^{3} s^{-1}$) Hrgh	57510	63970	51280	28120	31290	14960	21540	19.690	45910	49.230	55730	64530	21.036
Peak flow ($\mathrm{m}^{3}{ }^{-1}$)	391.10	29440	53560	16440	20570	181.30	310.60	228.50	41500	27640	37040	73000	73000
Runotf (mm)	124	93	76	43	31	18	18	20	26	63	103	123	737
Ranfall (mm)	132	94	98	67	70	75	74	83	96	117	132	130	1188
Factors affecting runotf SRP EI 1992 runoff is 94% of previous mean Station type $V A$													

052007 Parrett at Chiselborough

1992

Measuring outhority: NRA-SW
First yoar: 1966
Hydrometric statistics for 1992

Grad reference. 31 (ST) 461144 Level stn. (m OO): 20.70

Catchment area (sq km): 74.8 Max alt. (m OD): 219

052010 Brue at Lovington

Moasuring puthority: NRA.SW First yoar: 1964

Grid reference: 31 (ST) 590318
Leval stn (m OO): 19.80

Catchment ares (sq km): 1352 Max alt. (m OO): 260

Hydrometric statistics for 1992

Station type: C VA

1992 rumot is 92% of provious mean rainiall 100%

053004 Chew at Compton Dando

Meosuring outhority: NRA.SW
Firsl year: 1958
Hydrometric statistics for 1992

Flows		JAN 0737	FEB	MAR 0735	APR 0797	MAY 0613	JUN 0461	N	AUG 0.491	SEP 0.788	$0 \subset \tau$ 0639	NOV 2685	OEC 3.149	Yoar 1018
Flowe $\mathrm{m}^{2} \mathrm{~m}^{-1}$):	Avo	270	133	0735 111	0797 242	0613 134	081	058	1.27	0.788 226	$\begin{array}{r}1.35 \\ \hline 13\end{array}$	6256	3807	82.56
Runatf (mm)		15	14	15	16	13	9	9	10	15	13	54	65	249
Reenfall \{mm\}		41	46	76	81	43	48	74	180	84	58	188	97	1016

Monthly and yearty statistics for previous record (Mar 1988 to Dec 1991 -incomplete or miaeing months total 1.0 yeara)

Ststion typo: FL

Grid reference 31 (ST) 648647
Level sin. (m OO): 16.80

Cstchment ares (st kmp: 1295 Max alt. (m OD): 305

Measuring suthorty: NRA.SW Firsi year: 1961
Hydrometric statistics for 1992
 Station type: FL

Grad refarence: 31 (ST) 805564
Leval sin. (m OD): 35.10

Catchmont area (sq km) 261.6
Maxalt (m OD): 305

054012 Tern at Walcot

Measuring authority: NRA.ST
Fust year: 1960
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	may	UN	Jr	Aug	SEP	OCT	NOV	DEC	Year
Flows Avg	5.301	3.480	4718	4.355	3407	4.690	2.709	4833	4251	5.907	11170	12670	5.631
$m^{2} s^{-1}$ j Peak	1902	411	1012	875	18.11	16.68	4.87	2086	8.02	1629	2705	4049	40.49
Rumott (men)	17	10	15	13	11	14	9	15	13	19	34	40	209
Rainfall (mm)	50	28	63	43	73	52	64	124	61	68	98	46	770
Monthly and yearly statistics for previous record foct 1980 to Dec 1991)													
Mean Avg.	11250	10250	8931	7.294	6239	4.430	3.749	3.805	3.851	5423	7697	10370	6.929
flows Low	4.018	4.002	4800	3557	2.904	1026	0926	1.171	1.680	2.227	2.538	3.346	3.757
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{l}$ High	20320	22280	17810	12320	22.390	9.069	14.060	6.655	9490	16.920	21.830	24.950	10.268
Peak flow ($\mathrm{m}^{3} \mathrm{c}^{-1}$)	6005	45.98	4053	4073	4035	2700	4871	38.53	32.17	3759	4454	5582	60.05
Runoty (mm)	35	29	28	22	20	13	12	12	12	17	23	33	257
Rennfall (mm)	61	46	54	50	59	57	54	62	60	60	69	67	899
Factors affocting runoff: GEI Station type FV										1992 runoff is 81% of provious mean rainfall 110\%			

Monthly and yearly statistics for previous record (Oct 1960 to Dec 1991)

	JAN	FEB	MAR	APR	may	UN	Jr	Aug	SEP	OCT	NOV	DEC	Year
Flows Avg	5.301	3.480	4718	4.355	3407	4.690	2.709	4833	4251	5.907	11170	12670	5.631
$m^{2} s^{-1}$ j Peak	1902	411	1012	875	18.11	16.68	4.87	2086	8.02	1629	2705	4049	40.49
Rumott (men)	17	10	15	13	11	14	9	15	13	19	34	40	209
Rainfall (mm)	50	28	63	43	73	52	64	124	61	68	98	46	770
Monthly and yearly statistics for previous record foct 1980 to Dec 1991)													
Mean Avg.	11250	10250	8931	7.294	6239	4.430	3.749	3.805	3.851	5423	7697	10370	6.929
flows Low	4.018	4.002	4800	3557	2.904	1026	0926	1.171	1.680	2.227	2.538	3.346	3.757
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{l}$ High	20320	22280	17810	12320	22.390	9.069	14.060	6.655	9490	16.920	21.830	24.950	10.268
Peak flow ($\mathrm{m}^{3} \mathrm{c}^{-1}$)	6005	45.98	4053	4073	4035	2700	4871	38.53	32.17	3759	4454	5582	60.05
Runoty (mm)	35	29	28	22	20	13	12	12	12	17	23	33	257
Rennfall (mm)	61	46	54	50	59	57	54	62	60	60	69	67	899
Factors affocting runoff: GEI Station type FV										1992 runoff is 81% of provious mean rainfall 110\%			

Station type FV

Grid raterence 33 (SJ) 592123
Lavel stn (m OD): 44.60

Catchment area (sq km): 852.0 Max alt. (m OO) 366

054019 Avon at Stareton

Moasuring authority: NRA-ST
Firsi year: 1962
Hydrometric statistics for 1992

		JAN	FEB	MAR
Frows	Avg.	3.413	1460	1812
$m_{s}-1$). Pesk	32.78	2.03	1138	
Runoft (mm)	26	11	14	
Rainfoll (mm)	80	20	60	

Grid referonce 42 (SP) 333715
Lovel stn. (m OD). 54.70

Catchment area (sq km): $\mathbf{3 4 7 . 0}$ Max alt (m ODJ 214

Monthly and yeasly statistics for previous record (Oct 1982 to Dec 1991)

Mean	Avg	4470	4491	4155	2807	2.023	1.372	0999	1019
flows	Low	0798	0.177	0545	0485	0474	0368	0247	0356
$\left.\mathrm{m}^{\prime} \mathrm{s}^{-1}\right\}$	High	9678	12.850	8577	6356	6.149	4862	5.379	3.332
Peak flow	$\mathrm{m}^{-1}{ }^{-1}$	55.83	5960	5589	4267	39.05	4289	7136	2608
Runoti (mm		35	32	32	21	16	10	8	8
Raunfall im		55	45	54	49	54	61	55	66

Factors affocting runoff SEI
Station typo. CVA

\square

0.9730.914
2858
1659
7

1.500	2284	3837	2.488
0507	0.549	0667	1.094
5274	5.587	10400	3.588
3289	3411	5628	71.38
12	17	30	228
53	57	61	863

1992 runolf is 135% of previcus mean rainfall 128\%

054020 Perry at Yeaton

Moasuring authority NRA.ST
First year: 1963
Grid raference. 33 (SJ) 434192
Lavel stn (m OD) 6130

Catchmont area (sq km) 180.8 Max alt. (m OO) 356
Hydrometric statistics for 1992

Monthly and yeafly statistics for previous record (Oct 1963 to Dec 1991)

Masn	Avg	2.904	2.750	2380	1.742	1362	0.922	0.710	0.688	0689
flows	Low	0.901	0.859	1.257	0742	0583	0379	0271	0208	0350
$\mathrm{m}^{\mathbf{1}} \mathrm{s}^{-1}$	Hrgh	4870	6.507	4265	3041	4232	2046	2.735	1416	1.785
Peak llow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	1426	1766	1294	1083	1041	849	787	5.49	732
Runott (m		43	37	35	25	20	13	11	10	10
Remiall (m)		69	55	62	49	60	57	57	81	63

Factors affocting runotf. GEI
Station type: C

UR	AUG	SEP
0387	0573	0751
0.54	1.65	1.72
6	9	11
	49	121
0.710	0.688	0689
0271	0208	0350
2.735	1416	1.785
7.87	5.49	732
11	10	10
57	61	63

OCT	NOV	DEC	Year
0957	2490	3124	1.082
307	9.20	10.60	10.60
14	36	46	189
66	104	51	783
1081	1692	2523	1.618
0412	0427	0725	0.809
3308	3103	6244	2.335
7.52	1002	12.57	17.86
16	24	37	282
66	78	78	755

1992 runotf is 67% of prevrous masn ramfall 104%

054022 Severn at Plynlimon flume

1992

Moasuring outhority: IH
First yoar: 1953
Hydrometric statistics for 1992

	JAN	FEB	MAA	APA	MAY	UN	μ	Aug	SEP	OCT	NOV	OEC	Yeer
Flows Avg.	0457	0407	1014	0414	0363	0161	0.131	0690	0676	0507	1163	0846	0.570
$\mathrm{m}^{2}-\mathrm{l}$. Pask	806	324	1679	3.24	720	148	092	5.88	7.28	3.99	8.56	7.72	18.79
Runotl (mm)	141	117	312	123	112	48	40	212	201	156	347	260	2070
Remfall (mm)	150	172	375	193	122	76	136	357	229	218	422	228	2678
Monthly and yearty statistics for previous record (Oct 1953 to Dec 1991 -incomplete or misaing months total 10.4 yeara)													
Moon Avg.	0771	0601	0.616	0345	0228	0222	0280	0396	0498	0637	0782	0765	0.512
flows Low	0363	0136	0171	0046	0046	0045	0043	0032	0073	0059	0268	0175	0.317
$m^{3} s^{-1 / 1} \quad \mathrm{Hggh}$	1567	1249	1.566	0878	0818	0638	0754	0.935	1092	1.464	1420	1313	0.646
Peok flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	14.50	1700	14.53	11.64	986	10.66	884	3222	1538	18.86	1777	1711	32.22
Runotf (mm)	238	168	190	103	70	66	86	122	148	196	233	236	1856
Renfall (mm)	289	190	214	132	125	137	148	185	220	250	278	281	2449

Foctors affocting runoff: N
Stotion type: FL

Grid reference. 22 (SN) 853872 Level sin. (m OD): 331.00

Catchment area (sq kmi. 8.7 Max alt. (m ODI: 740

054024 Worfe at Burcote

Moosuring authority. NRA.ST First your: 1969

Hydrometric statistics for 1992

054034 Dowles Brook at Oak Cottage, Dowles

Massuring authorlly: NRA.ST
First yoor: 1971
Grid raference: 32 (SO! 768764
Lovel stn (m ODI. 2420
Catchment aros (sq kmi: 40.8
Hydrometric statistics for 1992

		JAN	Ft8	MAR	APR	MAY	Jun	Jul	AUG	StP	$\bigcirc \subset$	NOV	OEC	Year
Flows	Avg.	0.317	0160	0.169	0.249	0145	0200	0086	0.347	0215	0284	0.786	1147	0.343
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$:	Pook	3.93	032	042	0.94	095	3.05	0.66	639	1.15	1.42	4.56	12.95	12.95
Punotf (mm)		21	10	11	16	10	13	6	23	14	19	50	75	286
Ranfall (mm)		65	30	51	46	68	50	93	150	54	61	97	71	836

Monthly and yearly statistics for previous record (Oet 1971 to Dec 1991 —incomplete of missing months total 3.2 years)

Masa	Avg	0817	0785	0704	0447	0.295	0187	0087	0064	0119	0200	0276	0626	0.382
Nows	Low	0097	0.220	0278	0116	0073	0.033	0017	0019	0020	0036	0.046	0072	0.240
$\left.m^{2}-1\right)$	ring	1617	1738	1.637	1090	1016	0692	0255	0.130	0880	1047	0766	1414	0.508
Poak flow	$\mathrm{n}^{2} 3^{-1}$	18.57	967	1496	12.90	1214	1628	473	2.69	1935	509	7.72	18.90	19.35
Aunoti (mm		54	47	48	28	19	12	6	4	8	13	18	41	298
Rainsall (mm		72	54	65	51	52	59	54	57	64	63	55	76	722
Foctors affocting runoff- N Stetion typo: FVVA											1992 runoff is 90% of provious mean ramfall 116\%			

054038 Tanat at Llanyblodwel

Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	JuN	Nr	AUG	SEP	OCT	NOV	OEC	Year
Flowe A				5.665	2808	3.626	1.302	4.286	6785	4498	12570	12540	
$m^{\prime} s^{-1}$ I: Posk				1242	793	14.46	635	2170	2251	2105	30.36	6146	
Aunolf (mm)				64	33	41	15	50	77	53	142	147	
Pamiall (mm)	60	71	131	86	77	79	73	191	110	98	203	121	1300
Monthly and yeaply statistics for previous record Jun 1973 to Nov 1991 -incomplete or missing months total 0.4 years)													
Mean Avg	11.940	10190	9066	5328	3136	2.179	1334	2.321	3.126	6735	9.580	11.830	6.383
flows Low	5037	3707	2693	1.392	0.867	0699	0348	0.190	0520	1.701	2.895	5.738	4.185
$m^{3} \mathrm{~s}^{-1}$) High	19.220	21.460	17800	9686	10.250	4660	2.589	7.609	9885	15020	17370	21.410	7.510
Prak flow ($\mathrm{m}^{3} \mathrm{~s}=$: $)$	12310	101.20	85.77	3985	3127	5687	1568	11820	69.56	8217	7612	8799	123.10
Punott $\{\mathrm{mm}$ \}	140	109	106	60	37	25	16	27	35	79	108	138	880
Pamiall (mm)	137	102	112	67	70	71	62	86	103	122	131	148	1211

Foctors affecting runoll: $\mathrm{N} E I$
1992 runoff is \% of provious mean
Station type: FV
Comment: Station undor roconstruction Dec 1991-Mar 1992

055008 Wye at Cefn Brwyn

1992

Masuring authority: IH
Fust year' 1951
Hydrometric statistics for 1992

Flows $m^{3} s^{-1}$	Avg Patk	$\begin{aligned} & \text { JAN } \\ & 0574 \end{aligned}$	$\begin{aligned} & \text { FEB } \\ & 0551 \\ & 5.83 \end{aligned}$	$\begin{aligned} & \text { MAR } \\ & 1250 \\ & 2423 \end{aligned}$	$\begin{array}{r} 0.521 \\ 426 \end{array}$	0451 14.79	0.169	0.150	$\begin{array}{r} 0.842 \\ 7.58 \end{array}$	SEP 0837 1204	$\begin{aligned} & O C T \\ & 0.638 \\ & 546 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 1.478 \\ & 1601 \end{aligned}$	$\begin{aligned} & \mathrm{OEC} \\ & 1.055 \\ & 11.39 \end{aligned}$	Year 0.710 24.23
		1389						1.32						
Runotf (mm) Rainfal (mm)		146	131	317	128	115	42	38	214	206	162	363	268	2129
		149	170	363	186	110	75	128	325	221	207	407	225	2568
Monthly and yearly statistics for previous record (Aug 1951 to Dec 1991-incomplete or missing months total 2.5 years)														
Masn	Avg	0.967	0756	0695	0.519	0.371	0345	0431	0.568	0662	0.822	1.027	1099	0.688
thows	Low	0492	0.137	0206	0064	0054	0074	0053	0036	0050	0092	0376	0198	0.447
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	thigh	1870	1.486	1.735	1312	1.144	0954	1.264	1.478	1.478	2.031	1.761	2.655	0.994
Peak flow (m)	$\mathrm{m}^{\mathbf{3}}{ }^{-1}$	2347	21.10	23.37	1912	1789	2549	1911	4887	2264	2768	2915	32.00	48.87
Runotf (mm)		246	175	176	127	94	85	109	144	163	209	252	279	2058
Pamtal (mms		264	175	201	147	129	141	160	195	204	245	269	305	2435

Factors affecting runotf: N
Stathon type: CC

Grid reference 22 (SN) 829838
Level $\sin (m$ OD) 34100

Catchment area (sq kmi: 10.6 Max alt (m OD): 740

992 runoff is 103% of provious mean ranfall 105\%

055013 Arrow at Titley Mill

Massurng authority: NRA.WEL
First year 1966

Gnd raference 32 (SO) 328585 Lovel stn. (m OO): 129.00

Catchment area (sq km): 1264 Max ath (m OD) 542

Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	JN	M	AUG	SEP	OC1	NOV	DEC	Year
Flows Avg	3.291	1.369	1.643	1924	0992	0806	0659	2219	2644	1394	4941	6595	2.378
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) Peak	3678	2.16	486	382	291	297	192	897	567	516	3478	5069	50.69
Punotf (mm)	70	27	35	39	21	17	14	47	54	30	101	140	595
Ramiall $\mathrm{mmm}^{\text {a }}$	90	47	73	57	64	62	105	215	75	63	162	88	1101
Monthly and yearty statistics for previous record (Oct 1988 to Dec 1991)													
Mran Avg	4809	4155	3573	2.229	1.673	1057	0690	0598	0803	1930	3024	4174	2.386
flows Low	1528	1.912	1629	0632	0355	0257	0211	0154	0135	0255	0.662	1366	1.309
$\mathrm{m}^{3}{ }^{1} \mathrm{~J}$ High	9003	8.763	8933	5028	5.001	2559	3842	1.546	2459	6916	6.625	8464	3.418
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-}$:)	10110	4240	$5 / 85$	3795	3249	13.09	3068	2480	1885	3645	2898	6334	101.10
Runofi (mm)	102	80	76	46	35	22	15	13	16	41	62	88	596
Rainfall (mm)	112	85	88	59	70	66	55	73	88	98	97	110	1001

Measuring authority: NRA.WEL
First year 1966
Hydrometric statistics for $\mathbf{1 9 9 2}$

055018 Frome at Yarkhill

Measurmg authority: NRA WEL
First yuar 1968
Hydrometric statistics for 1992

Ftows$m^{2} s^{-1}$		JAN	FE8
	Avg	1675	0650
	Peak	2498	090
Runoff (mm)		31	11
Rainiall (mm)		81	26

Monthly and yearly statistics for previous record (Oct 1968 to Dec 1991 —incomplete or missing months total 0.1 yeart)

Masm	Avg	2631	2495	2.104	1.285	1038	0603	0343	0312	0294	0456	0.931	1892	1.184
flows	Low	0214	0389	0560	0.359	0274	0146	0091	0083	0096	0.142	0119	0210	0.872
$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Hingh	4668	5456	5.176	3.299	3972	1.349	0630	0.759	0970	2405	2.268	4230	1.628
Peak flow	$\left.\mathrm{n}^{3} \mathrm{~s}^{-1}\right)$	2404	2499	2428	2457	2589	1699	596	961	15.68	1034	1851	2514	25.89
Punoti (mm		49	42	39	23	19	11	6	6	5	8	17	35	282
Reonfall (m		75	53	62	46	56	57	47	62	59	60	63	71	711
Factors affecting runatf E Station type VA											1992 nunof is 85% of previcus mean rainfall 115\%			

055023 Wye at Redbrook

1992

Mossurng authority: NRA.WEL
Grid referance: $\mathbf{3 2}$ (SO) 528110 Level stn. Im ODI: 9.20

Catchment area (sq km): 4010.0 First yoar: 1936
Hydrometric statistics for 1992

		JAN	fe8	MAA	APR	may	JUN	Ω	aug	SEP	OCT	NOV	DeC	Year
Flows	Ave	104.200	48880	77.690	51.790	31010	30830	21990	74.780	75.920	41.300	144700	218400	76.954
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l}$:	Paak	547.30	8307	378.40	94.61	6613	98.23	67.18	33090	218.30	14550	45840	808.80	808.80
Rumotf (mm)		70	31	52	33	21	20	15	50	49	28	94	146	607
Renfall (mm)		87	52	B5	62	55	53	92	196	78	68	170	103	1101

Monthly and yearty statistics for previous record (Oet 1938 to Dec 1991 -incomplete or misaling monthe rotal 0.2 yeare)

Moen Avg	133.600	123.900	94.410	65.040	43680	33.790	24.180	27790	39.100	59710	100.900	122.900	72.171
flows Low	25.050	30.760	22110	17.930	12340	10970	7.426	5180	7271	9.582	31730	46890	39916
$m^{3} s^{-1} 1$ High	241.900	333.900	325.400	143600	125.000	131.600	95.830	83.680	174000	174.700	252400	246000	113.382
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	74800	70040	905.40	493.30	387.90	467.20	368.30	34780	531.70	47290	60030	812.70	905.40
Rumoff (mm)	89	75	63	42	29	22	16	19	25	40	65	82	568
Reinfall (mm)	112	60	77	64	72	63	67	81	86	97	110	113	1022

Factors affocting runoff. SPE
Station lype: VA
1992 runoff is 107\% of pravious mean rainfall 108\%

056013 Yscir at Pontaryscir

Measuring suthority: NRA.WEL
first vear: 1972
Hydrometric statistics for 1992

057008 Rhymney at Llanedeyrn

Moasuring authority: NRA.WEL First yoar: 1973			Grid reference: 31 (ST) 225821 Leval stn. (m OO): 11.80							Catchment area (sq km) 178.7 Max alt. (m OD) 617			
Hydrometric statistics for 1992													
	JAN	FEB	MAR	APR	MAY	JUN	μ	AUG	SEP	OCT	NOV	DfC	Yoer
Flows Avg	4089	2759	3.982	3.959	2474	1086	1.204	5305	6.573	2872	13610	14.140	5.172
$m^{\prime} \mathrm{s}^{-1}$). Paak	4 4 4	11.12	12.62	1362	10.31	6.93	702	3941	5695	1671	12830	137.20	137.20
Runalf (mm)	61	39	60	57	37	16	18	80	95	43	197	212	915
Remitall (mm)	68	73	109	103	55	35	113	253	134	82	306	156	1487
Monthly and yearly etatistics for previous record (Jan 1973 to Oec 1991)													
Mean Avg	9.853	8.672	7.380	4252	2.849	2.019	1580	2.347	3292	5925	7.779	8896	5.391
tlows Low	3.313	3199	2.889	1204	0611	0873	0602	0453	0570	0748	2355	3218	2.903
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l}$ High	17500	22.510	20960	9695	8.340	4604	4.235	10450	11500	13.700	16560	15730	7.153
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	108.30	156.70	11050	41.55	31.31	5431	27.39	87.41	10160	11850	113.50	14730	158.70
Rumotf (mm)	148	118	111	62	43	29	24	35	48	89	113	133	952
Reinfall (mm)	167	123	130	71	75	76	73	98	131	153	144	165	1408
Factors affocting runoff: S PGE Station typa: FVVA										1992 runolf is 96% of previous maen rainfall 106\%			

058009 Ewenny at Keepers Lodge

Measuring authority: NRA.WEL
Grid reference: 21 (SS) 920782
Catchment area (sq km): 62.5
First vear 1971
Leval stn. (m OD): 8.30
Hydrometric statistics for 1992

060002 Cothi at Felin Mynachdy

Measuring authority NRA.WEL
First year. 1961
Hydrometric statistics for 1992

		JAN	FEB	MAA	APA	MAY	UN	M	AUG	SEP	OCT	NOV	OCC	YA
Flows	Avg	10460	7424	13300	11.580	5305	3.116	1.682	16330	12230	7270	24040	34.380	12.281
$\mathrm{m}^{3} \mathrm{~s}^{-1}$:	Peak	119.60	4094	3079	5044	2.131	21.79	10.77	118.10	67.62	4229	11330	367.70	387.70
Runotf (mm)		94	62	120	101	48	27	15	147	106	65	209	309	1304
Ramiall (mm)		100	114	162	150	83	55	110	325	142	128	286	227	1882
Monthly and yearty statistics for previous record (Oct 1961 to Dec 1991 -incomplete or miesing monthe total 2.0 years)														
Mean	Avg	18.800	14830	13230	8681	6228	4190	3608	6.011	7.502	15.140	18.090	19.620	11.320
flows	Low	2990	3.708	2821	1444	0835	0824	0418	0363	1500	1610	7.211	5748	7.174
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$	High	37.580	40210	40710	20380	14820	13070	11810	23.350	23.920	37.940	36270	41.140	14.950
Peak flow (m)	s^{-1})	219.10	181.20	22090	8588	87.22	9033	14440	171.00	12970	28370	19450	274.70	283.70
Rumoti (mm)		169	121	119	76	56	36	32	54	65	136	157	176	1199
Rainfall (mm)		179	123	137	96	96	97	99	121	142	185	173	186	1634
Factors affecting runoff- N Station type: VA											1992 runoff is 109% of previous mean ramfall 115\%			

Mossuring authority. NRA.WEL
First year 1965
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	May	JN	J6	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg	4748	4.519	8.063	7.046	3286	1355	1074	6.767	7.312	4430	14.310	19160	6845
$\mathrm{m}^{\mathbf{\prime}} \mathrm{s}^{-1}$: Peak	3686	1342	2037	23.70	1218	363	396	7823	2081	1059	3879	8422	84.22
Runot (mm)	59	52	99	84	41	16	13	83	87	55	171	236	996
Rasmall (mm)	64	97	123	113	45	23	90	271	115	86	207	184	1418
Monthly and yearty statistics for previous record (Oct 1965 to Dec 1991 -incomplete or miteling monthe total 1.2 veart)													
Moon Avg.	13.280	10.900	9050	5.647	3.599	2452	1.887	2.837	3.606	9.152	11750	13330	7.279
flows Low	4.835	3858	3.796	1135	1011	0781	0375	0363	0.687	1.018	3.757	3.899	4.672
$\mathrm{m}^{3}-1 \mathrm{l}$ - Hy	25900	27200	26610	11.800	8412	8.821	6335	10760	15340	22310	22730	25520	9.862
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	7343	81.15	8573	6003	3585	45.11	38.25	10100	58.02	8649	80.82	77.74	101.00
Runots (mm)	164	122	112	67	44	29	23	35	43	113	140	164	1057
Reantall (mm)	161	110	120	83.	78	81	75	102	121	168	154	171	1421
Factors affecting runoff: \mathbf{N} Station lype: VA										1992 unotf is 94% of provious mean reinfall 100\%			

060010 Tywi at Nantgaredig

Measurng guthorily NRA.WEL
First year 1959
Hydrometric statistics for 1992

		JAN	FE8	MAR	APR	MAY	JUN	M	AUG	SEP	OCT	NOV	DEC	Yeat
Fiows	Avg	37900	26150	49270	39030	20.540	10130	7486	55650	43050	23.470	80710	65380	38.242
$\mathrm{m}^{\mathbf{s}} \mathrm{s}^{-1}$.	Paok	21380	9783	10580	82.74	6572	48.75	3823	20150	12460	8399	19870	29880	298.80
Runotf (mm)		93	60	121	93	50	24	18	137	102	58	192	16 i	1108
Ranial (mm)		95	104	155	132	77	44	110	316	126	114	266	200	1739

Monthly and vearty statistics for provious record (Oct 1958 to Dec 1991 -incomplete or missing months total 2.1 years)

Moan	Avg	67570	49810	42090	31570	21300	14740	12930	19510	25.890	48.390	60260	64450	38.227
flows	Low	9473	12210	9657	6201	4503	3.136	2.752	2699	1.523	8.708	23.910	19.470	22.516
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	Hegh	120.600	109.300	137800	64470	51420	39400	42120	78470	76440	128700	122600	128300	54.099
Posk flow	$\mathrm{n}^{-1}{ }^{-1}$	50740	57880	70230	215.30	180.10	256.80	295.90	312.50	322.80	120000	46110	526.70	1200.00
Runots (mm		166	111	103	75	54	35	32	48	62	119	143	158	1108
Rennfall (f)		180	119	113	109	95	97	104	118	120	169	169	180	1573
Factors affecting runotf: RP Station type: FVVA											1992 runoff is 100\% of previous inean rainfall 111\%			

063001 Ystwyth at Pont Llolwyn

Measuring outhority: NRA.WEL First year: 1963
Hydrometric statistics for 1992

	JAN	fEB	MAR	APR	Mar	Jun	u	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	5.553	4.639	11.450	5257	3.867	1609	1266	5.728	6.543	7014	14160	13840	6754
$\mathrm{m}^{\mathbf{\prime}} \mathrm{s}^{-1} \mathrm{l}$: Pook	4088	2752	8987	2310	3071	1287	2681	46.71	4134	34.92	5882	8104	69.87
Runoff (mm)	88	69	181	80	61	25	20	90	100	111	216	2.19	1259
Rasial (mm)	84	96	193	111	72	55	106	215	126	154	239	171	1622
Monthly and yearly statistics for previous record (Ocz 1983 to Oec 1991-incomplete or miasing months total 0.4 years)													
Mean Avg	9405	7097	6241	4363	3071	2441	2599	3324	4275	7.268	9365	10570	5834
flows Low	2268	2.283	2.761	0961	0577	0625	0422	0181	0.882	0558	3.757	2219	3783
(7) $\mathbf{s}^{-1 / 1} \mathrm{High}$	15.330	15200	18470	10080	10100	7571	5461	8556	10670	19800	18320	22600	7.775
Poak flow (m's ${ }^{-1}$)	10560	8863	12670	9032	105.10	12970	68.24	17430	7684	14740	12810	21040	210.40
Runotf (mm)	149	102	99	67	48	37	41	52	65	115	143	167	1085
Raniall (mm)	155	104	120	86	86	92	98	111	129	155	167	178	1481
Factors affecting runoff: Station type: VA										1992 runott is 116% of previous mean rainfall 110\%			

Factors affecting runotf
Statmen type: $V A$

064001 Dyfi at Dyfi Bridge

1992

Mossuring authortiy: NRA.WEL
First yoor: 1962
Hydrometric statistics for 1992

		JAN	FEB 14200	MAR 39520	${ }_{\text {APR }}$	MAY 13970	JN	Mr_{4}	AUG	SEP	OCT	NOV 50030	OCC 42580	Year 22928
Flowe	Avg.	20460	14.200	39520	15.050	13.970	8.048	4247	24.530	25.860	16.290	50030	42.580	22.826
$\left.m^{2}-1\right)$	Poak	23980	3862	20970	44.52	177.90	169.70	1347	17340	15780	117.70	30900	30440	309.00
Runotf (mm)		116	76	225	83	79	44	24	139	142	93	275	242	1538
Reunfall (mm)		105	107	234	118	108	78	124	263	168	149	325	185	1964

Monthly and yearly atatistics for previous record (Oct 1982 to Dec 1991 -incomplate or misaing montha total 9.8 years)

Man	Avg	35.340	25360	27930	17420	10470	10250	9016	13280	17180	30200	34540	40950	22.671
flow:	Low	6245	5.174	5789	2626	1295	1618	0822	1819	5.966	10770	14.530	7501	18.343
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	68.810	55560	75.790	42.490	23600	21770	18.780	40440	36260	76960	70470	88280	26.520
Poak flow ($\mathrm{m}^{3} \mathrm{a}^{-1}$ \}		35020	34220	36070	28810	337.20	40210	16200	21000	32980	344.00	357.50	58050	58050
Runotf (mm)		201	131	159	96	60	56	51	75	94	172	190	233	1518
Rointall (mml		204	139	167	111	103	112	110	146	165	208	203	241	1907

Faciors offocting runoff: N
Station typo: VA

Grid reforence: 23 (SH) 745019
Level stn. (m OD) 590

Catchment area (sq km). 471.3
Max all (m OD) 907

1992 runoff is 101% of prevrous mean ranfall 103\%

064002 Dysynni at Pont-y-Garth

Moosuring authority: NRA.WEL
Grid relerence 23 (SH) 632066
Leval sin (m OO): 2.30
First year: 1966

Catchmant area (sq km): 75.1 Max alt. (m OO): 892
Hydromatric statistics for 1992

		JAN	FEB	MAN	APP ${ }^{\text {a }}$ (57	may	NN	Un	AUG	S¢P	OCT	NOV	$0 \in \mathrm{C}$	Yoer
Flowe	Avg	5.302	4130	10530	5157	4870	2066	2299	7607	8282	6950	15460	13070	7.137
m's-'k:	Pook	4219	1744	2386	2551	3831	1178	902	3029	3840	32.12	50.02	7285	72.85
Aunotf (mm)		189	138	376	178	167	71	82	271	286	248	534	466	3005
Ramiall (mm)		108	129	255	150	112	91	133	257	175	180	326	218	2134

Monthly and yearly statistics for previous record (Jan 1988 to Dec 1991 —incomplete or missing months total 1.8 years)

Mann	Avg.	6245	4949	5062	3.518	2.324	2297	2699	3346	4011	5.848	6955	7.018	4.523
flows	Low	3.371	1.548	0986	0457	0298	0427	0278	0289	1926	0556	3011	2.770	3.612
$\mathrm{m}^{2} \mathrm{~s}^{-1}$	Hogh	11830	10330	14780	7.209	7602	5921	5407	8900	7.285	12.350	12.680	12.580	5434
Pest llow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	61.40	4134	98.71	48.57	78.32	4842	5335	5875	70.14	107.70	12130	8470	121.30
Rumolf (mm)		223	181	181	121	83	79	96	119	138	209	240	250	1900
Rainfoll (m		221	152	188	124	120	140	141	169	192	244	242	248	2181
Factors allocting runaff: N Station type: VA											1992 unoff is 158% of previous mean rainfall 98\%			

066006 Elwy at Pont-y-Gwyddel
Measuring authority NRA.WEL
Frist yoar: 1973
Hydrometric etatistics for 1992

	JAN	5 CB	MAA	APA	MAY	UN	JUL	AUG	SEP	0 CT	NOV	OEC	Year
Flows Avg.	4.361	2880	5323	2.798	1.695	1.977	0.439	1.471	4.337	5.642	8.788	10.680	4.203
$\mathrm{m}^{2} \mathrm{~s}^{-1}$: : Pook	42.32	1252	12.25	564	1139	1225	075	1589	2616	3904	2646	7057	70.57
Runolf (mm)	60	37	73	37	23	26	6	20	58	78	117	147	685
Raintall (mm)	67	81	121	76	79	66	45	160	109	142	157	139	1242
Monthly and yearly statistics for previous record (Dec 1973 to Dec 19911													
Mean Avg	8099	6.397	5399	3082	1672	1202	0673	1158	2.233	4.948	7.198	7.682	4.136
fowe Low	3.115	2650	1539	0823	0.479	0359	0278	0242	0249	1.360	2263	4085	2.908
$\mathrm{m}^{3}-11 \mathrm{Hrgh}$	13060	15070	11950	6939	5918	3300	1402	4351	7450	11530	11.850	14450	5.094
Pakk flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	100.40	5800	7659	5076	21.68	18.00	2705	3813	58.57	143.00	101.60	7542	143.00
Runatl (mm)	112	80	75	41	23	16	9	16	30	68	96	106	673
Renfal (mm)	132	91	103	62	69	74	65	86	115	133	140	140	1210
Foctore affocting runoff: SRP Station Iype: VA										1992 runoft is 102\% of prevrous moan ranish 103\%			

067008 Alyn at Pont-y-Capel

Mossuring outhority NRA.WEL
First yoor 1965
Hydrometric statistics for 1992

067018 Dee at New Inn
Measuring authority: NRA-WEL
Grid reference: 23 (SH) 874308
Catchmant area (sq km): 53.9
First year: 1969
Level sin. (m OD) 163.50
Max att (m OO): 750
Hydrometric statistics for 1992

068004 Wistaston Brook at Marshf̧ield Bridge
Measuring authority NRA.NW
First year 1957
Hydrometric statistics for 1992

Monthly and yearly statistics for previous record (Oct 1957 to 0 ec 1991 -incomplete or miesing monthe total 4.2 veara)

Mean Avg.	1666	1455	1115	1066	0846	0715	0636	0.648	0.708	0.941	1277	1532	1.049
flows Low	0.538	0603	0638	0.462	0317	0331	0235	0194	0221	0.277	0.487	0650	0.518
$\mathrm{m}^{3} s^{-1}$ l Hght	3143	3679	2.131	1901	3381	1.410	2419	1578	1.973	1.902	2555	4701	1.681
Pesk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1621	1314	1331	12.48	1506	1163	1302	21.45	10.73	1295	13.25	14.47	2145
Runotf (mm)	48	38	32	30	24	20	18	19	20	27	36	44	357
Rainfal (mm)	66	46	51	54	59	62	60	67	88	69	72	67	741
Factors affecting Statm type VA	notf: PG									1992	off is 65 fall 104	of pro	us mean

069006 Bollin at Dunham Massey

Messuring authority: NRA.NW
First year' 1955
Hydrometric statistics for 1992

	JAN	FE8	MAR	APA	MAY	ON	JU	AUG	SEP	OCT	NOV	OfC	Year
Flows Avg	5371	3.764	6313	3532	2590	2278	2388	2751	2405	6736	8894	9.157	4.691
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) Peak	3412	1397	20.69	7.16	11.53	1011	632	15.60	7.15	37.60	3248	36.15	37.60
Punoti (mm)	56	31	66	36	27	23	25	29	24	70	90	96	579
Aantall $\{\mathrm{mm}\}$	53	54	89	62	55	32	67	111	61	121	123	78	808
Monthly and yearty statistics for previous record (Oct 1955 to Dec 1991 -incomplete or misaing monthe rotal 1.1 years)													
Moan Avg	6443	5343	4548	3.661	2.860	2.542	2378	2904	3070	4027	5.367	6.387	4.124
flows Low	1.639	1686	1.694	1.742	1286	0.707	0.875	0464	0651	1.300	1804	2296	2.728
$\left.m^{3} s^{-1}\right) \quad \mathrm{Hagh}$	10960	12880	11.470	8.732	5781	9.203	5.626	11410	8983	11.340	9425	14510	6.307
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.95	39.29	3691	6043	63.02	42.37	4150	4404	3505	41.18	4435	46.33	63.02
Runotf (mm)	67	51	48	37	30	26	25	30	31	42	54	67	508
Reanfall (mm)	79	54	64	56	62	72	75	87	81	83	83	87	883
Factors affecting runotf: S PGEI Station type VA													

Gird roference 33 (S.) 727875
Level stn. (m OD): 12.80

Catchment area (sq km) 2560 Max alt. (m OD): 483

069035 Irwell at Bury Bridge

1992

Mossuring outhority: NRA.NW Firet yoar: 1953
Hydrometric statistics for 1992

		Jan	feb	MaR	APA	may	UN	un	aug
Flows	Avg	6.717	4103	7.602	4.458	2.560	1473	0.688	2385
$m^{3} s^{-1}$):	Pook	218.20	5345	5051	5024	4880	5536	566	2187
Punoti (mm)		116	66	131	75	44	25	12	41
Ramfall (mm)		81	91	157	111	61	50	72	167

Monthly and yearty statistics for previous record (Jan 1977 to 0ec 1991 -incomplete or missing months total 4.2 years)

Maon	Avg.	9.913	6.179	7.359	3789	2660	2365	1.455	3020	3439	6556	9.288	10.750	5.589
flowe	Low	4855	1071	1678	0445	0072	0713	0295	0421	0930	2.603	3323	5006	4.031
$m^{3} s^{-1}$	tmgh	14820	12150	20260	6043	6797	4626	3211	5915	7.908	16.280	13.540	17450	8.406
Peak flow	$\left.\mathrm{m}^{3}-1\right)$	269.40	189.10	21990	12000	58.91	125.20	31.42	17180	131.70	185.50	245.20	28590	285.90
Rumoff (mm		171	97	127	63	46	40	25	52	58	113	155	186	1133
Renntall (m		135	78	133	76	73	96	57	109	125	124	157	159	1322

Factors affacling runoff: S PGEI
Station type: VA

Gnd reference: 34 (SD) 797109
Leval stn. (m OD): 75.00

Catchment orea (sq km): 155.0 Max alt. (m OD): 473

1992 runoff is 94% of previous mean rainfall 105\%

070004 Yarrow at Croston Mill

Moasuring authority. NRA.NW
first yoar: 1976
Hydrometric statistics for 1992

	JAN	FEB	MAR	APA	may	JUN	N	AUG	SEP		NOV	DEC	Year
Flows Avg	2.189	1585	2.930	1.729	1089	0.743	0.648	0.865	1020	2609	3351	4130	1.911
$\mathrm{m}^{1} \mathrm{~s}^{-1} \mathrm{l}$: Peak	35.89	1061	1784	1058	7.92	420	2.74	482	457	20.70	15.06	5542	55.42
Runolf (mm)	79	53	105	60	39	26	23	31	36	94	117	149	812
Rointoll (mm)	64	71	121	79	46	47	45	114	80	127	128	109	1031
Monthly and yoarly statistics for previous record (Jen 1976 to Dec 1991 -incomptete or misaung monthe total 0.1 years)													
Moan Avg	3.264	2.225	2474	1326	1022	0.925	0811	1164	1190	2.431	2.719	3182	1.898
flows Low	1.491	0846	1037	0586	0.508	0.405	0494	0379	0536	0854	1.349	1756	1.251
$\mathrm{m}^{\prime} \mathrm{s}^{-1}$) High	5.037	4917	7574	2.504	2.577	1417	1804	4003	2062	6.360	4699	6531	2.830
Posk flow \{ $\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$ \}	33.44	2017	9313	31.18	27.79	3015	2789	192.00	35.77	89.38	3423	107.60	192.00
Runoff (mm)	118	73	89	46	37	32	29	42	41	88	95	115	804
Rainfes (mm)	102	61	94	55	60	83	63	93	92	123	105	110	1041

Factors affectung runoff S PGEI
Station type: MIS

Grid reference 34 (SD) 498180 Level stn (m OD): 6.90

1992 runotf is 101% of previcus mean rainfall 99\%

071001 Ribble at Samlesbury

Measuring Duthority: NRA.NW Moasuring Duthority
Firgt yoar: 1960

Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	ОСT	Nov	ORC	Year
Flows Avg	38.740	32.650	59980	29500	18400	6.619	6875	15060	24620	32540	60790	58.360	32.025
$\mathrm{m}^{\prime} \mathrm{s}^{-1} \mathrm{l}$: Peak	787.30	23240	32950	35630	267.60	19.00	1970	13300	14120	207.30	275.40	51720	787.30
Runoti (mm)	91	71	140	67	43	15	16	35	56	76	138	137	884
Rainfall (mm)	100	111	178	112	69	28	77	157	111	130	184	134	1391
Monthty and yearly statistics for previous record (May 1960 to Dec 19911													
Meon Avg.	51.550	38280	34.720	25.650	17.390	14180	16250	23580	28.780	41.520	52.210	55710	33.314
flows Low	10610	9565	11.790	5601	4.048	5.031	2638	2.958	4263	5716	20.770	15.190	22.045
$m^{3} 0^{-11}$ Hrgh	82.510	60890	104.700	54.820	46460	33520	40.500	68920	65820	118400	88 610	120200	45.022
Pask flow ($\mathrm{m}^{2} \mathrm{c}^{-1}$)	75480	513.10	643.30	466.60	319.10	49480	39980	52080	619.30	81000	613.20	89130	891.30
Punot (mm)	121	81	81	58	41	32	38	55	65	97	118	130	918
Remfall (mm) . $.1961 .1991)$	135	89	107	79	79	91	90	117	128	142	142	150	1349
Factors affocting runoff: S E Station type: MIS										1992 runoff is 96% of previcus mean ramfal 103\%			

071004 Calder at Whalley Weir

Mousuring authority: NRA.NW
Firsi vear: 1963
Hydrometric statistics for 1992

		JAN	FEB	MAR	APA
Flow	Avg.	11020	8.331	13480	7545
$m^{2}-1 \mathrm{l}$:	Peak	21180	6859	78.77	75.96
Punoty (mm)		93	66	114	62
Ramiall (mm)		94	92	151	97

Grid roteronce 34 (SD) 729360
Level sin (m OD): 39.90

Catchment area (sq km). 3160 Maxalt. (m OD). 558

Monthly and yearty statistics for previous record (Oct 1983 to Dec 1991 —uncomplete or missing monthe totel 2.6 years)

Measuring authonity: NRA.NW
First year: 1968
Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	may	JuN	M	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	6495	9.972	15040	7798	6.581	1.490	2.197	6777	10.130	6461	18400	15030	8.852
$\mathrm{m}^{3}-1 /$ Peak	30.18	7621	6051	43.67	91.42	3.82	26.85	34.15	6988	44.18	7210	119.50	119.50
Runott (mm) Rainial (mm)	83	120	193	97	84	18	28	87	126	83	228	193	1339
	66	184	198	125	78	26	134	205	166	142	273	165	1782
Monthly and yearly statistics for previous record (Now 1988 to Dec 1991)													
Moen Avg	13.210	10660	10050	6478	4026	3679	3.921	5.517	7.660	10850	13.630	13280	6.578
hlows Low	5.998	3094	3348	2038	1222	0872	0658	0740	1753	1396	5484	5466	5.995
$m^{2} s^{-1} 1$ Hegh	20.950	27.410	23.030	12620	11.580	13010	10570	18.810	15680	18110	21490	23210	10.318
Poak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	23090	16780	19460	11110	5344	7286	9590	9426	120.70	13170	17780	27640	278.40
Runoty (mm)	169	124	129	80	52	46	50	71	95	139	169	170	1295
Ramiall (mm)	197	126	158	91	84	103	110	131	165	189	202	197	1753

Factors affectimg runoti N I
Staton type CBVA

Grid reference 34 (SD) 509874
Level sin. (m OD): 18.90

Calctument area (sq kmp 209.0 Max aht (m OD) 817

1992 runotf is 103% of prevrous mean rainfall 101\%

074005 Ehen at Braystones

Measuring authority NRA.NW
First year 1974
Hydrometric statistics for 1992

	JAN	F¢日	MAR	APR	mar	JUN	π	Aus,	SEP	OCT	Nov	OEC	Year
Fows Avg	3.526	5.419	10140	4.768	4103	1305	1.121	5235	6390	5065	10340	8299	5.474
$\mathrm{m}^{3} \mathrm{~s}^{-1}$. P Peak	1551	56.73	5421	3332	25.33	411	548	3793	3357	2756	5366	4988	58.73
Rumoff (mm)	75	108	216	98	88	27	24	112	132	108	214	177	1379
Raintall (mm)	70	194	237	155	86	40	132	234	179	156	247	145	1875
Monthly and yearly statistics for previous record Wan 1974 to Dec 1991)													
Mean Avg	7.781	6026	5807	3434	1976	1925	2342	3.864	5054	7974	7810	7.705	5.142
flows Low	2.220	1.856	2225	0993	0771	0779	0789	0661	1644	3.640	3.121	2.448	3.963
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{H}$ Hgh	16030	15890	10300	1046	6877	4.371	5.602	12.260	12840	14080	12.470	13.380	6.328
Peak now ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	9785	7936	6947	81.07	4697	3825	56.92	7432	7640	11590	6449	91.47	115.90
Runotf (mm)	166	117	124	71	42	40	50	82	104	170	161	164	1293
Raintall (mm)	200	124	177	87	76	100	123	151	178	227	193	202	1838

Factors affecting runoff S P
Station tyne VA

Grid reference: 35 (NY) 009061 Level \sin (m OD) 10.10

Catchment ares (sq km): 125.5 Max alt (m OO): 899

1992 runoff is 107% of provious mean rainfall 102\%

075002 Derwent at Camerton

Measuring authority: NRA.NW
First year 1960
Hydrometric statistics for 1992

	JAN	FEB	MAR	APh	MAY	NAN	J	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	18280	29420	49080	24.120	20280	2881	4657	19.150	32.150	17.460	48.670	47.210	28.086
m's-1 Peak	4336	10460	12780	8810	6402	501	877	5172	5906	1819	9507	141.50	141.50
Runoti (mm)	74	111	198	94	82	11	19	77	126	11	190	191	1244
Rainfel (mm)	68	204	232	159	84	31	123	238	183	145	248	180	1895
Monthly and yearly statistics for previous record (Sep 1960 to Dec 1991 -incomplate or missing monthe total 0.2 years)													
Mean Avg	39140	30030	26780	20050	12170	9941	11370	17.770	24.530	35.570	40950	40730	25.741
Slows Low	9.587	4.837	7.466	4359	2753	2041	2503	2.384	2.885	2.755	14570	14740	14.824
$\mathrm{m}^{3} \mathrm{~s}^{-1}$ High	84550	84850	66470	38940	36280	34.800	23.140	55940	62.980	107.800	76340	75840	34.235
Paak now ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	21920	165.70	215.50	145.50	10290	13580	114.50	216.20	18920	26470	22640	23480	204.70
Runotf (mm)	158	110	108	78	49	39	46	72	96	144	160	165	1225
Rainfal (mm)* $`(1961.1991)$	186	117	149	96	96	108	115	147	175	205	192	192	1778
Factors affocting tunoff SP Station type. VA										1992 runotf is 102% of pravious mean rainfall 107\%			

Grad reference 35 (NY) 038305
Level stn (m OOf: 16.70

Catchnemt area ($\mathbf{s q} \mathrm{km}$): 6630 Maxalt (m ODI. 950

076005 Eden at Temple Sowerby

Measuring authority. NRA.NW
First yoar 1964
Hydrometric statistics for 1992

	JAN	FE8	MAA	APH	MAY	UN	Mr	AUS	S¢P	OCT	nov	DEC	Yoar
Flows Avg	9.871	11990	16020	11040	6563	1553	1787	4311	9297	B 279	27530	29950	11.504
$\mathrm{m}^{3} \mathrm{~s}^{-1}$. Peak	7480	3360	7944	5655	9114	272	1337	2992	5655	7641	13720	27260	272.60
Runots (mm)	43	49	70	46	29	7	8	19	39	36	116	130	590
Revinall (mm)	43	83	111	79	53	18	77	119	105	93	170	130	1081
Monthly and yearly statistics for previous record (Now 1964 to Dec 19911													
Moan Avg.	24.350	20130	17090	10610	7030	5.264	5374	7692	10860	16410	21520	25.220	14.277
flows Low	10870	5577	6338	2923	2196	1879	1176	1613	1593	1.915	7764	9.403	8.669
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	42280	62620	43.570	19500	17000	13780	16690	22070	30440	55960	38.740	49530	18.912
Pesk flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	283.30	31490	34630	16580	15040	13940	23050	20400	28020	271.00	27930	32320	346.30
Runots (mm)	106	80	74	45	31	22	23	33	46	71	91	110	731
Rasitall $\{\mathrm{mm}\}$	127	89	99	61	68	71	77	93	104	118	125	131	1163
Factors affecuing runoff: Station type VA										1992 runoff is 81% of provious mean rainlall 93\%			

076010 Petteril at Harraby Green

Moasuring authority NRA.NW
first year. 1969
Hydromatric statistics for 1992

		JAN	FEB	MAR	APA	MAY	JUN	\cdots	AuG;	SEP	\bigcirc	NOV	Dec	Yosi
Flows	Avg.	1585	2810	3131	2077	1010	0397	0328	0423	0838	1163	3825	3895	1.785
$m^{3} s^{-1} 1$:	Pook	5.22	1592	1201	1135	419	075	057	187	231	681	1198	2288	22.88
Rurnofl (mm)		27	44	52	34	17	6	5	7	14	19	62	65	353
Rainfall (mm)		29	87	104	76	53	16	59	124	87	74	128	79	916

Monthly and yearly statistics for previous record (Jan 1970 to Dec 1991 -incomplete or missing monthe total 5.8 years)

$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{~J}$	$\mathrm{H} \mathrm{Hgh}^{\prime}$	7.125	9440	4.355	3007	3898	1469	1944	2699	4975	5669	7146

Factors allecting runofl N
Station typa: MIS

Grid relerence: $\mathbf{3 5}$ (NY) 412545
Leval sin (m OD). 20.10

Catchment area (sq km) 1600 Max alt. (m OD) 366

1992 runotf is 84% of prevrous mean rainfall 98\%

077003 Liddel Water at Rowanburnfoot

Moasuring authority: SRPB
Firsi yoar 1973
Hydrometric statistics for 1992

	JAN	feb	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Yes
Flows Aug	9.492	9.710	15770	14280	7136	1247	1945	8032	12.490	7426	19750	14470	10.128
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{j}$. Poak	14300	5744	9983	9156	18920	309	1868	9431	8392	14360	14480	21230	212.30
Runatl (mm)	80	76	132	116	60	10	16	67	102	62	161	122	1004
Ramfall (mmb	75	111	190	155	70	21	100	194	167	110	215	120	1528
Monthly and yearly statistics for previous record toct 1973 to Dec 19911													
Mean Avg.	16920	13240	13330	6396	4690	4263	5127	6104	8571	12250	14480	16220	10.129
flows Low	8344	5633	5710	1538	1118	1.083	0879	0869	175%	4057	3421	4819	7.515
$\mathrm{m}^{2} \mathrm{~s}^{-1}$) Hagh	30750	32.020	23150	14230	16730	12940	22800	23360	24390	19.120	26200	26.460	13.058
Pook flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	40440	34910	34530	17100	24100	13100	30940	17880	35490	33430	281.00	39320	404.40
Prunoif (mm)	142	101	112	52	39	35	43	51	70	103	118	136	1002
floinfall (mm)	152	102	131	69	80	89	104	117	123	145	138	158	1408
Factors affacting runoff: \mathbf{N} Station type VA										1992 runott is 100% of previous mean rainfall 109\%			

078003 Annan at Brydekirk

Measuring authority: SRPB
First year: 1967
Hydrometric statistics for 1992

	JAN	FEB	MAA	APA	MAY	UN	JUL	AUG	SEP	OCT	NOV	DEC	Yoar
Flows Avg	40530	33420	48300	36840	24370	4098	3574	32150	40500	22.570	63010	54.090	33.595
$m^{3} s^{-1}$) Peak	28450	16830	189.80	16400	18020	784	1843	12500	13950	8594	18580	32070	320.70
Runoll (mm)	117	91	140	103	71	11	10	93	113	65	177	157	1149
Rainfol (mm)	93	127	176	131	62	26	87	238	159	98	203	127	1527
Monthty and yearly statistics for previous record (Oct 1967 to Dec 1991)													
Mean Avg	47100	37.470	33730	20710	14480	11500	11.280	17430	24220	37380	41870	43.980	28404
flows Low	17.820	12.820	8.402	6124	3519	2937	1944	2007	3362	3592	11490	19530	16.402
$m^{3} s^{-1} \quad \mathrm{High}$	83440	105700	63910	40600	53.160	32150	34940	76390	76320	86820	77930	87020	36.424
Payk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1} 1$	40540	30500	29330	21330	17250	17130	25310	37890	44660	49910	32500	35540	499.10
Rutrofi (mm)	136	99	98	58	42	32	33	50	68	108	117	127	989
Raintat (tmon)	147	100	120	69	83	84	34	109	129	150	134	142	1361

Factors affecting runolf: N
Stalion types: VA

Grid reference 35 (NY) 191704 Level $\sin (\mathrm{m} \mathrm{OD}) 1000$

Catchmant area (sq km) 925.0 Max alt (mOD) 82 ;

1992 runoff is 119% of previous moan rainlall 112\%

078004 Kinnel Water at Redhall

Mossuring euthority: SRPB
First year. 1963
Hydrometric statistics for 1992

	JAN	feb	MAR	APR	MAY	JUN	un	AUG	SEP	OCT	NOV	DFC	Yom
Frows Avg	3.835	3.738	4917	3135	1816	0128	0.250	4033	4230	2140	6488	4446	3.258
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{j}$. Paak	7377	2873	4339	3742	3742	037	609	3840	4202	2926	4260	6828	7377
Aunoh (mm)	135	123	173	107	64	4	9	142	144	75	221	156	1354
Rantiall (mm)	117	144	187	140	67	27	100	261	179	110	216	135	1683
Monthly and yearty statistics for provious record (Oct 1983 to Dec 1991 -incomplete or missing months total 1.0 yeara)													
Moon Avg.	4317	3.232	2965	1690	1451	1070	1042.	1650	2618	3691	3945	4144	2.650
flows Low	1296	0.590	0552	0251	0122	0112	0048	0049	0099	0207	0740	1.081	1.507
$\left.\mathrm{m}^{\prime}-\mathrm{l}\right) \mathrm{Hrah}$	9214	9298	6263	4161	5496	3282	3435	7513	6689	7288	7535	8490	3.517
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	9589	6713	10120	6670	5179	3609	6014	6525	9137	11090	8669	10360	110.90
Runoff (mm]	152	104	104	58	51	36	37	58	89	130	134	146	1099
Paniall (mmb	154	105	127	77	94	91	95	111	144	159	147	157	1487

Factors affecting runoff: N
Station typo: VA

Grid reference 35 (NY) 077868 Leval sin (m OO) 5370

Catchment ares (sq km). 76.1
Max alt (m OOf. 697

[^8] rainfall 115\%

080001 Urr at Dalbeattie

Mossuring authority: SRPB First year 1963
Hydrometric statistics for 1992

		JAN	FEB	MAR	APR	May	Jun	μ	AUG
Flows	Avg	6.429	7937	12.570	8.346	3.335	0424	0604	5596
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	6360	5141	79.29	63.26	2063	307	4.76	2395
Runotf (mm)		87	100	169	109	45	6	8	75
Ramial (mm)		84	149	213	130	56	40	92	195

Monthly and yearty statistics for previous record (Nov 1983 to Dec 1991)

Mean	Avg.	9.874	7978	6573	3.782	2868	1.976	1458	2.863	5039	8 186	9350	9798	5.804
flows	Low	3534	1419	2.094	0.753	0308	0.246	0.137	0149	0319	0522	1711	3.369	3.109
$\mathrm{m}^{3}-1 \mathrm{j}$	High	19080	19.340	11.990	8.509	10880	6833	5.081	13310	17.160	19400	19420	18.590	8.358
Pook flow	$\left.\mathrm{H}^{3}-1\right)$	133.70	100.10	9503	6939	53.50	44.86	6842	10460	12943	162.20	129.70	164.30	184.30
Rumaty (mm)		133	98	88	49	39	26	20	39	66	110	122	132	920
Rainfal (m		139	98	114	70	79	79	79	103	129	149	139	141	1319
Factors affocting runoff N Station type VA											1992 runoff is 117% of provious mean rainfall 116%			

Measurng authonty SRPB
Firsi vear. 1963

Grid reference: 25 (NX) 412653 Leval stn. (m OD): 480

Catchmant ares (sq km): 368.0 Max alt (m OD) 843
Hydrometric statistics for 1992

		JAN	FEB	MAR	APR	MAY	UN	Nr	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg	17.620	24.940	33060	23.880	9732	0468	2.915	20.050	16790	16200	28760	24900	18.248
m's ${ }^{\text {1 }}$ ':	Poak.	233.90	97.84	14300	207.10	64.60	0.93	3076	13520	81.87	104.50	12580	191.10	233.90
Runotf (mm)		128	170	241	168	71	3	21	146	118	118	203	181	1588
Ramiall (mm)		126	218	297	206	79	25	143	253	164	178	232	172	2093

Monthly and yearty statistics for previaus record (Oct 1963 to Dec 1991)

Mean	Avg.	24000	17580	16450	10.170	7595	6741	7717	10670	16170	21.850	23480	23600	15.503
Nows	Low	9.633	2569	4039	1.319	0426	1176	0969	0684	1063	6495	7292	5775	9.965
$m m^{-1}$	Hagh	45.820	42490	28.180	23820	22.960	15.620	19.710	36030	43310	36.720	43910	48050	18979
Puak fow	$\mathrm{m}^{1} \mathrm{~s}$ 1/	27250	253.10	217.20	19230	11940	195.10	22310	23090	312.70	31800	199.10	32230	322.30
Runott (mm		175	117	120	72	55	47	56	78	114	159	165	172	1330
Remiall (mm		198	127	156	97	96	103	110	137	169	200	201	193	1787
Factors affecting runoff. N Station type: VA											1992 runoff is 118% of previous mean ranfall 117\%			

081003 Luce at Airyhemming

Measuring authority: SRPB
Frisi year: 1967

Grid reference. 25 (NX) 180599
Leval stn. (m OD): 1900

Catchment area (sq km): 171.0 Max alt. (m OD) 438
Hydrometric statistics for 1992

	JAN	FE日	MAR	APA	may	JuN	ת	AUG	SEP	OCT	Noviv	DEC	Yew
Flows Avg	6641	9.524	12.860	8004	2015	0.268	0619	5829	6942	6.965	13130	10300	6.909
m's ' ${ }^{\text {m Prak }}$	15820	6540	6840	9615	1182	0.60	701	6038	4830	75.93	7045	12510	158.20
Runoff (mm)	104	140	201	121	32	4	10	91	105	109	199	161	1278
Rainfal (mm)	101	159	214	149	51	22	123	213	162	141	212	146	1693
Monthly and yearty statistics for previous record (Jan 1987 to 0ec 1991)													
Moin Avg	10100	7207	6507	3839	2367	2041	2239	3595	5941	9.063	9823	9024	5.978
flows Low	4.540	0789	1359	0454	0261	0225	0191	0277	0366	1689	3857	2445	3.691
$\mathrm{m}^{2} \mathrm{~s}^{-1}$) High	15600	14810	12310	9522	7597	5.360	6445	14.290	17670	16750	15940	17090	7.787
Peak flow ($\mathrm{m}^{3}{ }^{-1}$)	177.10	146.10	21670	197.60	8738	190.30	156.80	28360	19240	23180	19100	20400	283.60
Runots (mm)	158	103	102	58	37	31	35	56	90	142	149	141	1103
Rantall (mm)	165	103	123	82	75	87	95	117	143	169	164	151	1474
Factors affocting runoff: NS P Station type VA										1992 runoff is 116% of prevrous mean rainfall 115\%			

082002 Doon at Auchendrane

Measuring authority: CRPB
First year: 1974
Hydrometric statistics for 1992

Monthly and yearty statistics for previous record Nul 1974 to Dec 1991)

Mean Avg.	10920	8.265	8485	5.214	3.977	3.745	4059
fows Low	5.203	3.685	4270	3157	2.390	2265	2397
$\mathrm{m}_{3}-1 / \mathrm{Hingh}$	15.120	18360	13320	10520	8008	4981	6945
Pask flow ($\mathrm{m}^{2} \mathrm{~g}^{-1}$)	8515	6308	6951	61.06	4245	1963	61.38
Rumotf (mm)	90	62	70	42	33	30	34
Rainfall (mm)	200	116	152	73	75	81	98

Factors affectung runotf: P
Station typa VA

Grid reference: 26 (NS) 338160
Level sin. (m OD) 2220

Catchment area (sq kmis): 3238
Marea (sq km): 3238
Max (m OD): 844

AUG
$u n$
3204
640
27
115
AUG
5.904
1464
49
217

SEP
7.98 C
24.94
64
160
OCT
8.57
42.8
71
158

NOV	DEC	Yesr
13770	9679	8.081
3694	3960	71.75
110	80	789
233	142	1858

5244	7.545	9.994	10530	10760	7.398
2557	3.825	4732	4786	8.247	5.559
10930	17.680	14610	17.290	20.680	8.698
48.34	10320	12150	8378	8449	12150
43	60	83	84	89	721
126	171	196	186	191	1885

[^9] rainfall 111\%

083003 Ayr at Catrine

Moasuring authority: CAPB
Grid reference: 26 (NS) 525259 Leval sin (m OO): 8990

Hydrometric statistics for 1992

	Jan	FもB	MAA	APA	MAY	Jun	Ar	AUG	SEP	OCT	MOV	OEC	Yo
Flows Avg.	7.163	7.904	9452	4.738	3.713	0.591	0909	6060	7.606	8.161	12.260	6.228	. 053
$\left.m^{2} s^{-1}\right\}$: Peak	106.40	81.05	9120	3296	4068	1.16	10.81	3748	3986	8911	6382	3988	108.40
Rumotf (mm)	115	119	152	74	60	9	15	98	119	99	191	100	1151
Raintall (mm)	116	158	196	97	76	28	103	206	184	128	222	97	1591
Monthty and yoarly statistics for previous record iSap 1970 to Dec 19911													
Mabn Avg	0784	5.873	5.918	3.105	1.949	1960	2050	3192	5.101	6.683	7.919	7698	5.018
flows Low	3.182	1.534	1480	0.733	0.593	0.639	0417	0410	0597	0.631	2.147	3312	3613
$m^{\prime} s^{-1}$) High	14.120	13.830	10780	7056	5714	4179	7.720	9970	14680	10900	13630	14490	6.758
Pook flow \{ $\mathrm{m}^{3} \mathrm{c}^{-1}$ \}	17850	9654	10290	6702	75.55	7032	7343	7200	157.40	182.60	121.70	17050	178.50
Punotf (mm)	141	86	95	48	31	31	33	51	80	108	123	124	952
Romial (mm)	148	90	115	68	67	82	86	101	127	147	146	140	1317

Foctors offocting runotf: H
Station type: VA

Catchment ares (sq km): 166.3 Max alt. (m OD): 548

992 runoff is 121% of previous mean rainfal 121%

083005 Irvine at Shewalton

Mossuring suthority: CRPB
Fifst yoar 1972
Grid reference: 26 (NS) 345369 Level sin (m OD): 4.80

Cetchment ares (sq km): 380.7
Hydrometric statistics for 1992

		JAN	FEB	MAR	APR	may	JN	μ	AUG	SEP	OCT	NOV	DEC	Year
Flow:	Avg	18510	16.060	20.430	8.551	7527	0536	1097	10290	15.630	11.670	28890	11.980	12.408
$m^{3} \mathrm{~s}^{-1}$):	Poak	21750	15940	132.50	6664	102.20	130	344	7362	99.20	113.90	12280	8248	217.50
Hunots (mm)		130	106	144	58	53	4	8	72	106	82	183	84	1031
Painiall (mm)		123	153	181	91	77	23	98	189	155	119	205	83	1497

Monthly and yearty statistics for previous record (Fab 1972 to Dec 1991 -incomplate of miasing months total 0.2 years)

Mren Avg.	17200	10610	11200	5.795	3311	3052	3401	5923	11350	13.010	15.680	14580	9.593
flowe Low	4527	1874	3182	1.138	0789	0.706	0.367	0328	1608	4298	3754	3829	6.694
$m^{3} s^{-1} / \mathrm{H}$ Hgh	28890	26480	23.440	16.980	11.530	10870	12060	20070	33.750	23.910	27.770	27.660	11.287
Pask fow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	341.20	19090	20750	108.50	131.80	139.30	27870	22820	303.60	27230	194.30	226.10	341.20
Runoti (mm)	121	68	79	39	23	21	24	42	77	92	107	103	795
Remnfall (mm)	133	76	110	62	62	77	85	103	138	133	136	132	1247
Factors affocling	noff: E									1992 run	ff is 130	8 of prev	ous mean

Factors affocting runoff: E
Station type: VA

1992

084012 White Cart Water at Hawkhead

unoff is 130\% of prevous mean
rainfall 120\%

Moosuring outhority: CRPB
Noosuring authorit
Fust yoar: 1963
Hydrometric statistics for 1992
 Station typo: VA

Grid reference: 26 (NS) 499629
Level sin. (m OOf: 4.10
Caichment ares (sq km): 227.2 Maxalt (m OD): 376

084016 Luggie Water at Condorrat

Mossuring outharity: CRPB
First your: 1966
Hydrometric statistics for 1992

	JAN	FEB	MAR	APA	may	JN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flowe Avg	1.759	1.128	1.807	0997	0.630	0234	0.203	0843	1652	0.716	1.747	1044	8.082
$m^{3} a^{-1}$: Peok	2742	13.98	25.23	1461	1.97	094	138	6.72	1493	5.04	6.63	5.14	27.42
Punotf (mm)	139	83	143	76	50	18	16	67	126	57	134	83	991
Remiall (mm)	101	103	160	75	68	21	79	184	174	63	152	70	1250
Monthly and yearty statistics for previous record foct 1968 to Dec 1991-incomplete or misaing months total 0.5 vears)													
Mase Avg.	1.502	1088	1037	0.591	0447	0.308	0315	0491	0.773	1.088	1.321	1371	0.880
thowe Low	0680	0415	0370	0287	0168	0.138	0147	0.123	0125	0.129	0.387	0.592	0.539
$\mathrm{m}^{2} \mathrm{~g}^{-1} 1 \quad \mathrm{Hogh}$	3.104	2.378	1846	1030	1.199	0692	1751	1606	3.386	2.121	2.362	2669	1.121
Peak fow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	3025	1934	2811	12.52	14.54	7.01	27.14	2206	44.46	34.20	30.68	3604	44.46
Runotl (mm)	119	78	82	45	35	24	25	39	59	86	101	108	801
Ranfall (mm)	112	76	94	53	66	68	74	91	110	120	113	110	1087
Factors affocting runoff N Station iypo: VA										1992 numoff is 124% of pravious mean rainfall 115\%			

085001 Leven at Linnbrane

Measuring authofity. CRPB Grid reference 26 (NS) 394803
First year: 1963
Hydrometric statistics for 1992

	JAN	56	MAR	APA	MAY	UN	NK	AUC	SEP	$0 C 1$	N	Ot	Yo
Flows Avg.	88.300	56060	92840	44630	41960	8517	9035	49230	77210	32.130	64390	78130	53.575
$\mathrm{m}^{\prime} \mathrm{s}^{-1} \mathrm{j}$. Poak	14610	8778	11470	7388	6074	1167	1441	7717	92.56	6806	8785	9743	148.10
Runoti (mm)	302	179	317	147	143	28	31	168	255	110	213	267	2180
Reminall (mm)	220	295	318	145	127	35	140	336	266	118	306	189	2495
Monthly and yearty statistics for pravious record (Jul 1963 to Dec 1991)													
Mean Avg	65520	56190	49910	35400	24220	19600	18990	23680	36010	55320	60730	60750	42134
fows Low	27910	18610	16630	10540	10.620	9716	7303	4556	8736	10.830	24540	17580	30.712
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{H}$ High	119100	134600	138200	73.990	73.120	51860	44640	85740	91360	90150	115000	125500	54.061
Peak flow (m's ${ }^{\text {-') }}$	15050	16360	19680	11240	9202	7848	11660	11530	121.60	13850	14570	14850	198.80
Runotf (mm)	224	175	170	117	83	65	65	81	119	189	201	201	1895
Rainfal (mm)	242	156	192	105	115	115	122	149	211	234	226	225	2092

Factors affocting runoff: S
Station type VA

Lovet stn (m OD). 430

Catchmant ares (sq km): 784.3 Max att (m OD): 1130

090003 Nevis at Claggan

Measuring authority: HRPB First year: 1982
Hydrometric statistics for 1992

	JAN	fer	MAR	APR	MAY	UN	Jul	Aug	SEP	OCT	Nov	DCC	Year
Flows Avg	12910	12400	13310	6393	5.241	0837	2974	10720	8.297	3.554	11.100	11340	8251
m's-'). Peok	19770	17200	93.86	52.45	4577	7.61	2830	8822	50.39	61.34	77.46	84.53	197.70
Rumotf (mm)	450	405	464	216	183	28	104	374.	280	124	375	396	3398
Rairfall (mm)	413	496	468	248	174	61	172	536	308	170	481	406	3933
Montily and yearly statistics for previous record (Sep 1982 to Dec 19911													
Moan Avg	9443	6922	9431	5545	3855	2253	3817	5267	7833	9463	7590	10120	8.805
flows Low	2.517	0691	2188	3017	1123	0970	0907	1116	2.909	6.446	3.755	2831	5.186
m's-1/ High	17.790	17990	25920	10030	12.600	3211	8608	10580	11010	16380	15360	15480	9.050
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	19570	15630	14310	10170	6750	69.35	10500	13050	219.00	146.50	11030	18900	21900
funaty (mm)	329	220	329	187	134	76	133	184	264	330	256	353	2798
Rainfall (mmi* $\text { © } 1986.1991\}$	414	323	452	150	127	101	193	232	285	374	299	385	3335
Factors affecting runoff \mathbf{H} Station type: VA										1992 runoff is 122% of previous inean ranfall 118\%			

Grid reference: 27 (NN) 116742
Level stn. (m OD) 3.60

Catchment area (sq km): 76.8 Max all (m OD): 1344

094001 Ewe at Poolewe

Measuring authority: HRPB First year 1970
Hydrometric statistics for 1992

	JAN	FE日	MAR	APA	MAY	JN	JuL	AUG	SEP	OCT	Nov	OfC	Year
Flows Avg.	53500	48660	60120	29230	38250	4664	10250	32460	60300	30020	59790	69750	41.409
$\left.\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$ Peak	15610	11630	8033	4705	7768	827	2215	8793	10820	4550	9067	17150	17150
Rurnoff (mm)	325	276	365	172	232	27	62	197	354	182	351	424	2969
Raintol (mm)	275	338	331	203	166	53	125	330	302	225	383	388	3119
Monthly and yearly statistics for previous record (Now 1970 to Dac 1991)													
Meen Avg.	42810	32.510	31570	23460	15.300	12830	14150	17.970	32.120	36670	45660	44840	29.145
flows Low	13820	10660	8842	4.537	3.862	3725	7884	6.240	8046	13.160	21020	15740	19.389
$\mathrm{m}^{\prime} \mathrm{s}^{-1} \mathrm{~J}$ High	81.130	83.670	97870	38.270	36.280	27.180	26180	37000	57270	66.220	78.300	81840	39.738
Poak llow [$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$]	17710	24710	15620	7359	65.63	6443	4508	8546	10920	12550	13610	17960	247.70
Punott (mm)	260	180	192	138	93	75	86	109	189	223	268	272	2085
Rentall (mm)	278	188	237	129	111	119	137	161	252	288	317	305	2522
Factors affecting runoff: N Statmon type: VA										1992 runoff is 142% of previous mean rainfall 124\%			

096001 Halladale at Halladale

Measuring authonty HRPB
Grid reforence 29 (NC) 891561
Level stn (m OD) 2320

Catchment area (sin km) 2046 Max alt (m OD): 580

Hydrometric statistics for 1992

	JAN	FEB	MAR	APR	MAY	JUN	HL	AUG	Sr.P	${ }^{\circ} \mathrm{CT}$	NOV	OEC	Year
Fluws Avg	6352	6364	7215	2445	3.131	0277	0249	5152	7.631	8982	8344	6682	5.283
$\mathrm{m}^{\prime} \mathbf{s}^{-1}$ j. Peak	9785	3974	62.75	2488	3544	100	037	10120	7997	4618	4670	56.21	101.20
Runotf (mm)	83	85	94	31	41	4	3	67	97	118	108	87	817
Reinfall (mm)	80	99	117	69	59	26	47	168	134	132	118	92	1141
Monthly and yearty statistics for previous record Wan 1978 to Dec 1991)													
Moan Avg	B 221	6522	6125	2776	1934	1912	1985	2770	4583	6937	8899	7438	5.002
flows Low	4.478	1555	2907	0624	0279	0271	0215	0186	0447	1351	2510	3004	3.328
$\mathrm{m}^{3}-1 / \mathrm{H}$ Hgh	11900	10940	9753	6442	54.34	4128	5064	3193	7886	16.560	14730	12390	6.418
Paok flow (m's ${ }^{-1}$)	98.96	8624	12260	6928	10800	14080	12910	17200	18910	16910	16320	16200	18910
Runotf (mm)	108	78	80	35	25	24	26	36	58	91	113	97	772
Rainfall (men)	127	77	107	63	59	67	67	81	114	126	139	118	1145

Factors affecting runoff. N
Station type: VA

1992 runoff is 106% of provious mean rainfall 100%

101002 Medina at Upper Shide

Massuring authorily NRA.S
First yoer. 1965
Hydrometric statistics for 1992

		JAN	FEA	MAR	APR	MAY	NN	M	AUG	SEP	OCT	NOV	OEC	Yesr
Flows	Avg	0132	0159	0124	0170	0127	0086	0099	0143	0.132	0152	0505	0434	0.188
$\mathrm{m}^{3} \mathrm{~s}^{-1}$:	Pook	027	O)59	040	104	103	019	031	031	025	082	536	333	5.36
Runoff (mm)		12	13	11	15	11	8	9	13	12	14	44	39	200
Rentall (mm)		20	38	40	96	23	22	84	103	73	90	161	78	828

Monthly and yearly statistics for provious record (Oct 1965 to Dec 1991 -incomplete or miaging monthe totat 6.8 years)

-1966-1991
Factors affecting runoff G
Station type: FL

Grad refertace 40 (S2) 503874
l.eval sin (m OD): 1040

Catchment area (sq km) 298 Max alt (m OD) 167

992 runoff is 74% of previous mean rainfah 97\%

201007 Burn Dennet at Burndennet Bridge

Mousuring suthority DOEN
fust year 1975
Hydrometric statistics for 1992

Flows Avg.	JAN 6709	$\begin{aligned} & \text { FFB } \\ & 5459 \end{aligned}$	MAR 8061	$\begin{aligned} & \text { APR } \\ & 5 / 32 \end{aligned}$	MAY 3166	JUN 1554	$\begin{aligned} & \text { NL } \\ & 1210 \end{aligned}$	Aug 5436	$\begin{aligned} & \text { SEP } \\ & 40 \$ 3 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 4015 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 6.366 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 6.747 \end{aligned}$	Yoser 4878
$\left.m^{2} s^{-1}\right): \text { Peak }$	9998	3141	4682	3091	1252	1234	4.45	10520	5544	2495	3327	5035	105.20
Runott (mm)	124	94	149	102	58	28	22	100	72	74	114	124	1062
Reunfoll (mm)	105	148	174	117	58	38	110	194	95	108	146	106	1399
Monthly and yearty statistics for previaus record (Jun 1975 to Dec 1991 -incomplete or misaing montha total 0.1 years)													
Moan Avg	6.001	5986	5161	3241	2448	2056	2086	2530	3.252	5336	5095	5605	4.059
flows Low	0418	2.244	2441	1687	0925	0843	0832	0.579	0664	2.596	2130	3203	2.634
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ Hagh	9542	14320	7811	6115	502.4	4635	3990	7213	8151	9979	7351	8156	6.211
Ponk flow $\left\{\mathrm{m}^{2} \mathrm{~s}^{-1}\right.$)	7002	5300	4148	3686	2551	2950	5079	5546	6131	11080	64.52	5953	110.80
Runotf (mm)	111	101	95	58	45	37	38	47	58	98	91	103	882
Rainfall (mm)	133	82	111	65	66	76	85	91	102	133	110	114	1168

Factors affecting runoff E
Station type VA

Gind refurence 24 (IC) 372047 Level stn (m OD) 200

Flows
$m^{2} \mathbf{m}^{-1}$: $: \quad \begin{gathered}\text { Avg. } \\ \text { Peak }\end{gathered}$ Runott (mm) Reinfoll (mm)

Catchment area (sq km) 145.3

1992 runoff is 120% of mevious mean rainfall 120\%

203012 Ballinderry at Ballinderry Bridge

Moasuring outhorty DOEN
First your: 1970
Hydrometric statistics for 1992

	JAN	FCA	MAR	APR	MAY	UN	J1	AUS	SEP	OCT	NOV 15620	DEC	Year
Flows Avg	10.500	9116	13390	10260	4494	2231	1732	6450	6082	5669	15620	12940	8.198
$\mathrm{m}^{\prime} \mathrm{s}^{-1}$]. Pook	10350	3086	7503	4375	13.02	1706	524	7129	4705	5815	6126	66.18	103.50
Runoff (mm)	67	54	86	63	29	14	11	41	38	36	97	83	618
Raniall (mm)	84	89	134	106	40	43	83	161	79	77	136	78	1110
Monthly and yearly statistics for previous record Nul 1970 to Dec 19911													
Meen Avg.	16200	12600	11020	6847	5121	3688	2899	4731	5669	9200	12000	14030	8.655
flows Low	9339	4.805	5502	3515	2454	1627	1518	1060	1236	2331	5.122	4946	5.251
$\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l}$ High	24690	25040	17.260	13.140	12740	7524	7496	17640	21020	17200	21.860	21490	11.532
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-}$- $)$	183.20	139.90	9837	10670	10920	6160	12720	14010	14100	19480	12290	138.00	194.80
Runott (mm)	103	73	70	42	33	23	19	30	35	59	14	90	651
Rennfall (immi** ${ }^{\bullet}$ (1983-199 1)	126	83	109	71	55	75	68	105	82	126	90	110	1100
Factors effectim runoff. N Station typo VA										1992 runotf is 95\% of previous mean rainfall 10:\%			

203020 Moyola at Moyola New Bridge

Measuring authority: DOEN
First year: 1971
Hydrometric statistics for 1992

	Jan	FEB	MAR	APR	may	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.300	10110	15570	10970	4446	2.343	2.551	8.469	7.737	7613	15090	12450	8.984
m's.j. Pook	12180	42.54	88.87	59.60	14.33	1454	1119	80.19	6952	67.77	55.54	7346	121.80
Rumoff (mm)	90	83	136	93	39	20	22	74	65	67	128	109	925
Rainfall (mm)	89	116	173	121	43	41	100	175	96	103	153	89	1299
Monthly and yeasty etatistics for previous record (Feb 1971 to Dec 1991)													
Mean Avg	15.160	11.720	10500	6.247	4.585	3579	2898	4305	5598	9360	11350	13020	8.181
flows Low	7707	3.696	3.776	2238	1.335	1015	0952	0748	1.366	2.000	4.562	5088	4.961
$\left.\mathrm{m}^{2} s^{-1}\right) \quad \mathrm{Hagh}$	23280	25940	17.150	13280	12.360	7.159	6.512	15310	19100	16790	20770	22170	10.653
Posk now ($\mathrm{m}^{3} \mathrm{~s}^{1}$)	15220	121.90	86.93	102.80	11410	6784	8333	11100	112.70	134.80	117.20	15460	154.60
Aunoti (mm)	132	93	92	53	40	30	25	38	47	82	98	114	842
Ranlal (mm) ${ }^{-}$ $\cdot\{1983.1991\}$	149	97	126	81	64	82	77	109	95	146	109	124	1259
Factors affecting runoti: S PG I Station lype. VA										1992 runoff is 110% of previous mean rainfall 103\%			

205004 Lagan at Newforge

Moasuring authority: DOEN
First year: 1972
Hydrometric statistics for 1992

	Jan	FfB	MAA	APR	may	JN	Jul	aug	SEP	OCT	Nov	DEC	Year
Flows Avg	9139	6364	9803	12.830	4.480	2550	1630	3964	6775	5538	11730	13920	7.387
$\mathrm{m}^{3} \mathrm{~s}$ 'r. Peak	3441	18.18	32.16	3969	1076	1382	631	2397	14.55	2114	29.78	3152	39.69
Runoti (mm)	50	33	54	68	24	13	9	22	36	30	62	76	476
Rantall (mm)	51	55	100	94	42	42	82	139	77	52	101	67	902
Monthly and yearty statistics for provious record (Aug 1972 to Dec 1991)													
Mean Avg	17090	12540	11.320	7052	4412	3276	2642	4231	5.532	10870	12.190	16050	8.927
Rows Low	8508	5.311	2820	2064	1.208	0944	0.789	0615	0850	1.075	3059	3.843	4.810
$\mathrm{m}^{\prime} \mathrm{s}^{-1}$) High	26.460	25410	18.740	19.170	16.600	11.230	8018	19.470	18090	27.600	27.690	43.090	12.235
Peak Sow ($\mathrm{m}^{3} \mathrm{~s} \cdot{ }^{1}$)	84.30	66.22	6957	112.20	5515	62.72	2430	76.10	7053	12100	9108	12840	128.40
Runotf (mm)	93	62	62	37	24	17	14	23	29	59	64	88	575
Romfad (mmi ${ }^{\circ}$ $\{1983.1991\}$	90	65	84	68	48	64	54	94	68	104	71	87	897
Factors affecting runoff: GEI Station typu. VA										1992 runoff is 83% of previous mean rainfall 101\%			

205005 Ravernet at Ravernet
1992

Measuring authority DOEN
First yoar 1972
Hydrometric statistics for 1992

1		JAN	+EB	MAR	APR	Mar	JuN	Mr
Flows	Avg	1056	0826	1178	1.548	0352	0.090	0049
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	Pask	412	2.67	5.25	582	124	048	020
Runotf (mm)		41	30	45	58	14	3	2
Rarnfall (mm)		50	59	103	95	44	33	81

Monthly and yearty statistics for provious record (Aug 1972 to Dec 1989)

Mean	Avg.	2168	1566
nows	Low	0689	0502
$\left.m^{3} s_{s}-1\right)$	Hegh	4045	3653
Poek flow $\left(\mathrm{m}^{2} s^{-1}\right)$	1545	1889	
Rumoff (mm)	84	55	
Rainfall (men)	98	59	

Factors affecting runoff \mathbf{N}
Station type. FV

Grid reference: 33 (IJ) 267613 Leval stn. (m OD) 31.00

Catchmont area (5 gq km) 695 Mux alt. (m OO). 163

THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE

The National River Flow Archive comprises over 30,000 station-years of daily river flows and incorporates data from more than 1400 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data (see page 28) have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed below, and can also be found, together with examples of the computer output in the national River Flow Archive Data Retrieval Service Handbook which is available free from the address opposite. The format of certain of the retrievals is currently under review. All data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 139 to 147, be consulted, and that, where continuity of record is important, the availability of suitable data sets are checked by referring to the Summary of Archived Data in the Handbook. As an aid to data selection and to the interpretation of hydrological analyses the 1986-90 Hydrometric Register and Statistics (see page 174) is recommended as a source of indispensable reference material.

In response to user requirements the data retrieval facilities are being continually updated and extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address opposite.

Retrievals are normally available on line-printer listings, magnetic tape or IBM PC compatible disk, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be
directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The National Water Archive Office
Institute of Hydrology
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB
UK

Telephone: Wallingford (0491) 838800
Fax: (0491) 832256

The National Water Archive

As of April 1992, the River Flow Archive was incorporated into the National Water Archive (NWA) - the most recently established of the Natural Environment Research Council's (NERC) five Designated Data Centres. These Centres, located at NERC Institute sites, exist to hold data and provide information and advisory services to a wide range of users.

The National River Flow and National Groundwater Level Archives form the kernel of the National Water Archive but a very broad range of hydrological - and related - data sets are being assimilated into the co-ordinated management that the NWA provides. Data holdings range from the catchment scale (e.g. detailed climatological and hydrological data for a network of experimental catchments) to national (flood event data) and international coverage (world floods archive). The utility of the archived time series data is enhanced by the availability of complementary spatial information (for example the digitised river network and UK soils hydrology map) and by the manipulative potential provided by modern data handling systems and analytical packages.

Staff at the NWA maintain close contacts with measuring authorities and keep under review developments in the field of network design, instrumentation and information technology. A continuing dialogue with both data suppliers and an active community of users ensures that the databases and retrieval facilities are reviewed continuously to provide an effective and responsive service across a broad range of applications.

The UK Flood Event Archive

Data describing flood events and associated rainfall have been formally gathered by the III since 1969, the beginning of the Flood Studies Report Project (FSR^{\prime}). Also associated with the Flood Event Archive are data collected from a network of Representative Basins. The present Archive holds over 4000 events, the majority of which are fairly simple short duration rainfall-runoff events of the type used for the FSR. The data most commonly collected are river flow, storm and antecedent rainfall and soil moisture deficit. These components
are stored on a relational database allowing flexible access and data association. A variety of analyses have been developed to collate and manipulate the data. Examples include:

Derivation of a catchment average rainfall profile for an event;
A plot of a catchment map and rainfall hyetographs for an event;
A plot of event rainfall and flow hydrographs;
Event analysis using the FSR unit hydrograph and losses model;
Plots of variation in unit hydrograph parameters and percentage runoff between events on a catchment.
Data are available as lists on hard copy or on floppy disk.

Peaks-Over-Threshold Floods Database ${ }^{2}$

This database comprises instantaneous peak flow data from river gauging stations throughout the UK. These peaks have been manually extracted from river records, generally from stage hydrographs, where the threshold was chosen to yield, on average, five peaks a year above the selected flow. There have been three main cycles of data collection and abstraction, first, for the FSR, second, at the ' Department of the Environment's Water Data Unit, beginning in 1978, and third, at the IH for a Ministry of Agriculture, Fisheries and Food Commission in 1985-91. Currently the database holds over 77,000 peaks for 857 gauging stations, with an average length of record of 20 years. Annual maxima have been derived automatically from these data and are held independently on the relational database. Annual maxima are also held for a further 116 stations where records proved unsuitable for POT extraction.

Data are available as lists on hard copy or on floppy disk.

Experimental Catchments Archive

The data gathered from the nine major groups of IH's experimental catchments are held in an independent archive within the NWA ${ }^{3}$. The catchments have been highly instrumented and an intensive recording regime has been employed. Derived catchment data are stored for the main hydrological components of precipitation, evaporation and runoff as either hourly or daily values. Additionally, the component sitespecific data used to generate the areal values are also stored, generally at finer time resolutions. Other, complementary datasets (such as soil moisture measurements) are available for some of the sites.

It is recommended that potential users of any of these additional datasets contact the NWA office to discuss their requirements.

The European Water Archive

The European Water Archive has been assembled as an integral part of the FRIEND - Flow Regimes from International Experimental and Network Data research programme ${ }^{4}$. This is an international collaborative study into regional hydrology in northern Europe and is a recognised contribution to Unesco's Fourth International Hydrology Programme.

The European Water Archive was developed by four regional coordination centres in Germany, the Netherlands, Norway and the United Kingdom collecting data from 17 European countries. The central archive is held at the Institute of Hydrology, UK and includes summary information for some 3500 gauging stations, time series of annual maxima flood data and daily mean flows, and key flow statistics. In addition, thematic, soil, climate, land use and catchment boundary information is held on a Geographical Information System.

For further details of the European Water Archive, contact the Flow Regimes and Experimental Management Section of the Institute of Hydrology.

References

'. Flood Studies Report 1975. Natural Environment Research Council (5 Vols., reprinted 1993).
2. Bayliss, A.C. and Jones, R.C. 1993. Peaks-Over-Threshold Floods Database: Summary Statistics and Seasonality. Institute of Hydrology, Report No. 121.
Roberts, A.M. 1989. The Catchment Research Database at the Institute of Hydrology. Institute of Hydrology, Report No. 106.
4. Gustard, A. (Ed.) 1993 Flow Regimes from International Experimental and Network Data (FRIEND). Institute of Hydrology, Wallingford, 3 Vols.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

```
option title NUMBER
1
```

Table of monthly mean naturalised discharges

Yearbook data tabulation (monthly)

Yearbook data tabulation (daily)

Table of monthly mean gauged discharges
Table of daily mean naturalised discharges

Hydrographs of daily mean flows

Hydrographs of monthly mean flows

NOTES

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Table of monthly extreme flows

Table of catchment monthly rainfall

Table of catchment monthly areal rainfall and runoff

Includes monthly and annual summary statistics. Flows in cubic metres per second.

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff may also be tabulated.

The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (where available). Flows in cubic metres per second. Includes summary statistics.

Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average. Includes summary statistics.

Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n -day means, or on n -day running mean flows.

Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.

Flow duration statistics | Tabulation of the l-99 percentile flows with op- |
| :--- |
| tional plot of the flow duration curve. The percen- |
| tiles may be derived from daily flows or n-day |
| averages and the analysis may be restricted to |
| nominated periods within the year, e.g. April- |
| September only. Choices of scales, grid marking and |
| units arc available and the percentiles may be |
| expressed as a percentage of the average flow or of a |
| nominated flow. |

Table of gauging station reference

information | Tabulation of selected gauging station details and |
| :--- |
| catchment characteristics for nominated gauging |
| stations. |

Gauging station and catchment description
Provides a comparison between summary statistics
for a selected year, or a group of years, and the
corresponding statistics for a nominated period of

record. \quad| A brief summary of the gauging station, its history |
| :--- |
| and major influences on the flow regime, together |
| with catchment details. |

Table of gauging station reference information

Table of hydrometric statistics

Gauging station and catchment description

River flow pattern plots

Gauging station summary sheet

Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. AprilSeptember only. Choices of scales, grid marking and units arc available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.

Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.

Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record.

A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.

Three plots on an A4 sheet:
a) daily mean flow hydrograph for a selected year
b) monthly mean flow hydrograph for the selected year. The maximum and minimum monthly flows, together with the 30 -day running mean for the preceding period of record may be included ow duration curve for the specined year. A flow curve for the period of record may be

Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A also provided together with selected catchment chived data.

Concise Register of Gauging Stations

Station number	Miver and stetion neme	Gras returence	Auts. ority	Aree tea km)	Station number	Rwer and atetion neme	Grad retoronce	Auth. arty	Aree (0. km)
002001		29978181	Heps	5514	015032	Oras Dum or bectiono	30737337	TPPB	200
					015034	Geary al khecreme	29017831	Tm	2450
003001.	Stanal laro	25819002	SE	4946	018035	Turmul at Krioct Remoch	2663 7564		Cs)
0033002	Carion or spodectad	24908921	-10\%8	2411	015039	Thiom Merta Laso	2892771	TR	
003003	Oraut at fastee Tumes	24039001	$10 \% 8$	3307					
0035004	Cossior at nocered	24729022	Hepr	1875	010001	Com ot kratel Brase	29337167	tree	5005
cos00s	Stre al mreem	25742974	100	5750	018002	Eam at Abenera	27547216	Tre	1768
					016003	nech wate at Cumberspen	27847204	TR	995
004001	Conon al mor endop	24828347	Hepn	9818	018004	Gan ot forrmat ensob	30437184	ז1	722
004003	Amesh al Ampen	2854.2695	Hepe	2010	018008	ammo dern it Grime	30187147	T\%	121
${ }^{004004}$	Exachwerer al comm	24558563	Hepe	3367	018007	Antron Woice at Abenurmon	29757154	TRe	490
$\bigcirc 004005$	Mas ar Gommeems	22888328		1205	018011	AM Susin o Timme ot Actum	28957158	trpe	
004000	Oren al locemetren	22058602		116					
					017001	Cerron at meedewood	28326820	FRps	1223
$\bigcirc 005001$.	Comary ot Efrrues	24268405	St	8495	017002	Coven ot tove	33697008	580	420
005002	fores at Siny	23908405	Hape	3113	017003	Bomy waser al bamponcos	23248804	${ }_{685}$	SO 5
${ }_{0}^{0050503}$	cises al fanmor	23158288	HfPe	2775	011004	Oie ot betore meme	33306997	${ }_{\text {FPPB }}$	1620
					017005	Aron ex Pomomina	29528197	$\mathrm{FRP}^{\text {Rem }}$	1933
					017000	Sount Ouemit at Knross	31227015	fRPs	337
006001	Nase at Naen Cosile ferm	28398410	St	11923	011012	Aeo Bum ol Conimimy	27886780	frpe	220
008003	Marition 01 lurermoration	24188169	st	3910	017018	Locryy bun ol wrome	32208985	$\stackrel{5}{ }$	140
006008		2377168	st	273	017	Grema Burn al Katrors bmapo	31507053	fRP0	79
006008	Nast at Nase Sicte	24508300	Hepor	1089					
	Enixt at Mlat tax				018001	ALen Wateret Krouck	27927053		1810
007001		2828	\cdots	4150	${ }^{0} 18002$	Dovon ot Grenoctis		${ }_{\text {freeg }}$	1210
007002	frathon at forti	30188583	${ }_{H} \times \mathrm{P}$	7819	018003		27860960	fepo	2100
001003	Losem en Sheritmio	J1948826	NFPR8	2100	018007	Devon ot forsowor endop	30117018	fPpo	695
007004	Nome $\frac{1}{}$ Friol	28928551	**P8	3130	018009	Lerry ot Ans	25857096	fap	1900
007003	Omen al Compras	300s 8450	1 Pb	1050	018010	Forth al Gergumx	27148953	fapo	3970
007008	Loase al 1 mmomy	31358489	${ }^{10 \times P 8}$	200	018011	Forth en Craptorn	27756955	${ }^{\text {fr }}$	1030
001007	Buxi ern at Moneogtuy	31553884	NEprs	40	018012	Arsech ium an Doune Cen	27297008	frpe	40
					010013	Elicct Dovon on fred Ma	29148924	${ }^{\text {H2P8 }}$	070
008001	Spev et Abertour	32788439	MERPs	2054.7	018014	Emoxtbum or Cemock Eum	28128909	FAP8	231
0^{008002}	Soor ot knuc	28818002	N(1)	1011 ,	010016	Kertr Were al Cowrors	24868908	Ffrs	25
008003	Scev ot fultren Endes	27597996	${ }^{\text {Nappe }}$	5338	018017	Monechine Bum at Betariciout	24757230	${ }^{\text {H }}$	3
000003	Aron al Obrazrengt	31888352	Nape	5428	018018		25327219	-	68
008003	Soer ot Boat ot Gerim	29482191	nape	12678	010019	Comer tom a Cormer	23877042	¢pps	09
${ }^{0080003}$	Sowy ot Boeto eno	33182518	Mcpe	20812	010020	Lect Atd Burn al Ockr	24868907	1aps	09
${ }^{006007}$	Spay ot miverivem	26871962	NEP0	4004	010021	Lect Ard Bum at Ero	24696997	$\mathrm{FAPB}^{\text {P }}$	15
O 0 e00	Trame ar Irarme endpe	27197995	Mapm	1303	018022	Forth at Mron	25017135	FApB	45
${ }^{004008}$	cuemer ar memencos	29178247	K¢P90	272					
004010	Spey of Cumiomm	30338208	NEPPO	1748	019001	Amond of Cragenel	31856752	PReb	369
000011	Lrot al Momore	32018291	Nap	1040	019002	Almond at Almond Wer	30046852	5 F	438
008016	Frockch al A uxresoun	33558399	Nape	440	019003	- Erech Waxe io Brech Wer	30146839	FRpo	318
000010	Congeres Weiter el Auctrection	31148191	${ }^{\text {Napo }}$	410	019000	North ten at Dimose Wow	32526816	PRe	${ }^{16}$
008017	aum ol Creron al Dememe	32378416	N¢\%	152	019003	Almond an Almoncen	3006 ceas	${ }^{\text {¢fpe }}$	2290
					018006	Wace of teth ot Muroriva	32286732	6fo	1070
009002	Doveron al Aroctue	35328064		4418 9540	019007 019009	Eat ot meachourgh	33396123	8R90	3300
009003	tioc Gronge	3494 8506	N(fre	1761	018010	Bros Bum on Lomion	32736707	${ }_{\text {cRo }}$	162
009004	Bopen al Reckimo	35198373	NF*P	1790	019011		33336878	fRPe	370
009005	Abl Doveron at Cobrech	33788291	crwo	610	018012	Waies of Lexn ot Comion	32128088	fR	720
000000	Oomitord Eurn at Cuten	35048887	NFFP\%	483	018014	Bron dum al Nowtion	31146732	face	341
00900)	forgoe bum el hiverionnay	361/8469	N*PP8	830	019017	cogom Bun ot Turrovie	31618733	FA	380
$\begin{aligned} & 010002 \\ & 010003 \end{aligned}$	Uge ot inveruge Yihen at Ellon	$\begin{aligned} & 41018483 \\ & 39478303 \end{aligned}$	Merps NFRP	3255230	020001	Trme at torti lation	35910788	$\mathrm{fap}_{\text {P }}$	3010
					020002	Worl Potre ivin oi Lutrasa	34890811		202
					020003	Trme at Sodmeatioco	34568688	tape	910
01:001	Don at parina	38078141	NFRp\%	12730	020000	Easi Power Bun at 1×0 thoures	36106024	IAP9	311
01102	Don at truvation	37588201	Maps	1870	020005	Oma Waiter setioun hal	34576808	fapa	930
011003	Donat errope of Alora	35688170	${ }^{\text {NERP8 }}$	4990	020000	Bat Waterem Betion hoved	38450788	fapa	518
011004	Unat Pricato	33218200	NERP8	1980	020009	Gitord Waier ot Lemonove	3511877	$\mathrm{FNP}^{\text {\% }}$	840
011000	Don ot Mas of Nowe	33118121	MERPB	1870	020008	Bros dem at Broxmouth	36976778	FR\%9	197
012001	Deosi Wosouna	3635 /958	Merps	13700	021001	Innod Waterel frus	30086205	lawo	23)
012002	Des or Par	37981983	NERP压	18440	021002	Wriesder Wete al mengr Snown	36636833	Lowo	458
012003	Deen a Pronama	33441965	маи¢	6500	021003	Twoed ol Pmosion	32570400	Tw-	6940
012000	Gumort oum at latiomal	33247958		303	021004	Wotich Waie ot Watch Weie Aeservor	38548588	bawo	101
012005	mact oit mreminat	33847947	Mappe	1100	021005	Tured et lme ford	32088397	TWRP	3730
012006	Gean al morgem	33537971	MERPB	1500	021008	Imeso al Botesto	34988334	rwop	15000
012001	Deo a Mar Loope	30987899	NERPO	2890	021001	ctruch Weier ot Lomoen	34866315	TWP	4890
012009	Wele ot Ore at creer	36877928	¢¢FP9	2290	021003	Tomat atmation Ma	37026200	Twp	11100
		36247834	NEPPO	417	021009	Iweec at Morman	38986477	TWPP	43900
					021010	Tried at Dorroug	35686320	TWp	20300
013001	Beme al mworbus	38281733	nemer	1230	021011	Yerom Water it Prioprespor	33398277	TWP	2310
013022	Lunner waie al witer Brata	386078080	${ }^{\text {TRPB }}$	1380	021012	Tomet al hamat	35228159	TWP	3230
013003	Saun Eat en Stannociry brage	35831593	${ }^{\text {TRP\% }}$	4910	021013	Gide Waier ot Comarme	34796374	Tw ${ }^{\text {THP }}$	2010
013008	Procen Were ot Proaen Endip	3396758	${ }^{T R P \%}$	1040	021014	Tweed at kngiecare	31096285	TWF	1390
013003	Lunen Water at kation Ma	36557494	${ }^{\text {TRPP }}$	1240	021015	lomor Wram at Eataio	35856388	TwP	2390
013001	Monn En a loga Ma	36997040	TRP8	7300	021016	Ero Woter a Eremoun Ma	39426635	TW*	1190
013000	Souin gat al Cach	35001598	$\mathrm{TRPB}^{\text {TR }}$	4900	021017	tiven Were it Brochnopery	33346132	TWP	375
013000	Weat ws:w ol Donoven Brajo	35927000	TRP9	1212	021018	Irme Waterel Ime Sterion	32096401	TWp	1750
013010	Branmel Wate al trothork Brioge	36397418	TRPB	500	021019	menor Water ar Cosemur	32178309	Tw	816
013012	Soun Eat al Caro brase	$33 / 27653$	т¢p	1300	021020	Yemow Weter et Gortion AmP	33008247	Tw	1550
					021021	Twoed et Sorowion	37528354	Tw	33300
01400:	Eran al kamack	34157158	TRe\%	3014	021022	Whicessor Waier at mition Casio	38818550	TWP	5030
014002		34717324	Tmp	1280	021023	Leot Weter at Cobaticeen	38396396	TWP	1130
014005	Motrer Wate al St Merrenly	34417224	trpe	520	021024	Heo Water at tecturon	36558214	Tw	1390
014000	Manay burn al Peronco	35747361	${ }^{\text {TRPp }}$	180	021025	Ab Woter al Ancrum	36346244	TWP	1740
014001	Ctapma Burn at Ciapmi	35757300	тmp	290	021020	Trime water al Deeprope	32786134	Twe	310
014010	Mocter Woter el Kationy	33877217	the\%	280	021027	amxkeoser Water at Mouin Rexpe	36288530	TWRP	1590
				310	021030	Magget Water al Hendorima	32318232	IWeo	682
					021031	-1atictal	3927 8398	neta.ny	840
01500101500201503	- Masal forior	31877647	TAWS	707	021032	Gan at Kerinawton	39198310	natar	1989
		32301800	tiws	154	021034	Yeurow Wete al Cran Daudee	32888244	TWR'P	1180
015003	Tor al Capath	30827395	тfer	32110					
015004		32801559	thws	247	022001	Coount it Marmik	42348044	natany	5698
015005	Maven oi Loch of Limitaten	32757598	taws	409	022002	- Coocat at Ergote	${ }^{36} 900003$	NAA.NY	503
015008	Tey al 1 antirue	31471381	${ }^{18 p}$	4587.1	${ }^{022003}{ }^{\text {a }}$	- Sower luen ot Smamos	38868077	ngany	214
015001	Tor on minecrice	29247534	${ }^{\text {TRPP }}$	11494	022004	- An ar hemita	42110128	matany	2030
015000	Oase Water al Cooksion	33407479	${ }^{\text {TRPP }}$	171	022000	entr at mertioco endos	42435000	neasany	2094
015010	label Wasier Cramen	32957486	1858	3605	022007	Wambort al Metiord	41755058	matany	2873
015011	tron en Corme Brase	27807486	${ }^{\text {TRPP }}$	3911	022009	Anmen ${ }^{\text {cosmed }}$	39250063	natay	27.3
015012		29407577	IRPP^{18}	16490	022009	Cospot ot Aotroury	40076016	manay	3460
015013	Amand el A monotient	30671258	тRP8	178					
015014	Aras oil knorogen	30502631	TRP8	1030	023001	Imeor orval	40385817	manay	21758
015015	Almand al Nemion Ende	28887318	${ }^{\text {TRPP }}$	640	023002	Dewent at Eoore Broge	40815500	many	1180
016018	Ter on kemmore	2782948	${ }^{\text {1Rp8 }}$	¢008	023003	Horth Trme at Raproutal	39065732	matany	10075
018017	- Bramer et Betriom	29797400	14\%8	1970	023004	South Trme at Mercoon endon	38505847	neantr	781.1
015018	tron al Mase	25347448	${ }^{\text {Sf}}$	1614	023005	Norch Tme of Truat	37785881	natant	2848
015021 015023	IMren Durn al Ma bext	31827400	${ }^{1 / 2088}$	940	023008	Sours ime at feotreatone	36725811 180	neamy	321.9
015023 016024	Eoction or kothe	30141422 25671320	${ }_{\text {TRP\% }}^{\text {TRP }}$	2100 2390	023001 023009	Oeweent at Rownences Ga		NRANAM	2481 3430 180
O18023	Encra ot Craotran	31747472	TRP\%	4320	023009	Souts Trme of Abtion	33185465	NRaNY	1145
018027	Gerry ameitiomme	30157339	Tres	200	023010	Terasi Bern al Greestexat	37685898	nrany	$\infty 0$
015028	Oran eun ot linceny	30937300	тpp	540	023011	kumaer bern ot kivicer	38445948	nrasy	588
018029	Auth Eun at Mractime	32577485	TMer	320	023012	- Eeat Alom ar Wros coso	33025883	nranty	e30
015030	Omen water a Dren eraso	3293 /458	TH0	2300	023013	Weat Atmi a mancory Wise	37915883	natar	75.1

Strition number	Anver and etation neme	Cind reference	Auts. ORKY	Ares (sacm)	Station number	nuwer and Etation reme	and raterence	Aurts. entry	Ares (e9 Mont
023014	Heath Tme it kidice remocray	30315031	way ny	270	027000	Ave on foen We	43814285	nrantr	6850
023013	North ime at Eersatord	39245721	Nowe	10438	027001	Oution Bect ot Forrw Leno	43854281	Neany	
023016	are Bum ot Cras tity	42545674	natant	550	027002	Cuman Buctex Bex Braso	4419424	natany	
023017	Teem at Teem vator	42485505	ngatiny		027003	Foet an tentumpon	48124343	nRany	
023018	Orseun at Woche	41985700	natany	90	027004	Eastum Beck ot Crosers	40214452	nrany	3
023022	North Trme at uatudo	37125875	nemant	2415	027006	Cod Beck ax Ootion Bnope	44224780	natany	209
023023	Treamming	40325617	natay	21745	027008	Stal at Ama We	43164709	Natany	
024001	Waer al Sumbertend andige	42045376	natany	6578	022001	Dewwene at Yorkame Bnage	4198385	nRa.ST	1200
024002	Cientesi at Brthop Auctiond	42155300	natany	930	026002	Earne ot hamotas nowre	41093192	NRAST	1630
024003	Waem er Slemmose	39845391	natay	1719	026003	- Tems ot Werer	41582815	natast	
024004	Bexoum Bectial Betcem	41185322	mpany	749	028004	Teme ot lea Mereton	42082935	neast	7950
024005	Orowner 8 BCOm Hel	42595387	npany	176	028005	- Tome et Elioud	41733105	mastst	4750
024000	- Rookhope lum el Eestgre	39525390	natany	385	020000	Trant ot crion horwoca	3993331	Nat ST	3250
024007	Browney at lencrionter	41655462	neany	446	020001	Itant et Sherciow	44483299	Mast	4000
024000	Weore a Wition Part	41745309	nrant	4550	025008	Dove an Accester We	41123397	mas.st	3990
024009	Weerem Crastex io Sue	42835512	veany	10083	028009	Trant at cotuct	46203399	neast	7450
024011	Weor at Burtiope forumor	38565395	neany		026010	Dument ot Longtroge Wem/St Mery is ondge	43503383	NRA.ST	10540
					028011	Derwert ot Mesioct B	42563566		6900
023001	Tees al Eroken Scm	42593131	mand	0184	020012	Itorn y yaxe	41313177	van. St	12790
025002	1 10en al 0 and 80me	39325200	nra.ny	2113	020013	Soer an zouch	44833240	Nat.sT	12890
025003	Trour bech ot Moor hown	37593336	nrant	114	025014	Sow on Mrord	39753215	Natst	3910
025004	Sterne at Sann Pors	42045129	mrany	2501	0220015	Lcao en Matrereor	46903695	Manast	5290
025005	Leven et Loven Brige	44453122	nRa.NY	1963	028018	Mron masater Park	46813697	mpast	2310
025000		40345122	nra.ny	681	025017	Devon at Coasem	47813476	masast	2840
025007	Clow beck at Croot	42025101	nrachy	182	028018	Dove al Mersion on Dos	42353288	NRa.ST	8332
025009	Teesen en Bemerd Cosite	2017 5188	nma.ny	6092	028019	Tremt al Orakdow Pert	42393204	matast	30720
025009	Teerest Low Mcor	43845105	NRA.NY	12840	028020	Crumet ot Roceite	41033369	NAAST	2380
025010	Berrice Deck at Mowiden Uxavo	42606156	nrany	311	022021	Doerment al Dreve	44433327	matast	11750
025011	Langoon Becta el Lengion	38325309	NHaNY	130	028022	Tiont al Morct Maverion	48013801	mpast	82310
025012	Hemrood eack il harwood	30495309	nra.ny	$25:$	024023	Wre on Autioro	41823098	neast	1540
025013	Atugrem Eect at Thope Trawtes	44003237	natany	014	028024	Wracko x Syrton Ma	46153124	napa.st	4138
025014	Marion Sletlat Marson School	43235274	npany	25	022025	Sanco ot Ractitio Criay	43212998	matast	1094
025015	Wcochem Dum at South Ferm	42255223	notany	291	028029	Anter at Poteswarth	42633034	neast	3680
025019	Tese at madiotion on tesacep	39505250	NTA NY	2421	028027		44823384	Mast	1822
025019	Levon at Easor	43855097	rocant	148	028029	Kngiton Eroot ot Kagrion	45033217	neast	570
025020	Steme al Peston bo Stame	42925238	neany	1470	028030	Bract Broce an Onaberrom	41833171	nrast	
025021	Seme on Bractury	43105285	netany	101	028031	Memade ot mon	41403501	MPAST	485
025022		39315182	netarir	204	028032	Macon mourat w	45583680	natst	628
025024	Crapel bext ot Gembroust	45995183	notay	134	028033	Dove it holmectiout	208338088	Marasi	8
					025035	Leen at Trurron Roed Mostangte	45493392	ras.st	110
026001	Wosl Eock ot Weratord	S004 4580	nw	1920	028038	Ponite on I mitori	47003752	nea.st	1232
020002	Hea an mamorotime lock	50304498	natan	378.1	028033	- rematid at teitese End	41083395	reast	480
026003	Fotion becter foction MM	50934548	mpany	512	025039	Reo ot Cumbope Path	4071284	mastst	0
028004	Orpent recese al ametroton	51854875	natay	2538	02800	Trem an Srote on	38923487	neast	532
028005	Grpeer receal momion	51374677	natay	2400	028041	Hemos at Watericutes	40823502	nRa.SI	351
026008		S009 4575	notany	1360	026043	Demern michiswor	42813883	natst	3350
028001	Canctivoter at Winmmwat	5171403	notany	155	028044	Positer on Curiney	45703113	Masts	322
028008	Mres beck at Nornt Cove	48904316	nhan my		028046	Mecens/Mein it Botremsal/revugion	48813732	nrast	2626
028009	West eock ot Snetandme lock	50084535	nhany		028046	Dove at lise	41483509	nra St	830
028010	Drtima Comal al Snakatame Lock	50664555	natany		028047	Oucores On	40153378	NKa.SI	852
					026048	Amber at Wingitad Pers	43763520	nrast	1390
027001	nata	44284530	natary	4843	028043	- Anon at workios	45753794	neast	170
021002	Whate of fimi Ma	44224473	natayr	7589	020050	Tome of Auctior	48484012	nRast	1355
027003	Ave al beal Wor	45344255	natany	19321	020032	Sow at Greet Bragtard	38633270	Naast	1830
027004	Catem at Now	43654220	natany	8990	0220063	Ponte of Permiop	39223144	nRa.SI	2720
027000	Don at reaxato Worr	43903910	grany	3730	028054		45882985	mrast	1330
027007	Ue at Werrmikt Loch	43564871	notayy	9148	020058	Ecamboume at Dutheo	43203447	manst	504
027000	Swete at lactor Gramo	44154748	mpany	13450	020056	Rotrey Brook at noutioy	45003121	nan.st	940
027009	Oune en Station	45684554	ngany	33150	0200038	Hemmoce Bro	41737463	mas.st	420
027010	Hoogo bect an braneaso wer	40274944	grany	18%	028059	Mane or Menatiold	4543823	nea.ST	288
027012		39734309	matay	380	020000	Oove bect en lowatem	40533479	Mas.ST	090
027013	Ewoen Bectiot More ria Paservo	42693957	natany	284	028081	Cruma ot Bextord Bndop	39633520	meast	1390
027014	Proon Urise Heton	47434771	nrantr	879	020082	Timen of fluatorough	48153715	veast	04330
027015		47144557	natay	16343	020065	Trant of Torice	48273760	raasi	65470
027018	Prown al mroum Rasuros	40254181	mana	107	028088	Cote an Colour	41632874	NRa.ST	1300
027019	Boxn Doan Cowigh et Booth Wood Md	40334108	nrany	159	0280007		44383316	nRast	1715
027021	Don al Doncerite	45694000	vasayy	12582	028007		42893804	nra.st	91
027022	Don al hocturtem Wo	44273928	nrajur	0260	028012	Goent it Soutmol	47113541	nrast	46
027023	Dasme ot Bumatoy We-	43504073	nrany	1189	028073		41713690	natast	420
027024		41485000	nrany	3810	028074	Soee al kegwart	44823263	nrast	12920
027025	Roitere il Woochavie Ma	44323857	nracinr	3522	028075	Domweri al Stupery Stanes	41803951	natst	170
027020	Roine al Whatingion	43943744	nrany	1630	028078	Macce erroch an Shelowtord	34743291	nRast	883
027027		41124481	nrany	4430	028030	Teme en Ler merion Leter			7689
-027028	Ave at Amber	42814340	neany	6915	${ }^{028081}$	Tame en boscot	$\begin{array}{r} 40122950 \\ 45422973 \end{array}$	NRA.ST NRA.ST	169 163
027029	Caber ot Eleno	41244219	Nrastr	3413	0230032		45422973		
027030	Dame er Amunat	44714020	nra.NY	3108	${ }^{0274083}$	Trem an Daveston		NRA.ST	$\begin{array}{r}1952 \\ 1054 \\ \hline 150\end{array}$
027032 027033		+ 4025484808	npaty	${ }_{3} 222$	- 0280091	mitoon ar mint	48313871	npast	2310
027034	We at Kupom endeo	41904850	npantr	5102	025033	Somer in Pring loct	45053182	mata.st	11084
027035	Afe ar knowaz Brose	4013445 ?	notam	2823	028094	Evore of cas	42132880	noast	1930
027036	Derwore of herion	4789415	mpatar	14210	028095	Tame on ropmes Anope	41023052	ngast	421.7
027038	Cous Beck as Grithoure	4774238	npantr	78	023101	Teme or Snempose	39742910	Noust	279
02700	Dos lee ol stordioy	44433748	npayy	079	028102	Esrme at wrracie	42122911	neast	194
027041	Orwoni of Butwectames	47314587	nra.my	15800					
027042	Oove on kerior mes	47054855	nra.ny	892	029001	Watro Beck ot Braphor	62634016		1083
027043	Wherte ol Adocmutem,	40924494 4725445	natany	4270	028002 020003	Graet ene et Comphope Ma	64163793 83373679	nata	574
(027044			natany	470	028003		-032 3911		
027041	Sharemorme Beck at Low Howe	38334883		102	029000	Anctame an bihootmape	6032 39311		
027048 027049	Oenwent at West Aron	49994850 4098 1991	nata.ny	1270 236	02900\%	Rene on lunaperrso	$\begin{aligned} & 80323912 \\ & 60333877 \end{aligned}$	mata	668 272
${ }_{027050}^{02700}$	Ero al	4090 48558081	noan ar	3300					
027051	Crmate al Bum Enase	42844519	matany	81	030001	Wrrem ol Corpose Ma	48423480	nata ${ }_{\text {a }}$	2979
027052	Wrotiog an Shaepbrage	43783747	natay	502	030002	Bernges teve at Lengworth Brdog	50603760	mara	2101
027053	nuda at exarmion	42304003	natany	2176	030003	Eenot futury lock	62413811	nata	
027054		48524802	nota ny	37.1	${ }^{0300003}$	Prorey 1 run at motior Ma	54023676	Mana	018
027055	Tro an erosowt foot	45004883	geanay	131.7	030005	Wrimen at Seriestord toce	40273335	Nata	128 481
027058		47914819	manay	680	030006	See or tapengrem Na	59083485	Na.a	484
02705)	Strin an Narmasoy	43384821	many	1218	0300011	Ben ot coucoser Arase	52463793	Nata	625
027058	Prices at Crook house famm	46814810	matar	578	030012	Sumfect Bect ot Stumtero	51273739	nama	374
027059	Love al Apon	43014710	ngany	975	0350013		50223698	mata	212
027000	Krep at mumion On One	45094802	ngany	1676	030014		51283313	norata	118
027001 027002	Cotre at longore dedpe	41364161		723 5180	030015 030017	Congte bioct at Stoke Rectrord	49253297 49283248	Nrata	505 513
02702 027004	Mwa it Sto gnape	$\begin{aligned} & 4824881 \\ & 45514183 \end{aligned}$	nota ny MRA AY	5180					
027065	Homs ot Oumen Ma	4142 4157	nokany	974	031001	Ero Brook of Ere erook Amemor	48532041	cowc	$\infty 1$
027008	Oxektom Brook et A Ariowet	43933914	nota ay	420	031002	Gion ot Ketes Bioge end Kong St. Exo	51083149	NAAPA	3618
027067	Sneel at limprita Rosd	$435 / 2883$	maany	491	031005	Wreme on fuave	49702997	mata	4170
027008	Aroum el masponden	40354188	nhany	330	031008	Gwozh er Qumazinope	50383097	Nata	1500
027009	Watao ot kroy Wraso	43754844	nhany	2155	031007	Wobend ot devowden	4861 49613999	Nata	418
02700	tur ouck as Sapton	39844502 44254734	ngatay	353 13830	031010 031012		49813030 60183179	mata.	
-027072	Worth el Kerprioy	-4204 4409	natany	717	031016	Mrain Brouk al Emamgrom	4057)3049	nra. A	385
027073	Examotion becte at Srumion ingo	49364794	matany	129	031021	Wotend of A rim	48192915	ma.a	2507
027014	Spen becke ot Normorpe	42254210	manay	463	${ }_{0}^{211023}$	Weit Gen it Estion Woad			
027075 027076	Brave bect at Lemmo	43064902 4780 4544	nha NH	1803 1031	(031023	Gwoen Sost Arm a Mation	48753051 48763073	NRAA.A	245 25
027077	Brsctuod Beck ot Shatery	41514375	¢pa.Ny	580	${ }_{031029}$	Cowesh on Cumen Enopo	49513082	nRa.a	76

Btation number	Muver and station neme	Grid returenoe	Auth. orty	Ans (macm)	serition nomber	Alver and ctation nempe	Ord refterence	Acts. orty	Are (CaHm
032001	Nenost orion	51682972	noata	16343	031009	Oren of Gumemon vever	58182147	masa	607
032002	Wlow erook of Fotremotioy	50672933	naat	c9	037010	Euckwater ot Appotord Encoo	58452158	NPAA	2473
032003	Hepere broot al 04 ml Mando	42832799	nra.a	143	037011	Cramer on Creertend	52822733	nata	128
032004		40982715	nata	1940	031012	Cabe of Proceliceo	57712304	naata	${ }^{65} 1$
032006	Nemefitilingour ot Upron	47212592	nata ${ }^{\text {a }}$	2230	037013	Senson Brock on Sencon Brage	57562056	mata	006
032007	neme Brampron at St Ancrew	47472817	nata	2328	037014	Roomg of that Omg	55012040	nra.t	851
032000	Nema/kinimgtury ot Doctord	40272001	maara	1070	033015	Crpeor froun el Cruang ongen	55482035	mrat	622
032029		46552604	nata	70	031018	Pemot copored Ha	Scese 2313	nra.a	625
032031	Wootion Broce al Wootion Patt	47262511	mra.a	138	037017	日uchmoter on Statec	57032243		1392
					67016	ngreoume no comer	S583	mat	47.9
033001	Besterd Ovee it Browner Stemor	S369 2727	Masa	30300	037019	Deem an erocon Ferm	56151853	Nrat	497
033002		50552495	NTata	14800	037020	Cramerer famied	50702123		32.
033003.	Cam a Botrestem	65002857	ma.a	8030	037021	Acoren an bambieed Bra	59962205	npata	520
033004		6842780	mata	4092	037022	Motmenc eroch at Thorpe io Soten	81792212	mata	649
033006		47382353	naa.a	356	037024	Cohe et Emia Core	58562298		1542
033000	Wiseer ot Morimeda	67112965	mata	2745	037025	Boume Broot at Perces encose	88222270	nga.a	321
033007	Hersi Memen	\$723 3118	mara	1533	037026		60782207	nfata	290
033000		58002832	ma.a	6990	037027	Sapermy Brocte es Sha	coss 2214	nra.a	51
033009	Bectore Own ef terida M4	48512585	ma,a	13200	037028	Berser aroct on Simmoter a	61032183	mra.a	12.1
033011	Unte Orse an Countr andoe Eurion	56922801	nata	1237	037029		61342159	nata	0
033012		51552631	mpa.a	1375	037030	Hotend Brow et Crase Brapo	61712217	mra.a	6
033013	Supation at Rection Brope	80962791	nara a	2059	037031	Crourt al Wratiord	57481934	mana	718
033014	Lent ot Temata	57682730	nra.a	2720	037033		${ }^{6859} 1888$	nata	104
033015	- Outar ar wem	48822409	naa.a	271	037034	Nerorte ot Sittacd	55581804	maata	907
033016.	Comet heun loct	84502593	nra.a	7615	-037030	Ety Ores Curtal on Grast Samptoca	58482351	mata	
033018	love et Capperram erapo	47142488	mata	1381	037037	Tocositud Brook al Corrush rath End	6075 2317	mpaa	13
033018		58802030	maa A	3100	037038	Wasimm	56722000	mata	988
013020	Akonsury Broct et Exmpron	52002717	mata	2015	037039	Buctweter en (ergora fow howel	58352000	nata	3310
033021	Rase or Brm Mr	54152523	mata	3030					
033022	Noise bumbem	51532509	maa.a	5413	038001	Lee a freson We	53902092	Narat	0380
033023	Leo drook et Bexk Enago	68822733	nota.a	1018	${ }^{0330002}$	ALS ot Mercock	53032148	nrat	767
033024.	Cam ar Dorntora	84682500	mata	1980	036003	Mruam or Penarenper Fort	52022133	NRa,	1339
033025	Eebomey ot Weot Mewion MM	56903258	nata A	390	030004	Ab ot Wacoemal	53602174	nra.t	1365
033026	Bectorc ane at Ofrora	62102008	nata.a	25700	036005	Achat Ebomere	83002138	nat.	652
033027	meor a Wmoct	${ }^{6333} 2485$	mata	1191	038000	As et reme itaruno scrioal	533512158	nat.t	1481
033028	Ftrion Shetora	51432393	mata	1196	038001	Cenome broot et Elmbert Wey	84312104	mrat	214
033029	Strngeose ea What Brapo	57183008	mata	968	a3mil	- Mavem of fieng Ma	52252169	neat	${ }^{937}$
033030	- Craciora Bicoer ar crasione	40332255	naa. A	402	038012	Siovernge Brost al Braceur Pewt.	52742211	vma.t	360
033031	Brosption Brook ar Brouption	48992400	mata	68	033013		51182183	Masat	707
033032	Hecrrem ot Ho	58653375	nata	590	038014	Smamon Brook el Eamomion	63431837	nata	205
033033	vee ot Antecer	51902379	nrata	1090	038015	- intercestang Dren al Enfiad	63551037	mat	14
033034	Ltrib Orwe al Abbey Heoth	58512844	mra A	8093	038018	Sumatea Sornge en Mainitrctat	55002246	mat	205
033038	Hr_{6} One at Danve Comon!	58883010	nrata	34300	038017	Morven of wrimet	51042212	Mrat	391
033037	certord Cure of Hempt Pupren WT	48172443	mra.a	2000	038018		52902093	mat	1500
033039	Beturd Ouse of fortion	51802835	vra.a	18600	038020	Cobbre broot or Sowwdatone noed	53811999	Nasa	384
0033040	prose ot Actiond	52872401	mata		030021	Tumer eroch at Absery Py	53581985	mat	422
033044	Thet at Bnogrem	50572855	nata A	2718	036022	Prume brate et Eamanion Sove Suarl	53401925	Nrat	428
033048	Watio m Oumberrem	80272878	data	233	03022	Smel Ruve Leo en Orasence Rosd	53701938	nrat	415
033048	Theist heot brios	89992923	mata	1453	036026		54952128	nrat	546
033048		69282901	nata	214	036027	Starem Gien fuse	63932093	nrat	2002
033049	- Simerico woier at Buxtarnem Totio	69342953	mata A	435	030288	Suenstod Erock et Grpor lome	58082241	nra.t	258
033050	Snen at forctuem	56312703	mara A	608	038029	Oum at Crope Endobe	83922248	nras	504
033051	Cam al Crontutora	55052428	nata	1410	036030	Bemeon Kerinem	53252131	trat	1751
033052	Swathem Loon ot Swathem Bubeck	55532628	nata	364					
033053	Grante ef Staperat	54712515	maa ${ }_{\text {a }}$	1140	038001	Thame of Korguion	5171 1698	mpa. T	99480
033054		50003252	maata	417	039002	Themes at Dove Wer	45081035	natat	3449
033068	cremion oberrit	56102504	mata	987	${ }_{0} 380003$	Werase en comotro Me	${ }^{5265} 1708$	Natrar	1781
033068	ary Wrier at 1000	56312627	mata	764	030004	Wencte ot Eoctungion Pert	52001805	natat	1220
033067	Ourel es Legrtion Burserd	49172241	mra.a	1190	038005	Oevrevy Brook el Wrmberion Comm	52101717	nat.t	436
033086	Ourer al Emicher	46832322	mata	2180	039000	Wimaver en moworage	44022018		3626
033058 033060	Cur ot Cramel ot Totapte	57292757	mata		039007		47311848	Nat. ${ }_{\text {Nat }}$	$\begin{array}{r}354 \\ 1618 \\ \hline\end{array}$
033000	Kinge Oiso at Stenground	52082973	Mata		039008	Tremee of Ermarem			$\begin{array}{r}16182 \\ \\ \\ \\ \hline 130\end{array}$
033002		S4032457	mara		039810	Cotre en Derse	5052 1684	- ${ }_{\text {chasat }}$	3430 396
03303 035004		59382807 63592488	matata	180	039012	Hogera in Kinguon woon Tramee	51621888	NRA.t	691
033008	- Heal aticton	61852290	nata	88	039013	Comen al berryrore	61231882	MRat	3622
033006	Gramis al Imion	65702484	mata	598	039014	Vor at masatese	81512016	nrat	1320
033007	Now derex al ${ }^{\text {armod }}$	50002608	nata	196	038015	Whitewier st loseo for	47311523	nat.t	448
033008	Craney Water at Corter End	52962411	nata ${ }^{\text {a }}$	50	039618 035017	Kerner at Theele Pey et Grencion Underwood	$\begin{aligned} & 46491704 \\ & 46902211 \end{aligned}$	mRA.T HRA.T	10334 186
034001	reo ot Cobior	81323042	neasa	2318	035019	Lembarn al St	44701682	mat 1	23.1
034002	Tot ot Smoteshem	02782994	nata	1405	039020	consmesury	41222002	mat 1	1087
034003	Ove al mgmerts	81923290	mata	1847	039021	Chamen ax Enatow	44022183	noat	551.7
034004	Wenaum an Cosasasor Med	8173128	nraa	5381	030022	tadson an Sraeponcop	47201652	natas	1045
034005	Tud at Costeceot Pan	01703113	nraa	132	039023	Wreot trasor	48981807		1373
034008	Weveray at Noectemm Me	62292811	nta.a	3700	039025	Enbare ot Ampton	45881848	man. 1	146
034007	Dove at Ounwy Pers	81742712	nra.a	1339	039026		44582411	mpast	1994
034009	Ane et hamero Lack	63313270	nata	493	030027	Peng al Pangocume	46341768	mast	1709
034010	Wereney it Bengioco enroge	61692782	ma,a	1494	039028	On et tampertoro	43211895	npa.t	1013
034011	Wernum of foturem	89193294	maa	127.1	039029	Tenotoume it statard	50001476	nras.t	59.
034012	Dem on Aummem over	58423428	mata	000	039030	Gase et Croivey Graen	50921952	nea.t	1840
034013	Woronay of [tharem MJ	63042917	ma,	6700	039331.	- Lembeam an Wutior	4411131	nra.t	1760
034014	Wensum al Swemon Mortey Toum	60203146	ma.a	3630	039032	- Lamocoman Easi Snetord	43901745	nrast	1840
034018	Stimoy al Wertem Al Seme	89443414	nata a	171	039033	Winterourn St ot Begro	44531694	nra.t	492
034019	Bue at morticer Ma	82873194	nota.a	3130	-039034	Eventost at Coasangion M	44482098 40781893	nrasty	4300 1243
035001	Gepeng oi Comatentios 1	81542441	na.a	3108	039038	Low Erook at Abum	6045 1468	napa.t	160
035002	Dosem et Mermion rel	83222334	caata	1831	039037	Kannel en Mereorcugh	418) 1688	Na.t	1420
${ }^{035003}$	Asce of formem	83602601	neata	639	O3s036	Treme on Sneocongion	46702055	ma.t	-430
035000	Ore on Eenweran enden	9359 2583	naa.a	549	038040	Themen a Wear ma Cratioc	40941942	nota.t	1350
035003	Cosporg et Stowmeniot	coss 2578	mata	129	033042	Leechat Pmor Mef lecrime	42271994	natas	708
036010	Cosong on Eramora	6127 2465	nra A	2980	039043	kamot of krateon	42981710	npa.t	2950
035013	Eerrin a motion	04082769	nata	920	039044	men oi bramens have	47561693	matat	840
					030046	Thamec ar Sution Courioney	46161946	Ma.t	34140
036001	Siour al Stratiocasi Mmy	00422340	EWC	244	030049	Sa Sreem at Coundeep Lere	52171993	noa.t	290
030002	ciem at ciematod	58402472	rata	873	039031.	Sor took of Adotiour	44762348		1084
036003	Bon on Pomiceo	59852378	mata	539	030052	The Cua of erinutd	48531713	neart	502
036004	Cred brope en tomg Metrord	Sese 2459	mata	474	${ }^{039035} 3$	Moty at Mortor	52711434	noast	69
036005	Evation reamon	60252429	mata	1580	030054	Mote ot Gotumel Amport	52001399	nera.t	318
036000	Stow or Lengrem	60202344	mara.a	5780	039055	Yeoung el West a Yeourg Wort	80431848	nra.t	176
036007	Bacremp Broct al berorwa enope	58482421	noma A	586	030058	Rememabame an Cortero	83721732	nea.t	678
036003	Stoun or Wosima	68272483	mata	2245	039051	Cimene a Cientara Pexis	61031178	nra.t	81.9
030009	Brect ot Cocritato	59142325	nora.a	257	039038	Pool or Wratoud Roed	83711725	nrast	383
038010	Eumpricen Brook al biosd Gram	6est 2418	nata	263	039001	Lescomos Brock ot Leicomot baceert	43751853	mat	2.7
036011	Stour Broom al Stume	8898244	mata	345	039065	Eware froot ot Emury	40421818	mast	134
036012	Stoe et Kecington	57082450	nata	762	039000	Mote et casis Me	61791502	mast	3180
036013	ereren atmprem	2032 2354	nata	1950	039069	Mote a kommuer Menor	62621462	varat	1420
038018	Stiom ot lemmer	569) 2353	mata	4007	039071	trames an tw	40011973	nat	637
036016	Remaet er Gratiount	62062288	nra, a	139	039072	Tharsee al Aoved Windsor Pert	49821773	natit	400
036017	Itr ave Outtel at Kriong Grome	56812559	nra, ${ }^{\text {a }}$		039073	Crum et Craencoster	2020 2024	matit	840
					039074	ampray briok ex Sraspen ondie	41081850	notas	
037003	Ter ar Crasos erioge	57892107	N-a.a	778	039071	Cog_{0} M Mertocoupt Poution Fm	41941897	mat 1	592
037004	Siximoter at lengtord	54382092	nata	3370	039078	Wornorin et tarmem	48381482	noa.t	191.1
037005	came or Lersom	59022281	mata	2382	039079	Wor at Weronope	S088 1840	Nopa. 9	10060
037008	Conere Beecriond	56902072	nata	2284	039001	Oet ar Aloin cercore	44811908	mat	2340
037007	Wdil Werthe	68882000	nata	1363	039005	Wande a Wemeto Part	52681703	mat 1	1761
037008	Cramer al Somatredo	37132011	nata	1903	05908	Gotwek Stoem a Germek une	62851417	mat t	336

Station number	River and ristion neme	Gind netorence	Auth. orty	Aree (0a kmit	Stavon mumber	Ruver and ctation neme	Gind reterance	Auts. ority	Are (6 com)
039081	Rey al Woter Eston	41211935	nrat	841	043004	Sounte et Lovwriock mes	41371304	nat.sw	1636
039048	Cratis at Restmammorio	50861947	nrat	1050	043005	Avon ol Amsatury	41511413.	nra.sw	3237
039089	Geose at dury Ma	5053 2017	nrat	482	043000	Nasber at Wition Peax	40081300	naa.sw	2700
039090	Cole s: myentem	42091970	nra. 1	1400	043007	Stown it inoop Ma	41130958	Natsw	10730
039091	Mibaume al Owerrencon Ma	48751963	nra.t	663	043008	Wrate at Sount nom	40661343	nat sw	4454
039092	Doka Brook of Mendon lare encoe	52401895	nra.t	251	043009	Stown at hemmioon	38201147	natasw	5231
039093	Brent al Moras Pam	52021850	naat	118	043010	Abon of Loveriay Ms	40061085	natasw	20
039094	Crume at meath form	51541134	naat	010	043011	[Doto a Bosemem	41621263	naasw	1090
039095	Owegoy ot Menor House Geroans	53941748	nata.t	339	043012	Wipro of Norion Bevent	39091428	naa.sw	1124
039096	Wabrsione Brook at Wembioy	51921862	natit	217	043013	Muste et Somprord	41840936	nat.sw	124
039097	Tremes et Buicot	42301981	natat	9970	043014	Easi avon at uperon	41331359	nat.sw	
039098	Pmal Urarios	50621828	N*A. 1	333	a43015	- wipre al longbondpe Devere	3868 1413	natsw	890
039099	Ampary Brock ol Ampers SI Pater	40762013	natit	453	043017	wast avon et usame	41331559	NAA.sw	760
039100	Sma Brose el Cowny	39971921	nat. ${ }^{\text {a }}$	333	043018	Aben al Wertord Ma	40001001	NTA.SW	1765
039101	Alsocurne at Rematary	42811717	mat ${ }^{\text {t }}$	53.	063019	Srisen witer al Comericoa	33071276	NRA.SW	291
030102	Mibouma at Deviem loope	50481850	neatat	1350	-43021	Avon an knumo Ma	41550943	nra.sw	080
039103	xamat ot nowtury	44721872	natit	5481					
039104	Mote ol faner	5:30 1853	natat	4696	044001	Frome at Ent Stoke tow	38890987	NRA.SW	4144
039105	There at Whaertioy	48122050	NTA. T	8338	044002	Pradio ol lagge Ma	39130076	nRa.sw	1831
039108	Mate oil tentharsead	51811584	nra.t	3714	044003	Asher al manoort	34700928	nra.sw	491
039107	mogimal ot Ewod	52161833	nra.t	337	044004	Frome at Dorchester iover	37000903	NRa.SW	2080
039100	Crum ot Periotio Arook	40222057	nfa.t	590	044006	Sratim Weree an Sremo St Mehoten	36320997	NRA.SW	124
039109	coth ar foescorsop	40002112	nra.t	820	044008	- Stit Winteroume a W ocure sienction	38290997	NRA.SW	199
039110	Con at fartord	41512012	Nrat	1300	044009	Wer et Erocowey	30080039	Mrasw	10
039111	tremes or Stamea	50341113	nemat	81200					
038112		43741852	neat		045001	Exe al Therverion	29361016	NAA.SW	6009
039113		43831881	natat		045002	Ere al Stocateron	29431178	NPA. SW	421.7
039114	Pang al frashem	45371730	natit	01	045003	Cumal wood Me.	30211058	natsw	2281
039115	Pemg on Auctibewy	45501710	Natat	1090	045000	Axe ol Writiord	32020953	notasw	2065
038116	Subrem Broot al sitam	46421741	mpas ${ }^{\text {ct }}$		Oas5003	Orter morton	30070385	MAASW	2023
039117	Combroot ot marima End	50191723	naat		045006	- Oumerme at triomad	29191358	NRA.SW	204
039116	Worm Akon	47171395	mat		O45008	Ortee or femy endos	31150936	NRA.SW	1042
039118	Wor at Kmper Pond (Atont	47241393	NRAT		${ }^{0} 45009$	Fxest Paxion	29351280	NRA.SW	1476
039120	Crios Strom ol Ahom	47291388	Nrat	881	045010	Heaceo on mertiord	20521294	nat SW	500
039121	Themas ot Wetion	47261383	nat.t		045011	- Bare of druontord	29271258	natasw	1280
					005012	Crasor an Cowior	29010967	NAA.SW	616
040001	Mectway at Wer Woad Raservo	54071333	SW	28	045013	Tmen af forma	30880972	naasw	344
O20022	Derwell al Darwel Resemer	57221213	SW						
040003	Meower of Tosion	$5 / 081530$	NRA.S	12581	040002	Troon et mestion	28360746	natas	3000
040003	Aovsex al lisam	57731245	nats	2080	040003		27510859	natsw	2418
040005	Batis os Stion erope	57501478	natas	271	040005	Eap Der at Breever	26570775	npasw	215
040008	Ocume at teciow	50321497	nomas	303	040000	Eirre al Emmpron	20420532	NRA.SW	435
040001	Mantwey er Cratiord Wom	55171403	nhas	2551	040007	- West Dert er ammenapo	20430742	NRA.SW	479
040003	Great Stour at Wre	6048 1470	nats	2300	046008	Aron al lookewal	27190476	nrasw	1023
040009	Tasen al sione sidpo	57181399	nats	138		,	1904		
040010	Ecom an Pemerival	55701437	nata.s	2243	047001	Tomer al comritat	24280725	nrasw	9169
040011	Greol Stow at terion	61161554	mas	3450	047003	Town toomel	24750052		2059
040012	Dwant at remioy	55511718	mpas	1914	O47004		23690826	nat.sw	1355
040113	Deemt at Otroce	55251584	neas	1005	047005	- Orier on Wernngion Pank	23368080	Nrasw	1207
0400:4	Winytem at Ounct	62761576	nemas	371	O41006	Ivd ot ution Pam	23880842	nota.sw	2181
040015	Wmie dien at Forbicom form	80351808	nras	318	047007	Yetem al Pupant	25740511	natasw	549
040016	Cray al Ciortord	55111746	veras	1197	047000	Trustal at Timay	23980050	naasw	127
040017	Oudwed ot Bumeas	58791240	naas	275	047009	Tsay al Tisolara	23430595	naa.sw	372
040016	Derem el Linagrione	55301643	nats	1184	047010	Temwor Cromord Brape	22900991	neasw	767
040020	Erago Strem al temam ersope	55221387	natas	53]	047011	- Mrm al Cem Wood	25220813	neat.sw	192
040021		58131290	nous	324	047013	Warrey broon er Bastron	22440763	nora sw	162
040023	Esan Stiour ot South Wderborough	60151407	meras	58 a	007014	Washam at moriensoge	25130693	noia.sw	432
040024	- Bester Ma Si e: corrier Ma	50331357	nat S	251	047015	Tovy at Demmem / Lueriook	24760801	natasw	1973
040021	Seree Pam at Calcott	61741025	NRA.S	194	047016	lumbun at Lumbum anco	24590731	natasw	205
040029	Lenat luramo		nRa.s		047017	Wull or Combe Pert frm	24190898	nia.sw	311
040033	Daw en Crabous Ml	83001430	noas ${ }^{\text {S }}$	495					
					008001	Fower ax Tiatevestiose	22270898	Nrasw	368
001001	Numerghan Sucem al Ther Endop	58621129	NRAS	169	048002	Fowty at Resiornal on	21000813	nRa.SW	2
041002	Ayri boume on Hemore Wooc Enage	Sege 1141	nras	164	048003	Fall at Trasen	19210448	Nra.sw	070
041003	Cuckmare at Shemen Endo	55331051	neras	1347	048003	Weriogem ot Trangotto	21590674	nat.sw	253
041004	Oun at dexcomoo Mes	54331148	ntas	3957	043005	Kenum oi Thuo	18200450	natasw	19
041005	Owe ut cota Bxapo	54291214	natas	1809	043008	Cober at trua	18540273	natasw	401
041008	Wke ol lotiodd	54591190	nopas	日78	048007	Komes al Pomemexa	17620377	natasw	286
O4 1009	- focrer eo trectum	50341178	nat 5	3658	048009	Si Meol in Crazeral Wood	21840862	NAA SW	227
${ }^{2} 1010$	Ader W Eiomen ot hatrece enope	5181197	mas	1091	02000	Samion of Trecrommoris	22090509	natasw	381
021011	Rorther at iong Ms	48521229	notas	1540	048011	Howey al Aeetormal	20980824	neasw	1691
041012	Acrer E Brench ot Semerem	52191190	nats	931					
0041013		58711138	Nat.s	142	040001	Comen al Donor	20170882	natasw	2088
041014	Anm ot Paungreen Ouer	50471229	nats	3790	049002	Hore est Etim	15490342	NRA.SW	10
041015	Ema at Westbume	47351074	npas	58	040003	Do cork or do lenk	21320765	NRa.sw	217
$0810: 6$	Cukmere al Cowbeech	58111150 5755150	NRA.S	187	040004	Gmed ol Gmid	18290593	SWA.SW	10
041017	Comosterven al Ciouturil	57551102	vras	305					
041018	Kadel 1 Terreot	50461250	neas	608	050001	Tow ol umberraph	20001237	nra.sw	0282
041019	Armor A Alotiom	51171331	neas	1390	050002	Tarroge er Jomation	25001185	neasw	8630
O 04020	Bevem Sueem at Coposera Brapo	54231181	neas	348	OS0004	Hoto Wete al Murwortivy	27051373	manasw	54
041021	Claptal Stremer at On She	54481153	notas	71	050005	Wour Ot ammit ot valekt	25570903	nepa.sw	133
${ }_{0} 041022$	Lod et matwos brape	49311223	natas	520	050008	Mate at Woocmer	26801211	natasw	3275
041023	lavent ot Croytingwal	48711004	natas	972	050007	Tow x Tow 8nope	26731088	nhasw	114
041024	Shat Broch at Shall Brook P S	53351280	ntas ${ }^{\text {S }}$	228	050011	Okernent at decobotowe	25921019	nha.sw	921
${ }^{0} 1023$		50001308	notas	910	050012		27151267	nota.sw	537
0041028	Coxthere froct ot harwe	53761282	nhas	361	050013	Bray at Lememara Braso	26111399	natasw	176
041027	Roinee ot Prases Matar	47721270	nats	372					
O41020		52171173 5575 Stind	nras	240	Oes 1001	Doskora Sucem ar Sure Endop		NRa.sw	158
041029 0×1031	Buf at loseros	53751131 524 81113	mras	408	OSt ${ }^{0} 1002$	Home Wrier at Weat Lucrombe	28981450	nat.sw	208
04:033	Cor:wo Brock ol Cockn	${ }_{4880} 1174$	Nats			Whatrerd el begosem Herah	30001395		363
${ }_{0} 103103$	- tmi ol Wetromon	47861104	nras		052001	Axe	35271458	nea.sw	182
${ }_{\text {O }}^{0} 1035$	Mrrin Revere of oroothrel	51501325 540091295	naa 5	551	O52002	Yeo st Surion Bungrem Ros	35501110	nra.sw	303
-4 1037	Writercume Sucem al lowes	54031096	nata	173	$\begin{aligned} & 052003 \\ & 052004 \end{aligned}$	Nelen Warer at Brehoopt reth twe on Autiond mith	$\begin{array}{ll} 3200 & 1253 \\ 3381 & 1168 \end{array}$	MRA.SW MRA.SW	878 501
$0^{0} 2001$	weengion ai Nornt tectrom	45871075	nat 5	1110	052003	Tome or Branose ita	32081250	nopasw	2020
042003	1 mangion al Brockevirust Pat	43181019	notas	949	052006	Yocol Pen Ma	35731162	nata sw	2131
${ }^{0} 20000$	Tent ot Brosatende	4354 1:88	nhas	1040	052007	Psuatt at Crmeetborough	34611144	maa ${ }^{\text {a }}$ W	748
002005	Watco B .oct et Brougtion	4311330	nta.s	538	052000	Tone at Cistmarimy Reservor	30441313	nhasw	101
042000	Masm at Masingtord	45891141	nRas	12 B	052009	Shappor ol fome Costio	34981439	nan Sw	596
042007 042000	Aro si Drave Lere Arostord	45741326	nats	570	052010	Brate Loungion	33901318	notasw	1352
002000	Crenton Stuem ot Sowerts Brapo	45741323	nhas	751	O52011	Coy a somerion	34981291	NRA.SW	824
042009 042010	Cendover Sucem at Blarount Andop	45881323	mpas	12	052014	Tone or Greensem	30781202	neasw	57.2
042010		4671213	nras	3000	052015	Lend Yoo ot Wrexal Andoe	34831718	natasw	233
022011	ramote aifrion Ma	45231148	nats	566	OS2016	currboar Sucem a Cumpool form	32211382	natasw	15?
042012	Arion al fusprion	43791393	neas	1850	OS2017	Congrousury reo at mood	34521831	natasw	886
042014	Bisct water al Owm	43281174	naas	1047	052020	Genco Streem ot fielice smape	35711100	natasw	184
042015	Dever at Westion Coser	44981394	natas	527					
042016	Hethen ol Eestion	45121325	natas	2388	053001	Avon at menatrem	39031841	noasw	685
O42017		41111087	Nats	170	053302	Sommpton briot el Semangion	39071005	masw	1577
022018 042020	Monk Brook ot Esavash	44431179 4392129	nats	433	053003	Avon al docih St dumes	37531845	noasw	15950
${ }_{0} 0202021$.	gemet of Test in Mrime	43021212 43591159	coats	190 1050	OS3000	Crave it Compron Mento	(36481641	Nota SW	1295
${ }_{0} 02023$	Costen of Averecos Pem	- 44351159	notas	1050\%	O53005	fromerimetot at fremerior	37631611 36371772 3921	Nama.sw	1474 1499
042024	Test at Criberion (Totan)	43881304	nats	4530	, O53007	Fromatsomer cati et Tals'ora	38051564	NRA.SW	2016
042025	Lovent Sticeen al Llogh Patit	47211072	nias	645	-053008	Aran e Greot Sammertar	39881832	WRa. SW	3030
					Cs 3009	Watow Brook at Wollow	37411581	wra.sw	728
$\begin{aligned} & 043001 \\ & 043003 \end{aligned}$	Aron ar Argwood Avon en Eeet Mile	$\begin{aligned} & 4142 \text { to54 } \\ & 4158: 1144 \end{aligned}$	MRA.SW MRA.SW	$\begin{aligned} & 16498 \\ & 14778 \end{aligned}$	$\begin{aligned} & \text { O53013 } \\ & \text { OS } 3017 \end{aligned}$	Mercon at Stervey Bord at Eitton	$\begin{aligned} & 3955 \quad 1729 \\ & 36011890 \end{aligned}$	MRA.SW NRA.SW	992 480

station number	Niver and otation nemp
053018	Avon at Baintard
us 3019	Wosoricose erook ot Cras Mal
053020	Gerise eroct at Roctioume
063022	- Avon al 8 bath utimarac
063023	Srayston Avon at forsowor
053024	Teibury Avon al Brctonberusph
053025	Martal V atis
053020	Fiomeciratios el frompion Cotiores
C83028	By Brouk al Muscorn1
053029	Bras e: Trowtriose
OS4001	Sovern s: Eowory
054002	Avon at Eveshem
O54004	Sowe or Stomaman
O54005	Savern al Mantiocd
O54008	Sticut ar Conowe lana. Knsoermmater
054001	Atrow al Brom
054008	Tome at Tmour
054010	Stown at Alicot Past
054011	- Sarmerda al matiora ita
054012	Tere at Wikol
$0540 \cdot 3$	- Crwosog at Crorran
054014	Sevorn ot Abermute
054016	- Bow Broon at Eestara Bago
O54010	Roden al Rocampton
OS4017	- Lesson ar Wasteriturn Brage
054016	Aap eroost at mookenote
OSAO19	Avon al Staston
OS4020	Putry at Yeotion
OS4022	Sovern er Permimon nume
OS4023	- Batsey Brook si Ctromsom
OS4024	wore al Burcote
OSt2025	
054026	- Crave ol Sivie Ma
054027	- frome at forey Ma
054028	Vyriory al lluryminech
054029	Teme et Knagriziord Budge
054032	Sovern al Selome lose
054033	Dourese Eroot et Cot Cottrse. Do
054038	lebourne at Mintion on ite Groen
054038	Tanal 811 mentiocowel
054040	Mase at Tabenon
054041	Tanatetion on tan
054042	- CIrwasos al Crrwastog Dm Lowe Wor
054043	- Sovera at upion On Sovorn
064044	Ten al Temera
Cstous	- Perre at Parcr form
069040	Worte at Costorn
Os404)	Percr a Rurion Brapo
054048	Dane ot Welerbourn
us40<9	Lesm at Princes Drve Wer
054030	leam al fathepo
054052	- Boter Brecon at Temora
054055	- Ree of Namen Solers
054058	Clun at Cungumiora
054057	Severn ot haw erabo
O54038	
034039	Amord groot at Amorid
OS4000	- Portara brook at Semoriora Brape
054081	- Hodnel erook at hodmat
OS4082	Slode Brock at Siot
OS4083	- Siow ar Prostwoso roaram
OS4085	- Aocion al Stamen
OS40es	Prati dinot at Panl
054087	- Smaciow ersot et Swindon
OS4088	Taicha Brook ei hacrioy
${ }^{054089}$.	- Sparpe Broom s: Lower Mactay
O54010	- Wer broch ol watrou
034080	Savern al Dotwen
054081	Crwodog ol Bym:M
054083.	Crow broct al traton
OS4cea	Comnos broot al Pationd
054085	Cemmos brook at Cemos Crosor
054006	Cownwr Diveremon al Cownwr wor
054097.	Allarderotat at crube Etal
O54cas	Lilis Avan at Bonctor kemma
054089	Avon al creation
054090	Tensurita al tersturn finma
OS4091	Sovern at toiten fum
054092	Moce st Hoce Fruma
O54094	Strne al Cruagoion
054095	Serven ol ${ }^{\text {andow }}$
084098	
055002	Wre ot feemant
055003	Luso al lugmerand
055004	Irton at Absurent
065005	Wre as Praeresor
055008	Flon ot Coben Coch Resiomou
CS600]	Wre ol Etmose
O55008	Wre or Catio ewrn
055009	Mamow ot kenteruct
O55010.	Wra il Pemil Mowt
OS5011	nren er concem
056012	Hon al Cmary
035013	Alcow al Tiner M1
055014	Lueses mirion
035015	homsou al Tatios
055018	
055017	Crmatr at Cestag.y won
0550:0	Forme at Yastita
065021	
055022	Trotery al mictiol fior
065023	Wreat Reabroot
056025	Urmies trico Cocks
065020	Wres: Ditol form
cs602,	
065028	fiome al buahups friome
OS5029	Momaw et Crommont
055030	Creowen al Duty- Trmach
O55031	Yotor Brioun at Three Emy
035032	timeat time vaoge
055033	Wre at Gwy fume
055034	
056035	loge at loge numb
054001	Uatal crome Bado
056002	coom at Pr
058003 058004	manode of itha forpe biacon Ust al thende?:y

suation numben	Alver and eretion neme
056005	Imrdal Ponita
038000	Ustat Tratorg
056007	Samm at Pont Hen hatcod
056009	Mornis Dich at 1 Lonwem
058010 058011	- Une a P 1 coaluey War
O58012.	Crmmen ol misrock
O50013	Yece at Pontaricar
OS6014.	Uot at Uat Roterios
056015	- Otway ercok at Omer mn
O36016.	Csortemal Curiel at Tarioni Reserva
0s 1001.	Tat fecreen al Toil focren Amenor
057002	Tot fawt ot Immon Rosaves
Os 1003	Tall al Tongurneat
057004	Cman al Abercrion
061006	Tath al Pomirpos
057008	Promdeo at Trataiod
057007	Telt af focera EBO
057008	Perymer ot lienaderm
057009	Ety or St Fegens
OS7010	Er al lenaley
OS7011	Bren Tat four at Beecons Rocer
057012	Gerwnent at Itmmon Rasevor
057015	Toff at Mentwe Tyotd
057016	Tot fection at Ponistica
050001	Opmasit andiond
058002	
058003	Examy at Imanir Proory
058005	ogmoce it Emmema
05n000	Mastia al Pomineratiaction
058007	Uumi a Cortronen
058009	Dutas ot cittiow
058009	Ewamy al keepers Locke
058010	Hepele at cogar Comau
058011	Thaw at Gagmen Brato
050012	Atmot matioti Wex
059001	Towe at Yrnatangtus
059002	
060002	Cottrat fain Memectidy
000003	Tot el ciogrefiom
060004	Down fown a Gestion ford
080005	Bran al Limoswery
060008	Guwe ot Glangura
080007	Tru al Dover imion
080009	Trunal Yatioum
000009	Sowoce ol funivemm
000010	
000012	Twich at Dool leo
060013	Cotm at Pont Yerre fraches
061001	Western Crectev et Pronderanti Mel
081002	
081003	Gwoun al Cimoom litige
081004	wostom Cuchew it Aacra
062001	Telion cteor Tot
062002	Toli al Lemer
083001	Yacurtios Poni camm
063002	Pramol at umbedern fowt
083003	Wrie al Lerrivetro
063004	Yalmuth al Cwm Yalurn
003505	
063008	Msorrent Fectiot Menl $\cdot \mathrm{r}$ Moch E
064001	Orace Orre Broge
064002	Oramiex Poorl y Gmant
064008	Lensil carrost
064007	Dermatilimerymas
064008	Cwm at limermea E
065001	Gostym of Peaspotert
085002	Owrre al Meseniwios
065004	Gwyta it Rentremyad
065003	Etch ol Pancsanamrac
085000	Sount al Posiog M/1
065007	Owriawi at Gemotbenmen
	Cmand et Pmaty yeambur
066002	Emer at Pont roman
008003	Alve at Barl Alved
065004	Whaterat Boxten
000005	Crurd en tuther Wer
068008	Emy of Pont Y . Giunditer
068008	
066011	Conmy ar Cwm llomech
067001	Dosal Eato
087002	Denal froalck Rexiory
067003	Bramp at 1 lmm Biemp autiow
061005	Comos ar Brmamar Wor
087006	Almen el Orua
061008	Ameir Poni. Cason
067009	Amm al
067010	Gutrn at Crnolas
067011	Nent Aberdorta at Nama Abercierol
061012	inwern at usper inmay
067013	Hement ol Pras frowrioy
067015	Deo at Menter mol
067016	- Worthenoury Broct al Wornmoury
067017	Truammitim Corrn outhow
067016	Deent Now man
067025	Crwertog ot Bowtrg Bent
087026	- Deo al Eccistion Ferry
067028	Castog al 11 mondio
087029	Trution al Pan y tomin fum
068001	Wowe of Aarercos
008002	(sowr at Meion
068003	Omen al Aumbant
088004	
060005	Weover ot Audiom
068008	- Dene al theme warrac
068007 069010	Winchem Broch at Lostock Gramen

Station number	River and station neme	Grad reforenice	Auth. orty	Aree (09 km]	Stetion number	Alver and elation nemp	Grad refertince	Auth. artiy	Area (0 mgm)
060015	Couny at muxiar	3497 3824	namanw	490	$0 / 9001$	- Atron Weree ot Ation hoservow	2631 coso	Sspob	85
066018	Cones al Congrion Past	38613832	natan	1450	078002	Nah ot frere Crace	29235851	spee	7990
068020	comy of Brabe tratiora	34483711	nra.nw	1580	019003	Mat of rear encoge	28840129		1550
					079004	Scen woior at Cepenoch	28455940	spep	1420
069001	- Mersey al mem Wou	37283938	nrandw	6790	079005	craon woiou an foser 1	29285795	Sper	2380
${ }^{065002}$	muel ol Acolpr Wer	38243987	NTa-nw	3594	019006	Hatio ol Doumerio	2858599	Scre	4710
068003	imer Scorlind Wou	38413992	nramw	725					
069000	- Ensow at Bottomi haravor	40233971	nat nw	782	080001	Ur at Ducontio	28225810	spap	1990
089005		36853939	nra ${ }^{\text {anw }}$	1520	000002	Oen ot Gramesee	21338841	SR	8090
088006	Botn at Dumbem Meover	37273875	natanw	2500	040003	Wras Lasome Bum ot Loch Des	24885781	SAPs	57
06900	Marreey at Aution Wers	37723938	natand	6600	060004	Grentown al Lach Das	24815791	SA	26
069008	Doen or Stumarionds	38463830	natanw	318	08000	Dorper Leres al Lactios	24515787	SR	21
009011	Mactoce Broct ot Creace	.3855 3889	NaA-Nw	813	050008	auckmoteral loch Dop	24785797	SAPB	150
069012	gotiol Wimitur	38503815	nha.nw	725					
069013	Smaderiend Orcon al Pattomaton	37263905	naa mw	448	001001	Panutum lum et Perntam Reservor	21285094	OSPW	2
069015	Etheriow al Compsiol	39623908	NRa ${ }^{\text {NW }}$	1560	081002	Cioe at temion Siower	24125653	SApe	3680
069017	Gort al Maripe Bricge	39643898	neama	1830	001003	Lue of A Antiemmams	21005599	SA	1710
069018	- Nowtion Serent at Mowton Le Welowe	35853933	natanw	328	081004	Bremoch al Low Mobisa	23025545	sfag	3340
069019	- Worsby Prook ol tecios	37533980	natand	249	091005	pritanton fumm at Bersoive	21075584	sper	342
069020	Mertoct al 1 amsion Rosed	38493975	nra nw	575	091006		23635748	Speg	1410
069023		38074017	stacasw	1880	081001	Wriee of floot at Ausio	25925580	588	
069024	Croul al fammart Wer	37434068	natanm	. 1450					
069027	Teme ar Porrwood	39063918	Natan	1500	082001	Cirven at Acortona	22175897	$\mathrm{cras}^{\text {cos }}$	2455
069030	Senter bicot at Cowner Broge	35683922	natanw	1540	062002	Dosm at Auctioute	23386160	Cres	3238
069031	- Drion Aruot al Crames Ampor	34573865	nata.nw	479	082003	Sinctra at Benowiert	21095832	$\mathrm{CPPB}^{\text {c }}$	3410
069032	All al kriby	33923983	natanw	901					
069034	Muzour Brock al hamza	37754213	MPA NW	31	083001	Ceer Woter at Knockenson Re	22456514	sacw	0
009035	Inolial kumy Bubo	37974109	NHa NW	1550	093002	Gemock ol Davy	22936488	$\mathrm{Crar}^{\text {ch }}$	888
069037	- Mersey en Westy	36173817	Natand	20300	0893003	Ave tictime	25250259	Caps	1663
069040	twol at Stucons	37934188	MAA.NW	1030	${ }_{0} 083003$	Lwaer al 1 angram	25086217	CR	1810
065041	Teme at Reocmitan Andoe	39383953	natanw	1130	083005	tame ot Snewation	23456369	Cass	300)
					083008	Art ot Manhorm	23810210	Caps	5740
010002	Douder ot Wemas Pucos Hrabo	34764126	nRa.nw	1980	083007	Lupton Wrier al fuxion	23158420	$\mathrm{Cr}^{\text {c }}$	ca
070003	Cuevier at Contel Peot Wigan	3587 4061	NRA.nW	553	083008	Amact werer al Cragaur	23526384	CRP厚	953
070004	Yarow at Crosion M,	34984180	neand	14.	083009	Gurnock ot K.ummano	23076424	$\mathrm{CrPa}^{\text {cose }}$	1838
01000s	Lostock et Lrimmosd Brage	34974197	nra nw	560	083010	true al Mewrmis	25326372	$\mathrm{CrPa}^{\text {c }}$	12 s
071001	- Reober ar Semmazur	35894304	NaA An	11450	084001	Katen of Kemermone	25586705	${ }^{\text {cap }}$	3331
071003	- Coasdete al Croascue Ma	37064546	NWW	104	084002	- Conser al mamamo	23098638	SaCW	124
071004	Caseeres Whetey Wer	37294360	natan	3160	084003	Crres on resectiont	29350452	CAPB	10929
071005	- Bortome Buck al Botiome Back fume	37454565	NWW	108	084004		29278424	$\mathrm{Caps}^{\text {che }}$	7418
071006	- Rastion ol Hexicorn	31224392	NaANW	4560	084005	Crroe at Bearcion	27046579	$\mathrm{CAPB}^{\text {cma }}$	7042
071007	- Resote al hascortiol	37094379	Neanw	7200	084008	- Kmvin al en agond	28728749	с ${ }^{\text {cma }}$	637
071000	maxtem al modos fleco	37044399	nra.nw	2810	08.001	South Colver Wif al forgumod	2751 6885	${ }_{\text {cape }}$	930
071009	Reocte er Jumbier Rock	37024316	NRA.NW	10530	084003	Axtion Calsor WIt α Reciwn	26798804	CPFe	513
071010	Panct water at Barcon Leme	38374351	nra.nw	1080	084009	Nornem ot Kormume	28098429	$\mathrm{CrPa}^{\text {che }}$	680
071011	Hexere of Aistioct	38394558	nranm	2040	094011	Grote of Cragons	24156864	CRP8	710
071013	Dewen ot [mose onase	36714262	natanw	335	084012	Wraw Cert Weter ar hawhiad	24996629	$\mathrm{crap}^{\text {Pr }}$	2272
071014	Dewwen al lave Andsp	35654278	natam	1280	084013	crase al Dacowa	26726616	CRP9	19031
0720					004014	avon woue of formm	27538518	Crpe	2853
072002	Wrie oi Si Marecer	35034647 34634411	NaA NW	9946 2750	084015	Kotrn it Oryiel	20388139 27398725	${ }_{\text {CPPP }}$	2354
072004	Lume at coton	35294853	NGAA.NW	9830	084017		24116620	$\mathrm{CaO}^{\text {cos }}$	1031
072005	Lume at Ketingion Now Bexton	36224901	nga and	2190	084018	crice et Tuftord Mal	28916404	cas	0328
072006	Lume ot Kirity 10 andore	35154778	natanw	5071	Petols	morin Cucor wi en Cessepat.	26816625	CPP8	1298
072007	Brakal U/SAB	35124405	natand	320	084020	(ibrayt Water at Mition of Cempas	28508763	cme	519
072008	Wrieat crerumg	34884447	NAA.NW	1140	C04021.		25876597	${ }^{\text {cmpe }}$	910
072009	Warnge in Worrmpion Road Endse	38154701	Tra.nw	1420	004022	Dunaston al Meconcoit	29296259	${ }^{\text {cape }}$	1103
072011	Remmer at 8nas fivie	36394911	nRa.mw	2000	084023	Bortion Bum of Auxtongeact	28806717	$\mathrm{CaFP}^{\text {a }}$	357
072014	Corsee al Gretiote	34814554	nra mw	285	${ }^{064024}$	North Cusor wit at hend	28286678	${ }^{\text {Crape }}$	199
072015	Lune al linese endos	36125029	nataw	1415	004225	lugee Wrow at Oxper	20860734	CAP8	877
072016	Wreal scorton Wo-	35014500	nat nw	898	084026	armaer woie a Mung	25586738	CPFe	328
					084027	Norn Cever Wit ot Cuborbert	27658524	CRP8	606
073002	Crane at Low murnwent	33714863 3294882	NHAANW	2410 730	034028	Martiand Cimen it Woathel	27650826		006
073003	Kent at Bumeamb	35074956	NHA.NW	736	084030	White Cort Waree ot Oreme	25796575	${ }_{\text {CRPB }}$	1118
071005	Kant at Sedsuex	35094874	natand	2098			2579		
0713006		33694940		187	Coscoul	Loven at limbrema	23946803	${ }_{\text {crpe }}$	783
073000	Qaea a Brasmam	34984806	neta.nw	1310	005002	Enomet Wuter at cercrow	24856888	с限8	2199
073009	Sormi ar Some Ma	35144961	nra mw	346	Cas003		23211197	CPP9	803
073010	Lever ot Nowery Arape	336) 4883	natan	2470	085004	Luse woree al luse	23568929	CPP8	353
073011	Mat of Mont Erogo	35244944 3311504	NRA.NW	658 850					
${ }^{0} 73014$		33605034	NWA.NW	614 18	$\begin{aligned} & 008001 \\ & 0,6002 \end{aligned}$	Eecheop ol Ectiod	21408843	Crpon	1399
014001	Ouxsion at Cuxdon rim	31964896	nota nw	${ }^{3} 5$	039000		22397776	${ }^{\text {Cap }}$	45
074002	cis al Cisteste.	31385038	NRA NW	442	039009	Ees AGreien Suxcoth	22097265	CR98	99
074003	Enem at Emercaio War	30845154	nea mw	442					
0740003	then ol Pregucomes	30095051	natanw	1255	000003	Nene al Cragon	2116774	1008	768
074008	Cabor at Catoen rem	30355045	neanaw	448					
014001	tut et Cropote How	31314978	nra mw	702	091002	Lechy al Comaky	21457805	\cdots	12520
074008	Qucson al Uiphe	32094941	Nra.mw	479					
	St forms becit al Thrimsie Roserwo				09300	Comion al Now Katio	19428429	Haps	378
075007	Domment al Cemerion	30385305	natam	6630	094001	Ewe an Prowno	18998803	нres	41^{1}
075003	Orwent ol (c)ase Prateo	31995321	natant	3630					
O15004	Cucter al Soulmume Brage	31315281 32515239	NRA Not	1168 2350 3	095001	Lnver at utte Asoynt	21499250	H4\%	1313
075006	Nomemos Bect el Exarumate	32408239	NAA.NW	158 339					
075007.	Crencoramectin al troterad	33235248	NRa.nw	645	096001	Hatedere at melecole			
$0 / 5009$	Crate ex Lum dnay	32855242	nra.nw	1456	098002	Never e: ADasa	27139568	+rpb	4110
075015	Coction al Scubra	31495214	nrand	640	0980031	Suantry at Sueatry Bardo	28389862	+RPB	1118
015011	ftom at butal	30985.384	nra no	960	096004	Ambed al Stralma	24539429	Hps	1050
	Howetwater Beck s: Oumberik:	35085159 3405056		330	097001	Casomern al Actavern	30059896	Hack	243
076002 018003	com ol Wormak Brige Femont at Udiord	34725567 35785300	NRAA.NW	13807 3982	097002	Thure es reman	31319595	Haps	4128
076004	Lominea at temment Endiga	35275281	natanw	158 s	101001 •	Eastan yow at Arrecioma Med	45770857	nat 5	575
076003	Eumat 1 Templa Sowriby	36055283	nat.nw	6164	101002	mecins an upper Stucm	45030974	nats	298
076007	Eamen al Sreommont	33905511	natand	22883	101003	luady erook at nownom	44910886	matas	162
076008	Hthrigy 11 (xtminome	34885581	natand	3340	101009	Eastem Yer al dumi noves	${ }^{4583} 0053$	Mas	596
078009	Cobsew at ham to	3375469	Natan	1472	101005	Eoneen Ye al burburge	${ }^{453108355}$	NRas	225
078010 076011		3412 5545 3693 577	natanw	1800	101008 10100	Wroxit Strame (Wraptatele	45360839 45830852	NRas	158 98
076014	Eamen armor Stuprion	37735097	NRA.mN	894		Scorchust brion at eurn Houre			
076015	Emmort el Puodey Encoge	34725249	nrame	1450	102001	Catm at boatiordes	. 24293770	nra.wel	250
077001	Eat al noinsory	33905718	NRA.NW	8417	201002	Fory watex at Daspoon Unatos	24083750	DOEN	1612
017002	tak el Cenortme	33975751	SRP8	4950	201005	Comowen a Clemowen Terice	24603730	DOEN	2748
077003	Lnat Water al forwemerntioul	33155759	SfPe	3190	201000	Ourreag et Compane Brage	24583722	OOFN	3246
077004 017008	Krito Woterel Mriknowe	32855093 34125857	${ }_{\text {SRAPB }}^{\text {SRW }}$	770	201007 201009	Bum Dimme Qurndemal Bridge	23124047 2265364	OOCN	1453 3373
017005	1 mmot ot Clt Bnosp	34125867	NAA.NW	1910	$\begin{aligned} & 201000 \\ & 201009 \end{aligned}$	Owry at Cosiloder	22853842 24183868	OUEN	3373 4424 1
07800:	Amen el St Mumpor Memes	31235755	sppe	7303	201010	Mowne a Onumetuay House	23473960	OOEN	18445
078002	At at Elomeoremit	30685852	Smer	1432	202001	Act of Ardincole.	28744247	DOEN	3656
088003	Amen as Rrcourict	31915704	SAPP	9250	202002	Fapgrimen al Crumetioe	24644^{16};	DOEN	2723
078004	Kmman We:cer ol Amatral	30775888	spre	781					
0180003	knmal witer at encoomur	30915845	Spre	2290	203010	Ulectwotor at Morrown Bnope	28203519	DOFN	9514
070008	Aman ul Woothoot	30998010	Spp	2170	203011	Man al Cramore	30524086	DOEN	2280

seation number	N1wer and atation nemp	and neturonce	Avts. onty	Aree (eq tums)	station number	Where and otrition neme	crid nethemot	Auth. arivy	Arse tac km
203012	Relladery at Belinderry Broge	29263799	DOEN	4195	203092	- Man et Dunmemeng L lower	30514111	DOEN	2118
203013 .	men ot Andred	30823973	DOEN	046	203093	- men at Srane a viedert	3088389	DOEN	7042
203017	Yoper beme on Ormas Enoge	30433509	DOEN	3358					
203010	Six milo waser al Antiom	3140306	OOEN	2773	204001	- Buath ar Smerer	29024362	COEN	3061
203010	Clave an Cranone Ericge	2962 403)	. 006 N	1301					
203020	Movole at Morole Mrw endes	29553905	DOEN	3005	205003	- Legen an Durmury	32993679	OOEN	4447
203021	Kens weter or Currye Braige	31003971	COEN	1270	205004	Legen an Nowlorge	33293093	DOEN	4904
203023	Torrent as ino Moor enoge	28583649	DOEN	899	205005	Revernet ot Revernet	32673613	DOEN	898
203024	Cuater al Gembios Brago	30453471	COEN	1707	206006	- Legen an biens	32593028	DOEN	3159
203025	Ceten ar Ceam Now Broge	28933524	OOCN	1841	206006	- Legen an Drumatie	32363525	DOCN	86
203026	Genery al Grenery	31493725	DOEN	448	205010	- Legen ar Emoge	31233540	DOEN	1898
203027	Brand ot betee	30974014	DOEN	1772	206020	Erier as Comber	34593697	DOEN	598
203028	Agover of Wrote me	28834193	DOEN	909					
203029	Sin Mato Woie at Betreiere	32823902	DOEN	804	208001	- Cberrye ar Moum me bridge	30083309	DOEN	1327
203033	Upper Bame ot Bembeid	32333341	DOEN	1009	206002	- jerrerepece at jerrotapese	30843332	DOEN	417
203036	Rocky at Poctr M Mounten	32433265	DOEN	07					
203040	L Owe Bew at Moweregter	29314154	DOEN	52008	236005		23313359	COEN	3091
203042	Crumber et Codercourt Bnage	31353765	DOEN		238007	Stame at Drumrom Brage	22063400	DOEN	1678
t Irioh Gext refarences are nidicised.									
- - ctosed. or mo date for post 1899 heve been recened									
Hefter 10 peges 172 and 173 for key to meesumg surthorty codet.									

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 10, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, whilst occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 13; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

Only the largest artificial reservoirs in the United Kingdom have sufficient capacity to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead, in many rivers, to reduced flow, particularly where the natural groundwater contribution (baseflow) is limited. Consequently, white surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where avail-
able). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, a dry summer succeeds a notably dry winter, or as in 1988-92 in eastern England, recharge is significantly below average over two or three successive winters.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes: to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to $35 \mathrm{~km}^{2}$. During the last few years, it has become apparent in some districts that satisfactory information can be obtained with fewer wells, while in others the densities had to be substantially increased.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Gcological Sciences) with the aim of selecting 200 to 300 sites from the existing national archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom'; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175^{2}.

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (sec page 150).

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 mm .

Some observation wells are equipped with continuous water level recorders, almost invariably activated by a float on the water surface. These recorders may be driven by clockwork or by electric battery power, and are capable of running unattended for periods of one to six months. Levels are usually recorded on paper charts or on punched

TABLE 10 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

En	${ }_{\text {Sprem }}$	Subryuea	Asuffer	Itportuace
$\begin{aligned} & U \\ & \hline \\ & N \\ & 0 \\ & Z \\ & \text { B } \\ & \hline \end{aligned}$	Quaternary	Holocene	Superficial deposits	-
		Pleistocene	Upper and Middle Pleistocene	
			Crag	**
	Neogene	Pliocene	Coralline Crag	**
		Oligocene		
	Paleogene	Eccene	Bagshot Beds	
			Lower London Tertiaries	
			Blackbeath \& Oldhaven Beds	
			Woolwich \& Reading Beds	-
			Thanet Beds	**
U000OH	Cretaceous	Upper Cretaceous	Chalk and Upper Greensand	***
		Lower Cretaceous	Lower Greensand	***
			Hastings Beds	-•
	Jurassic	Upper Jurassic	Portland \& Purbeck Beds (with Spilsby Sandstone)	$(* *)$
			Corallan	**
		Middle Jurassic	Great \& Inferior Oolitic limestones (with Lincolnshire Limestone)	(***)
		Lower Jurassic	Bridport \& Yeovil Sands	**
			Marlstone Rock	-
0000000	Triassic	Upper Triassic		
		Lower Triassic	ermo-Triassic sandstones	
	Permian			
			Magnesian Limestone	**
	Carboniferous	Upper Carboniferous	Coal Measures	**
			Millstone Grit	**
		Lower Cartoniferous	Carboniferous Limestone	-*
	Devonian		Old Red Sandstone	-
Key to aquifer importance:		aquifer of minor imp aquifer producing sm aquifer of local impo aquifer of major imp	only t useful, local supplics often providing public supplies	

Figure 11. Principal aquifers and representative borehole locations.
paper tapes, but a number of solid state loggers have been deployed in recent years. At a relatively small but increasing number of observation boreholes provision is made for the routine transmission usually by telephone line - of groundwater levels to local, or regional, centres.

Pressure transducers have also been considered for water level measurement. The design and performance of pressure transducers has improved in recent years and they are being used more frequently but are still not yet in general use.

Observation Well Hydrographs 1988-92

Well hydrographs for 32 observation sites are shown in Figure 12. For each borchole the 1988 to 1992 groundwater hydrographs are illustrated, as a blue trace, together with the average and extreme monthly levels for the pre-1988 record. A break in the well hydrograph trace indicates an interruption in the record of greater than eight weeks. Five-year plots have been used both to illustrate the dramatic changes in groundwater levels over the recent past and because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of $1991 / 92$, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water-table fluctuations.

For a few wells and boreholes the long-term monthly extremes and/or means have been omitted. In some cases this is due to the limited amount of historical data available. At other sites the historical data do not provide an appropriate basis for comparison with contemporary groundwater levels. The majority of observation boreholes for which data are held on the Groundwater Level Archive monitor the natural variation in levels. However, in parts of the United Kingdom levels have been influenced, sometimes over long periods, by pumping for water supply or other purposes which exceeds the natural rate of replenishment. As a consequence the regional water-table may become substantially depressed. For instance, the levels at a number of observation boreholes in the Permo-Triassic sandstones of the Midlands are indicative of a significant regional decline. By contrast those at Rushyford (Northumbria) now stand substantially higher than 15 years ago despite the recent downtrend. This reflects, in part, a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering.

On a larger scale, groundwater levels in the confined Chalk and Upper Greensand aquifer below London have risen by over 35 metres since the late 1960s. The increase in the recent past is illustrated on the hydrograph on page 153 - the monthly extremes relate to the post-1950 period only.

Although earlier data are very patchy, it is known that in the 1840s groundwater levels stood around 30 metres higher than at present. The subsequent decline - to a minimum of 85 mOD in 1968 - and partial recovery is principally a consequence of changes in the rate of groundwater abstraction. Decreasing demands on the Chalk aquifer, especially after the Second World War, initially stabilised the water-table, which had been falling steadily over the preceding 150 years in response to London's water demands, and subsequently levels have risen at the rate of approximately one metre per year. More moderate increases have been reported for other conurbations in Britain; in some cases leakage from water mains is considered to be an exacerbating factor. The implications of rising groundwater levels extend beyond the potential improvement in resources that the rise represents. Groundwater quality may be adversely affected as levels more closely approach the surface and a number of geotechnical problems may result, for instance the flooding of tunnels and foundations.

Register of Selected Groundwater Observation Wells

Scope

The listed sites were selected so as to give a reasonably representative cover for aquifers through-out England and Wales. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 148, while the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. In the Coal Measures and the Millstone Grit, certain sites have not been monitored for some years due to the presence of methane in the wells; these sites have been discarded until either they have been made safe or have been replaced. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells.

The following sites have been added to the Register for 1992:

Chalk and Upper Greensand

SU34/8A	Clanville Lodge
TF73/9	Coe Lid, Bircham

Problems with access were encountered in the latter part of 1992 at the Fairfields site (TM26/46), however, this site has been retained for the present as it is hoped to regain access in due course.

No sites were removed from the Register in 1992.

The Register

The six columns of the Register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometre square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square in the National Well Record collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always 'I'.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 156 to 157 . The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 11.

Grid Reference

The six or eight figure references given in the Register relate to the 100 kilometre National (or lrish) Grid square designated by the preceding two figure code; the corresponding two-letter code appears as the prefix characters in the Well Number. The Irish Grid References are italicised.

Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the Register are shown on Figure 11.

Measuring Authority

An abbreviation referencing the organisation responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 172 and 173.

Records Commence

The first year for which records are held on the Groundwater Level Archive.

Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession of ground water levels and that measured at the beginning of the summer recession of
the following year reflects the amount of recharge received in that period. This method, detailed in the Hydromerric Register and Statistics 1981-5 volume, is most suited to circumstances when a single peak is readily identifiable in each recharge season. Where recharge follows an uneven pattern resulting in poorly defined or multiple peaks, the percentage of the mean annual recharge is often unrepresentative. Consequently, the original method has been modified to produce more realistic values of recharge and to allow more accurate comparison between sites. First, the recharge period has been arbitrarily defined as the first day of August to the end of the following July. Next, the water level at each site was estimated, by extrapolation where necessary, for the last day of each month. Finally, all the rises in successive months were summed over each recharge period. The use of end-ofmonth levels was dictated to a large extent by the existence of end-of-month data alone for the longest pre-1991 records. However, where some sites are measured at close time intervals (weekly or daily), the summed cumulative rises give a significant larger total than the rise determined by end-of-monthly levels alone. To compare sites with differing intervals between measurements, it is thus necessary to resort to a common base.

The summed rise for each year is called the 'annual fluctuation', and the mean of the annual fluctuations over the period of record is termed the 'mean annual recharge' (MAR). This also assumes that the natural discharge (via, for instance, springs and seepages) is constant; while this is not the case in view of the large differences of head that are recorded in some observation wells, there is insufficient information currently available to permit corrective factors to be detemined. It is considered that for most wells the errors caused by this assumption will be small.

The annual infiltration is then expressed as a percentage of the MAR and thus represents the percentage of the mean annual recharge received for that year. It is this figure that appears in the last column of the Register. Exceptionally low percentage recharge values are conventionally presented as ' <10 '. Where data for the year are inadequate for the purpose of calculating the annual percentage recharge, no value is given.

References

1. Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
!. Monkhouse, R.A. and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No. WD/81/1, 18 pages.

Well No: ID30/1 Aquifer: Chalk and Upper Greensand

Figure 12. Hydrographs of groundwater level fluctuations 1988-92.

Well No: TR14/9 Aquifer: Chalk and Upper Greensand + extremes \& mean monthly levels (1971-1987)

Figure 12-(continued)

Figure 12-(continued)

Figure 12-(continued)

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1991/92
Aquifer: Superficial Deposits					
1J28/1	22488620	Dunadry	DOEN	1985	146
SO44/4	46834253	Stretton Sugwas	NRA-WEL	1973	---
Aquifer: Chalk and Upper Greensand					
ID30/1**	36630310	Killyglen	DOEN	1985	56
SE94/5**	96514530	Dalton Holme	NRA-NY	1889	22
SE95/6**	95785939	Wetwang	NRA-NY	1971	33
SE97/31	93457079	Green Lane	NRA-NY	1971	33
SP90/26	94700875	Champneys	NRA-T	1962	<10
SP91/59	93801570	Pitstone Green Farm	NRA-A	1970	---
S'T30/7**	37630667	Lime Kiln Way	NRA-SW	1969	<10
SU01/5B**	01601960	West Woodyates Manor	NRA-SW	1942	46
SU17/57**	16557174	Rockley	NRA-T	1933	39
SU32/3	38172743	Bailey's Down Farm	NRA-S	1964	13
SU34/8A	32154875	Clanville Lodge	NRA-S	1962	62
SU35/14	33155645	Woodside	NRA-S	1963	<10
SU51/10	58751655	Hill Place Farm	NRA-S	1965	13
SL53/94	55863498	Abbotstone	NRA-S	1976	10
SU57/159	56287530	Calversleys Farm	NRA-T	1974	22
SU61/32	65781775	Chidden Farm	NRA-S	1958	34
SU61/46	68901532	Hinton Manor	NRS-S	1953	16
SU64/28	63604049	Lower Wield Farm	NRA-S	1962	<10
SU68/49	64428525	Well Place Farm	NRA-T	1976	<10
SU71/23**	77551490	Compton House	NRA-S	1894	21
SU73/8	70483491	Faringdon Station	NRA-T	1966	30
SU76/46	73676251	Riseley Mill	NRA-T	1975	--
SLi78/45A	74198924	Stonor Park	NRA-T	1961	20
SU81/1	83561440	Chilgrove House	NRA-S	1836	25
SU87/1	83367885	Folly Cottage, Coldharbour	NRA-T	1950	15
SU89/7	$81039+17$	Piddington	NRA-T	1966	27
SY68/34**	66158805	Ashton Farm	NRA-SW	1974	86
TA06/16	04906120	Nafferton	NRA-NY	1964	26
TA07/28	09407740	Hunmanby Hall	NRA-NY	1976	<10
TA10/40**	13710888	Little Brocklesby	NRA-A	1926	20
TA21/14	26701890	Church Farm	NRA-NY	1971	34
TF72/11	77102330	Off Farm	NRA-A	1971	103
TF73/9	77903270	Coe Ltd, Bircham	NRA-A	1971	45
TF80/33	87300526	Houghton Common	NRA-A	1971	37
TF81/2**	81381960	Washpit Farm	NRA-A	1950	20
TF83/1	85783606	South Creake School	NRA-A	1952	46
TF92/5	98692183	Tower Hills P.S.	NRA-A	1974	39
TG00/92	04400020	High Elm Farm, Deopham	NRA-A	1971	21
TG03/25B	03823583	The Hall, Brinton	NRA-A	1952	130
TG11/5	16911101	The Spinney, Costessey	NRA-A	1952	88
TG12/7	11262722	Heydon Pumping Station	NRA-A	1974	79
TG21/9	24001657	Frettenham Depot	NRA-A	1952	93
TG21/10	26991140	Grange Farm	NRA-A	1952	29
TG23/21	29323101	Melbourne House	NRA-A	1974	143
TG31/20	33651606	Woodbastwick Hall	NRA-A	1974	90
TG32/16	37002682	Brumstead Hall	- R A-A	1978	54
TL11/4	15601555	Mackerye End House	NRA-T	1963	13
TL11/9**	16921965	The Holt	NRA-T	1964	<10
TL.13/24	12003026	West Hitchin	NRA-A	1970	64
TL22/10	29782433	Box Hall	NRA-T	1964	144
TL33/4**	33303720	Therfield Rectory	NRA-T	1883	<10
TL42/6	45362676	Hixham Hall	NRA-T	1964	<10
TL42/8	46692955	Berden Hall	NRA-T	1964	11
TL44/12**	45224182	Redlands Hall	NRA-A	1963	12
TL55/109	59255605	Lower Farm	NRA-A	1983	---
T1.72/54	79822516	Rectory Road	NRA-A	1968	43
TL84/6	84654106	Smeetham Cottages, Bulmer	NRA-A	1963	30

Well	Grid	Site			Measuring
Number	Reference		Records Commence	Indicated Recharge 1991/92	

Aquifer : Hastings Beds					
TQ22/1	2348	2770	The Bungalow	NRA-S	1964
TQ42/80A	47252990	Kingstanding	NRA-S	1979	140
TQ61/44	66581803	Dallington Herrings	NRA-S	1964	48
TQ62/99	61992282	Whiteoaks	NRA-S	1978	---
TQ71/123	79691659	Red House	NRA-S	1974	71

Aquifer : Upper Jurassic					
SE68/16	68908590	Kirkbymoorside	NRA-NY	1975	115
SE77/76	76907300	Broughton	NRA-NY	1975	41
SE98/8	99108540	Seavegate Farm	NRA-NY	1971	90
SU49/40B	41179307	East Hanney	NRA-T	1978	26

Aquifer : Midde Jurassic					
SP00/62**	05950190	Ampney Crucis	NRA-T	1958	63
SP20/113	27210634	Alvescot Road	NRA-T	1983	62
ST51/57	59311691	Over Compton	NRA-SW	1971	29
ST88/62A	82758743	Didmarton 1	NRA-SW	1977	71

Aquifer : Lincolnshire Limestone					
SK97/25	98007817	Grange de lings	NRA-A	1975	83
[F03/37**	08853034	New Red Lion	NRA-A	1964	66
TF04/14	04294273	Silk Willoughby	NRA-A	1972	107
Aquifer : Permo-Triassic sandstones					
1J26/1**	29076943	Dunmurry	DOEN	1985	90
NX97/1**	96677432	Redbank	SRPB	1981	116
NY00/328**	0511 0247	Brownbank Layby	NRA-NW	1974	128
NY45/16	49475667	Corby Hill	NRA-NW	1977	70

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1991/92
NY63/2**	61303250	Skirwith	NRA-NW	1978	79
N7.41/34	48611835	Northern Dairies	NRA-NY	1974	106
SD27/8	21727171	Furness Abbey	NRA-NW	1972	128
SD41/32**	44001164	Yew Tree Farm	NRA-NW	1973	162
SD44/15	43964928	Moss Edge Farm	NRA-NW	1961	151
SE36/47	39456575	Kelly's Cafe	NRA-NY	1977	<10
SE39/20B	30049244	Scruton Village	NRA-NY	1969	50
SE45/3	44705580	Cattal Maltings	NRA-NY	1969	<10
SE52/4	54732363	Southfield Lane	NRA-NY	1955	---
SE54/32A	55324646	Bilborough	NRA-NY	1984	62
SE60/76	67840709	Woodhouse Grange	NRA-ST	1980	---
SE61/11**	62701710	Sykehouse	NRA-NY	1971	20
SE72/3B	70472149	Rawcliffe Bridge	NRA-NY	1971	11
SE83/9	80403640	Holme on Spalding Moor	NRA-NY	1972	131
SJ15/15**	13745556	Llanfair D.C.	NRA-WEL	1972	50
SJ33/39	38143831	Eastwick Farm	NRA-WEL	1974	87
SJ56/45E	50426953	Ashton 4	NRA-NW	1969	111
SJ83/1A	89693474	Stone	NRA-ST	1974	63
SJ87/32	89697598	Dale Brow	NRA-NW	1973	43
SJ88/93	86118645	Bruntwood Hall	NRA-NW	1972	44
SK00/41**	06700120	Nuttals Farm	NRA-ST	1974	<10
SK10/9	14400464	Weeford Flats	NRA-ST	1966	---
SK21/111	27311419	Grange Wood	NRA-ST	1967	26
SK24/22	25394431	Burtonshuts Farm	NRA-ST	1972	<10
SK56/53	56326440	Peatield Lane	NRA-ST	1969	---
SK67/17	64487257	Morris Dancers	NRA-ST	1969	---
SK68/21	61008374	Crossley Hill	NRA-ST	1969	<10
SK73/50	76933228	Woodland Farm	NRA.ST	1980	32
SO71/18	71701970	Stores Cottage	NRA-ST	1973	135
SO87/28	81607970	Hillfields	NRA-ST	1961	21
SX99/37B**	95289872	Bussels No. 7A	NRA-SW	1971	28
SY09/21A	06669235	Heathlands	NRA-SW	1951	24
Aquifer: Magnesian Limestone					
NZ22/22**	28752896	Rushyford NE	NRA-N	1967	46
NZ32/19	35752650	Heley House	NRA-N	1969	124
NZ33/20	33493501	Garmondsway	NRA-N	1974	52
SE28/28	24608520	Bedale	NRA-NY	1972	23
SE35/4	38305830	Castle Farm	NRA-NY	1970	<10
SE43/9**	45353964	Peggy Ellerton Farm	NRA-NY	1968	<10
SE:43/14	46603550	Coldhill Farm 35	NRA-NY	1971	52
SE51/2	52101530	Westfield Farm	NRA-NY	1971	<10
SK46/71	48006030	Stanton Hill	NRA-ST	1973	24
SK58/43	52488018	Southards Lane	NRA-ST	1973	18

Aquifer : Coal Measures

SE23/4	28503414	Trident House	NRA-NY	1971	33
Aquifer : Millstone Grit					
SE02/46	07712528	Thrum Hall	NRA-NY	1977	80
SE04/7	02954792	Lower Heights Farm	NRA-NY	1971	22
SE24/2B	20674053	Green Lane Dyeworks	NRA-NY	1971	---
SE27/8	21207380	Kirkby Mionr Farm	NRA-NY	1971	37

Aquifer: Carboniferous Limestone

NT95/21	96955055	Middle Ord	NRA-N	1974	115
SEO6/1	02416183	Jerry Laithe Farm	NRA-NY	1971	167
SK15/16**	12925547	Alstonfield	NRA-ST	1974	86
SK17/13	17787762	Hucklow South	NRA-ST	1969	79
ST64/33	65604790	Oakhill 1	NRA-SW	1974	51

Sites marked $\cdot \ldots$ are indicator wells; well hydrographs are shown in Figure 12. Where the annual percentage recharge cannot be estimated, the entry '---' is substituted.

THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE

The National Groundwater Level Archive includes water level data for around 170 representative wells and boreholes in the United Kingdom; the average length of record is about 20 years. This archive is supplemented by historical (up to 1974 generally) water level data for approximately 3000 additional monitoring sites.

A suite of retrieval programs has been written in order to facilitate data usage. Retrievals using the options described below are available for all of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within this archive have been validated.

Five options are available for retrieving data. A description of each option is given overleaf. Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters. Data for the observation boreholes in the national network are stored on a database system which allows for a range of user-defined queries to be processed. Users having requirements not catered for in the standard options described below should contact the British Geological Survey to discuss their particular needs.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate) and the title of the required option. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: (0491) $838800 \quad$ Fax: (0491) 825338

The National Well Record Archive

The British Geological Survey also maintains the National Well Record Archive (NWRA) for England and Wales. Currently this archive includes hydrogeological details and reference information for over 150,000 shafts, boreholes and some springs - predominantly constructed or used for water supply or the monitoring of groundwater levels or quality. The archive is organised into paper files based upon the 10 kilometre squares of the National Grid. Each file includes a register which details the accession number, the depth, the national grid reference and certain other details. This material is an essential component in the hydrogeological enquiry service operated by BGS and the register details are in the process of being transferred to a digital format.

The Archive is located at the Wallingford Office of BGS (address above) and all the non-confidential records are open to inspection by the general public. Those wishing to avail themselves of this facility should contact the BGS Records Section in advance to discuss access procedures and costs.

National Geosciences Information Centre

The NWRA is associated with the National Geosciences Information Service (NGIS), one of a number of computer-based data centres established at NERC Institutes. The NGIS is located at the BGS Headquarters, Keyworth, near Nottingham (Telephone: 0602363100) and provides access to a broad range of geological information (for example, geophysical and hydrogeological logs, core samples and chemical analyses).

LIST OF GROUNDWATER RETRIEVAL OPTIONS

OPTION TITLE
1 Table of groundwater levels

Table of annual maximum and minimum groundwater levels

ㅇOTES

All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Annual maximum and minimum groundwater and minimum groundwater levels in metres above Ordnance Datum levels with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Table of monthly maximum, minimum and mean groundwater levels

Hydrographs of groundwater levels

Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Provides a well hydrograph for a number of groundwater levels of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the water authority area in which the well or borehole is located.

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by the Environmental Protection Statistics Division of the Department of the Environment to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations including the estimation of riverborne inputs of selected contaminants (e.g. nutrients) to the sea. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland in July 1975. In Scotland responsibility for the collection and analysis of the samples rests with the seven River Purification Boards; data acquisition is co-ordinated by the Scottish .Office Environment Department. In England and Wales responsibility passed, on the 1st September 1989, from the former regional Water Authorities to the newly-created National Rivers Authority.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and chemical attributes of river water but typically only 25 are measured at any given site. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

Currently no data for Northern Ireland are held on the Harmonised Monitoring Archive. Water quality data are, however, routinely collected and archived by the Environmental Protection Division of the Department of the Environment (NI); data for two Northern Ireland monitoring sites are included in this publication.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes. From the 31st July 1985, the former Water Authorities were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority. These registers are maintained at the regional headquarters of the NRA and are open for inspection by the public - free of charge. Persons wishing to consult the registers are advised to first contact
the individual regional headquarters; a list of addresses is given on pages 172 and 173.

Data Retrieval

A range of retrieval options has been developed by the Department of the Environment to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on those data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment
Environmental Protection Statistics Division, Room A105
Romney House
43 Marsham Street
London SW1P 3PY
Telephone: 0712768245
Data listings for monitoring sites in Northern Ireland may be obtained from the Environmental Protection Division of the DOE (NI).

Figure 13. Water quality monitoring station locarion map.

Scope of the Water Quality Data Tabulations

River water quality data are presented for 32 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 13 (previous page). For each site 1992, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A reference number which serves as the primary identifier of the station. For stations on the Harmonised Monitoring Archive, the first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority. For the Northern Ireland stations, the Department of the Environment (NI) reference code is given.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 172 and 173 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (see page 28); the standard six-figure map reference follows.

Associated Flow Measurement Station

For monitoring sites in Great Britain, the reference number, name, catchment area and grid reference of the gauging station which provides the discharge data stored on the Harmonised Monitoring Archive. At most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident, some method of flow adjustment may have been employed to allow for the differing catchment areas.

For the Northern Ireland monitoring sites, reference details of the co-located gauging stations are given; the flow data for these stations are held on the National River Flow Archive at Wallingford.

1992 flow data for all but one of the relevant gauging stations may be found in the River Flow

Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1992 are, however, included at the head of the water quality listing.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at, or below, the limit of detection, will normally result in the omission of a particular determinand.

Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD(atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON.
iv. Total dissolved organic carbon is expressed in mg / l of oxygen on the Harmonised Monitoring Archive.

Units

The standard units used to record and report each determinand. The number of significant figures given for each determinand corresponds to the way the data are stored on the Harmonised Monitoring or DOE (NI) Archives and reflects the uncertainty associated with the relevant analytical procedures.

1992 Data

Samples

The number of samples taken for each determinand during 1992. Where a proportion of analytical results were below the limit of detection, the number of samples in this category is given in parentheses. Normally determinands are not featured when the number of samples in the year is less than about nine or when more than half the analytical results are below the limit of detection. Exclusion may also result from a very uneven sampling pattern through the year.

The precision of the mean, maximum and minimum values computed on the basis of a limited number of samples will vary from determinand to determinand but statistics associated with sampling frequencies of lower than about once a month should be regarded as indicative only.

Mean

The average* of all the sample values for each determinand in 1992. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1992 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A ' $<$ ' symbol indicates a value below the limit of detection.

Different limits of detection may apply throughout the year at certain monitoring sites, for further details contact the address given on page 161 .

Period of Record Data

For half of the featured sites, the pre-1992 summary statistics are presented for the 18 -year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1992 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-91, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5,50 and 95 percentile values for each determinand based on all the samples taken over the pre-1992 period.

Quarterly Averages

The mean quarterly average* for each of the threemonthly periods: January to March, April to June, July to September and October to December.

[^10]Mersey at Flixton
Harmonised monitoring station number: 01001
Measuring authority : NRA.NW NGR : 33 (SJ) 742938

Deterrminend	Units	Semples	Mean	1892		Min.	Date
				Max.	Dete		
Temperature	${ }^{\circ} \mathrm{C}$	51	108	195	30/06	25	28/01
ph	DH unots	51	73	77	23/06	63	22109
Conoucimir	$\mu \mathrm{S} / \mathrm{cm}$	51	416	635	04/02	221	01/12
Suppended solds	mg / l	51	245	1460	04/02	60	09/06
Dissotved oxygon	mg/l 0	50	854	1169	08/12	384	30/06
800 (mintioned)	mg 0	50 (6)	34	130	02/06	0.1	14/01
Ammonuacal nitogen	mgil N	44 (4)	0736	3060	28/01	0005	16/08
Nuticte	mg / N	41	0264	0780	30/06	004	01/12
Nutrate	mg/n	41	473	790	23106	030	C8/09
Crioride	$\mathrm{mg} / \mathrm{Cl}$	51	481	1520	23/06	170	21/04
Total elkelonty	$\mathrm{mg} / \mathrm{CeCO}$	48	763	1740	05/05	390	01/12
Orthophosphato	mg/f P	49	0964	2280	30/06	012	08/12
Sures	$\mathrm{mg} / \mathrm{SSO}$	49	908	1943	04/02	359	19/05
Calcium	$\mathrm{mg} / \mathrm{Co}$	51	316	400	18/06	215	01/12
Megnesem	$\mathrm{mg} / \mathrm{Mg}$	51	680	905	16/06	3.7	31/03

Flow measurement station 069007-Ashton Wels C. A. $\left(\mathrm{km}^{2}\right): 660.0$ NGR : 33 (SJ) 772936

Mean
108
7.3
490
400
80
65
196
026
40
535
929
116
800
33.1
73

Perlod of record 1975-1991						
5* Percontiles 95			Ouarterty averagea			
			J.M	A.J	d.S	0.0
39	101	19.1	58	12.5	16.5	88
69	7.3	76	73	7.3	7.3	73
288	473	750	463	505	524	460
38	203	1150	445	301	272	548
454	787	1124	989	715	600	8 E1
29	54	130	66	66	50	65
043	173	423	203	238	1.82	163
008	020	068	010	033	048	018
203	383	696	303	44	513	367
271	49.7	860	602	514	542	47.1
540	909	1345	852	994	983	869
020	110	283	089	140	1.70	0.95
512	805	1014	782	681	872	848
25.9	336	387	328	341	33.7	318
49	72	92	88	80	76	68

Ribble at Samlesbury
Harmonised monitoring station number: 01008
Measuring authority : NRA.NW NGR 34 (SD) 590305

Determinand Tempersture OH Conductimity Sucpended rotds Dissotved oxygen 800 (intronted) Ammonical ntrogen Nurite Nhirsie Choride Total elkeknaty Orthophosphate Sbles Calcum Megnacum Polasium Sodum

Units	1992					Date
	Semplea	Mean	Mex.	Date	Min.	
${ }^{\circ} \mathrm{C}$	48	103	200	$30 / 07$	00	$30 / 01$
DH unte	39	81		30107	76	$12 / 03$
${ }_{\mu} \mathrm{S} / \mathrm{cm}$	40	417	659	$02 / 07$	212	$12 / 03$
mg / I	40131	107	1240	$12 / 03$	02	$04 / 06$
mg / O	36	1008	1300	$30 / 01$	7.10	09107
mojl	36	24	98	$28 / 05$	08	23101
mg / N	37 (4)	0228	1380	$23 / 01$	0001	30101
mg / N	33	0085	0290	18106	0020	$20 / 02$
mg / N	33	496	1400	$25 / 06$	1.78	$16 / 04$
$\mathrm{mg} / \mathrm{Cl}$	39	295	520	02107	140	$30 / 01$
mgnfacos	39	1235	1590	28105		30101
mg / P	38 (1)	0504	3000	$02 / 07$	0000	$22 / 10$
$\mathrm{mg} / \mathrm{SNO}_{2}$	$38(5)$	256	684	$23 / 01$	001	$21 / 05$
$\mathrm{mg} / \mathrm{Ca}$	33	494	62.2	23/01	332	$12 / 03$
$\mathrm{mg} / \mathrm{M} \mathrm{M}_{9}$	33	491	820	02101	288	12103
$\mathrm{mg} / \mathrm{l} \mathrm{K}$	33	401	800	$18 / 08$	028	$09 / 04$
ma/l Na	33	298	818	$02 / 07$	93	$12 / 03$

Flow measurement station 071001 . Samlesbury C. A. (km²) : 1145.0 NGR: 34 (SD) 589304

Mean	Period of record 1974-1991						
	Percentlues			Quertenty sversaes			
	5\%	50\%	95\%	J.M	A.J	J. 5	0.0
98	10	9.9	180	41	117	151	76
7.7	70	78	86	75	79	70	76
416	235	411	631	410	454	434	367
196	18	8.2	671	211	138	16.8	259
10.13	717	1017	1282	1184	975	873	1067
20	11	2.5	62	27	32	27	28
027	004	018	086	051	018	014	026
008	002	006	020	008	012	009	008
42	13	33	97	33	52	48	3.1
334	14.5	303	566	383	363	327	285
1151	682	1192	1525	1092	121.2	1196	108.5
044	008	031	120	025	060	060	030
330	016	357	579	421	187	2.57	467
511	340	512	639	506	521	509	497
52	2.7	50	78	49	57	5.3	47
40	20	38	70	34	46	4.5	34
307	94	261	638	28.4	357	343	214

Eden at Temple Sowerby
Harmonised monitoring station number: 01017
Measurng authority : NRA.NW NGR: 35 (NY) 604281

Determinend
Temperature pH Conductimity Suspended roids Drecotved oxygen 800 (inhibi:ed) CNoride Totul alkelmily Orthophosphate Sulas Celcmum Megnesaum Polastam Sodum

Flow measurement station 076005 . Temple Sowerby C. A. $\left(\mathrm{km}^{2}\right)$: 616.4 NGR: 35 (NY) 605283

Pertod of record: 1975 - 1991							
Meen	Percentive			Oumerterty sverages			
	5\%	50\%	95\%	J.M	A.J	J. 8	0.0
102	2.7	9.5	190	48	122	15.8	74
81	74	80	87	79	83	82	80
358	226	370	478	337	385	384	345
75	13	39	243	76	78	48	96
1127	891	1112	1378	1231	1151	1057	1106
1.9	08	17	3.3	17	20	20	16
193	111	180	291	201	201	218	161
1490	850	1584	1903	1442	1557	1501	1479
014	002	0.10	039	009	020	019	010
248	037	251	420	311	143	210	309
584	356	580	732	584	575	582	553
9.2	41	88	146	82	103	105	7.7
28	1.6	2.5	49	22	30	35	25
101	51	90	174	89	106	117	81

South Tyne at Warden Bridge
Harmonised monitoring siation number 02021 Measuring authority: NRA-N NGR: $\mathbf{3 5}$ (NY) 910660

Units	1992					Date
	Semplet	Mean	Max.	Date	Min.	
${ }^{\circ} \mathrm{C}$	11	100	173	$16 / 00$	19	$19 / 02$
OH unts	12	71	80	$18 / 05$	57	O8/04
HS/cm	12	202	391	16/08	110	09/12
m刀	12	153	920	$13 / 08$	10	$06 / 10$
$\mathrm{mg} / 10$	11	1136	1320	$19 / 02$	920	$16 / 06$
mollo	12 (4)	11	35	$16 / 06$	01	13/08
mg / N	612)	0140	0.520	19102	0004	$15 / 07$
$\mathrm{mg}^{(\mathrm{Cl}}$	12	147	29	$19 / 02$	95	16/09

Flow measurement station 023004-Haydon Bridge C. $A\left(\mathbf{k m}^{2}\right)$: 751.1 NGR: 35 (NY) 856647

Pertod of record: 1975 - 1991							
Memen	Percentios			Cuerterty sverages			
	5\%	60\%	96\%	J.M	A.J	J.S	0.0
92	16	84	190	40	112	152	64
78	73	78	85	7.7	80	7.9	77
250	122	244	406	252	263	271	210
110	13	44	245	108	114	124	94
1130	901	11.40	1370	1233	1093	1001	11.65
1.7	05	1.5	30	1.5	18	18	16
007	001	003	020	008	004	0.11	005
139	75	128	241	168	143	12.1	123

Tees at Broken Scar
1992
Marmonised monitoring station number: 02058 Massuring authority : NRA-N NGR: 45 (NZ) 265131

Determinand	Unite	1992					
		Semples	Mean	Max.	Date	Min.	Dete
Temperature	${ }^{\circ} \mathrm{C}$	22	108	190	27105		$14 / 01$
OH	PH unts	22	7.3		09103	55	18/09
Conductruity	HS/cm	21	194	317	$14 / 01$	130	$16 / 09$
Sunpended eoluta	$\mathrm{mg} / 1$	221 11	64	170	07/09	0.1	12/10
Dispolvod axyuen	$\mathrm{mg} / 10$	18	1039	1240	08/01	890	07/109
800 (intubitedi	mgit 0	$1814)$	14	40	$10 / 08$	01	$12 / 05$
Ammoniacal nitrogan	mg / N	16110)	0044	0220	08101	0003	07/09
N.trete	$\operatorname{mg} / \mathrm{N}$	$611)$	2.77	650	16/09	004	10/11
Crioricha	$\mathrm{mg} / \mathrm{Cl}$	22(2)	132	220	$14 / 04$	10	$22 / 06$
Toted asalinty	$\mathrm{mg} / 1 \mathrm{CaCO}_{3}$	14	788	1200	$14 / 01$	215	10/11
Orimophosprate	mg / P	10, 6)	0028	0150	$23 / 04$	0002	$14 / 01$

Flow measurement station 025001-Broken Scar C A. (km km^{7} : 818.4 NGR: 45 (NZ) 259137

Mean	Pertod of record. 1978 - 1991						
	Percentices			Ouarrenty overages			
	5\%	50\%	95\%	J.M	A.J	J.S	0.0
9.1	15	B. 1	180	36	11.8	153	6
76	89	77	82	76	77	76	7.5
197	117	183	295	239	212	107	177
140	15	64	492	15.3	77	149	176
1093	827	1106	1339	1248	1046	9.37	115
18	08	1.7	32	19	18	19	17
012	001	007	040	012	010	009	014
13	02	10	35	19	13	07	15
153	66	138	267	196	143	11.9	163
65.1	334	601	980	781	684	592	57%
005	001	003	013	004	000	006	005

Trent at Nottingham

Harmonisod monitaring slation numbar : 03007
Moasuring authority : NRA-ST NGR 43 (SK) 581383

Determinand	Unita	1992					
		Semplet	Meen	Max	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	45	121	22.0	25106	40	06/12
OH	DH unis	48	80		$29 / 04$		10/01
Conducirvity	${ }_{\mathrm{H}} \mathrm{S} / \mathrm{cm}$	40	849	1180	$25 / 08$		03/12
Sumpented soinis	mg/1	40	246	1350	$10 / 01$		$18 / 01$
Dresotved orygen	mg/l 0	45	1065	12.60	$17 / 02$	8.20	07107
BOO primbied	$\mathrm{mg} / 10$	46	3.1		$10 / 01$	15	$21 / 01$
Tot. diss org cerbon*	$\mathrm{mg} / 10$	32	74	12.1	$08 / 10$	50	$21 / 01$
Ammomacal mitiogen	$\mathrm{mp} / 1 \mathrm{~N}$	$46(7)$	0236	0730	$05 / 02$	0040	$06 / 04$
Niture	$\mathrm{mg} / \mathrm{IN}$	48	891	1300	10/01	567	$01 / 09$
Crioride	$\mathrm{mm} / \mathrm{l} \mathrm{Cl}^{1}$	48	102.3	1730	$25 / 06$	420	03/12
totel athainity	$\mathrm{mg} / \mathrm{CaCO}$	48	1537	1850	14/10	1050	:0101
Orimothospiste	mg / P	25	1191	2040	$08 / 08$	0382	06/12
Suica	$\mathrm{mg} / \mathrm{SSO} 2$	7	714		17/02	280	$13 / 05$
Sudprate	$\mathrm{mg} / 1 \mathrm{SO}_{4}$	5	15814	19800	18100	10000	$26 / 11$
Celcum	mg / l	5	864	1030	$18 / 06$	720	$26 / 11$
Magnamum	$\mathrm{mg} / \mathrm{Img}$	5	2816	33.10	$17 / 02$	1850	10/01
Potasavm	$\mathrm{mg} / \mathrm{lK}$	7	9.51	1320	$18 / 00$	890	26/11
Sochum	moll No	7	691	1350	17/02	250	$13 / 05$

Flow measurement station : 028009-Colwick
C A. (km²) 74860 NGR 43 (SK) 620399

Mean	Partiod of record: 1974 - 1991					
	Percentiles		Qumerterty avereges			
	5\%	50\% 95\%	J.M	A.J		0.0
127	51	124211	77	150	186	108
78	73	7882	77	78	79	77
888	613	9061131	802	908	960	881
245	69	157725	279	214	19.1	279
987	7.77	9951222	1080	974	B91	998
3.6	1.7	3359	31	40	3.7	32
80	45	6.5182	7.1	83	09	82
039	003	031093	082	028	022	037
85	61	87112	86	88	84	87
987	552	0911498	854	991	1173	970
1596	1196	163.71868	1568	1658	1620	1545
154	052	1.52280	097	1.70	210	158
719	258	7341109	846	441	660	836
1703	1114	172022355	1542	1776	1762	167.9
1075	74.7	$990 \quad 1137$	958	1092	906	943
217	139	224290	215	225	218	197
100	68	98138	7.7	10.1	120	107
742	344	7511293	602	734	875	748

Derwent at Wilne

Harmonised monitoring station number. 03011
Moosuring authority : NRA-ST NGR 43 (SK) 452315

Determinend	Units	1992				Min.	
		Samples	Mean	Max.	Date		
Temperature	${ }^{\circ} \mathrm{C}$	44	120	220	$30 / 06$	50	23101
OH	pHe units	45	80	85	$15 / 05$	76	23/11
Conotuctiviy	$\mu \mathrm{S} / \mathrm{cm}$	45	632	820	$30 / 06$	420	09/12
Suapunded solds	mg / l	45 (2)	:08	810	23/11	20	$25 / 02$
Discotved azyeen	moll 0	40	1035	1520	21102	450	$30 / 06$
000 (inmbitea)	my/l 0	45111	26	80	03/02	10	14/12
Tol. dies org carbon	mall 0	44	47	78	05/10	2.9	$20 / 01$
Ammonecel mittogon	$\mathrm{mog} / 1 \mathrm{~N}$	45	0311	0767	$23 / 01$	0072	$25 / 08$
Nittate	moll ${ }^{\text {N }}$	45	4.92	630	$12 / 08$	305	$25 / 08$
Crioride	$\mathrm{mp} / \mathrm{Cl}$	45	649	970	$20 / 07$	320	14/12
Ioted atharuity	$\mathrm{mg} / \mathrm{CaCO}$,	45	851.4	1850	11/09	1050	23/11
Orthophospha:e	$\mathrm{mg} / 1 \mathrm{P}$	34 (1)	0727	1300	18/09	0050	09/12
Suca	$\mathrm{moll} \mathrm{SNO}_{2}$	10	631	786	$06 / 07$	260	$24 / 04$
Sutphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	10	9900	12500	$28 / 02$	6300	$27 / 11$
Cencum	moll cos_{0}	10	695	840	20101	620	$24 / 04$
Megnearm	$\mathrm{mg} / 1 \mathrm{Mg}$	10	1817	2520	$28 / 02$	980	$25 / 03$
Potaseium	mg / K	10	537	930	$12 / 08$	2.80	$25 / 03$
Sodum	$\mathrm{moll} \mathrm{No}^{\text {c }}$	10	510	840	$06 / 07$	240	21/11

Flow measurement station 028067 . Church Wilne C. A. $\left(\mathrm{km}^{2}\right) .1177 .5 \quad$ NGR 43 (SK) 438316

Teme at Powick

Harmonisod monitoring station number
Massuring authority : NRA.ST NGR : 32 (SOl 836525

Daterminand

1 emperstuve
pH
Conductivily
Surapended colds
0 Decolved oxrgen
Tot diss org
Ammonieced nitrogen
N 1.018
CNorsse
t otal alkemity
Orhoophosphate

Unite	1992					
	Semples	Meen	Max.	Date	Min.	Dete
${ }^{\circ} \mathrm{C}$	24	97	170	$03 / 08$	10	$27 / 01$
pH units	23	82	87	09103	78	11/06
${ }_{\mu} \mathrm{S} / \mathrm{cm}$	22	376	460	$06 / 02$	270	01/12
mg / l	24: 21	374	3000	01/12	20	$06 / 02$
mg/l 0	24	1120	1420	$27 / 01$	880	$22 / 07$
$\mathrm{mg} / 10$	24131	20	55	01/12	10	$13 / 04$
mg/ 0	19	35	70	$25 / 11$	2.1	$09 / 03$
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	24120)	0049	0130	05106	0040	17/01
mg / N	24	453	680	$17 / 01$	320	$22 / 07$
$\mathrm{mg} / \mathrm{Cl}$	24	245	320	$03 / 08$	164	01/12
$\mathrm{mg}_{\mathbf{\prime}} \mathrm{CaCO}_{3}$	24	1298	1020	21/10	830	01/12
mg / P	23111	0191	0411	01/12	0020	$28 / 04$

Flow measuroment station 054029. Knightsford Br C. A. $\left(\mathrm{km}^{2}\right) 1480.0$ NGR 32 (SO) 735557

Pentod of record: 1975-1991							
Meen	Percentulea			Quertarty avereges			
	5\%	50\%	95\%	d.M	A.J	J. 5	0.0
106	30	99	198	52	126	185	79
80	75	80	85	78	81	8.2	78
427	270	411	522	367	424	445	402
405	19	122	1880	713	351	124	447
1064	801	1103	1334	11.94	1087	985	1111
19	07	16	42	1.7	22	1.9	18
50	1.9	35	138	46	52	48	53
012	001	008	024	010	023	007	008
43	22	42	85	54	45	33	41
232	15.1	228	314	228	224	254	225
1384	757	1414	1903	1171	1502	165.9	1228
020	003	015	040	013	010	025	027

Avon at Evesham Road Bridge

Harmonised monitoring station number:	03416
Measuring authority NRA. ST	MGR :

\qquad
\qquad

Flow measurement station 054002 . Evesham C. A. (km <super>) : 22100 NGR: 42 (SP) 040438

Airs at Fleet Weir

Harmonised monitoring station number
Measuring authority : NRA .Y NGR 44 (SE) 381285

Flow measurement station 027080 -Fleet Weir
CAA. $\left(\mathrm{km}^{2}\right): 865.0$ NGR : 44 (SE) 381295

ir

Derwent at Loftsome Bridge

Harmonised monitoring station number 05722
Moosuring authority : NRA.A NGR: 63 (TG) 267198

Oeterminand	Unite	Semples	1992			Min.	Oate
			Meen	Max.	Date		
Iamperature	${ }^{\circ} \mathrm{C}$	48	11.9	220	$15 / 06$	40	$13 / 01$
pH	PH unts	48	80	84	$06 / 07$	78	26/10
Conductivity	$\mu \mathrm{S} / \mathrm{crn}$	48	811	926	30/11	714	$15 / 06$
800 (inthbited)	$\mathrm{mg} / 10$	4819)	17	38	$05 / 05$	10	$13 / 07$
Ammonecal nutiogen	$\mathrm{mg} / 1 \mathrm{~N}$	481201	0043	0162	23/11	0023	$24 / 02$
Nitute	mg / N	24	0043	00085	23/11	0019	17102
Nitrate	mq / N	48	566	929	$14 / 12$	342	$20 / 07$
Criorrce	$\mathrm{mg} / \mathrm{Cl}$	48	621	697	$13 / 01$	569	$14 / 09$
Tolal akatraty	$\mathrm{mg} / \mathrm{CaCO}$	24	1985	2130	$12 / 10$	1750	15/06
Suca	$\mathrm{mg} / 1 \mathrm{SSO}_{2}$	24	772	12.14	06101	236	$15 / 06$
Sulphate	$\mathrm{mol/} \mathrm{SO}_{4}$	24	10800	13400	07/12	8400	$10 / 08$
Calcum	$\mathrm{mg} / 1 \mathrm{Co}_{0}$	12	123.4	1350	$30 / 103$	1140	$01 / 108$
Megneraum	$\mathrm{mg} / \mathrm{Mm}$	12	801	852	29106	740	24100
Polasanm	mg/ K	12	4.18	588	20/10	275	$29 / 08$
Sodum	$\mathrm{mg} / \mathrm{No}$	12	278	300	27/07	259	26/10

Flow measurement station 034003 -Ingworth C. A. $\left\{\mathrm{km}^{2}\right.$ \} 164.7 NGR. 63 (TG\} 192296

Stour at Langham

Mean	Period of record. 1975 - 1991						
	Percentiles			Ouarterty avereges			
	5\%	50\%	95\%	J.M			0.0
106	34	100	199	60	125	16.9	83
78	74	78	R 2	77	78	7.9	77
740	646	745	861	7b)	712	728	759
1.7	08	16	30	18	21	17	13
014	001	008	043	022	010	009	014
007	002	005	012	008	006	007	007
5.7	34	55	86	7.5	58	45	59
584	481	57.7	735	609	559	566	607
2189	1797	2149	2549	2199	2013	2161	2351
735	291	806	1250	887	481	622	1049
897	570	807	1223	879	843	040	904
1187	961	1175	1429	1218	1172	1144	1232
7.5	50	7.5	94	7.7	77	72	73
40	25	40	36	41	37	39	45
308	202	278	471	298	293	294	293

$\begin{array}{lr}\text { Hormonised monitoring station number. } & 05810 \\ \text { Moosuring authority NRA.A } & \end{array}$

Daterminand	Units	1992					
		Samples	Mren	Max.	Date	Min.	Date
Pemperstute	${ }^{\circ} \mathrm{C}$	46	12.1	235	$29 / 06$	30	28101
0+4	phisute	48	84	91	14104		$22 / 09$
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	48	942	1280	$08 / 07$		27/10
Suaponsed sotds	mp / l	25	22.6	1660	$01 / 04$	25	06101
Dissotred oxyryen	$\mathrm{mg} / 10$	47	1063	14.40	$02 / 03$	650	12/10
800 unhab: 0 di	$\mathrm{mg} / 10$	48 (5)	30	104	$18 / 05$		$08 / 07$
Fot. dase org carbon	mg 10	19	71		07/10		$08 / 07$
Ammonecal nitrogen	$m \mathrm{mg} \mathrm{N}$	$48(14)$	0084	0195	$28 / 04$	0023	08101
Nitate	$\mathrm{mg} / 1 \mathrm{~N}$	23	0052	0120	$03 / 06$	0014	$09 / 09$
Nitate	mg / N	48	749	1996	$01 / 04$	130	$29 / 06$
Chiorice	mg/l C1	48	784	1800	08107	485	01/04
Total atiounity	$\mathrm{mg} / \mathrm{CaCO}$	24	2427	2800	$08 / 07$	2190	27/10
Sulca	$\mathrm{mg} / 1 \mathrm{SrO}$	24	8.53	1383	$08 / 01$	032	$12 / 05$
Suphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	24	10440	19130	$05 / 02$	6990	27/10
Catcum	mg / l	12	1378	1710	$03 / 02$	1080	$27 / 07$
Megresam	$\mathrm{mg} / \mathrm{Mg}$	12	741	1070	$03 / 02$	570	$30 / 03$
Potestum	mg / K	12	7.43	960	27107	460	$30 / 03$
Sodum	mg / l	12	403	560	$27 / 07$	24.1	27/10

Flow measurement station 036006 . Langham C. A. $\left(\mathrm{km}^{2}\right) 5780 \quad$ NGR: 62 (TM) 020344

Meen	5\%	Percentiles		Ouerterty averages			
113	29	111	200	51	135	171	3
82	78	82	- 9	81	85	8.3	01
914	725	907	1075	926	877	885	384
161	25	99	474	170	197	108	164
1080	759	1080	1392	12.23	1139	924	1049
3.2	11	2.2	94	23	55	2.5	2.1
62	43	62	104	58	76	67	61
012	002	008	038	019	008	007	013
007	002	006	016	007	009	004	008
78	23	71	158	12.1	75	42	83
689	392	662	1005	534	637	760	755
2462	1947	2503	28:0	2441	2431	2504	2504
7.12	03	7.9	133	7.77	410	834	1023
1041	700	965	1370	1105	1111	953	1033
1344	9490	13620	16520	1471	1339	1200	1383
88	52	84	198	7.75	888	9.70	874
76	36	75	121	60	12	80	93
43.9	206	438	700	338	403	506	503

Thames at Teddington Weir

1992

Harmonised monitofing station number
06010 NGR 51 (TQ) 171714

Flow measuremunt station 039001 - Kingston C. A. $\left(\mathrm{km}^{2}\right) \cdot 9948.0$ NGR 51 (TQ) 177698

Mean	5\%	Percentulos		Querterty overages			
		50\%	95*	J.M	A.J	J.S	0.0
122	39	121	210	01	139	185	97
80	75	80	87	79	83	79	78
612	484	584	717	619	586	629	618
204	41	133	670	272	217	122	217
1002	672	9.99	1308	11.28	1063	860	979
29	11	24	68	22	4	29	22
033	003	023	102	035	021	035	043
013	004	010	021	014	011	011	014
73	55	7.1	100	6 ?	68	66	78
44.5	301	416	631	415	405	480	463
1862	1460	1896	2134	1844	1983	1895	1780
1.51	038	1.23	380	085	120	2.17	170
690	419	631	789	653	638	63.8	700
985	772	997	1159	1028	1030	956	955
71	43	65	105	62	62	80	76
343	197	300	558	276	300	412	365

Lee at Waterhall

Hurmonised monitoring station number 06101
Measuring authority NRA.T NGR: 52 (TL) 299099

Determinand
Temperature
م+1
Conductrity
Suapenced eotha
Daszotved oxypen
B00 (minbited
Tat. dice org carbon
Nitric
Nitrote
Cutorico
Toid ankehnty
Orthophorphele
Sutonele
Calcam
Mepresemm
PolasaumSodum

Units	1992					
	Semples	Mean	Mer.	Date	Min.	Oate
* C	26	120	210	$22 / 05$	30	$21 / 01$
DH unis	26	79	83	$19 / 06$	73	04/12
$\mu \mathrm{S} / \mathrm{cm}$;2	884	1151	$31 / 01$	647	04/12
rxy/f	13	155	395	$10 / 01$	20	08/11
ma/ 0	25	966	1200	21101	700	$22 / 05$
mgit	24110)	26	41	$12 / 03$	20	$21 / 101$
man 0	9	161	205	$27 / 03$	104	$10 / 09$
mg/i N	13111	0073	0130	04/12	0038	$27 / 03$
$\mathrm{mg} / \mathrm{IN}$	13	1068	1530	$10 / 01$	630	17107
$\mathrm{mg} / \mathrm{ICl}$	26	1060	1780	$12 / 02$	340	$: 4 / 108$
$\mathrm{mg} / \mathrm{CaCO}$	13	2185	2560	$31 / 01$:800	$04 / 12$
$\mathrm{mq} / 1 \mathrm{P}$	26	3353	6110	$28 / 02$	1130	04/12
$\mathrm{my/ISO}$	13	10808	13100	$27 / 03$	1600	$14 / 108$
$\mathrm{mg} / \mathrm{Ca}$	13	1192	1360	$22 / 05$	980	$14 / 109$
$\mathrm{mg} / \mathrm{M} \mathrm{Mq}^{\circ}$	13	3.95	480	$28 / 02$	308	$14 / 108$
$\mathrm{mg} / \mathrm{K} \mathrm{K}$	13	12.18	1720	28/02	600	04/12
mall Ne	13	943	1382	$31 / 01$	44.6	O4/12

Flow measurement station 038018. Watar Hall C.A.(km²) $1500 \quad$ NGR 52 (TL) 299099

Mean		Parcent			Quert	aver	
	5\%	50\%	95x	J.M	A.J	J.S	O-D
120	46	119	200	69	137	170	93
80	75	80	84	80	81	81	78
819	625	818	1064	865	805	785	868
143	28	98	466	158	12.9	166	136
1031	797	1029	1292	11.33	1041	937	1023
28	13	24	44	26	30	22	2.5
18.7	32	134	534	172	176	101	214
017	005	011	029	0.11	012	030	018
123	76	111	163	125	118	110	137
787	469	699	1166	870	690	795	812
2118	1310	224.5	2557	2044	2189	2146	2044
2.55	115	2.47	452	225	2.50	273	283
817	583	820	1179	814	813	78.2	879
1191	926	1180	1405	1222	1200	1147	116.1
43	31	40	59	464	403	424	395
91	59	87	151	81	80	94	108
67.5	368	65.1	1176	667	673	699	683

Great Stour at Bretts Bailey Bridge
1992

Harmonised montoring station number

Determinand	Undts	Semiples	Moen	1992		Min.	Date
				Max.	Date		
Temperature	${ }^{\circ}$	46	132		$28 / 07$		$29 / 01$
nH	OHf unts	51	80		$15 / 05$		$23 / 07$
Suspended rowd	mg/	431 3)	$16)$	1040	$18 / 11$		$23 / 04$
800 (inctioned	m9л O	44, 2)	21		$12 / 11$	1.2	$23 / 07$
Tot diss agg catton	mg / O	37	158		12/11		$29 / 01$
Ammonucal nutrogen	mg / N	3111)	0138	1000	$08 / 06$	0050	02103
notme	mg / N	49	0089	0310	$20 / 02$	0030	$02 / 03$
Natre:	mg / N	48	828	1103	$23 / 04$	450	$23 / 07$
Crtoride	${ }^{(m 9} / \mathrm{ICl}^{\text {c }}$	48	739	1200	$01 / 07$	480	18/1
Total dikatmily		46	2060	2450	$02 / 103$	1200	$08 / 01$
Orinophosphata	mg / P	50	1.203	1970	$17 / 07$	0400	19/い

Flow measurement station: 040011-Horton
C. A. $\left(\mathrm{km}^{2}\right): 345.0$ NGR 61 (TR) 116554

Itchen at Gatersmill

Measuring authority NRA-S NGR 41 (SU) 434156

1992
Flow measurement station 042010 . Highbridge C A (km^{2}) 3600 NGR-41(SU) 467213

Mean	Period of record: 1980-1991						
	Percarrites			Oumeterty averages			
	5\%	50\%	95\%	J.M	A.J	J. $\$$	0.0
114	51	111	181	77	120	160	100
81	78	81	84	80	81	82	80
114	21	70	342	279	98	47	9.7
19	09	19	33	21	2.2	1.5	18
72	41	67	138	71	68	70	78
011	001	009	027	015	008	008	012
006	003	005	011	005	005	006	007
51	39	52	62	55	52	48	31
218	178	211	267	224	209	208	22.2
2355	1996	2354	2578	2393	2305	2344	2328
041	015	040	074	038	040	045	049
1022	540	1068	12.49	1032	748	1098	1189

Stour at Hurn Court School

Harmonised monitoring station number			08200			
Muasuring authority	NRA.W	NGR	(SZ)	122955		
Determinand	Units	Samplea	Mean	1992	Min	Date
				Max. Dote		
Temperature	${ }^{\circ} \mathrm{C}$	55	121	$208129 / 06$		29101
$0 \mathrm{0H}$	Df unite	60	80	8827105		$13 / 08$
Suspended solde	mg / l	60	147	178026/11		$19 / 08$
Dispotred oxygen	magho	55	966	$128029 / 01$	-05	19/08
800 (nhbiteor)	$\mathrm{mg} / 10$	58 [1]	27	$9227 / 05$		$22 / 07$
Ammomecel nitiogen	$\mathrm{mg} / \mathrm{IN}$	60 (8)	0092	$042013 / 02$	0020	$21 / 03$
Nitnte	$\mathrm{mq} / \mathrm{IN}$	60(1)	0065	$017026 / 11$	0010	$27 / 10$
Nitate	$\mathrm{mg} / 1 \mathrm{~N}$	39	808	934 14/12	381	$27 / 08$
Criorsion	$\mathrm{mg} / \mathrm{ICl}$	60	331	$58010 / 09$	260	14/12
Orinophospriste	$\mathrm{mg} / 1 \mathrm{P}$	60	0468	$130010 / 09$	0150	29/12
Megnepum	$\mathrm{mg} / \mathrm{l} \mathrm{Ma}_{9}$	9	403	$48004 / 03$	330	04/02
Potassemm	$\mathrm{mg} / 1 \mathrm{~K}$	9	483	$62004 / 03$	400	$22 / 01$

Axe at Whitford Road Bridge

Harmonised monitori Measuring authority	NRA station nu	ber NGR	(SY)	$\begin{array}{r} 0900 \\ 26295 \end{array}$			
				1992			
Deterrminend	Units	Semples	Nreen	Mex.	Oete	Min.	Date
Temperatura	${ }^{\text {c }}$	25	100	183	$14 / 07$	13	$23 / 01$
0 H	pH uronts	25	79	85	$09 / 03$	71	18/12
Conoucirnty	$\mu \mathrm{S} / \mathrm{cm}$	25	394	486	$23 / 01$	192	18/12
Suspensied eolids	mp/l	25(1)	272	2900	18/12	20	$27 / 07$
Dissolved oxygen	ma/l 0	24	1113	14.30	$09 / 03$	7.28	12/08
800 intibiteol	mu/l 0	25 (4)	23	63	18/12	10	03101
Tot. ulis org emeon	mg / O	24	139	33.3	18/12	6.7	16/10
Ammonacal nittogen	$\mathrm{mg} / \mathrm{IN}$	2 b (3)	0112	0470	18/12	0020	$09 / 03$
Nitrite	$\mathrm{mp} / 1 \mathrm{~N}$	25	0050	0200	18/12	0010	$23 / 01$
Nrtrate	mg/i N	25	438	662	13/02	2.10	18/12
Crioride	$\mathrm{mg} / 1 \mathrm{Cl}$	25	284	370	03102	220	18/12
Toral ghelinuty	$\mathrm{mg} / \mathrm{CaCO}_{3}$	25	1356	1710	$27 / 07$	530	18/12
Orthophosprate	$\mathrm{mq}_{\mathrm{mg} / \mathrm{P}}$	25	0346	0020	12 /08	0150	11/11
Suca	$\mathrm{mg} / \mathrm{SN}_{2}$	24	982	1320	14107	360	$15 / 05$
Sulpreie	$\mathrm{mp/I} \mathrm{SO} 4$	24	3276	4100	$16 / 10$	1800	18/12
Cetcury	mg/l Ca	25	616	82.0	$27 / 01$	220	18/12
Megnesum	$\mathrm{mg} / \mathrm{IMg}$	25	664	760	$03 / 01$	480	18/12
Potassmm	mg/ K	25	424	7.00	18/12	300	$23 / 01$
Sodem	$\mathrm{mg} / \mathrm{No}$	25	168	210	$03 / 01$	100	18/12

Tamar at Gunnislake Newbridge

Harmonised monit Measuring authori	station nu A.SW	nber NGR :	(SX)	$\begin{array}{r} 0901 \\ 43372 \end{array}$				Flow C. A ${ }^{\prime}$	$\begin{gathered} \text { asure } \\ 9 \end{gathered}$	$\begin{aligned} & \text { nent } \mathrm{s} \\ & 6.9 \end{aligned}$	ion	$\begin{aligned} & 047001 \\ & \text { NGR : } 20 \end{aligned}$	$\begin{aligned} & - \text { Gunn } \\ & 0(S X) \end{aligned}$	$\begin{aligned} & \text { slake } \\ & 2672 \end{aligned}$	
				199						Period of	record	1975-199			
Daterminend	Unve	Semplet	Mean	Mex.	Date	Min.	Date	Meen		Parcen			Ouarte		
									5\%	50\%	95\%	J.M			0.0
Temperatue	${ }^{\circ} \mathrm{C}$	28	111	183	$06 / 08$	28	$31 / 01$	113	49	109	189	70	12.5	163	95
94	phi unats	28	77		$13 / 05$	71	$10 / 12$	74	68	74	81	7.2	7.5	7.5	72
Conoucimiy	$\mu \mathrm{S} / \mathrm{cm}$	26	190		$06 / 08$	148	$29 / 04$	182	141	180	232	170	180	199	178
Suepented eotrie	$\mathrm{mg} / 1$	26111	163	1010	11/11	20	$31 / 01$	243	1.1	75	1125	32.1	11.7	12.1	394
Dasactred oxygon	mg/lo	28	1076	1450	17/12	885	$14 / 07$	1065	863	1070	1247	1174	1050	952	1083
800 (intratex)	$\mathrm{mg} / 0$	2619)	17		$29 / 04$	10	$06 / 02$	21	08	19	48	21	2.1	1.8	25
fot. dins org cation	$\mathrm{mg} / 0$	28	95	289	$26 / 08$	43	13/04	105	2.9	06	232	86	98	103	125
Ammonecal mutrogen	mg / N	28(14)	0050	0220	$29 / 04$	0020	06/02	008	001	005	024	010	006	006	009
Nutrite	mg / N	28111	0025	0070	29104	0010	$26 / 02$	003	001	002	008	003	002	002	003
N.trete	mg / N	26	273	427	10/12	1.19	06108	27	1.5	2.5	41	32	26	2.1	28
Crioricte	$\mathrm{mg} / \mathrm{Cl}$	20	247	300	$08 / 01$	170	$29 / 04$	228	180	221	289	235	219	22.9	236
Iotel atxelinity	mg/I CeCO,	28	371	480	06108	270	13/04	362	22.9	350	52.1	302	398	428	333
Orihophosphato	mg / P	$2611)$	0058	0110	$23 / 04$	0010	$13 / 05$	009	003	007	016	008	010	011	008
Silce	$\mathrm{mg} / 1 \mathrm{SN}$,	25	488	650	29/09	160	06/08	479	151	511	658	506	391	453	560
Sulphate	$\mathrm{mg}^{\text {/ }} \mathrm{SO}_{4}$	20	1438	1800	$31 / 01$	1000	17/12	156	11.2	158	211	148	167	170	154
Cucrum	mgil Ca_{0}	25	166	200	$29 / 09$	120	14/09	173	140	175	219	167	174	164	170
Magnagum	$\mathrm{mg} / 1 \mathrm{Mg}$	25	488	560	$04 / 06$	310	$24 / 11$	48	34	48	68	43	50	54	46
Potassium	mg/IK	25	297	500	$26 / 08$	200	$13 / 04$	32	19	30	53	2.7	2.9	3.9	3.5
Soctum	$\mathrm{mog} / \mathrm{Na}$	25	142	160	04/06	120	$13 / 04$	12.5	9.5	12.3	157	122	124	134	124

Exe at Thorverton Road Bridge

$\begin{array}{rr}09036 \\ \text { NGR } & 21 \text { (SSI } 936016\end{array}$
NGR 21 (SS) 936016

Flow maasurement station: 045001 - Thorverton $C A\left(k m^{2}\right) \quad 600.9 \quad N G R: 21$ (SS) 936016

Meen	Pertiod of record: 1974 - 1991						
	Percentibet			Cuarterty evoreopes			
	5%	50\%	95\%	J.M	A.J		0.0
109	40	104	190	61	128	165	90
75	70	75	81	74	7.7	7.6	74
172	124	163	242	160	185	187	160
120	16	53	446	15.2	81	63	129
1103	865	1117	1315	1230	1086	967	11.29
18	08	16	34	1.7	21	16	16
72	2.5	67	139	55	7.5	79	72
007	001	005	016	008	007	005	005
002	001	002	006	002	004	003	002
2.5	14	23	37	29	25	20	24
179	132	171	288	177	181	191	167
401	23.1	377	647	335	457	472	356
011	003	008	030	006	010	019	006
398	161	418	531	452	311	347	482
138	92	12.9	263	123	153	153	134
166	117	162	239	160	184	17.7	150
41	2.9	40	54	38	44	43	38
21	13	19	35	19	21	2.4	19
108	72	97	192	95	115	132	99

Dee at Overton

Harmonised monitoring station number
Meosuring authority : NRA-WEL NGR 33 (SJ) 35442

Determinenco

Tamodrature

ph
Conouctivity
Suspencied coinds 800 (inhbiredt Ammoniacal nitiogen

Semplos	Mean	Man.	Date	Min	Date
11	110	172	05/08	89	$09 / 01$
13	7.5	80	$30 / 09$	70	$05 / 02$
13	178	327	$30 / 09$	107	05/11
1313)	94	120	04/08	01	$06 / 03$
10	1078	12.70	09104	910	$05 / 11$
7	17	29	04/06	07	09/10
712)	0045	0150	$30 / 09$	0001	07/05
5	0013	0024	04106	0001	05102

1992
Flow measurement station: 067015-Manley Hall C. A. (km²) : 1019.3 NGR 33 (SJ) 348415

Period of record: 1974 - 1991							
Mran	Percentiles			Oumertery aversges			
	5\%	50\%	95\%	J.M	A. J	J. 5	0.0
100	3.1	98	178	50	115	155	80
72	65	72	78	7.1	7.3	73	72
172	98	185	270	158	210	175	140
94	05	35	367	115	67	64	137
1113	913	1112	1320	1243	1072	9.76	1163
13	05	11	2.5	12	15	12	12
005	001	003	014	006	005	004	006
002	001	001	005	002	003	002	002

Taf at Clog-y-fran Bridge

Harmonised monitoring station number. 10027 Monsuring authority: NRA-WEL NGR 22 (SN) 238161

Unite	1992					Date
	Semples	Mesm	Mex.	Date	Min.	
- C	28	108	180	20/08	60	$14 / 01$
DH unit	27	74		$27 / 05$	69	26/11
$\mu \mathrm{S} / \mathrm{cm}$	29	167	227	$10 / 07$	127	14/09
mg/	29 (1)	125	870	$11 / 1$	03	$04 / 02$
$\mathrm{mg} / 10$	28	1023	1180	$14 / 01$	830	10/07
$\mathrm{mg} / 10$	28	1.5	3.2	11/11	00	24/06
mg / N	2715	0063	0230	$15 / 04$	0001	$14 / 03$
mg / N	28	0021	0040	15/04	0008	$14 / 09$
mg / P	12	0159	1200	24/06	0030	15/10

Flow measurament station : 060003-Clog-y-fran C. A. $\left(\mathrm{km}^{2}\right): 217.3$ NGR: 22 (SN) 238160

Mean	Pariod of record: 1975. 1991						
	Percentilos			Oumenty everages			
	5\%	50\%	95\%	J.M	A.J	J.S	0.0
104	39	100	175	65	118	149	85
74	69	74	7.9	73	75	75	72
169	115	159	249	146	179	199	152
163	16	74	579	259	83	105	209
1036	771	1052	1261	1087	1064	932	1050
18	0.7	16	36	19	19	18	16
012	002	008	034	018	013	008	012
003	001	003	007	003	003	004	003
013	003	009	041	007	020	024	007

Harmonised monitoring station number :			$\begin{array}{r} 11009 \\ 938425 \end{array}$					Flow measurement station: 093001 . New KelsoC.A. $\left(\mathrm{km}^{2}\right): 137.8$							
			1992				Oete	Panod of record. 1979. 1991							
Oeterminend	Unite	Semples	Mean	Max.	Date	Min.		Mean	5\%	$\begin{aligned} & \text { Percentul } \\ & 50 \$ \end{aligned}$	95\%	J.M	Quartert A.J	$\begin{gathered} r \text { averes } \\ \mathrm{J} . \mathrm{S} \end{gathered}$	00
Temperature	${ }^{\circ} \mathrm{C}$	12	80	185	$11 / 06$	39	$11 / 12$	84	21	80	153	37	108	13.0	69
OH	pHe unts	12	63		$09 / 07$	60	$01 / 05$	66	59	66	74	66	67	66	65
Conouctivity	$\mu \mathrm{S} / \mathrm{cm}$	12	35		11/06		$01 / 05$	44	29	44	85	50	47	40	40
Suspended solds	mg / I	12 (10)	11	70	02/04	05	20/01	14	03	10	44	17	1.3	13	14
Drasoivart oxygan	$\mathrm{mg} / 10$	12	1112	1361	02104	8.74	17/09	1126	941	1129	1308	1253	1088	1008	1137
000 (intribeted	mg/ $/ 10$	12113	11		11/12	01	$21 / 08$	09	03	09	14	09	07	08	10
Ammonecal nutrogen	mgin	12(4)	0007	0030	11/12	0002	$18 / 03$	001	000	001	003	001	001	001	001
Nurnte	mg / N	12(3)	0001	0002	$21 / 02$	0001	20/01	001	000	001	001	001	001	001	001
Nurrate	mg / N	12	005	012	$02 / 04$	002	$01 / 05$	01	00	01	01	01	01	01	01
Criorche	mg fl	12	85	11.2	18/11	4.6	$27 / 08$	104	58	96	18.1	137	104	80	95
Total alkatnity	$\mathrm{mg} / \mathrm{CaCO}$	12	35	95	11/06	13	$18 / 03$	57	14	49	124	51	65	59	52

Spey at Fochabers

Harmonised monitoring station number 12002
Measuring duthority : NERPB NGR 38 (NJ) 341596

Determinend

Temperature

 م+1Conductminty
Suspenced solds
BOD (inmbitedl
Ammoniacal nut'ogen
Aurrate
Crionde
Toid akeminty
Orthophoaphete
Since

Units	Samples	Meen	Mtax	Date	Min	Date
${ }^{\circ} \mathrm{C}$	12	114	215	$10 / 06$	35	$04 / 02$
OH um: 8	12	6.1	63	$10 / 08$	58	$03 / 11$
${ }_{\mu} \mathrm{S} / \mathrm{cm}$	12	85	113	02/07	55	$14 / 09$
mg / l	12 [2]	25	50	$14 / 04$	02	$25 / 03$
mg/1 0	12	1145	1376	$19 / 02$	952	12 /08
$\mathrm{mg} / 10$	12	08	1.5	02/07	0.3	04102
mg / N	12111	0020	0056	(1) /02	0001	26/08
mgil N	12	0007	0012	26/08	0002	$25 / 03$
mg / N	12	028	0.58	04/02	004	$25 / 03$
$\mathrm{mg} / \mathrm{Cl}$	12	100	140	$19 / 02$	60	14/09
$\mathrm{mg} / \mathrm{CaCO}$	12	194	290	10/06	100	$25 / 03$
mg / P	12	0012	0027	04102	0004	02/12
$\mathrm{mg} / \mathrm{SHO}$	12	343	824	$04 / 02$	400	$27 / 05$

Flow measurement station : 008006-Boet o Brig C $\left.A\left(k^{2}\right)^{2}\right) 2861.2 \quad$ NGR: 38 (NJ) 318518

Mean	Percentiles			Quarterty evarages			
	5*	50\%	95\%	J.M	A.J		0.0
99	24	115	181	34	101	150	63
71	63	72	78	69	72	74	69
77	49	76	106	80	71	86	72
39	02	18	17.9	32	40	36	36
1142	924	1131	1353	1278	1113	1003	1176
09	04	03	15	08	10	09	09
004	000	002	011	002	004	004	003
001	000	001	001	001	001	001	001
03	02	03	06	04	03	03	03
103	60	99	151	11.9	99	104	91
247	128	250	352	224	236	291	252
002	000	001	008	002	000	003	002
578	367	572	756	561	475	552	610

Almond at Craigiehall
Harmonised monitoring station number. 14008
Mossuring authority : FRPB NGR 36 (NT) 165752

Determinand
Conducimiy
Suspended solds
Dissotved oxyen BOO (minbitocs)
Nithte
Nitrate
Totel amedruty
Orinophosphato
Suphate

Units	1992					Date
	Somples	Mean	Max.	Date	Min.	
DHi unit	12	7.8	82	15101	76	$11 / 03$
${ }_{\mu} \mathrm{S} / \mathrm{cm}$	12	488	760	$15 / 10$	285	02/12
mg / l	12	21.6	980	02/12	30	$23 / 04$
$\mathrm{mg} / 10$	12	1046	12.70	$15 / 01$	660	21/05
mg/l 0	12	39	82	2:/05	16	17/09
mg / N	12	1050	2500	21/05	0310	04/11
$\mathrm{mg} / \mathrm{IN}$	11	0173	0520	$22 / 07$	0040	$15 / 01$
mg/l N	11	360	570	13/10	2.41	17/09
$\mathrm{mg} / \mathrm{CaCO}$	12	1153	1910	15/10	590	11/03
$\mathrm{mg} / 1 \mathrm{P}$	12	0560	1440	19/08	0130	04/11
$\mathrm{mg} / \mathrm{SO}_{4}$	12	11533	19300	$15 / 10$	4900	11/03

Flow measurement station 019001 -Crargiohall
CA. $\left(\mathrm{km}^{2}\right) \quad 369.0 \quad$ NGR. 36 (NT) 165752

Mrean	Pariod of record 1975 - 1991						$0 \cdot 0$
	Percentiles			Oubrterty aversgee			
	5\%	50x	95x	J.M	A.J	J. S	
76	7.1	78	80	75	7.7	76	75
616	322	607	902	531	702	670	526
203	21	100	605	330	97	133	264
916	532	955	1211	1114	909	725	966
35	15	30	69	34	37	32	40
126	026	098	309	2.28	154	: 15	097
027	004	015	086	014	035	047	015
38	21	37	60	35	40	40	38
1215	594	1238	1793	1002	1400	1323	1043
078	009	049	209	027	100	1.33	045
1264	550	1292	1997	1055	1382	1446	1182

Tweed at Norham

Harmonised monitoring station number 15001
Measuring authority TWRPB NGR 36 (NT) 898477

Dee at Glenlochar

Harmonised monitoring station number
16005
Mousuring authority SRPB NGR 25 (NX) 733642

Determinand	Units	1992					
		Semples	Mrem	Mex.	Date	Min.	Date
Tamearatura	${ }^{\circ} \mathrm{C}$	12	100	195	$01 / 06$		03102
pH	pHenms	12	08		05/10		$03 / 01$
Conductivily	${ }_{\sim}^{\text {S }}$ /um	11	53		03/02	40	$01 / 104$
Sumpansed eolude	$\mathrm{mp} / 1$	12	22	50	02/11	10	01107
Drscotved oxrgen	$\mathrm{mg} / 10$	12	1023	12.50	03102	7.70	03/12
800 matroited	$\mathrm{mg} / 10$	12	22	32	$01 / 06$	07	$01 / 07$
Ammonecal mitrogen	mg / l	12 (1)	0047	0090	$03 / 01$	0010	05/10
Nitrate	$\mathrm{mg} / 1 \mathrm{~N}$	12	028	0.53	05/10	01	01107
Cintoride	$\mathrm{mg} / \mathrm{Cl}$	12	81	114	$03 / 01$	68	$01 / 105$
Ofinosmosphate	$\mathrm{mg} / 1 \mathrm{P}$	12 (1)	0008	0048	01104	0001	$01 / 06$
Since	$\mathrm{mg} / \mathrm{SHO}_{3}$	12 (1)	1.78	280	02/11	010	02/09
Sutphete	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	12	4.55	618	$02 / 09$	372	$01 / 101$
Catcom	$\mathrm{mg} / \mathrm{Ca}$	12	3.2	58	$05 / 10$	23	03108
Megneaum	$\mathrm{mog} / 1 \mathrm{M}_{0}$	12	1.32	165	02/09	1.11	$03 / 01$
Polsagem	mg / K	12	056	098	01104	043	$01 / 05$
Sodum	mg/f Na	12	53	B 2	$03 / 01$	40	$01 / 05$

Flow measurement station. 080002-Glenlochar
C. A. $\left(\mathrm{km}^{2}\right) \quad 809.0$ NGR: 25 (NX) 73364

Mras	Periced of record: 1975-1991						
	5\%	Percentibes		Ouarterty averagee			
		50\%	95\%	J.M	A. 5	J. 5	O.D
100	19	91	200	36	114	16.9	83
6.7	62	67	73	66	67	89	68
61	40	53	19	56	58	68	61
3.5	11	19	70	50	35	2.5	2.7
1091	8.70	1093	1312	1243	1114	949	1073
19	10	19	31	2.1	1.9	1.7	19
006	001	004	015	006	005	007	005
03	01	03	07	05	03	02	03
92	50	91	137	98	96	88	88
001	000	001	004	001	000	002	001
2.28	033	230	440	332	188	127	294
58	25	52	98	55	53	58	64
39	2.3	3.3	58	3.5	35	4.7	38
1.5	07	1.4	22	14	15	15	15
08	03	05	08	06	05	05	06
5.1	34	51	71	55	5.3	48	48

Leven at Renton Footbridge

Mossuring authority: CRPB NGR 26 (NS) 389783

Detarminand

Temperaive
OH
Conoucirvity
Suapenced acdude
800 untrititent
Ammonsecal mitrogen
Nitrate
Toid almabrity
Orihophoapheis

Undes	Semples	1992		Min.
		Meen	Max. Date	
${ }^{\circ} \mathrm{C}$	20	94	$15017 / 06$	5028101
phi unte	12	70	$7405 / 06$	6830107
$\mu \mathrm{S} / \mathrm{cm}$	12	66	$12724 / 04$	$3909 / 11$
$\mathrm{mq} / 1$	2012)	22	$6024 / 04$	$1028 / 01$
mofio	12	1093	$12.3028 / 01$	$95018 / 08$
$\mathrm{mg} / 10$	12	1.9	3405106	$0111 / 09$
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12 (1)	0042	007024104	$001028 / 10$
mg / N	12 (1)	026	05219103	0.1024104
$\mathrm{mg} / \mathrm{CaCO}$	12	130	$20024 / 04$	11028101
$\mathrm{mog} / \mathrm{P}$	19 (2)	0009	$002022 / 04$	$000218 / 08$

Flow measurement station : 085001-Linnbrane C. A.(km') 784.3 NGR 26 (NS) 394803

Mrean		Parcentil			Oumreet	overa	
	5\%	50\%	95\%	J.M	A.J	J.S	0.0
96	30	90	170	40	110	150	03
7.1	67	71	75	70	72	71	70
12	60	69	93	72	73	70	71
48	12	33	121	67	38	39	43
1094	928	1099	1270	1227	1128	980	1069
18	09	18	32	2.2	2.1	15	1.7
005	001	002	020	005	004	008	004
03	01	03	05	03	03	03	03
162	101	160	221	149	164	166	164
002	000	001	004	002	000	001	002

Ballinderry at Ballinderry Bridge

Lagan at Shaws Bridge

DOE Northern Ireland stainen nu Measuring authority : DOEN		NGR	$\begin{gathered} 05 / 01 / 0002 \\ 33 \text { (IJ) } 325690 \end{gathered}$			
		1992				
Determinand	Units		Somples	Mren	Max. Dete	Min. Date
Tempereture	${ }^{\circ}$	25	93	16009108	2027101	
$0{ }_{0}$	DH unis	25	79	$8.108 / 07$	$7.509 / 04$	
Conducivivy	$\mu \mathrm{S} / \mathrm{cm}$	25	416	$56222 / 07$	31009104	
Suspended eolids	mg/I	25	70	$39011 / 03$	2000108	
Oneeotved oxrgon	moglo	25	1991	$299016 / 02$	$11.7022 / 07$	
800 (nimbited)	$\mathrm{mg} / 10$	25	24	$4.922 / 07$	1206108	
Ammonsces nttogen	$\mathrm{mg} / \mathrm{IN}$	25 (2)	0109	$023016 / 02$	004025102	
Natrite	mg / N	25 (1)	0050	0110 $08 / 06$	$002025 / 03$	
Cimoride	$\mathrm{mg} / \mathrm{Cl}$	25	351	$73020 / 08$	$20009 / 04$	
Orthophosphate	mg / P	25	0612	$162022 / 06$	$016009 / 12$	

Flow measurement station: 203012-Ballinderry 8 Br C.A. $\left(\mathrm{km}^{2}\right): 419.5$ NGR 23 (IH) 926799

Mean	Percentiles			Ouarterty overagea			
	5\%	50\%	95\%	J.M	A.J	J. 5	0.0
98	30	100	170	50	119	14.9	81
78	73	7.7	83	78	79	78	77
307	215	304	378	280	328	337	294
9.2	20	60	100	124	69	70	99
100	6.7	101	128	112	98	8.7	104
24	10	20	43	26	27	22	$2:$
026	004	020	053	035	027	018	024
005	002	004	013	004	005	006	005
190	120	190	260	19.3	19.1	196	182
023	007	020	050	014	018	034	020

DIRECTORY OF MEASURING AUTHORITIES

	Address	Code
National Rivers Authority	Rivers House,	NRA
Waterside Drive,		
Aztec West, Almondsbury,		
Bristol BS12 4UD		

NRA Regional Headquarters*

Anglian	Kingfisher House, Goldhay Way, Orton Goldhay, Peterborough PE2 5ZR	NRA-A
Northumbria Yorkshire	Rivers House, 21 Park Square South, Leeds LSI 2QG	NRA-NY
North West	Richard Fairclough House, PO Box 12, Knutsford Road, Warrington WA4 1HG Sapphire East, 550 Streetsbrook Road, Solihull B91 1QT	NRA-NW
Severn-Trent	Guildbourne House, Chatsworth Road, Worthing, West Sussex BN11 1LD	NRA-S
Southern	Manley House, Kestrel Way, Sowton Industrial Estate, Exeter EX2 7LQ	NRA-SW
South Western	Kings Meadow House, Kings Meadow Road, Reading RG1 8DQ	NRA-T
Thames	Rivers House/Plas-yr-Afon, Wt Mellons Business Park, St Mellons, Cardiff CF3 0LT	NRA-WEL

River Purification Boards

Clyde River Purification Board	Rivers House, Murray Road, East Kilbride, Glasgow G75 0LA	CRPB
Forth River Purification Board	Clearwater House, Heriot Watt Research Park, Avenue North, Riccarton, Edinburgh EH14 4AP	FRPB
Highland River Purification Board	Strathpeffer Road, Dingwall IV15 9QY	HRPB
North East River Purification Board	Greyhope House, Greyhope Road, Torry, Aberdeen AB1 3RD	NERPB
Solway River Purification Board	Rivers House, Irongray Road, Dumfries DG2 0JE	SRPB

Tay River Purification
Board
Tweed River Purification
Board

Other measuring authorities

Borders Regional Council (Directorate of Water and Drainage Services)	West Grove, Waverley Road, Melrose TD6 9SJ	BRWD
Corby (Northants) and District Water Company	Geddington Road, Corby, Northants NN18 8ES	CDWC
Department of the Environment for Northern Ireland	Water Executive, Northland House, 3 Frederick Street, Belfast BT1 2NS Environment Service, Calvert House, 23 Castle Place, Belfast BT1 1FY	DOEN
Dumfries and Galloway Regional Council (Department of Water and Sewerage)	Marchmount House, Marchmount, Dumfries DGI IPW	DGRW
Essex Water Company	Hall Street, Chelmsford CM2 OHH	EWC
Geological Survey of Northern Ireland	20 College Gardens, Belfast BT9 6BS	GSNI
Grampian Regional Council (Water Services Department)	Woodhill House, Westburn Road, Aberdeen AB9 2LU	GRWD
Highland Regional Council (Water Department)	Regional Buildings, Glenurquhart Road, Inverness IV3 5NX	HRCW
Institute of Hydrology	Maclean Building, Wallingford OX10 8BB	IH
Lothian Regional Council (Department of Water and Drainage)	55 Buckstone Crescent, Edinburgh EH 10 6XH	LRWD
North East Water Plc	PO Box 10, Allendale Road, Newcastle-upon-Tyne NE6 2SW	NGWC
North West Water	Dawson House, Liverpool Road, Great Sankey, Warrington WA5 3LW	NWW
Scottish Hydro-Electric Plc	16 Rothesay Terrace, Edinburgh EH3 7SE	SE
Southern Water	Southern House, Yeoman Road, Worthing BN13 3NX	SW
Strathclyde Regional Council (Water Department)	419 Balmore Road, Glasgow G22 6NU	SRCW
Tayside Regional Council (Water Services Department)	Bullion House, Invergowrie, Dundee DD2 5BB	TRWS
Yorkshire Water	2, The Embankment, Sovereign Street, Leeds LS1 4B6	YW

[^11]
PUBLICATIONS - in the Hydrological data UK series

Title	Published	Price (inclusive of second class postage within the LK)	
Yearbooks:		Loose-Lea	Bound
Yearbook 1981	1985	610	612
Yearbook 1982	1985	610	612
Yearbook 1983	1986	out of print	
Yearbook 1984	1986	out of print	
Yearbook 1985	1987	612	015
Yearbook 1986	1988	612	615
Yearbook 1987	1989	$¢ 12$	615
Yearbook 1988	1989	612	\{15
Yearbook 1989	1990	615	$¢ 18$
Yearbook 1990	1991	615	C18
Yearbook 1991	1992	*	620
Yearbook 1992	1993		¢20
Reports:			
Hydrometric Register and Statistics 1981-S	1988	$\{12$	$\int 15$
Hydrometric Register and Statistics 1986-90'	1992		$\underline{6} 20$
The 1984 Drought ${ }^{2}$	1985		612
The 1988-92 Drought'	1993		C20

Concessionary rates apply to the purchase of two or more of the pre-1989 Yearbooks.

All the Hydrological data LK publications may be obtained from:-

Institute of Hydrology
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB
Tel: (0491) 838800
Fax: (0491) 832256
Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the National Water Archive Office at the above address.

1. Hydrometric Register and Statistics 1986-90

This reference volume includes maps, tables and statistics for over 1000 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the

[^12]featured flow measurement stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1986-90, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

2. The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity. Assessments are made of the likely frequency of occurrence of the drought and its magnitude is considered in the perspective provided by historical records of rainfall and runoff.

3. The 1988-92 Drought Report

The recent exceptionally protracted drought which, at one time or another, afflicted much of Europe, stimulated reviews of water management policies in a number of countries at a time when the search for sustainable water resources development strategies is intensifying. The objective of this report is to provide comprehensive documentation of the 1988-92 drought within a hydrological framework and to establish a benchmark against which future periods of severe rainfall deficiency may be compared. The spatial and temporal variations in the drought's intensity are examined and its severity assessed within the perspective provided by longterm rainfall and hydrometric records. An introductory hydrological overview of the United Kingdom is given to help place the conditions experienced in 1988-92 in a suitable context. The synoptic backcloth to the drought's development is also reviewed and the European perspective is examined using selected rainfall and river flow records to index drought severity. Additionally, a short review of water resource variability in Great Britain over the featured five years and the water industry's response to the actual and protracted deficiencies - is included to help appreciate the, often complex, linkages between hydrological stress and water supply impacts on the community.

Associated Publications

Representative Basin Catalogue

Data collection for the national Flood Event Archive, maintained by the Institute of Hydrology, concentrates on a selection of basins that form a representative sample of UK catchments. A catalogue providing comprehensive hydrological and reference information for 200 representative basins has been prepared and is available as national (five volumes) or regional sets; user-selected groups of catchments can be provided for particular investigations. Enquiries concerning the cost and availability of the catalogue should be directed to the above address.

Groundwater Level Hydrographs

In 1990 the British Geological Survey launched a series of wallcharts depicting long term variations in groundwater levels. The following are currently available:
i. Long term hydrograph of groundwater levels in the Chilgrove House well in the Chalk of southern England
ii. Long term hydrograph of groundwater levels in the Dalton Holme estate well in the Chalk of Yorkshire

Copies may be obtained from the Wallingford office of the British Geological Survey (address on page 159).

ABBREVIATIONS			
Note: The following abbreviations do not purport to represent any standardised usage; they have been developed for use in the Hydrological data UK series of publications only. Where space constraints have required alternative forms of these conventional abbreviations to be used, the meaning should be evident from the context.		NW	North-West
		O/f	Outfall or outflow
		ORS	Old Red Sandstone
		Pk	Park
		Pop	Population
		POR	Period of record
		PS	Pumping station
		Pt	Point
		PWS	Public water supply
AOD	Above Ordnance Datum	Rb	Right hand river bank
Bk	Beck		(looking downstream)
Blk	Black	R/c	Racecourse
Br	Bridge	RCS	Regional communications system
Brk or B	Brook	Rd	Road
Brn	Burn	Res	Reservoir
Ch	Channel	Rh	Right hand
C / m	Current meter (ing)	S	South
Com	Common	SAGS	Stour Augmentation Groundwater
Dk	Dike		Scheme
Dr or D	Drain	Sch	School
D/s	Downstream	S-D	Stage-discharge relation
DWF	Dry weather flow	SDD	Scottish Development Department
E	East	SE	South-East
Frm	Farm	Sl	Sluice
G/s	Gauging station	SOE	The Scottish Office Environment
Gw	Groundwater		Department (previously SDD)
HEP	Hydro-electric power	Sp	Spring
Ho	House	St	Stream
Hosp	Hospital	STW	Sewage treatment works
L	Loch or lake	SW	South-West
Lb	Left hand river bank	TS	Transfer scheme
	(looking downstream)	US	Ultrasonic gauging station
Ln	Lane	U/s	Upstream
Lst	Limestone	W	West
L.tl	Little	W'course	Watercourse
MAF	Mean annual flood	Wd	Wood
Mkt	Market	Wht	White
Ml/d	Megalitres per day	Wr	Weir
Mnr	Manor	WRW	Water reclamation works
. N	North	Wtr	Water
Ntch	Notch	Wrw	Water treatment works

[^0]: LTA=1941-70.

[^1]: -Bosed on the methods and findings of the Flood Studies Report Vol.' (as implemented on the Meteorological Office Computer${ }^{2}$) whereby a return period can be assigned to the cateh at a particular raingauge. Tbose exceeding a 160 year return period are classified as 'very rare' events (the returo periods in Table 3 have been rounded to the nearest 10 years.)
 'Flood Studies Report 1975. Natural Environment Research Council (5 vols).
 ${ }^{2}$ Keers, J.F. and Wescott, P. 1977. A computer-based model for design rainfall in the United Kingdom: Metemmlogical Office Scientific Paper No. 36.

[^2]: Note: The annual cvaporation totals are quoted to one decimal place only to clarify the rankings; they do not imply any corresponding precision in the evaporation estimates.

[^3]: t For the IH research catchments, the monthly totals are subsequenily updated using areal figures derived from a dense local niogauge network. - As a consequence of leap years ithe runoff and mean fow percentage may not be identical.

[^4]: - Additional data are beld on the flood peak archive (page 136).
 ${ }^{1}$ Flood Studies Report 1975. Natural Environonent Research Council (5 vols.).

[^5]: 1992 runoff is 74% of provious mean rainfall 104\%

[^6]: ranfall 119\%

[^7]: 1992 runoff is 108% of previous mean rainfall 98\%

[^8]: 1992 runoff is 123% of previous mean

[^9]: 1992 rumotf is 109% of previous mean

[^10]: - In all cascs this refers to the temporal mean rather than the flow-weighted average.

[^11]: Note: The measuring authorities listed in this directory provide (or have provided) dally flow data to the national archive for primary flow measurement stations. In recent years a number of valuable long records for additional sites have been identified. Most of these will be uncorporated into the River Flow Archive when appraisals of the gauging stations and flow records are complete. Further lengthy records, whether of springs, runoff, river levels, well levels or bourne flow occurrences, would be welcomed and holders of such data are invited to contact the lnstitute of Hydrology.

[^12]: - L.oose-leaf versions of the tiydrological data UK publications bave been discontinued.

