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GENERAL INTRODUCTIOR

This paper presents general models for population dynamics that are
similar in structure and concept to both the familiar Leslie matrix
modelé and matrix models of enefgy flow. The model initially is developed -
into a density-dependent model not by the use of mathematical formulae
but by the use of two simple algorithms which describe, albeit crudely,
competitive ethological interactions for limited food resocurces and the
effects of these on the subsequent growth of the contestants. Example
simulations are shown, using hypothetical data, . for:- unrestrained
population growth; constrained population growth in a uniform temporal
environment; constrained population growthf in a.  seasonally varying
environment. These simulations are shown for .two extreme types “of
competition, 'SCHRAMBLE' and ‘'CONTEST'. These simulations verify (sensu.
Jeffers 1978) that the general behaviour of the umdeis is ecologiecally
reasonable, indicating that there are no fundamental errors in their
assumptions or formulation. I have, unfortunately, so far been unable to
attempt validation (sensu Jeffers) of the model due to the lack of a
suitable and simple data-set. Accordingly a major purpose of this paper
is .to present tre models to field ecologists and ethologists for their
assessments of the reascnability of ihe medels and, hopefully, to

establish whether there are any pre-existing data Sets that would permit
their proper testing.

In the absence of suitable data for validation the paper goes on to
briefly outline a number of ways in which the simple initial models could
be expanded to address more complex situations and secondly to indicate by

‘what means suitable data sets could be most readily collected.

These models are not intended as prescriptions to solve, of themselves,
problems in population ecclogy but rather, following the lead of Lomnicki .
(1978, 1980), to question the relevance of some current mathematical
formulations and to suggest an alternative approach by incorporating into

population models important and fundamental aspects of natural _history,
life~history and ethology.




o HISTORICAL BACKGROUND

2.1 Classical mathematical models

Population dynamics dates back at least to the time of Malthus
(1766=-1834) and, in iﬁs-claSsical‘form,.is ~.concerned ‘with. the numbers,
and changes in numbers, of populations of a species. It has fairly deep
roots in  human demography and a2 fair  history of ‘mathematical
deseriptions. The earliest of these take simple forms, eg:

an/at

r.N (2.1)

an/at = r.N K-K§ _ (2.2)

K
or, in difference equation form

Bp+y = Ny + r.lig K=¢ (2.3)
K

and 1ts more elshorate derivatives

N=N{1+1r (1 -N/MK)) ' (2.4)

n=1exp (r (1 - §K)) | (2.5)

N=AN(Q1+alW) B o (2.6)
_ ~=b :

N=aAL " for ¥ > E

N=xNH  for N < Eg (2.7)

These equations have stood the test of time in theoretical bioclogy, but
have not been widely used in detailed studies of populations by field
ecologists. It is reasonable to suggest that this dichotomy of approval is
due to the faet that, while the above formula (2.2 »2.7) are
sufficiently complex to give a reasonable fit to most likely curves that
show changes of numbers with time their parameters are not readily
interpretable in a detailed .ecological sense and they are founded on

assumptions that field ecologists recognise to be very shakey.




A basic assumption of such simplistic formulations, usually left as
implicit and ggg stated explicitly is that all individuals in the
population are absolutely identical in terms of age, sex and phenotype
(remember phenotype = genotype ¥ environmental influences) or, at least,
- that any differences between individuals in respect of these aspects are
trivial with regard to population dynamics. More complex population
models recognise the importance of age and sex differences and population
genetics has a wide range of models showing how genetic factors affecting
. aspects pertinent te  population ecology could maintain genetic
polymorphisms. Theoreticians often claim that 'there is litt;e evidence
from Ffield .ecolOgy that such aspects are' inportant in-.population
dynamics, but such statements ignore (i) the growing body: of evidence
which there is (often from disciplines with which theoreticians are not
familiar); (ii) the mathematical training of previous theoreticians who
have trained the small minority of today's ecologists who .use detailed
numerical methods; (iii) the complexity of designing experiments to show
such effects from field data and, finally, .we night include (iv) the
incorporation of all these factors {or indicators of them such as family

history for genetic influences) into the actuarial tables of life
insurance companies. '

2.2 Leslie matrix models

Cne of the best known forms for structured population models 1is the
matrix model due to Leslie (1945) and used to predict age-structure. The
developments of this family of models ('Léslie matrix models') is.
usefully reviewed by Usher {1972), who indicates how various workers have

incorporated sexual differences, and complex life stages and so on.

As the models put forward in this paper are similar both in cancept and
mathematical structure to Leslie matrix models I propose to describe
Leslie models here in adequate detail for readers unfamiliar with them.

Anyone desiring further details should consult Usher (1972) and Jeffers
(1978).




?he Leslie model énvisages a population separated into age classes (the
classes representing identical time periods/age _differences in the
simplest forms), and the numbers of animals in each age class are
represented by a column vector of numbérs, as shown in column.threelcf
Diagram la opposite. The model works in discrete unité'of time (the'class
period), So, given the numbers in column 3 of diagram 1a, we could obtain
the numbers in the next period of time by multiplying them by the given
survival rates and adding to them the product of themselves and their

corresponding per capita fecundities (columns 4 and 5 of Diagram 1a).

It is mathematically and computationally convenient'to write such data in
the form of two matrices, as shown in Diagram 1b. The rules of matrix
multipliéation {column vector ‘answer element) = sum of (éach'element of a
row x each element of a c¢olumn), repeated for all 'elements and every
row/colﬁmn give an identical answer to that described above in relation

to Diagram ta; readers unfamiliar with matrix operations may care to
verify this,

In matrix notation this operation can be written:

Bryp T AX B (2.8)

The square matrix A is referred to as a transition matrix as it
represents the ‘probabilities' that rfindividuals' will ‘move' from one
class to another. Thus, as indicated in. Diagram ic, the terms on the-
sub-diagonal represent ‘'survival', as each animal in a class becomes
older in the next unit of time and must hence move to the next class.
Similerly, ﬁhe top row of ﬁhe matrix represents ger:cagita fecundity from
each of the age classes to the youngest elass, into which animals are
‘born'. All other elements of the square matrix must be zeros, due to the
model's definition.




DIAGRAM 1: Leslie Matrix Model

Diagram to show how the survival and fecundity terms of & simple
life-table (la) can be written in terms of matrix algebra, {1b)

to provide a discrete~tine population model and illustrating (lc)
how.the structure.of theltransition matrix can be interpreted as

survival and fecundity terms.

la Age Class Age  lo.s Survival Births

1331 h-312 2 0.000 12
1b
hge Age
Transition .- structure structure
matrix £=0 Caleulation t=l
3] g 12 L8 4 x0 +8x9 +2x12 = 96
.333 0 0 p 4 8 = k8 x 33 +8x0 +2x0 = 16
0 .5 0 : 2 WBMx0 +8x.5+2x0 = L
lc Trensition matrix,.ﬁ_= Survival, P + Fecundity, F
Class From Class From Class From
i ii iii i ii iid i i1 iii
i 0 9 12 0 0 0 C 9 12
- CLASS .
ii «333 0 =1 .333 0] o+ 0 0 0
TC

h )




The matrix structlir-e therefore represents a .convenient. and powerful
summary of the data shown in Diagram 1a, _bﬁt., more importantly, two
algebraic properties of the square matrix, its eigenvalue and eigenvector
(see, eg. Dorf 1969, for mathematical. def'i“nitions of “these) can be
calculated simply by readily available computer algorithms , and are of
direct relevance to population dynamics. For example in the matrix shown
in Diagram 1 (whose values are taken from Williamson. 1967), there is a
dominant eigenvalue of 2.0 and an associated eigenvector of (24, 4, 1).
It can be readily shown that the dominant eigenvalue, A, corresponds to
the rate of population increase (note that the values for time.=  t+1 in
Diagram 2a are all 2.0 x those for time = t) and is related to the

intrinsic rate of population increase, r, by the equation:

r=1loge »  (2.9)

The eigenvector corresponding to A gives the (relative) stable age
structure, which for this example, is maintained at ratios of 24:4:1 at
all time periods.

It should be stressed here that this model closely approximates the
calculus form for exponential population  growth {equation 2.1) (which
could be re-written: Ny = Noer-t,o; 2.10). It is possible, but complex, to
introduce density-dependent functions into the elements of matrix A to
produce models of limited' populations, similar to those. described,
overall, by equations 2.2+ 2.7. Such elaborations are mathematically
complex: summaries of such attempts are given in Jeffers (1978) and Usher

(1972) and two useful examples are Usher (1969) and Beddington (1975).

We should note finally twe limitations of Leslie -popu_la,ti'on matrices.
First, they are really deterministic, despite incorporating probability
values; and second, the fecundities are averages for the whole class.
This means that. if the class contained, for example, 100 animals of whom
only 10 bred, rearing & total of 50 offspr‘ing, the fecundity term of the
Leslie matrix would be 50/100 = 0.50. To my mind this obscures an

extremely important fact: 10% of this age class bred very successfully

-6




before the majority of that age class were able to. I suggesﬁ that suech
situations are not rare {(though this example is deliberately extreme),
that they may have important genetic consequences and that they may be
fundamental to the population's ability td survive in a yvarying
environment. Accordingly, I believe it is vital to understand what
aspects of such 'early breeders' allow them to breed unusually early and
would like to see structures for population models that help elucidate
these aspects. I hope that the models developed in this paper go some way
toward achieving this. This single class example was used for the-sake of
¢clarity but it should be realised that it apblies to all age élass of
breeders in practice.

2.3 Individual differences, resources and ethology

The deficiencies of classical population models which I elaborated above
are not novel, but have been levelled by field ecologists for some time.
Until recently however, there have been no suggestions as to how these
deficiencies might be remedied. I believe the recent papers by Lomnicki
(1978, 1980) give a key to how this may be achieved and certainly throw a
refreshing and stimulating light on a rather stale controversy..The ideas
put forward by Lomnicki (leoc. cit.) are fundamental to my own concepts
(which were greatly enlightened by his papers) and underly much 'of the -
structure of the models presented later. Lomnicki's papers are, per force
rather mathematical in nature, but easy to follow in principle and aimed
at highlighting inadequancies of assumptions in previous population
models. 1 was encouraged to find during the course of & brief
correspondence . that Proféssor Lomniecki continually re-émphasised the
importance of natural history and ethdlogy to the development of
realistic population models: regrettably, many theoreticians in
population ecology regard these as no more than awkward irrelevancies,
assunming that they are actually aware of them. I would strongly recommend
readers to refer to Lomnicki's papers, but will briefly outllne below the

ma jor p01nts, particularly those most pertinent here.




Lom_nicki emphasises that most models of population 'dyﬁamies-ignore:

i. 1life histories and natural history
ii. fundamental and critical aspects of ethology such -as competition
and territorial behaviour G
iii. habitat heterogeneity

iv. the problem of why, and particularly when, animals disperse.

Taking the latter point as an illustration,‘ it . is evident thét most
population models and many field ecologists :eith'er' ignoreimmigration and
emigration (from/to the 'study area') or assume it :to be constant, which
is much the same as ignoring it. Lomnicki (1978) shows that, given a
population with a social hierarchy, differences between individuals in
resource allocation and habitat heterogeheity, population regulaiion may
actually be achieved by emigration. The proposed mechanism is that, in
relation to a defined study area emigration is density dependent and, as
mortality due to emigration will not be. o_bser-ved within the study area,
data from such studies would not show density dependent mortality al"chough '
the population is regulated by density dependent emigration.

Lomnicki's later paper (1980) develops a population ‘model in whieh the
regulation is based on differential allocation of resources to.
individuals in a social hierarchy, with consequent .individual differences
in fecundity and survival prospects and allowing partitioning of
resources between growth and reproduction.

2.4 Utilisation of field data
.2.4,17 Inadequacy of 'numbers' for describing a population

1 have suggest.éd above that the various c¢lassical equations (2.1-2.7)
above are capable of producing a wide variety of curves and that, given
likely estimation errors of field data, a time"seri_es of N with t may be
equaily accﬁr‘ately approximated by more than one of these equations. How
then could one decide which, if any, of these equa’éions give the 'best'
fit?




Now let us examine the problem from a different aspect. The data for such
models come from field studies, often of marked individuals, and require

the use of the following information per individual:

lio age structure Ape structure
tize of birth : time of birth
estimated age at death estinsted age st death
lifetine productivity productivity at ages

bl’ b2_"f bn

This is often only a small proportion of the information the investigator
will coilect: in vertebrate studies at least the marked individuals will
often be weighed and measured at each capture. Regrettably, such
information is rarely incorporated into studies of population

dynamies. Too often the literature reveals the following approachi-

Bloggs, B.F. & A. Twitson, 1982. A population dynamics model of the
long-haired  vole (Microtus whatsitze) at Over-Fuddle  marsh,
Blankshire, 1979-1981. J. Misappl. Maths. 13, 1029-1136.

Bloggs, B.F. & 8. Ation, 17983. Weight changes in a population of the.
long-haired vole (Microtus whatsitae) at Over-Puddle marsh, Blankshire

in relation to the harsh winter of 1930/81. J. Wildl. Nutrition 4,
7-63.

In such instances we might well find that the earlier paper used a model
~designed to represent a stable population in a wniform environment,
despite "Dr. Bloggs" recognition of the catastrophic mortality due to
the severe winter and omittihgthe data which he could have extracted on

'breeding condition in relation to spring weight' the following season.

In short, common sense suggests that realistic models of fhe complex
dynamics of natural populations will require much more information than
is used to construct classical models and that investigators would be
wise to strive to incorporzte those aspeects of their populations'
interactions which they know to have important consequences to survival,

mating success, fecundity, dispersal and the like even if such knowledge

is culled from widely separated biological disciplines.




2.4.2 Habitat heterogeneity

I referred above to Lomnicki's demonstration that emig_fat.ion and habitat
heterogeneity may be fundamental - to population dynamies and have
mentioned elsewhere (Macdonald, Bunce & Bacon 1981) that studies of
popﬁlation dynamics are usually undertaken at ~sites chosen largely for
convenience rather than as being representative of typical areas. Indeed,
although a variety of techniques are -available for habitat description,
these are rarely used by population biclegists %to sub-divide their study
areas. In short, habitat .heterogeneity is 1likely to be fundamental to.
important aspects of population dynamics arid, if this. proves to be the
case, population models that can readily incorporate such differehces
will be needed.

2.4.3 Population genetics

There is over-whelming'evidence from population genetics. t.hat.- polymorphism
is widespread and that (artificial) selection can rapidly alter
characters important in population dynamics (see Gale 1980 for a readable
review). The evidence that such polymorphisms do have appréciable effects
in natural populations .is presently sparse (see above) but taken .in
concert with the wealth of basic data from populatioﬁ genetics 1is
: suf‘ficient to suggest that detailed mechanisms of population dynamics may

be affected by, and themselves affect, gene frequencies.

2.5  Qutlook

I have summarised above shortcomings, which I believe to be serious, in
most present formulations for population dynamics models and indicated
that I consider the suggestions of Lomnicki (1978, 1980) to offer an
instructive way out of the present impasse., In the following sections I
discuss model structures based on tenets very similar to-. Lomni'cki's. These
struct.u-fes méy be applicable to a wide range of f‘ield-- studies. I do not

pretend to offer prescriptions to solve a host of problems in population
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ecology (although the models I develop here'may be directly applicable to
simple situations and some species) but hope rather to suggest concepts.
and model structures that might be developed to permit solution of many
diverse population processes. I recognise that the formulations I suggest
will still seem over-simple to field ethologists and. are probably
mathematically unattractive to biometricians. I hope however that in
considering the shortcomings of my suggestions scientists from both
disciplines may find them a useful focus for discussion and I hope
particularly that they may provide some common ground on which researchers

from both extremes can readily enlighten each other.

2.6  Summary

I conclude above .that present models of population dynamics seriously

_omit to account for biological variation, whieh may be considered toc have

three aspects:

i. phenotypic variation among individual animals, due to genetie and

environmental influences
ii. wvariation in the habitats that populations occupy
iii. temporal variations caused by differing population responses to

environmental factors, such as weather, which vary from year to

year and interact with the 'dynamies:®.

i1




3 POPULATION MODELS: GROWTH AND COMPETITION

5.1 Concept and model structure

A possible structure for population models based on ecological rather

than mathematical principles occurred to me whilst considering some data

on weight changes in Mute swans (Cygnus olor) shortly after reading
Lomnicki's paper (13980). The model described in the following sections is
more applicable to 'long lived' organisms, having several reproductive
periods per lifetime than to discrete generation pbpulations or 'short

livedt‘organisms having'feW‘reproductive periods per lifetime.

A basic tenet of the model is that ‘'weight' or 'édndition' and t*social
dowinahce* are positively correlated for the population being modelled. I
believe, as does Lomnicki 1980, that this assumption holds reasonably for
many animal populations and, particularly, that it is true and
appropriate for the Mute swan populations I was initially goncerned with.
It is likely to be true for Mute swans because: (i) they engage in
violent physical combat to settle disputes, (ii) weight increases with
age, Diagram 2a, (iii) age and social dominance are inversely correlated
(rank 1 = highest dominance), Diagram 2b; hence (iv)-(i), (ii) and (iii)

imply that weight will be correlated to social dominance, as shown in
Diagram 2c.

I note in passing that the main tenet of these:mddeis is diametrically
opposed to the assumptions of such techniques as' 'length-frequency' data
analysis for studying population processes. These methods (eg. Pauly &
bavid 1980) assume that size (length, weight) is éomgletelx determined by
growth rate, such that any animals of the same size are assumed to have
precisely the same ages. While such techniques may provide a useful first
crude assessment of population growth characteristics (eg. for fisheries
biclogists, Pauly & David loe. cit.) such approaches seem quite
unrealistic. 1If such length-frequency models - do apply to some real
species in any detail then the 'Condition' models described in this paper
would most certainly not apply to those same species!

12




Relationships between Age, Weight and Social Dominance in Mute
Swans. Figure la, taken from Reynolds 1972, shows weight
increases with age for both males and females, Figure 1b,

fron Lesselles 1975, shows Social Dominance in relation to Age.
Hence we may deduce, Figure lc, that Weight and Social Doninance
will be releted. :

Diagram 2.

| ] REE IN MOMNTHS >
WEILHT /\/\ / . .f'. ""..
IV 10 //._ﬁ:‘_'—fi\ e o——o- : o
Kg. ¥ \/ .
FEMALES / / /
! . - /._-_‘/.*.-‘ / \

o ——

H

Dia. 25

Age
Lh

Geats

HENC E

Dia., 2¢

SociAL
DOMINANCE

I AS ONF D J ¥ ™
Ard wiater

XN D J §p

MoA o om g
151 winter

A M 1 2
18! suminer Ird purnmer

Ace Plotied Against Position in the Rank Order.
& Male
8 d '
R ? Female
6 - & ] Stex unknown
o9 d
l.. E . ?
o o"? e d o' ?
2 d o‘d'g odd
1 9 (=l 2]
5 10
Mo 15 20. 25 .
dahéna.nt': Leas é

Position in Rank Order dominan€

mos ¢ dominant

[eqs [“ a.’Oﬂr:han =

e

— BODY WEIGHT —
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While the models described here have been developed with such
particularly suitable species in mind it is likely however that they
would hold for a much wider range of species, albeit with less
exactitude. The reader is encouraged to consider to what extent such
models might adequately reflect the dynamics of populations of species
with which he is particularly familiar in the field. In doing so he
should remember that, while the examples I use here-refe_r mainly to birds
and mammals, there are  however long 1ived," slow growing invertebrate
species." to 'which the models might equallylwel'l - apply. He should also
seriously consider the time scales involved: while the food reserves
accumulated by a large animal may last it for some time, for example _oné
to two months for Mute swans (Andersen-Harild 1980) ‘the maximum food
reserves that may be accumulated by a small passerine, s'uch as a

Bullfinch, will only keep the passerine alive for about one and half days
{Newton 1972).

3.2 Model formulation

We concluded above that we were interested in the partitioning of food,
or energy, resources between individuals and that within individuals we

are also interested in the partition between (i) growth and maintenance
and (ii) reproduction. ' '

We shall assuﬁse that individuals that have greater sizes or social
dominances will have different breeding potential and,"'.f_'or- simplicity, we

~will further assume that body weight is a good index of social dominance
and breeding potential.

Consider therefore the possible changes that could occur over a sbecif‘ied
period of time to ANY individual of known weight at. the start of the
period. During the period it will be searching for food, eating food,
converting the food into energy, body mass or reproductive mass, and it
will be exposed to various risks of death. We might summarise the
eventual possible outcomes, for itself, as: -

ik




I: i. Death
ii. Nett loss of weight
iii. Weight maintained

iv. Net gain of weight

While II

it might have reproduced, with varying_ degrées of' success.
Some reproductive success could, in theory, be expected for
ail outeomes I: i.-iv. above. On average, we would expéct
however, - that the ‘'heavier' animals would reproduce -more
effectively. ' '

We could envisage characteristic probabilities of each outecome I: i-iv

for each weight class, W, ang also characteristic fecundities. The most

convenient way in which to summarise such c¢hanges would seem to be in the
form of a compartment model that is very similar in structure and concept
to a Leslie Matrix model. The important difference however is that the
dimension{s) of the matrix represent Weight . (or condition or socizl
dominance) classes, not age classes. In practice such assignment would be
easy for some species but problematical for others. For example the daily
weight fluctuations of individual Bullfinches may exceed the wvariations
of the population mean over a whole year {Newton 1972), and in such
instances obtaining weights at standardised  times would be__difficult,

occasionally even impractical perhaps.

The process of setting up such a matrix is shown in Table 1, bht first it

is necessary to formalise the model a little more:

Assume a population of animals can be separated into C classes on the
basis of condition/weight/social dominance. For each class, Ci,'there are
characteristic probabilities that an individual in the class at the start

of a period of time will suffer one of the following fates by the end of
the period. '




1. it will lose weight, and become a member of .the next lower class.
For the case of individuals already in the lowest class, these are

assumed to drop below a critical threshold and starve to death
during the period

ii. it maintains its weight, and remains in the samejclass at the end
" of the period '
iii. it gains weight, and enters the next highest class at the end of
the périod-

iv. it dies from density independent causes.

These possibilities are illustrated in Table la. The - model, as here
defined assumes & time period sufficiently short that only one change: in

class can be achieved per interval. More complex conditions could,
However, clearly be coped with. . .

Similarly, for each weight class C. there is a characteristic set of

fecundities such that, during the time period, the per capita production
of offspring into the various weight classes will be Fij’ where:

[ S
H

1 to C and denotes parental class

"

1 to C and denotes offspring class

as illustrated in Table 1b.

These survival and fecundity values may be written in 'matrix. form, as
illustrated in Table lc. - ' '

We note the following important differences from _the.'familiar Leslie
Matrix formulation: '

Dynamjics. The model permits much more complex dynamics; allowing
considerable flux around the various condition classes. The usual form
of a Leslie matrix, although based on some probability values,
enforces a completely deterministic progression from one class to
another (an exception is Usher's model for the growth, which has

probabilities for (a) growing, (b) staying the same size). The

16




TABLE 1

The table starts {la) by showing how individuals in classes i—v might be considered
to: Gtarve, 5; Loose Weight, L; !sintain Weight, M; Cain Weight, G; Die, D. Part
{1b} shows how fecundity values could be nscribed to esch class.  Part (le)
illustrates the structure of & matrix corresponding to the changes S, L, M, G, D,

£ and ff listed in parts {le and 1b), vhile part (3d) ijllustrates the structure

of the matrix by substituting mumerical values for the variables. .Th.e_se velues
{1d) are used later in the paper as EXANPLDY DATA SET 2. EXAMPLE DATA SET 1 has

no fecundity term on rov 2 (ie., ff v = 2'2.5 = 0.00) and the fecundity term of

class (v} into class (i) is 5.% not 4.5 (ie, fv = '}:l

5 = 5,5}, See alsc Table &.

la Sterting classes of the individuals
Categorv of 'Weipht!
change ete, i ii iii iv v
Starve Li =D - - - -
ioose Weight - Lii Liii Liv Lv
Meintoin Weigh i Nid Miid Miv Hy
Galn Weight Gi Gii Giii Giv -
DIE {density) Di Dii Diii  Div v
(independent)
b ) tarting class of parents
Fecundity i ii 131 div v
. Offspring reared into
classes:— i - - fiii fiv v
ii - - ffiv v
iii - - - -
ie ) TFROM' CLASS
The Matrix structure . i ii iii iv v
i Mi Lii 8] fiv v
ii Gi Mii Liii 0 v
TT0' CLASS iii G Gii {iii Liv 4]
iv 0 ¢ Giii  Miv v
v 4] 4] Giv My
.. DIE Di + Li Dii  Diii Div v
1é  Example values for P i il iii iv v
matrix
i 0.50 0.1 ©,00 k.S 4.0
i3 0.10 0.58 0.10 0,0 1.0
iii .00 0.13 0,64 0.10° 0.00 .
iv 0,00 0.00 0.16. 0.u7 0.10
v 0,00 0.00 0.00 0.18 0.85
.. DIE 0.k 0.15 0.1C 0,05 0,05




condition model (as currently described) although deterministic in the
form of its output nonetheless encapsulates several different ‘'routes’®
to and from each class; the c¢haracteristic time periods for  these
routés will, ecologically, be reflected in the age distributions
ﬁithin the condition 'classes. These characteristic time periods will,
at. equilibrium, be similar to the 'bassage time' and 'mean lengths of
stay within a class' for Markov models. ' :

Starvation. We note that 'starvation' can only 'apply to individuals in
the lowest condition class; and that this should be thought of as an
additional risk of dying for that class only. While the model does
permit the possibility that an animal initially in condition eclass i
will eventually starve, 1t can only do so after a minimum of ¢t = i
time periods. ‘The effects of class dependent mortalities from other
factors, such as predation can be incor-por'atéd into the -direct class
mortality parameters and these do not, of course, operate with a time
delay as does starvation {(Figure 1).

3.3 Unconstrained population growth

The use of the model for this simplest case jrs illustrated in Figure 1 by
the output of a simulation program LOMNOC.BAS using hypothetical data for
the transition matrix and starting, arbitrarily, with 50 individuals in
the highest condition class. After an initial period of instability
(about 10 time periods)} the numbers of animals in each condition class
rise, exponentially, at rates determined by the NET gains and losses as
summarised in the transition matrix. Plotted logarithmically, the siopes
of these lines would show the intrinsic rates: of .increase for the
classes. Dominant eigenvalue and eigenvector would (presumably) also giire'
the intrinsic rate of increase and the ratios of numbers per class at the
stable composition, as they do for Leslie matrices.
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Figure 1.

NUMBERS

Unconstrained population growth,

The figure show output from the simulation program LOMNOC.BAS,
Plotting numbers of individuale agalnst time, The curves
numbered 1-5 correspond o numbers in esech of the five weight
classes,

The two arrows at the origin indicate the number of class 5

- individuals used to 'start' the simulation at time zero. licte
the initial instability, followed by gradual increases in all
" weight classes,




3.4 Constrained population growth

3.4.1 Constrained popuiation gfowth: general

The model, as deseribed- above and 'illustrated_ in Fig. 1, is extremely
limited (as are simple Leslie Matrix models) in that there is no stable
equilibrium: the population either increases or decreases exponentially,
except for a (unique) unstable equilibrium.

In classical population dynamics, stability -is. usually enforced by a
constraint on the popuiation size that limits net growth with respect to.
some hypothetical density (carrying' capacity, X), eg. - equations .
2.2 » 2.7. This is little more than a mathematical fudge factor to ensure

that Nt+i -+ K. The precise form in which Ny,; approaches K will depend

on the function wused (here K~ assumes the rate is linearly
proportional to the difference in densities N. and g). Other formulations.
can be used, but there is little detailed theoretical justifiecation for
them, nor is there, for most species, an easily definable concept for X,

far less an adequate definition by which it might be measured in the
field.

Similar restraints may  be incorporated in matrix models of population

growth: readers interested in the details of these procedures shouid

- consult, eg. Usher (1966, 1976) and Beddington (1975). In the present

model of population condition and growth a formulation that is rather
realistic for many populations may be suggested.

Assume that there is a maximum amount of food available 4in the
environment of the population, Kp, capable of supporting a biomass, K, of
animals. There will, due to random effects, be some flux of individuals
from one condition class to another, as suggésted by our previous matrix
formulation. However, if, at any time t, the total biomass of the
population,.KP, exceeds that whiech can be supported by_the environment,
K, then some individuals will be unable to maintain their condition, due
to lack of food. Assuming that the time period,'t, is sufficiently short

for only slight loss of condition we could envisage these animals passing
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from there current class C; to class C,_,s this loss of weight being
directly due to competition for the limiting food resource; the

restriction that those individuals who 1lose condition and start from
class C, will starve to death similarly applies. We could envisage this
competition -taking either of two extreme forms, commonly termed

'seramble’ and 'contest"competition in the literature, and defined below
in the context of these models: '

'Scramble' competition assumes that individuals “get, or fail -to get,'

tenough'! of the limited resource entirely at random, ie. 1ndepéndent of
any phenotypic characteristics of those individuals, In the context of
our 'condition' model scramble competition implies that mortality induced

by lack of the limiting resource would be independent of the condition

1288, Ci  of the individual. While such a situation is rather against

the tenets on which the nmodel is founded, it is perhaps possible to
envisage environmental restraints that might impose such an effect
{(unpredictable and heterogenecus  distribution of Ffood within the
environment). More importantly, it forms an interesting special case, as
it amounts to a formulation of the condition hypothesis in the absence of
social dominance hierarchies which can then be used as a null hypothesis
to investigate the effects of such hierarchies. For this special case we
could describe the_-difference between restrained and non-restrained -

populations by the formuia:

Where C; = condition class, 1 =1, n §
K = carrying cepacity biomass i

t

P = |

§

projected biomass in absence of competition

and with the mathematiecal assumption that Cn+1 = 0, or the obvious

restriction that the second term does not apply when i = n.
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FIGURE 2a: Flow chart of computer algorithm for SCRAMBLE competition.

Reduction factor; RED.F, equals-:
(K.biomass)/{total projected biomass)

L

For each class, from lowest
to highest but one

(SI =21 toN -1)

\)

Numbers in’ RED,F # (1.0 - RED.F) *
N this class, =J numbers projected| *$| numbers projected
sI for this class ] for class above
6 Next class, SI
Numbers in = RED.F * Projected numbers
highest class for highest class
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Figure 2b: Flow chart of the computer algorithm for CONTEST competition.

Food left = Total food

¥

For each class,
starting with highest
(IC =5 to 1 step -1)

If food
required for
class ¥ food
left

Numbers rem&ining in
class = (food left)/

" (requirements/individual
Humbers ailowed in for that class)
class = Numbers projected
for class
v
Food left = Food left

- Foci requirements for
this class

Prom next class
%i down to 2nd .
(For IC2 = IC-1 to 2)

Numbers dropping to
lower eclass egqual
those that were in
previous class

Numbers going to class
: below the split class =
'hﬂaI'Humbers originally in

“| split cless — Numbers
remaining in split elaess

4

REXT IC

FN end [d&
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This formula enforces the dichotomous assumption that each individual can
{at. random for scramble competition) either (i) maintain the condition it
would have achieved in an unrestrained population or (ii) survive for the
current time period by using some of its own body's food resources to
supplement its diet, thereby losing'weight/condition during the period.
Note that this puts a restriction on the time period selected in relation

to the class interval. A worked example of :;such changes lis shown in
Table 2a. ' -

In summary I should emphasise that the effects of 'Scr'amble" competition
as here defined are not random with regards to mortality. The effects of
'Scramble! competition give random allocation of resources to
individuals, with consequent random probabil'ity of weight loss to those
individuals but, because the model assumes only lowest condition'-animals

will die"as a result of weight loss, the mortality effect of Scramble
competition is not randcm among the classes. ‘

'Contest' competition. The same dichotomous options apply, namely (i)
survive and maintain weight or (ii) survive by.using body resources and
“thereby lose weight, but the probabilities- of the twoe events are nbw
considered to vary depending on the condition/weight of each individual,
'Contest' competition implies that the partitioning of reséurces depends
on the outcome of contests between ihdividuals (sometimes physical
combat, but often special displays or an established dominance
hierarchy/peck order, after which the 'winner' gets as much as it wants
and the loser gets the remainder, or nothing). In species for which there
'is either a well defined dominance hierarchy or in which display/cobat.
success is closely related to physical condition we will .not.go far wrong
if we assume individual_s high in the hiér‘a.ﬁchy always win in contests
with those much lower in the hierarchy. Accordingly given an amount K of
limited resource, it will be partitioned according to the rule: ‘'those
highest in the hierarchy get all they want, until there +is none left;
below this critical level, the remaining individuals get nothing, so ALL

those below th_at level must use body resources to survive and will hence
lose weight'.

2k




TABLE 2: Assume an initial population of 200 individuals divided

among 5 weight classes as shown in the central column.
For arithmetic simplicity assume that any individual
from any class requires 1.0 units of food to survive
and maintain wéight. Given a total of 100 units of
available food, the changes due to SCRAMBLE and CONTEST

competition will occur as shown in columms (a) and (b)

respectively. :
{(a) ' (v)
: Composition :
After before After
SCRAMBLE conpetition CONTEST
competition Numbers/class competition

Class Number

i
+

A
n
+

15 € 30

10 50
Total 180 200 180

Starved 1

- 20
Lost Weight .

and survived Q0 - ' 80
Mean Class 0,68 3,05 . 2.83
Summary

With SCRAMBLE competition only 10 individuals starve, but 90 loose
weight so that the mean cless level drops more, to 2.68.

With CONTEST competition 20 individuals starve, but only 80 loose
weight and the resulting mean class level drops less, to 2.83.




We may express this in Flow diagram form, as shown in Figure 2b.

The possibility that some individuals ‘low in the hierarchy are more
efficient feeders than some individuals higher in the hierarchy is

accounted .for in the model by the probabilities of weight gaining and
weight loss, see Table 1lc. |

3.4.2 A model of a population limited by competition for rescurces

Having definéd our concepts of SCRAMBLE and CONTEST- competitioﬁ for a
limited food resource of amount K, we can now envisage an iterative
simulation model of the form shown inm Figure 3.

Effectively the transition matrix P (of fecundity, growth, maintenance or
loss terms) determines what happens unless the projected biomass exceeds
that which the food supply can support. If it does exceed this threShold;
K, then the vector of projected numbers in each class N.PRQJ must -be

reduced according to the rules of the selected mode of competition
(EITHER contest OR scramble). '

For .the simple flow diagram of Figure 3 to be strictly applicable, we are
making the following assumptidns:

i. offspring reared inte particular classes do not compete. for
"parental' food until they reach that class. This iz equivalent to
saying either that they use a qualitatively'différent food resource
OR that food is effectively super-abundant during the rearing
period OR that their parents supply . it for them, etc.

ii. the time of food shortage must be short, so that the amount of
_weight lost between one class and the next would be sufficient to

provide the animals' maintenance energy for the whole of that'time
interval ' '
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Figure 3: Flow chart showing the nain portlons and sub-routines of the
'competltlon model of population dypamics LOMUO3.BAS.
Hote the position of the * in the flow chart, which indicates where
K (K.biomass) is varied each time united in the.éubseguent progren

LOMER2.BAS, described below.

Set initial vector of numbers/class H.IOW

I
Set matrix of Transition values P
|
Set maxirum biomess, K.Biomass.
1
Choose type of compstition
|
—>1 For each time inverval, T
I.PROJ = P * L.IOU
N Calculate total projected Dicmass, P.biomass

vhich

P.Biomass JES ¥ type of
>K . Bilomass 4 comp.
Impose Inpose
N. OK = N.PROJ scramble contest
competition conpetition

_. | L
n PRINT N. OK N N

set ¥, 0K OK set N, CK
—————

I

-

Advance time: N,I0OW = I, OF

N

Zero projected numbers: LI.PROJ = zeros

\72

< : llext Time Interval

<

*K.Biomass = K.biomass - (R¥ND (x) )
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iii. energy requirements are proportional to body mass for all

individuals (this assumption could be relaxed, see below).

These assumptions would be met by idealised circumstances as shown in
Figure 4, which effectively permits us to apply the restraint of a short

interval t to a longer interval T, as there are no restraints whatever
operating outside t. ' '

The results of such simulations are shown in Figures 5a and 5b, for
Seramble and Contest competition respectively. The values in the
transition matrix, P, are identical to those used in the example of
Figure 1. It can be clearly seen from the figures that, after initial
periods of instability the population numbers rise (identically to Fig. 1
for the first 47 +time steps), wuntil the  'threshold' is reached.
Thereafter the population composition fluctuates briefly, and eventually
reaches a stable composition. We note particularly: first that these
stable compositions are different for Scramble and Contest competition;
- secondly that the time taken to reach ~the stable level w=after the
threshold has been reached is shorter for Sdramble, compafed to Contest
competition. Third, the populations reach the =same stable weight

distributions if initial numbers are below or above the 1limit imposed by
K. '

In summary the effects of Scramble competition produce an equilibrium
population comprised of more less-fit individuals whereas, conversely,

Contest competition produces an eqguilibrium population of fewer more-fit
individuals. '

3.4.3 Age structures

I emphasise here that the stable levels illustrated in Figure 5 refer to
numbers of individuals in each ‘condition' c¢lass and not to the age
structure. However, as indicated in the introduction, the model pr'oirides
a diverse series of pathways Ffor getting from one weight class to

another. For example 'lucky' individuals might, with low probability, go
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Figure 5. The figure shows changes in numbers of individuals per weight class
(classes numbered 1-5) against time periods of the similation model.
The populations are limited by the same amount of ‘'available food
equivalent', and both start from en initial composition of 50 Class 5
individuals at time t=0, (see * at figure origins).

__FIG.SA
10—

class

Relative numbers per

In Fig. 5A the population is constrained by SCRAMBLE competition.
In Fig. 5B the population is constrained by CONTEST competition.
Hote that both types of competition lead to stable levels of all.
classes (class numbers given above right hand end of the solid

lines representing the classes in each figure).

The levels reached by the classes under the OTHER type of competition
are shown by the numbered dotted lines in each figure to emphasise

-that the clesses reach different stable levels for the two types of

competition,

SCRAMBLE

cl _

20 60 80 100
TIME UNITS -
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from class 1 to class 5 in just four time periods; other individuals might.
take longer, spending some periods only maintaining weight, or losing and
then regaining weight; yet others might gain weight.initially then lose.
it all and =starve; and so on. At equilibrium, - for either type of
competition, we can hence envisage a varie_ty {= to the number of
classes, C) of distributions of ages within weight classes, which could be
illustrated as a set of C histograms (% frequency per age class) for each

weight class C. Conversely we would envisage a set of histograms giving

the % of individuals of a specific age (a = 1, ...A) in the different
weight classes. '

At this stage I will just comment that a stable age structure will (or at
least is very likely to) exist. Methods for finding such stable levels.
have been developed for Markov models, and for variatibns of Leslie
Matrix models (eg. ©Usher, Beddington). It is possible that similar
algebraic approximation technigues could be developed for the present
models. If this proved too complex, the age distribution(s} could
nevertheless presumably be discovered by extensive use of random numbers

within constraints given by the outputs of the present model.

3.5 Seasonal variation

The model deseribed in the -previous section.. has  assumed that the
environment of the population is homogeneous in both space and time.
Spatial heterogeneity is fairly complex, and is considered briefly below,
but temporal variations can, at least for variations in the important

parameter K, be quite readily introduced.

In the following example we will confine temporal variation to the actual
amount of food, K, available in given time periods, T. While it would Dbe

quite possible to consider Kt as a function of environmental variables

(eg. Ky = flear, eoy ves egy) ) we will for purposes of illustration, here

assume that the available food in a given time: period, K varies at

t’

random within the interwval Kmax to Kmin'
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Figures 6A and 6B. The figures shov the effects of environmental variation on
" the equilibrium levels of the Weight Classes,

Environmental variation is expressed as percent variation of
K.biomass below its maximal level: e maximum value for this
variation is set as V% (plotted on the abscissa) and varied
randomly for eech time unit of the simulation according to a
uniform random distribution. The numbers of individusals per
class, averaged over 50 time periods at equilibrium, are
plotted logeritimicelly as the ordinate. Figure 6A is for
SCRAMBLE competition and #igure 6B for CONTEST competition.

The mean class level, the standard deviation end the standard
error are shown for each class, together with their sums,
representing the effects of the totsal population.

Note that class levels drop most for SCRAMBLE competltlon
.and have more similar varlablllty.
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“This optioz_i has Dbeen introduced into a second simulation program:
LOMSR2.BAS, identical to the first except that it allows the value of
',"Kmin to be set on input, and that it varies K (K.biomass) during the time
loop, by the use of a random number generator (see * in Fig. 3). A
routine to average the leve.ls of each class over a chosen period of time
'is also included to facilitate comparisons of different outputs from the
model.

The equilibrium results of such simulations, again wusing the same
transition matrix P as for Figs. 1 and Y4, are shown in Figs. fa and 6b
for Scramble and Contest competition respectively. These figures plot, on |
a logarithmic scale, the average number of individuals in each ﬁeight
class 1-5 (and their total) for increasing amounts of variation of K
below its maximal level. For SCRAMBLE competition, Fig. 6a, it can be
clearly seen that\ the total, and all classes, drop considerably as the
environmental instability increases. Note particularly that the Standard
Deviation bars fall well below their stable 1levels for a uniform
environment (indicating that for a very high proportion of the time the
populatiori is below this level. N.B. the distribution will be skeh, 80
precise interpretation is difficult) and, indeed, that .f‘or' extreme
variations ( >40%) the class levels would remain permanently below the _
stable levels they achieve for a uniform environment (twice the standard
deviation bars is still below the level for uniform conditions). For
CONTEST competition Fig. 6b, the situation is markedly different. The
total "level, and all class levels drop relatively less, and the upper
standard deviation limits are much closer to the appropriate levels for
uniform conditions, showing that the population is depressed less
continuously than is the case with SCRAMBLE competition, for the same

amount. of environmental instability. This point is further emphasised in

Figures 7a and b (for SCRAMBLE and CONTEST competition respectively)

‘which plot', for each class, the coefficients of variation i'of class
number_s against % environmental instability. The - coefficients  of
variation rise appreciably, and fairly ‘consisténtly for all classes for-
SCRAMBLE competition. With CONTEST competition the rise is much less. for
the higher weight classes (4 and 5), about the same for class 3 and very
much more for classes 1, 2 and tpe total. This reflects. the 'fact that
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The figures show for SCRAMBLE and CONTEST competition respectively the effects of environmental
variation (as defined in the text and legend to Fipure 6)on the variation of numbers of
individuals per class. This class variation per tine period is expressed as the Coefficient
of Variation (Standard deviation bars of Fig. 6 divided by mean level from Fig. 6) and plotted
linearly as the ordinate on Figures T.

Figure 7.
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- FPigure 8, Average biomass attained by populations at equilibrium ’
: for SCRAMBLE and CONTEST competition for varying.
amounts of seasonsl variastion of food, K. blomass, .
expressed as percent below maximum available.

The figure shows Maximum, Average and Minimm 'food P
supported' levels and levels attained by the simulated |
populations.

SEE TEXT for details. Data set 1, '0ld Matrix'_
values.
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SCRAMBLE competition affects all classes and (for the wvalues of growth,
death and fecundity used in this P matrix) causes the breeding numbers to
be depressed to a level so that they cannot so readily take the
population back to a high level following a ‘'erash'. CONTEST competition
on the other hand maintains higher numbers of ‘'breeders' {see Fig. 6),
and the population is able to respond umuch more rapidly to increases in
food which may follow a sharp decline. This is illustrated in Figure 8,
which plots the average total biomass attained by populations constrained
by SCRAMBLE and CONTEST competition against % environmental instability in
K.biomass, indicating the maximum level of X and the average - level of K
for that variation. We note . that CONTEST populations are .consistently
close to the average availability, whereas SCRAMBLE populations drop well
below this level for -variations above 50% in K.

If we examine Fig. 8 in detail we see that, for SCRAMBLE competition at
low variations ( <20%), the attained biomass actually exceeds the average
available. This is possible because an excess of individuals are produced
during the period of super-abundant food (see Fig. 4) and, even at
equilibrium, some of these survive by 1losing weight (ie. by utilising
food 'stored' during the unlimited growth period). Such an argument also
applies to CONTEST competition, but if we look at the average CONTEST
line in Figure 8 we. see that it never exceeds the.availabie average. This
is not inevitable however, rather it is an artifact of the values of this
example data-set in the P matrix and the rules of CONTEST competition.
The reasons for ﬁhis.restriction can be seen by examining Table 3 which
shows, for both CONTEST and SCRAMBLE competition, the steps involved in
the calculation of changes in numbers per class fér a single time
interval at the equilibrium conditions of Fig. 8. For CONTEST competition
classes 2-5 reach equilibrium immediately after fecundity and mortality
in the ‘'plentiful’ food period (P x N, .#): only class 1 has an excess of
numbers under CONTEST rules, and as by definition these must maintain
weight or starve, there can be no excess biomass surviving. Conversely,
for SCRAMBLE competition all classes are in excess of their equilibrium
numbers at time t+ 1¥ (after the 'plentiful’' period and before SCRAMBLE
competition mortélities); consequently a small excess biomass, from
clagsses 2 to 5, survive by utilising resources - accumulated in the
'plentiful' period, and this mass_is in excess of X, -
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TABLL 3

The table shows the stages of caleulation st equilibrium numbers for COJﬁi‘EST_ and BCRAMBLE competition,

Tre trensition matrix, P, is nultiplied by the vector of equilibriwa. nuwbers, I 10 give the projected numbers after

‘growth’ and fecundity but before competition-induced mortality, column HPAPCLN

The next two colunns show the biomuss coleulations to determine the excess of projected bicmass, P,bLiomess, over

environmentally supporteble biomass, Y,biomass.

-

The finel colunn, Ht+1:- shows the final conditions after one siagye of the whole process, which represents & return

to the equilibrium conditions (shown initially in column Il,).

flote that with CONTEST competition classes 2-5 reach equilibrium nuobers at column Ny, %, but elass i only at column

3-'1,111. whereas ne class regains equilibrium numbers uuntil Ky,ql for SCLMILLE coupurition,

TRANSITION HATRIX c=l .
' ' Hass,. Hence . - givir
from .cless - L . t c=S . . clags 1 .

CLABS 1 2 3 L 5 ”1; 1'-.-w_1“ It-rl*- ) Lel% survivors are . end

1. .50 1k © L,50 5,50 . Q65,0 1517.0 7588.0 11262.0 (6500-3675)/5 = . LB25 = 9é5.

2. Ao L58 .10 0 0 275.9 257.9 1L18.5 3675.0 5 25T.

3, 0,13 .8k L2100 114.1 115,21 708,46 2256.6 116,

L, 0 0 .16 ..67 .10 90.C 9%.0 603.3 15k8.0 50.

5, 0 0 0 .18 .85 105.0 105,06 918,0 . 918.0 166,

S AMBLE
TRANSITION MATRIX ‘ Survive and Survive by
maintain reducing
fron class i I n weight weight .

cLass 1 2 03 & 5 "t Lelw te1® x 0.932 x 0.068 Heerd

1. 50 1L 0 k.5 5.9 1132,2 114,13 1113.1 . 19.0 . 1132,

2, A0 .58 10 0 0 267.7 25,2 260.2 1.5 267,

3. 0 .13 .6k .10 0 106.9 109,40 102.3 5.5 106,

L, 4] 0 A6 67 .10 66,0 60,7 62.2 3.2 &6,

5, 0 C 0 .18 .85 53.4 57.3 53.k - ‘ 3.
Weiphts vectﬁr : . Hyyy* = numbers after fecupdity and 'random
CLASS  WEIGHT ) mortelity but BEFORE competition

1. 5.0 _ ‘ .7 induced changes

2- 5-5 : o . . . .

3. 6.0 Hiy13 ¥ squilibrium nuobers AFTEH competiti

i, 7.0 induced chenges.

5. 8.5
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TABLE 4: The effects on the equilibrium conditions for SCRAMBLE and

CONTEST competition of altering the structure of the P

matrix by introducing s fecundity velue {%X0) on row 2,

and nending the value of element 1,5 so that class 5
parents still produce the same bionass of offsprin;v;.'

. The effects of this change in structure on the equilibrium

conditions are small for SCRAMBLE competition but very -

narked for CONTEST competition,

The Model's data

Data set 1 Dats set 2
Class
weipghts '0ld! P Matrix "new'! P matrix
5.0 .50 L1b 0 L.s 5.5 .50 L1k 0 k., L4,0.
5.5 .10 .58 .10 0O 0 10 .58 10 0 1.0
6.0 o] .13 .6k .10 0 0 .13 .6k .10 0
7.0 0 0 A6 67 .10 o 0 S SN -y SR Lo
8.5 0 0 G .18 .85 0 0 0 18 .85
Equilibria for UNIFORM model
SCRAMBLE
Data set 1 | Dats set 2
'old! P equilibrium ‘new' P equiiibrium
1. 1132 1035
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We may confirm that the apparent restriction of the equilibrium mass for
CONTEST competition shown in Fig. 8, is due to the structure of the P
matrix by altering its values. Changing the transition probabilities
would clearly alter drastically the equilibrium values, but we would
expect, and can confirm from (unillustrated) simulations, that changes to
the fecundity values (to, eg: 0, 0, 0, 5, 6.5; or 0, 0, O, f#, 6) do not
greatly alter the equilibrium numbers for SCRAMBLE or at ali for CONTEST
competition and that the equilibrium mass for CONTEST is still restricted

to K. This is true for a wide range of fecundity vaiues_ (so long as
overall production exceeds overall mortality).

Howéver', if we change the P matrix's form so that individuals can be
'reared' into class II, as shown in Table 4 (note that the total mass of
offspring reared by class 5 individuals is t‘.he' same for the ‘'old' and
'new’ P matrices of Table 4) we remove the restriction on the equilibrium
zluassl for CONTEST competition and, moreover, change the basic dynamies and

equilibrium conditions for both SCRAMBLE and CONTEST competition, as
shown in Figure 9. '

Figure 9a illustrates the situation for SCRAMBLE competition using the
new P values. As' in Fig. 5a the class numbers rise smoothly to a stable
level, and remain there. C(Class 1 is the commonest, as before, but there
are fewer class 1 individuals, more individuals in classes 2 to 4 than
previously (see Table 4a) and a greater overall biomass than f‘ormerly.
Figure 9b and Table 4b show the new equilibrium for CONTEST competition,
" and the _éha_.nge is much more dramatic than for ~ SCRAMBLE. Contrasting
Fig. 9b with Fig. 5b we see the uniform initial rise, as formerly, with
class 1 . individuals rapidly becoming the = commonest. '~ However, - when
competition adtually takes effect (about time unit 25) class 1 drops very
r'apid'ly in numbers, becoming rarer than class 2 by time T = 50, rarer
than classes 3, 4 and 5 by time T = 70 and falling to a stable, extremely
rare level by time T = 90. Hence altering the fecundity values to permit
'rearing' of individuals into class 2 (see Table 4) has slightly altered
the relative frequencies of the classes for SCRAMBLE competition, while
retaining their rank order, but has drastically altered the population

structure for CONTEST competition by changing class 1 from the commonest
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Figure 9.
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The figures plots numbers of individuals per weight~class (classes 1-5)
against time in the simulation model, using the values from the 'New'

transition matrix and for both SCRAMBLE (Fig. 9A) and CONTEST (Fig. 9B)
conpetition.

The levels for each class are shown by the solid lines in the figures,
each line being identified by a class number above it at the right of
the figure (Heading lew matrix). The dotied lines appearing to the
right of the figure show the levels reached by those classes (numbers
and lines eppear under the heading '0Old matrix') using the '014°'
transition matrix for comparison. (See Figure 5 for an identical
plot as to how these '0ld' levels were reached).

Hote that while the general levels and relative order of the classes
for SCRAMBLE competition (Fig., 9A) are quite similar for both
transition Matrices the outcomes under the different transition
matrices are dramatically different for CONTEST competition. In
particular, under CONTEST competition, class one changes from being
by far the commonest to by far the rarest, with consequent dramatic
changes in the absolute levels of classes 2-5,
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Figures 10. These figures (10a and 10b) are directly comparable with
Figures S5a and 5b. They show varistions on numbers of
individuals per weight class for each class 1-5 against
time in the simulstion model, starting from 50 class 5
individuals. However, Figures 10 are results from the
program LOMSR2,BAS, which veries the 'carrying capacity',
K, at random for each time unit of the simulatian.

For these two figures K was varied randomly by a maximum
of 20% below its maximal value (value used throughout for
Figures 5, see text for details).

Hote that the classes reach similar levels under both
circumstances (compare Sa with 10a, S5b with 10b) but
that the fluctuastions of class 1 are more extreme with
CONTEST competition, '
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Figures 10, These figures (10c and 104) are included for direct comparison
with Figures 10a and 10b respectively. A1l four figures are

produced by the model program LOMSR2.BAS with 20% variation of
X.

Note that, as illustrated in Figures 9, the use of the 'New!'
transition matrix, alloving animals to be 'born' into the
second Weight—class dramatically alters the equilibrium
structure of the population for CONTEST competition, but only
has slight effect with SCRAMBLE competition.
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to the rarest. We emphasise that the change in the P matrix is lérgely
one of structure not valués as the new fecundity terms for class 5_
breeders result in the same biomass of offspring being reared per capita
(see Table 4). Reference to the last line to Table 4b confirms that the
équilibrium biomass for CONTEST competition (=8648) now exceeds the
limiting value of K (=8500) whereas with the: previous P matrix it 'was'-_
exactly equal to K. |

We may now return to our model which ac.counts for wvariations in K
(LOMSR2.BAS) and see the effects of the new P matrix values. With
SCRAMBLE competition and 204 variation the basic situation is much the
same (compare Fig. 10a and Fig. 10e) for both P matrices, but with
CONTEST there are marked differences (Figs. 10b and 10d). Essentially
classes 1 and 2 respond dramatically to variations in K under CONTEST
competition and it is this which permits CONTEST populations teo stay
permanently close to the actual limits of available food. This effect is-
summarised in Fig. 11 (which may be compared with Fig. 8 to show the
different effects of the two P matrices).

Examining Figure 11 in detail we see that, at zero variation in K,
SCRAMBLE populations attain higher sustained biomass than CONTEST
populations, as before (see Fig. 8) but that the CONTEST population is
now also above the K 'limit' (see also Table 4). As wvariation in K
increases, SCRAMBLE populations do less well (relative to the average of
environmentally supportable biomass): at 20% variation they are only as
successful as CONTEST populations; at 50% variation they fall below the .
‘average sustainable level'; at 90% variation they are slightly closer to
the minimum sustainable level than to the average sustainable level.
CONTEST populations however maintain a fairly constant excess of attained
biomass over average supportable biomass until there is 60% variation in
K below its maximum: subsequently the average biomass attained by CONTEST
populations drops only slowly, reaching. the average supportable level at
c 85% variation of K and not. being far below the average at 90%
+ variation of K. This is again due to the higher proportion of breeders
‘present in CONTEST populatiohs producing a more plentiful crop of
offspring, as is shown by comparing Figure 12a with Figure 12b. -The. .'
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Figure 11, Average biomass attained by populations at equilibrium for SCRAMBLE
and CONTEST competition for varying amounts of seasonal variation of
food, K.bicomass, expressed as percent below maxirmm available.

Bee Figure 8 for comparison and legend, and see text for details.

Data set 2, 'Hew Matrix' values.
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Figure 12,

Effects of environmental variation of available food, K.biommss,

on equilibrium numbers of individuals per weight class.

See

Figures 6 for comparison of these results, obtained with Data~set
2 ('llew Matrix' values), vith the previous results from the '0ld
Matrix' values (Data-set 1).

Note particularly the dramstic effect of the new data values on
VWeight class 1 changes
from being the rarest, on average, with zero variation of

K. biomass to the commonest, on average, with 90% variation,
while its variation per interval becomes extreme (see off-set

the outcome for CONTEST competition.
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See text for details and Figure 7 for comparison.
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. average number of class 1 individuals for CONTEST popul_atibns | rises
dramatically as varilation of K increases, and examination of Fig. 1.0d
confirms that they reach high number‘s‘very irregularly as food happens to
be available. This variation is illustrated in Figure 13, which 'plot;s_-
.coefficients of variation, for each class, against % variation in K. It
is interesting to note that for CONTEST competition the coefficiénts of
_variation tend to rise consistently as environmental variation rises, but
for SCRAMBLE competition the coefficients of variation peak at around 80%
and then drop. This may be Iinterpreted as the level of variation the
SCRAMBLE population is least able to cope with:  at lower levels of
variation (50%) SCRAMBLE populations achieve fairly stable composition
close to the average level of food availability; at high 1level of
environmental variation (c. 90%) they become constrained to a composition
closer to the minimal supportable level (see Figs. 11 and 12).
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FEASIBLE ELABORATIONS TO THE MODEL

4,1 More complex seasonality

In the previous section we introduced the possibility of variations of K
with each time unit, but retained the restrictions that (i) competition
did not directly affect the numbers of offspring reared and (ii) that
food was only limiting for a short period of each breeding cycle (see
Fig. 4). By elaborating the model's structure it is gquite possible to
cope’ with more complex situations, as, for example, when food
availability limits a female's ability to produce eggs {(or offspring for
viviparous animals) or when (winter) food supply is limited for a more
_protracted period {(the limit set on our current model is that the single
period of limited food must be sufficientiy short for an individuzl to

survive for that length of time solely by using food rescurces egquivalent
to the difference between one class and another).

Consider a time period 7 (such as a year) broken up intc S seasons
(months), as shown in Fig. 14. Food availability (mass/animal equivalent
mass) is shown by the solid line, and varies seasonally, being, say KS,
for each season, on average. If we assume an .initial population
equivalent in size and composition to the equilibrium population at the
onset of the reproductive period (Ro in Fig. 14) and assess its food
requirements so that (i) each individual grows and reproduces
unconstrained by lack of food and (ii) no individual starves due to
(winter) decrease in food we could construct a curve, shown dotted in
Fig. 14, of 'idealised food demand'. We might expect a real population to
'behave as indicated by the chain-dotted curve in Fig. -1?4: during winter
it is a little above the immediate limit of food availability (due to
utilisation of stored resources); in spring it rises slowly above this
‘level as food becomes more plentiful (we 'follow Perrins 1970 -in assuming
that, due to the required growth period of offspring and their energy
demands, individuals are likely to be obliged to lay eggs before food

availability reaches a peak); in summer it rises dramatically as
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Figure 1h. Hypothetical seasonal variation in the biomass of & population

that could be supported by environmentelly available food over
one season.

'FOOD SUPPLY'! - biomass that could be supperted by the food st
any instance IF there were that nany individuals extant.

'FOOD DEMAND'! - biomass equivalent of food that would be needed
to support a population starting at the envirommentally
supportable level, at T=R (onset of breeding) IF there were to.

be no limitation on breeding or mortality due to lack of food
resources.

'"POPULATION' - likely course of actual population given the
restraints of 'FOOD SUPPLY!,
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of fspring are pr‘odﬁced and use focd to grow, but, due to the restraint
mentioned above, is likely to remain below the available food and so may
-relax restrictions due to competition for a per'iod;'_ in autumn, - food
becomes less plentiful, and the restrictions of competition again take

effect, causing the actual population level to drop.

We can envisage capturing this seasonal complexity by having a sef'ies of
S = transition matrices, gsij, that correspond to the transition
probabilities for that season. In unrestrained conditions (relative to
food supply) these matrices again represent the probabilities that, in a
locally heterogeneous and unpredictable environment, a. given individual
will (a) find less food than normal, and lose weight (b) find enough food
to maintain weight, {(c) find enough food to gain appreciable weight or
(d) die due to density independent causes. The total mass of such an
unrestrained population would accordingly follow a _tr-ack_ like that of the
dotted curve of Fig. 14, assuming reproduction wes limited ¢fo an
appropriate period. If, for simpliecity, we assume that births (=
production and rearing of offspring to independence) takes place only
once a year {or time period T) and always at a set “time, (eg. TSS in
Fig. 14), then the model structure and simulation program would be quite
strajghtforward. We would requir*e., (i) S transition matrices E-sij (s = 12
.for- Fig. 14) of which only -ESij would contain fecundity values, the
others containing only transition probabilities and (ii) S§ values of K
that would correspend to the solid curve in Fig. ‘Ill..' Each matrix g-si‘
would be used in turn (S = 1-12; repeated for Y years): the population
would be constrained by competition throughout but, as explained above,
could {depending on the seasonal .var‘iation of K} be expected not toc be
limited by competition when food supply exceeded food demands. (We note,
in passing, that Bacon (1981) has used such z series of matrices to model

growth and competition of macrophytes in a river community).

For this special case (single broods at a specific season every year,
offspring becoming independent within one time period Ss) the form of the
model would be largely unaltered. We note that this simple wmodel would
permit us to investigate the effects of differing patterns of seasonal

food availability in different years, and the effects of these on the
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numbers of breeding individuals (ie. i,nvestigating the results  of

different K(= KS, 5 = 1-12) vectors of food avéilability,'either by using
the same K every model year, but different K matrices for different runs,

or by alternating one of a variety of K matrices -(Evs) in different years
for the same run of the model). ' '

Further elaborations would be possible: multiple broods could be
incorporated quite readily, so long as there was no period of parental
care exceeding a time S (such 2’ complication would require more complex
structure of the P matrix and additional sub-routines), even allowing for

a loss of condition causing time lags between production of one brood and
the next. '

4.2 Habitat heterogeneity
4.2.7 Background and theory

Studies of natural populations typically take place in a d'ef_‘ined spatiai
area, often chosen largely . for convenience rather than from more
objective criteria., In consequence the r‘esﬁlts apply, in detail, to' that
area alone and can not be easily extrapolated to other sites. Contrasting
results from different sites are difficult to compare ' because the
‘habitats of each are often ihadequai;ely, or just- differently, ‘described.
It is usual to find that the population processes are Iinvestigated in
much more detail than the habitat composition or other environmental
factors that underlie the causes of the populaf.ion changes. There is
consequently a need' for population studies to be more closely linked to.
environmental aspects of the habitats on which .much off the underlying
population process are founded. Unfortunately, wost models of population
dynamics are for ‘'closed populations of random mixing individuals -in'
homogeneous environments' and therefore explicitly ignore dispersal'
{migration and emigration) and effects of“ habitats. Dispersal from natal
areas is poorly understood in ecology and it is. often claimed that
dispersal into sub-optimal areas cannot be an impoftant mechanism of

regulating numbers because it could not evolve by natural selection, as
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dispersal is disadvantageous for the dispersers (see discussion by
MacArthur 1972). This argument is simplistic on two counts. First there
is no reason to suppose the dispersing jindividuals ‘'intentionally' go
into poorer habitat: they are presumably seeking for better conditions
and, with no prior knowledge as to where such conditions exist, may go
into, and perhaps never emerge from, less suitable areas. Dispersal, or
emigration, c¢learly involves considerable risk that favourable conditions
will not be found, bul provides a potentially high reward (of f‘a:vour'able
breeding) if they are found. Second, as pointed cut by Lomnieki (1978,

1980) it depends on the assumption that all individuals are identical:

- following Lomnicki (loc. eit.) .and the general theme of this paper we

consider the situation for a population of animals in which resources are
allocated unequally depending on condition or social _dominance-and
emphasise that these differences need not, in anyway, be genetically
determined. Consider 2 seasonally' variable environment where winter food
supply is typieally able to support only half the susmer numbers, or
biomass, and allow some density independent mortality, say 10%. Starting
with our rules for CONTEST competition, for simplicity, we consider the
likely fates of animals in each third of the social hierarchy. Those in
the top third have the standard 10% mortality risk, and a2 low risk that
due to chance factors they will drop in the hierarchy, they are however,
unlikely to drop a long way, below the critiecal half . way mark, so their
chances of neither starving nor losing weight. are excellent. The
situation for the middle third is more complex: those in the top half
will generally stay there, and perhaps move up a bit due to random
mortality of those above them (10% chance), and consequently those just
below the mid-point may expect to move up slightly; those well below the
mid-point will genérally lose condition, although 'lucky' ones may do
better, and others wmay 1lose condition appreciably.: The situation is
simplest for the lowest third: nearly all will lose condition seriously
and most are likely to starve; the survival probability for this lower
third can be thought of as being near zero. If we imagine this population
to be in an isclated large patch of 'good' environment surrounded by a
much wider area of ‘poor' environment cohtaining a few small paths of
reasonable habitat, it is at once apparent that: (i) animals in ‘the top

third of the hierarchy should stay in the best patch, where they have
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high expectations of survival and good breeding (ii) anixhals in the
middle third should also stay, as they are likely ‘to survive and perhaps -
increase condition (iii) animals in the lower third are almost certain to
die if they remain; even if the chance of maintaining weight in th'e
surrounding area is about a quarter of that in the best area this is
likely to be a much better survival prospect for those animals in the
lower third. Accordingly we can presume that an animal very low in the
social hierarchy at a time when food is scarce and competition ensues
should move, in the ‘'hopes' of finding an area with less severe
competition, as it is this competition which poses the greatest tnreat to
such individuals ('one of the most impor'tant aspects of the environment
to an individual is other individuals', Chitty 1966).

4.2.2 A simple model of heterogeneous habitats and d_isper'sal

While it would be possible to develop a spatial vefsion of the ccndition
model to account in some detail for habitat heterogeneity and dispersal
from a large patch of 'good' habitat to a larger surrounding pateh of
'poob' area Interspersed with some 'reasonable' regions this would be
both rather complex and involve many more unknown parameter. values. For

illustrative purposes it is simpler to assume a mosaic of patches of

'good' and 'poor' habitat dispersed at random and to assume individuals
have an average dispersal distance sufficient to take them from . one
pateh, across the next, to a third. If we assume %that dispersing
individuals are readily able to assess their ability to gather food in
the face of competition (the findings of J.R. Krebs and his colleagues
lends credence to this simplifying assumption) then we may safely assume
that dispersing individuais will (1) experience the conditions (to them)
in both habitats and (2) will settle in the area most favourable to them.
We emphasise that it is the conditions to the disperser which are
important: while it 1is clear that a 'low dominance disper‘sex_" is likely
to settle in the poor' area, one can reédily envisage condiﬁions that
might cause dispersal of 'high dominance' individuals from the poor area,
and these might well be expected to have better prospects in the 'good!
area if their condition puts them above the 'good threshold' level.
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We must of course recognise that in some species dispersal will oceur in
relation to proximate factors rather than the ultimate factors that
confer selective advantage to the dispersers (‘'Ultimate' and 'Froximate’
are used sensu Lack, 1954). For exampl'é migrant birds disperse, or more
precisely, migrate, in response to seasonal changes in day-length that
signal, or 'give prior warning of' the onset of inclement conditions.
Regular movements such as migration clearly require different treatment
to that of shor‘t. distance movements of iﬁdividuals from non-?migr'ator'y

populations, as is envisaged in this discussion of dispersal.

The simplest dispersal situation to envisage would be to return to our
seasonal model and assume two habitat types of equal food. availabilities
in 'summer' but diferent K maximum food in winter. X maximum would be. the
same in 'good' winters in both areas but the 'good' fluctuates little in
bad years, say 20%, whereas the 'podr' area fluctuates a lot (say 80%).
We couid use the seaszonal model to establish eguilibrium conditions for
poth in the absence of dispersal, and then link the two simulations and
look at (i) the Iinked equilibrium in ‘'good' habitat (ii) the linked
equilibrium in ‘'bad' habitat (iii) the overall  equilibrium cond'itions
relative to the sum of the separated situa.tions. The simulations could be
linked along the lines shown in Fig. 15; the flowchart of Figure 15 is
written principally for CONTEST competition, for which the process is
more obvious. I do not suggest that the flowchart of Fig. 15 is an ideal
way, far less the only way, of programming such a dispersal model, but
consideration of this flowchart points to some of the possibilities and
pitfalls. For example (see numbers on Fig. 15):-

i. We may assume that dispersal incurs some cost, and could account

for this by assuming that -a proportion of dispersers lose weight
during dispersal (due to difficulties of finding food in unfamiliar

and often poorer areas). This proportion could be varied in
different runs of the program.
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F;GURE 15: Flow chart showing how dispersal in relation to 'condition'

could be simulated,
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ii.

iii.

iv.

It is possible, though unlikely, that high ranking individuals might
be obliged to disperse from either area, but,. depend'ing on
conditions in the other area they might be better off in the area

from which they had come. It seems fair to assume that the best

immediate prospects for an individual, if it is .above the 'eritieal
.rank' in both areas would be to settle in the population with the

lower critical rank, as it is then more likely to ‘maintain its

position above the critical level. It could pr'esumabiy estimate the

critical level, and the frequency distribution -of the. classes

{(which could indicate longer term suitability. eof ‘the habitat?)
through interactions with 'resident' individuals in the habitat.

It seems clear that a disperser who is above the critical rank in

any habitat should settle in one of these (preferably the ‘'best*)

but it is less clear what a disperser who is at about the critical-
rank in the lower of the two should de. It seems likely however
first that it would do best to settle in that area whose critical
rank is closest above it and second that there would Dbe  some
uncertainty about both its own rank and its estimation of the
levels of the populations' <c¢ritical ranks. Accordingly the -

(integer) class inequalities > (see IIIs in Fig. 15) could well be
replaced by soe

The immediate prospects for a disperser below the critical rank in

~ both areas ‘are poor (it is bound to lose weight and may starve)

and, in theory, it should settle in the area likely to give'it the
better . prospects of gaining weight in the future if it does
survive .I However, unless we endow our ‘hypothetical. animals "with an
inherent ability to assess habitat quality per se it is ‘not - elear
that they could reliably assess this. The flow chart of Fig. 15
ignores this complexity, and settles them a£ random (in proportion
to the areas of each habitat).
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One could envisage programming a similar simulation of dispersal for
SCRAMBLE competition, but (i) it would be muech less clear how many
individuals should disperse and from which classes, and (ii) how to
determine where they settle, as SCRAMBLE competition implies that the
presence of ANY extra individuals, {(if biomass of animals exceeds
available food), detreases wWelight maintenance prospects for ALL
individuals of ALL classes, including themselves. This suggests that, in
populations where SCRAMBLE competition applies, emigration cost-benefits
would be extremely complex and uncertain. We might therefore expect that
it would only be of a clear advantage to individuals in the lowest
category (who are immediately doomed with high probability if they stay)
and even then only if the cost of emigration were small (jie. if the
prospects ¢f losing weight during emigration and before finding a more

suitable area are less than the prospects of losing weight in the present
area).

4,2.3 Habitat differences affecting births and deaths

It would of course be straightforward te use different P matrices to

represent habitats of different productivity (fecundity) and mortality
during the ‘breeding® season.

4,3 Sex difference

Differences between sexes can be readily incorporated into Leslie Matrix
models ({see, eg. Fig. 16a) by assigning transfer probabilities to
alternate rows and columns {(eg. s0 that every odd row/column represents a
male and every even row/column a female). It would similarly be possible
to so arrange the transfer probabilities of the P matrices tc athieve
this. The rationale for this layout in a Leslie matrix is, presuﬁably,
that it keeps animals of the same age in pairs of rows, and age structure
is a prime goal of Leslie matrices. It would however seem equally
acceptable to put a block of male values together, followed by a block of

female values, as shown in Fig. 16b (either lay-out would (presumably)
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Figures 16.

Figure 16a,

'FROM! :
Fo Fo My B ¥pFp R o By
Moo Joo © T © Jaall mug Biay.mo
l?0 o f_ro o f,n ° ffz n ro R4y 00
Lok Ml Pmo © o c o Prmi | o v am
fl © P © 0 © LN May g1
{2 o e-. Pm] ¢ o ﬂa.m? s 1.m2
Fp | © 6 o p, o o I sz Ln,",.f,

Figure 16b,

Alternative schemes for 1ncorporat1ng sex differences into
natrix models.

(from Jeffers, 1978, quoting Williamson 1959)

lHodel for three age clesses for BOTH male and femsle individuals:
with the sexes in alternate positions on rows and columns.
Survivel and fecundity ONLY.

Hodel of Weight Changes for five weight classes, with the sexes .
arranged in blocks, Terms not shown are 2ZEROs.
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Figure léc.

- (ellowing for estipetion error). This might, in these circumstance

Given the lay-out of Fipure 16b above, and assuming tho- neles
and females had equal nunmbers of male and femsle offspring, then
the boldly outlined sub-natrices of Figure 16b could be treated
&8s two separate sub-matrices.

A..asunlng the sex-ratio of the populatlon was not cha.ng;..r.g., then _
the eipen values of these two sub-matrices should be tlhs sanme

serve as a useful check of consistency for both Leslie and
'*Condition' models.

(I.B. the fecundity terms B and b would need doubling to include
those 'effectively from' Bf, b' given the notation of Figure 10b.
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have the same eigenvalue). In the present context the lay-out cf Fig. 16a
might be more appropriate if there was no sexual dimorphism in size. The
algorithms for CONTEST and SCRAMBLE competition would then only need
modifying to work on alternate columns (ie. first males, then females)
for transfers. It is less clear, however, how the critical threshold
would be defined for CONTEST competition: presumably there should be a
level for each sex, a deduction which raises two points in relation to
sexually dimorphic species., First, do the outcomes of contests between
individuals of different sexes depend largely on their weight
irrespective of their sex” and, seeond, if we are 'modelling sex
differences, does the outcome of a contest of a paired individual depend
solely on its own rank and that of its opponent, or do the ranks of their
respective mates affect the oucome? For example Scott (1979) has shown
that the ranks of both birds in pairs of Bewick's swans affect not only
their own contests, but also those of their cygnets when the families. are
together in winter flocks. Such Tactors would reguire more complex
structuring of the P transition matrix and the competition algorithms,

along the lines suggested below for genetic factors.

4.4 Genetic differences between individuals

It is well known from population genetics theory that different genotypes
possessed of different fecundities, mortalities, mating preferetice and
habitat preference can lead to the maintenance of stable pelymorphisms.
These considerations are lafgely ignored by populations dynamics théory,
and often in practice as well. There is however, particularly for plants,
evidence for genetic ‘'ecotypes' +that are more oclosely adapted . to
particular environments, and for vertebrates a few studies that relate
fitness parameters {mortality, fecundity, growth, dispersal habits) fto

‘genetic marker alleles (allozymes), (for example: Myers & Krebs 1974,
Bacon 1980, Evans 1981).
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The present population model, being a compartment model, could permit
inclusien of individuals of different'genotypes, as.described above for
sex differences. Each weight class would be sub-divided into G genotypes,
arranged in a standard order, with differing prbbabilities of weight
change and different fecundity values. Such a structure imposes the
restrictions that these transfer pfobabilities must be arranged s¢ that
any change maintains the genotype of the individual: (ie. In Fig. 17a ‘the
values are in such positions ‘that an SS individual in'class 2 changes for -
example, to represent an SS individual in class 3 NOT an SF or FF
individual in class 3, or in any other class, as illustrated),

This structure will cope with growth and mortality, but an additional
sub-routine will be needed for fecundity as the average number of
offspring produced by individuals of a given genotype will vary depending

on the relative frequencies of the genotypes of their mates, even in a
- random mating population.

If mating is non-random the required structure becomes much more complex.
First, we must introduce a complex sub-routine to produce suitable
frequencies of the different pairs (non-random mating will impose a
sexual and genetic sub-structure) and second, we are forced to explicity
recognise, and incorporate into the model, the fact that fecundities are,
for such species, 1ikely.to be a function of attributes of the paif not

just the sum of the effects of each individual {ie. the genotype -of
. individuals have synergistic effects on the fecundity of their _mates,
thesé effects varying with the mate's genotype; see Fig. 18).

We may perhaps conclude here that while many aspects of such a process
could be conveniently summarised in a P matrix as shown in Fig. 18, the
whole process cannot usually be "so summarised. . Accordingly a more
. convenient .struecture hight be to représent the elements of Fig. 18 as
separate matrices iinked by appropriate sequences = of .algorithms; - and
recognise that the model is now much closer to a complex simulation model
than to a simple matrix model.
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Figure 17.

The figure illustrates how Growth, Mortality and Competition could
be fitted into a matrix format for a model of population dynemics

incorporating genetic differences between individuals. The genetic

types are expressed in terms of marker alleles S and T at a co-
dominant Mendelian locus.

The fecundity terms are shown as *, because the production of
offspring of a particular genotype, even given random mating,
depends not only on the numbers of one genotype but slso on
the numbers of other genotypes for mating. Accordingly it would
be essential in any such model to have a separate sub-routine
for 'Births'. :

FIG. 17
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Figure 18, The figure illustrates how growth, mortality and competition could
be incorporated into a matrix structure and include (i) sex differen
(ii) genotypic differences and (iii) a social system where the out-
come of contests depended on the combined attributes (Condition,
paired status and genotype) of peired individuals.

‘The matrix sections labelled 'Immatures' and 'non-breeders' would
be differentiated according to (&) sex and (b) genotype and would
consist of sub-elements with terms on the diagonals of each sub-

elemen? only to preserve sex and genotype during transitions, as
shown in Figure 17.

The matrix sections labelled 'Pairs' would correspond to corbination
of male and femnle genotypes in pairs and categorised according to
their combined weighti/status.
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As in Figure 17, fecundities and breeding require species treatment.
In this instance the most appropriate treatment would be a sub~
routine to allow appropriate matings to 'teke place', depending
on the frequencies of potential mates of different genotipes and
any genotypic mating preferences. Thereafter, fecundities could
be assigned as proportions of overall average family size as
dictated by classic llendelian ratios.

A species case 1s introduced by deaths within pairs, wl:iere the
death of one paired member creates a widow/widower: this can be
accounted for as shown.
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4.5 Energetics and resource allocation
4.5,1 Energetics

In previocus sections dealing with constrained population growth we have
considered the population to be limited with respect to environmentally
available food and have enumerated this limitation in terms of 'equivalent
animal biomass wmaintainable by food resources', K.biomass. We further
made the simplifying assumption that the energy from one unit of food
would maintain one ‘unit of body mass irrespective of body size, whereas
meta.b.olic rate varies logarithmically with size ({see, eg. Southwood
1981), transport energy requirements, and hence foraging costs, will also
vary with size znd the energy requirements of producing offspring will
obviously vary with the number, and size, of offspring produced. There
are good grounds therefore for enumerating our limitation in units of
energy rather than bilomass, and we can envisage doing this as shown in
Table 5. Just as we can envisage a typical weight for members of classes
1C, s0 we can envisage typical energy requirements for maintaining those
weights under ‘'field' conditions, as shown in the column headed E1l in
Table 5. These energy requirements could clearly be used, in combination
with a value for 'r_.ot.al energy available from habitat_', say K.energy, as
a8 basis for limiting the population, in a manner directly analagous to
the models of sections 3.3 ‘to 3.5 (and the programs LOMNOC.BAS,
'LOMUO3.BAS and LOMSR2.BAS). Such. a model would retain the assumption that
the limiting factor, now energy, was not limiting during the period of
offspring production and, accordingly, the fecundity wvalues would not

vary with population. size.

4.5.2 Fecundity limited by energetics

Contrary to the zbove simplifying assumption it would, for many species,
be more realistic to assume that energy requirements may limit the number
of offspring that an individual, or pair, can produce (at scome defined
stage, such as egg laying in insects, egg laying or fledging in birds,

birth or weaning in mammals). The energy budget for rearing offspring
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TABLE 5:

- of this energy need (body growth and meintenance versus reproduction)

The table illustrates how energy requirements for ﬁody majintenance,
El, and reproduction, E2, could be assigned to individuals of each
class, 1-5, having weights typical of theif class {ie. within the
class limits).

The overall energy requirements, E3, could be_ﬁsed to ¢onstrain'
populetion growth in a manner énalagous to the useiof the.*biomssg. 

limit! (K.biomass) of the previous examples. Different'partitioning

could be investigated to determine 'optimael' partitioning in defined

circumstances.
n E2 3
Energy Energy .
Typical " required required Total
CLASS body for Typical for rearing energy
He. welght maintenance fecundities offspring needs
1 5.0 100 ) 0 100
2. 5.5 1.0 o] 0 110
3 6.0 115 0 ) 0 ‘115
L 7.0 130 4.5 ' b5 175
5 8.5 150 5.5 60 . 20
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could be drawn up as in Tablie 5, which recognises (column gg) that the
cost of producing additional offspring may be greater than the cost of
producing the initial ones (due to increased foraging distances, ete.).

We may now think of extending the model in terms of Resource allocation.

In relation to our seasonal model (section 4.1) we envisage the classes
of  the matrices as representing differing amounts of energy that
individuals can expect to mono Jlise, either by accumulating these
resources within themselves (fat, eggs, etc.) or by defending territories
that contain that amount of energy resource. Extending the model further
along these lines, we should be able to -address the problem of
energy/resource partitioning. Within physioclogical limits, an individual
having access to a set limited amount of resource can use it for two
basic purposes, growth or reproduction. Lack (1954) and Perrins (loc.
cit.) argue convincingly that the eclutech size of a species should be
selected to that which, on average, leaves the most surviving offspring.
It 1is widely recognised however that, given seasonal variation, age and
condition dependent mortalities, habitat and individual variability, the
optimal choice of partitioning for an individual is far from clear,
particularly if rearing many offspring decreases the parents' condition
and survival prospects. Hence, if within our 'Resource - monopolisation!
classes we assume several different types of partitioning = strategy
{growth vs. reproduction) and assign to these realistic values of
heritability, we coculd investigate not only the optimal 'ecluteh' size in
different circumstances but also the effects of different amounts of
(seasonal) environmental -variation on the expected variance of clutch .
size (we would require additional sub-routines to cope with the
| complexities of periods of parental care). There is ‘one important
practical difference between this suggestion and the seasonal condition
modell of section 4.7, namely that' food availability (beioméss) is-
notoriously hard to estimate. Energy usage can, on the other hand, be
measured'_accurately (Bryant) though the techniques are fairly . complex.
" While it would also be very difficult to estimate ‘'energy availability'
it may be possible, by experimental manipulations, to éstimate' the

increasing energy costs, and net energy gain, to broods of differing

sizes, eg. Figure 19. .




Figure 19. The Figure illustrates the way in which Total Utilised energy

might change depending on the size of brood belng reared by &
breeding palr.

Adult basal metabolism will stay roughly econstant, but sdult
travelling energy will increase as brood size incresases, as

more and further foraging trips will be required to provision
the brood. :

Energy utilised by the brood will rise with brood size, but
as brood size exceeds that with which adults can readily cope

the utilised energy will drop off below the idealised offsprﬁng
DEMAND, which would be linear w1th brood size,

Accordingly, a curve could be constructed (Utlllsed) of the

total energy the family was able to utilise. The optimel treeding
strategy is a trade-off between Brood size, energy costs and
survival prospects for brocd and adults.
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4.6 Disease and debilitation

- It  has long béen recognised that prey-predator and host—pathogeﬁ
interactions play important roles in the population dynamics of some
species. The types of effect produced by different pathogens have'_
recently been investigated mathematically (eg. Anderson & May. 1979 a,b).
In Section 4.7 I briefly outline how a prey-predator 'condition' model
could be devised whereas in this section I suggest a meané whereby the

sub-lethal, or debilitating, effects of diseases might be investigated.

It ié logical to divide the host population into types, which is
facilitated by the structure of a compartment model. These types would be
(1) healthy, uninfected individuals (ii) infected individuals incubating
the disease (iii) infected and infectious individuals showing symptoms of
disease and capable of transmission (iv) immune individuals. These
divisions are similar to those of Anderson & May 1979a and can be

illustrated as shown in Fig. 20 (compare this figure with  Anderson &
May's (1979 a} Fig. 3).

The differential equations used by Anderson & May 1979 to describe the
processes ol Fig. 20 carry the assumption that the various stages take
place in the same (vanishingly small) unit of time, that the'effeéts are
the_ same for all members of an epidemiological c¢lass, and that the-

per capita birth rate is the same for all epidemiological classes.

We illustrate the way a compartment model could be structured. to deseribe
epidemics in Figure 21, In both of these diagrams there is an implicit
assumption (which could be relaxed by appropriate extra sub-routines
during simulation) that infection probability is independent of host:
density, but we emphasise that this restriction could easily be relaxed
and applies only to the matrices shown in the figure. Both parts A and B
‘of Fig. 21 assume a structure for uninfected populations as shown by the
boldly outlined 3 x 3 sub-matrix. In Fig. 27a we. assume a hypothetica;
disease that is very debilitating, (over a variable period and :with
variable severity) and a negligible period of immunity. In Fig. 21a the

probabilities: iij represent the probabilities that individuals from
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Figure 20. Schematic representation of the main epidemiclogical classes
- that may need to be distinguished for & generalised disease.
The arrows represent transfers of individuals from one cless
to another during population dynamics and the course of the
disease.

Depending on the nature of a particular disease the letters
shown nmight be constants or functions of other variables.

FIG. 20
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Figure 2la. Debilitating disease model with - Figure 21b. Immunity model with progressive

probalistic recovery to 'fu%l recovery over a set minimum period
henl?h' over a variable period of immunity, followed by reversion
of time, including competition to susceptibility.
effects.
. _ FIG. 21;B
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KEY: The letters within the matrices refer to array elements or sub-matrices of the model, depending on whether or
not the model is envisaged to be sub—structured for sexual or genetie differences. '' indicate similar concepts

for the value(s) but varying values in each case.

Maintain velght F;. £, ff = Fecundity terms infection prob./function

M o= i1 =
G = Gain weight (see text) I = survival to infectious prob.
L = Lodse weight R = recovery from infection
r ,r ,r = condition maintenance/loss/gain
1'm & probabilities during recovery
A = reversion to susceptibility, (or

'recovery' in Figure 2la),

. . .




class i will become infected; the probability Iij. that an infected
individual will survive to become infectious; Rij the probability than an
infected individual will survive into a low weight class of debilitated.
survivors; rm, rg, ril, rm the probabilities that debilitated sur-viirors
will survive and maintain, lose or gain weight (t,_h.e disease may have'made

them more susceptible to other infections, etec.), and the

kij

probabilities that recovering debilitated individuals will recover

completely. The fij represent fecun.dities of ‘'diseased and . recovering'
individuals, with the expectation that_O-sf‘iJ <F for all 1ij.

In Fig. 27b we assume anoﬁher hypothetical disease which is. debilitating
in its initial stages, but .has progressiﬁe recovery over a fairly long
period of immunity. The symbols are as for Fig. 21a, with t.he exceptions:
rm, rg and rl are omitted, as recovery is systematic; the Rijs represent
the survival of immunes and, in the form shown, impose a time delay
between onset of immunity and reversion to susceptipility (x); the fijs'
and ff 138 represent fecundities with the expectations 0 <-'—'fij <F and.
F> ffij =F.

The matrix structures shown in Fig. 21 weuld be adequate for simple
purposes, although the algorithms for CONTEST competition would ¢learly
be different, and would need to be separately written for each such. -
application (as the 'weights' are no longer in rank order throughout the
matrix). It should be stressed here that, for the example. of Fig. 21b,
CONTEST competition could affect the basic dynamics bétween ‘the host and
pathogen. This will occur when the disease debilitates individuals to an
extent that they become very low in the social hierarchy and likely to
lose weight and starve: J.n these clircumstances mortality of immune
i_ndivi'duals would be increased, the extent of this increase dépending on

current environmental factors as well as host population level.
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4.7 Prey-predator models

The essence of prey-predator models is to write two or more equations (or
link two or more simulation routines) such that one equation/simulation
describes the behaviour of the prey population, preferably in a resource
limiting environment and incorporaﬁing the effects of predation on thé
prey, while the second equation models the behaviour of the predator with
the results from the prey equation being used to describe the resource
(=food) limitations on the predator population. Classically there are the
prey-predator equations due to Lotka and Volterra and elaborated by
Leslie and others (for examples see Smith 197Lk) and some of the

~more complex elaborations include age structured populations.

In the case of ‘'condition' models it 1is clear. that  the éimulations
described in sections 3.4 and 3.5 could be used to describe the behaviour
of a ‘prey' species in a resource limiting environment and the outputs of
this used to indicate the prey resources available to the predator. A
predation subroutine could then be added to account for the interactions,

and such a subroutine should:~

i. allow preferential predétion by the predators on the less fit

classes of the prey population

ii. for a mobile predator use a ‘catch per unit effort' curve to assess
net weight gains/losses to predators at different prey densities:
" due to different searching efforts required te find prey at those

densities.
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TESTING THE 'CONDITION' MODEL

5.1 Facilities for ‘'captive! experiments

The model relies on having frequent weighings of identifiable individuals
in relation to a known food supply. For these reasons it would be
efficacious to monitor & 'laboratory' or confined population which relied
on food supplied by the experimenter. Such an approach would not oniy
allow the experimenter to know (estimate accurately) K.biomass, but also
to vary the actual levels of K.biomass, corresponding to seasonal
changes, and record the effects of this. It is important to note that
such an approach would enable the experimenter to dete‘mineme values of
the P matrix (probabilities and pr-oductivities)_.for' a population having
super-abundant food, as the model envisages, and then to observe the
effects on numbers and condition as the population approached carrying

capacity and competition began to have a large effect.

The assumptions of the model could be tested by observing competitive

interactions, and its predictions by comparing weight distributions and
weight/age distributions. '

5.2 Field experiments

Laboratory tests as outlined above are convenient, but run the risk of
being done under abnormal conditions where important natural regulatory
mechanisms may not operate correctly. While it is easy to envisage a
field study that could estimate the values required for the P matrix
{choice of suitable . study species would be important) it must be
recognised that such values would often refer to a populatioh already
limited by competition: eaccordingly, the effects of the “tcompetition!
algorithm weuld be gr‘ea_tly underestimated, as much of their effect would

be hidden in the ‘'probabilities of random weight loss' values in the P
matrix. '
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It is likely, however, that suitable field experiments could be devised
for some species. These would, ideally, involve the use of large
enclosures (to prevent immigration from obscuring the results) plus
'removal' and ‘'supplementary feeding' experiments. The former would be
undertaken to reduce the population level to well below K, thus allowing
estimates of the P values to be made as the population recovered towards
K. The latter would allow similar estimation of P values as the
population rose from the ‘'natural’ K to the 'K-supplement' level and
would also permit monitoring of the severe competition that would result

when the food supplement was curtailed.

5.3 'Natural' field data

It would be perfectly possible to construct a population model based on P
vaiues estimated direct from field data but, as explained above, such
procedure would very likely grossly underestimzte the effects of
competition unless it were possible to determine whether deaths and/or
weight losses were due to. (i) chance factors or  (ii}) competitive
exclusion. Such disc¢rimination seems optimistic, but might be possible
for some species: for example Krebs et al {eg. Myers & Krebs, loc. cit.),
have shown that the frequency' of ‘'rump-wounding', caused by aggressive
conflicts, rises in high density vole populations and it might be possible
Lo use such scars as indicators of ‘chance' versus 'competitive' causes

of weight loss and starvation.

5.4 - Algebraic and sensitivity analysis

While these models use matrices for convenience it must be clearly
understood that the processes. invelved are not described by standard
mathematical matrix operations gnily, at least when population growth 1is
constrained by -competition. However, algebraic analysis of similar
complex models based on matrices have been enlightening, particularly
when done in concort with simulation and sensitivity analysis (see, eg.

the review by Usher 1972).
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I suspect that algebraic analysis could give some insight to the
advantages and pitfalls of the current models, though it would require a
mathematical expertise which I do not personally have. I would further
suggest that a particularly important aspect for such an algebraic study
would be the interaction of terms of different relative magnitudes
between and along the three diagonals of the P matrix. It would be
appropriate at this point to mention that the probability values used on
the diagonals of the example data matrices for this paper were chosen
after some careful thought. It would clearly be possible to insert
(mathematical) values that would promote instability rather than
stability. In most cases stability would be more ‘desirable' ecoliogically
and it would be most interesting to compare the structures of P matrices
estimated from field data with those which, mathematically, give greater
stability and resilience. I suspect these rules might be fairly simple,
as the example data set used¢ here represented my first attempt at

inventing a suitable arrangement and it did not produce wildly
unrealistie results.

Sensitivity analysis of such models would clearly be desirable, in
particular to investigate the effects of minor variations in the ‘'weight
change' probabilities and the fecundity values. This should be done both
in relation to variations in absolute values and the relative structures
of those values. However, in view of the great plethora of values and
structures that could be theoretically envisaged I do not think such
investigation could usefully be carried out without some 'first order'
approximations to actual values derived from field data.
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6 SUMMARY

ch.2 A brief historical survey of mathematical models of population

cn.3

dynamics  is given, including differential equations, difference
equations and Leslies matrices, It 1s suggested that a fundamental
flaw in these approaches is their implicit assumption that all

individuals in a populaticn are phenctypically identical.

.Lomnicki's findings that population dynamics c¢an be greatly

affected by individual differences, habitat heterogeneity and
social hierarchies are stressed. The sparsity of data used in many
population dynamics models is commented on (eg. models 'validated!
by comparing observed and model predictions of time-series of
numbers only) and the guestion is raised as to whether such simple
compariscns will permit discrimination between equally ‘'good' (or
equally 'poor'!) mecdels.

A model of population dynamics based on numbers of individuéls in
different ‘'condition' classes is developed. It is zssumed that body
weight, ‘'condition', social <dominance and fecundity will vary .
between the c¢lasses and, in these simple initial models, that
dominant individuals will be in 'good c¢ondition', have higher body

weights ~and higher fecundities. In discrete units of time

" individuals may: (i) either die, starve, lose weight, maintain

weight, gain weight and (ii) reproduce with varying fecundities.
These assumptions lead to stable ratios of 'Humbers per Weight
Class'! in the population; except for an unstable equilibrium, the

population size increases or decreases exponentially.

The above model is meodified to include two algorithms that regulate
the population by competition for limited food resources, KF- The
two algorithms correspond fo the concepts of 'Scramble' and
'Contest' competition forfresources. These algorithms are based on

biclogically likely assumptions and do not depend on mathematically
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arbitrary formulze for density dependent .changes in feeundity. or
mortality. It is shown that these new models of pbpulation growth
in a constraining environment (food is limited) lead to gtable'
leﬁels of 'numbers of individuals per weight ciass?; these stable

levels have different ratios of one class frequency to another for

‘the two types of competition.

The above models are extended to investigate the effects of Varving
the absolute amounts of 'available food', K, from one time period
to the next. Results indicate that, for the range of parameters_'
used, populations controlled by 'Contest' competition are more able
to cope with exireme environmental variation than are 'Scramble’

controlled populations.

Outlines are given for extending this type of mbdel to cope with

more complex and Zore realistic ecological situations, including:

- seasonal pattern of food availability
- habitat heterogeneity and dispersal

- 3ex differences in survival, fecundity, etc.
- genetic differences

- energetics and resource allocation

- diseases, including sub-lethal effects

The merits of different ways of collecting data to test the model

are briefly discussed. The potentizl for algebraic analysis of the

‘model's matrices is considered and the main aims for. sensitivity

analyses of the simulation models are suggested.
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CONCLUSIONS

The simulations presented here support Lomnicki's suggestions that
population regulation can be achieved by constructing models based
on biologically meaningful rules and assumptions without the need
to invelve fairly arbitrary -mathematical functions to coerce the
model into stable (or cyelic) behaviour. While such models. may be
difficult to analyse mathematically it 1is suggested that their
construction is- liikely to prove enlightening to both field
ecologists and biometricians. Eventual testing of such models will

depend on the collection of suitable sets of experimental data.
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