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The f r o n t  wave of t h e  most recent  European ra> i+s  e p i z c o t i c  has been 
spreading westwards a t  about 30 km/year s ince  t h e  19401s,  d e s p i t e  many 
a t tempts  t o  h a l t ,  o r  e r a d i c a t e ,  t he  d i sease .  The d a t a  concerning t h i s  
spread  a r e  sub jec t  t o  a l a r g e  number of recording b i a s e s ,  and t h e  few . 
f a c t s  i n  which one can p lace  confidence would seem t o  be: t h e  r a t e  Of 

spread  of t h e  primary wave v a r i e s  i n  d i f f e r e n t  regions  (30 t o  80 km/year); 
t h e  d i sease  appears no t  t o  occur i f  t h e  dens i ty  of its main v e c t o r  and 
v l c t i m ,  t h e  Red fox (Mczpes vuzpes) is  below 0.2 foxes/km2; t h e  time 
between the  passage o f  t h e  f r o n t  wave and t h e  recurrence  of secondary 
waves v a r i e s ;  case incidences appear t o  c l u s t e r  s p a t i a l l y ;  t he  p a t h  
o f  t h e  e p i z o o t i c  is d e f l e c t e d  by topographic f e a t u r e s  such aa r i v e r s  
and mountain ranges. 

Simple temporal models of r ab ies  i n  fox populat ions (Anderson e t  a1.1981; 
Bacon & Macdonald 1980) show t h a t  t h e  densify Of the  h o s t  POpUlatiOn 
is important  i n  determining t h e  time course of an ep izoo t i c .  Heterogeneity 
i n  the  s p a t i a l  dens i ty  of foxes  implies  t h a t  t h e  s p a t i a l  pa th  w i l l  a l s o  be 
a f fec ted  by t h e  dens i ty  of t h e  vec tor .  Thus, i n  o rde r  proper ly  t o  determine 
t h e  s p a t i a l  dynamics of fox r a b i e s ,  it i s  e s s e n t i a l  t o  know, a t  a mi~.inum, 

p t h e  i n i t i a l  s p a t i a l  dens i ty  of foxes ,  i e .  before t h e  dens i ty  is  a f fec ted  
by t h e  d i sease .  The Red fox i s  extremely d i f f i c u l t  t o  s tudy i n  t h e  f ieLd,  
and i t  is obviously not  f e a s i b l e  t o  undertake a complete f i e l d  survey c f  
t h e  whole of con t inen ta l  Europe, o r  even a l a r g e  p a r t  o f  i t ,  i n  order  Z Z  

determine fox populat ion d e n s i t i e s  d i r e c t l y .  However, fox  populat ion 
d e n s i t i e s  depend on c h a r a c t e r i s t i c s  of t h e  h a b i t a t  suppor t ing  them. I f  
t hese  c h a r a c t e r i s t i c s  could be i d e n t i f i e d  by d e t a i l e d  l o c a l  s t u d i e s ,  
and the  r e l a t i o n s h i p  between h a b i t a t  c h a r a c t e r i s t i c s  and fox populatlC2 
d e n s i t i e s  could be e s t a b l i s h e d ,  i t  should then be p o s s i b l e  t o  e s t ima te  
popula t ion  d e n s i t i e s  i n  o t h e r  h a b i t a t s  by recording t h e  important 
c h a r a c t e r i s t i c s .  

B i s t o r i c a l l y ,  i t  has  been shown t h a t  t h e r e  a r e  d i f f e r e n c e s  i n  fox 
popula t ions ,  and i n  p a t t e r n s  and r a t e s  o f  r ab ies  sp read ,  i n  widely 
d i f f e r i n g  h a b i t a t s .  However, the  use  of  non-standard and s u b j e c t i v e  
assessments of h a b i t a t  type  has precluded comparisons between r e s u l t s  
obta ined  i n  d i f f e r e n t  nreas o r  coun t r i e s ,  o r  by d i f f e r e n t  researchers .  
This  l i m i t a t i o n  was recognized a t  a recent  WHO symposium (WHO 1981). I t  
has been suggested t h a t  numerical methods, eg. c l a s s i f i c a t i o n  of fox 
h a b i t a t s ,  could be h e l p f u l .  

The purpose o f  t h i s  paper i s  t o  d iscuss  t h e o r e t i c a l  and p r a c t i c a l  
aapects  o f  numerical c l a s s i f i c a t i o n  procedures i n  r e l a t i o n  t o  t h e  
s tudy of r a b i e s  spread ,  and, i n  p a r t i c u l a r ,  t o  t h e  problem of p r e d i c t i n g  
fox  ( o r  o t h e r  animal) populat ion d c n s i t i e s  from environmental v a r i a b l e s .  
Some o t h e r  numerical methods which may prove use fu l  are a l s o  mentioned. 
The aim i s  t o  suggest  p o s s i b i l i t i e s  and t o  po in t  ou t  p o s s i b l e  p i t f a l l s .  
A s  our  p r e s e n t  understanding is no t  good enough f o r  a p r e s c r i p t i o n  t o  be 
o f f e r e d ,  some p r a c t i c a l  tests a r e  necessary t o  compare t h e  use fu lness  
of t h e  methods suggested he re  (see  s e c t i o n  7 ) .  

W e  might use fu l ly  ask why is i t  thought t h a t  h a b i t a t  classification can 
be  of value i n  s tudying r a b i e s  spread? To answer t h a t ,  w e  need t o  th ink  
about what we mean by c l a s s i f i c a t i o n ,  and what p r o p e r t i e s  it i s  d e s i r a b l e  
f o r  a c l a s s i f i c a t i o n  t o  have i n  t h i s  context .  Broadly speaking,  



c l a s s i f i ca t ion  involves the recognition of s imi l a r l t i ea  between, and 
the grouping o f ,  objects o r  organisms. Class i f icat ion is  w e f u l  t o  
describe the re la t ionships  of objects t o  each other ,  and t o  simplify 
those re la t ionships  so tha t  general statements can be made about 
classes of objects .  

An important d i s t inc t ion  i s  between monothetic and polythet ic  c lass i -  
f i ca t ions .  The classes of a monothetic c l a s s i f i ca t ion  d i f f e r  by a t  
l e a s t  on0 property which is uniform among the members of each c l a s s ,  
so tha t  possession of a unique s e t  of features  is both su f f i c i en t  and 
necessary f o r  membership of a c lass .  A ser ious  disadvantage of 
monothetic c l a s s i f i ca t ions  f o r  most ecological purposee is tha t  they 
carry the r i s k  of serious misclass i f icat ion,  since an object  aberrant 
i n  the  a t t r i b u t e  used t o  make a division w i l l  be placed i n  a c lass  
away from objects  which i t  otherwise resembles. Monothetic c lass i -  
f i ca t ions  a r e  useful f o r  cer ta in  special  purposes, eg. i n  ae t t i ng  up 
taxonomic keys and i n  cer ta in  types of reference and f i l i n g  systems. 
In polythet ic  c l a s s i f i ca t ions ,  on the  other  hand, groups of individuals 
o r  objects  share a large proportion of t h e i r  proper t ies ,  but do not 
necessari ly agree i n  any one property. Once a polythet ic  c l a s s i f i ca t ion  
has been made, fewer properties are  generally necessarq t o  a l loca te  
objects t o  the c lasses  than were necessary t o  es tab l i sh  the c lasses .  
Rence, c l a s s i f i ca t ion  of a data s e t  r e su l t s  i n  a reduction of the 
amount of information tha t  is necessary t o  describe the data s e t ,  bu t ,  
i f  the c l a s s i f i ca t ion  is e f f i c i e n t ,  there i s  l i t t l e  o r  no reduction i n  
the amount of information contained i n  tbe  data. 

For a f u l l e r  discussion of these general aspects,  see  Jardine and 
Sibson (1971), Sneath and Sokal (19732, Sokal (1974), Cl i f ford and 
Stephenson (1975). From a s t a t i s t i c a l  point of view, Kendall and S tuar t  
(1968, p314) defined classifi 'cation as the process of dividing a sample 
of objects ,  o r  an e n t i r e  population, in to  groups which should be as 
d i s t i n c t  as possible.  The groups should be 'natural '  i n  t he  sense tha t  
members of any group should closely resemble each other  and should d i f f e r  
considerably from those of another group. In pract ice ,  these c r i t e r i a  
are usually interpreted by searching f o r  d i scont inu i t ies  i n  the d i s t r i bu t ion ,  
i n  mult ivar ia te  space, of points representing the objects ,  o r  a t  l e a s t  f o r  
regions of t ha t  space which are  occupied by fewer points  representing the  
t a i l s  of overlapping d is t r ibu t ions  and/or 'noise '  data (see eg. Marriott 1974) 
By contras t ,  d issect ion implies the divis ion of a sample o r  population i n t o  
groups regardless of whether the  boundaries are  na tura l  o r  no t ,  t he  aim i s  
simply t o  f i nd  the most convenient way of dividing the  individuals i n t o  
groups. Nevertheless, the groups formed by a dissect ion should have some 
definable log ica l  s t ruc ture .  

A l l  col lect ions  of objects can be dissected,  not a l l  can be c lass i f ied .  
Class i f ica t ion  may be a technique f o r  generating hypotheses, but dissection 
is not ,  as the  data are  forced in to  a s t r a i t - j acke t  which r e s t r i c t s  the  
domain of possible hypotheses and suggests tha t  some w i l l  be generated by 
the process of dissect ion,  ra ther  than by the data (Coma& 1971). 

A s  the  object ive is t o  predict  population dens i t ies ,  it i a  reasonable t o  
ask if regression methods might be more su i tab le .  There have been few 
s tud ies  i n  which a t tenpts  have been made t o  predict  animal population 
dens1 t i e s  from environmental variables.  Emanuelsson (1978, 1980) found 
tha t  because many environmental variables a r e  correla ted,  it was necessary 
t o  do a preliminary ordination by pr incipal  component analysis. The 



r e su l t i ng  components were then used i n  regressions on known dens i t ies  
of par t icu la r  bird  species.  Good predictions were obtained f o r  a given 
area.  but t he  regression f o r  one area could not be used i n  a d i f fe ren t  - 
geographical region. This suggests tha t  a preliminary s t r a t i f i c a t i o n  
of an area i n t o  more homogeneous regions is necessary, an approach which 
is discussed below. 

When using numerical methods, i t  is important f o r  t he  reeearcher t o  
remember t ha t  t he  nature of the data has an important bearing on the  
numerical methods which can be used. I t  is important t o  think about 
t h i s  before tho data are  collected,  and therefore t h i s  subject  i s  also 
discussed i n  some de t a i l .  

NUMERICAL METHODS WHICH CAN BE USEFUL IN HABITAT CLASSIFICATION 

I n  data analysis ,  two pr inciples  ra ised by Tukey (1954) should be borne 
i n  mind: (1) Different ends require d i f fe ren t  means and d i f fe ren t  
log ica l  s t ruc tures ;  (2) While techniques are important ... knowing when 
t o  use them and why t o  use them i s  more important. 

Two types of method which are useful i n  c l a s s i f i ca t ion  and dissect ion 
a re  ordination and c lus t e r  analysis.  

Ordination procedures aim t o  arrange points ,  representing objects ,  along 
new axes so as t o  preserve as much of the  origfrnal information as possible ,  
i e .  t o  preserve the re la t ionships  between the objects as closely as possible.  
There a r e ,  idea l ly ,  fewer new axes than or ig ina l  variables.  Ordination 
makes the data eas ie r  t o  handle mathematically i n  that :  (1) i t  makes 
graphical representation eas i e r ;  ( i i )  i t  removes d i f f i c u l t i e s  which might 
a r i s e  from variables which are  l inear ly  re la ted,  o r  nearly so;  ( i i i )  t he  
new axes may lend themselves t o  r e i f i ca t ion ,  i e .  the  in te rpre ta t ion  of the  
mathematics i n  terms of t he  or ig ina l  problem, and so may give a useful 
ins igh t  i n t o  t he  s t ruc ture  of the data.  I f  there are  'na tura l '  groups, 
i e .  groups which are  separated by discont inui t ies  i n  mult ivar ia te  space 
o r  by regions of t he  space containing few points which represent the t a i l s  
of overlapping d is t r ibu t ions  and/or 'noise '  data,  this f a c t  should be apparent 
i n  the  r e s u l t s  of the  ordination.  I f  there  are no such groups, ordination 
may s t i l l  help to  c l a r i f y  the relationships between objects .  Ordination 
may also be used t o  show if a c lus te r ing  method has been applied t o  data 
f o r  which i t  is not su i ted .  

Possibly t h e  best-known and most widely used ordination technique is 
pr incipal  component analysis (Anderson 1958; Morrison 1967; Seal 1968; 
Blackwith 81 Reyment 1971). This begins with a covariance matrix, o r ,  
more commonly, a correla t ion matrix, and the resu l t ing  components a r e  
expressed i n  terms of l i nea r  combinations of the  orbginal var iables .  
Geometrically, the  axes representing the variables are  rota ted t o  new 
posi t ions  (component axes) such tha t  the  f i r s t  axis  accounts f o r  t he  
maximum variance, the  second axis accounts f o r  the  maximum possible 
variance i n  a direct ion orthogonal t o  the  f i r s t ,  and so  on. The 
ro ta t ions  are  orthogonal, i e .  they preserve distances and angles, so t ha t  
i f  the or ig ina l  variable-space i s  Euclidean, the component space w i l l  
a lso be Euclidean. The most l i ke ly  way i n  which the Euclidean proper t ies  
of the variable-space w i l l  be l o s t  w i l l  be tha t  there  a r e  missing v a 1 ~ S  
i n  the data matrix. 



Models i n  Euclidean space have a t  l e a s t  three advantages (Wil l ims & 
Dale 1965): (1) many Simple, robust and powerful methods a r e  avai lable  
f o r  seal ing w i t h  Euclideaa systems tha t  are  not avai lable  f o r  non- 
Euclieean systems; ( i i )  they s a t i s f y  the requirement f o r  hierarchical  
c l a s s i f i ca t ion  tha t  each leve l  i n  a  dendragram is  associated with some 
measure which s h a l l  decrease aa the  hierarchy descends; (11%) i t  i s  
eas l e r  t o  gain i n t u i t i v e  perception of Euclidean systems and t o  grasp 
t h e i r  proper t ies ,  and t o  pred ic t  those proper t ies  i n  extrem&cases. 
Another useful property of Euclidean apace is tha t  t he  distance 
between any two points is unaltered by orthogonal ro ta t ion  of t he  
co-ordinate axes. 

The posi t ions  of the  objects can be p lo t ted  on pa i r s  of rectangular 
Cartesian component axes. Such p lo t s  w i l l  show d iscont inu i t ies  i f  they 
ex i s t  i n  the  data (eg. Blackith & Reyment 1971), but it must be 
remembered tha t  any such two-dimensional representation is d i s to r t ed  i n  
tha t  other  dimensions are  not taken i n t o  account i n  t he  representation 
of inter-object  distances.  Gower and Ross (1969) showed how such 
d i s to r t i on  can be i l l u s t r a t e d  by superimposing the minimum spanning 
t r ee  of points i n  the t o t a l  number of dimensions on t o , t h e i r  
representation i n  the  reduced space. There has been much discuss1'0n 
about rhe use of pr incipal  component analysis i n  plant  ecology, where 
problems a r i s e  due t o  the  pat terns  of d i s t r ibu t ion  of plant  species along 
environmental gradients (see eg. Noy-Meir & Austin 1970). 

I f  the re la t ionships  among the  objects are  represented by an in te r -  
object  s imi l a r i t y  matrix (d i f fe ren t  types of s imi la r i ty  measure are 
discussed -by Sneath .& Sokal 1973) then ord-iastien by pr inc ipa l  co- 
ozdinates analysis  (Gower 1966) can be used. Pr incipal  co-ordinates 
analysis i s  pa r t i cu l a r ly  useful when there  a r e  missing values o r  missing 
var ia tes .  I n  such cases, a  correla t ion type of s imi l a r i t y  measure i s  
reasonably robust and r e l i ab l e ,  whereas replacing the  missing values 
by estimates o r  guesses is not very sa t i s fac tory  (Marriott 1974). An 
important fea ture  of t h i s  method is  tha t ,  as long as the  s imi la r i ty  
matrix has cer ta in  properties (see Gower 1966), the space defined by 
the pr incipal  co-ordinates axes i s  s t r i c t l y  Euclidean. 

Allied t o  the above methods are two o ther  mult ivar ia te  techniques which 
invest igate  re la t ionships  i n  multi-dlmensional space, but which operate 
on data which are  already grouped e i the r  on the  basis  of objects  
(canonical va r i a t e  analysis)  o r  variables (canonical correla t ion analysis) .  
In canonical va r i a t e  analysis ,  the re la t ionships  of t he  groups t o  each 
other i n  multi-dimensional space are  investigated.  A s  with the  above 
procedures, t he  canonical variate-space usually has fewer dimensions 
than the or ig ina l  variable-space. In  canonical cor re la t ion  analysis ,  
the a i m  i s  t o  s e l e c t  pa i r s  of maximally-correlated l i n e a r  functions 
from two ba t t e r i e s  of variables.  Again, t he  dimensionality is reduced. 

Cluster analysis 

This term is applied t o  a  wide range of techniques which seek t o  separate  
a  col lect ion of objects i n t o  group8 o r  categories ,  t he re  being l i t t l e  o r  
no p r i o r  knowledge about the  category s t ruc ture  of the data  used i n  the  
analysis.  To a  grea te r  o r  l e s s e r  ex ten t ,  the d i f fe ren t  techniques 
involve the imposition of a  s t ruc tu re  on t h e  data,  a s  well as revealing 
any s t ruc tu re  t h a t  may actual ly  pre-exist. A s  a  r e s u l t ,  t he  groups tha t  
are i den t i f i ed  r e f l e c t  t he  degree t o  which the data  conform t o  the 
s t ruc tu ra l  forms inherent i n  the c luster ing algorithm Underberg 1973). 
Cluster analysis  methods which have only a  weak tendency t o  impose 
s t ruc tu re  on the  data ,  eg. single-linkage c lus t e r  analysis ,  are  par t icu la r ly  



use fu l  i n  explora tory  d a t a  ana lys i s .  

A f u l l  d i scuss ion  of c l u s t e r i n g  methods is ou t s ide  t h e  scope Of t h i s  paper ,  
s e e  reviews by Cormack (1971) and Howard (1977). C lus te r ing  s t r a t e g i e s  
have s e v e r a l  important c h a r a c t e r i s t i c s ;  they may be h i e r a r c h i c a l  or  non- 
h i e r a r c h i c a l ,  agglomerative o r  d i v i s i v e ,  p o l y t h e t i c  o r  monothetic.  
H ie ra rch ica l  s t r a t e g i e s  f i n d  an optimum pathway between t h e  o b j e c t s  of 
which a Sample i s  composed, t o  a  s i n g l e  group, c o n s i s t i n g  of t h e  e n t i r e  
sample, v i a  in termedia te  groupings. Th i s  pathway is found by a s e r i e s  of 
fus ions  (agglomerative) o r ,  i n  the  r eve r se  d i r e c t i o n ,  by a series of 
f i s s i o n s  ( d i v i s i v e ) ,  the  groups produced being non-overlapping. The 
groups through which t h e  process passes  a r e  not  n e c e s s a r i l y  opt imal  i n  
themselves, and t h e  b e s t  pathway may be obtained a t  t h e  expense Of some 
s l i g h t  reduct ion  i n  homogeneity of t h e  ind iv idua l  groups. 

I n  non-hierarchica l  s t r a t e g i e s ,  t h e  s t r u c t u r e  of ind iv idua l  groups is 
optimized,  and no pathway is def ined  between groups and t h e i r  cons t i tuen t  
i n d i v i d u a l s ,  o r  between groups and t h e  complete sample. Mar r io t t  (1974) 
poin ted  Out t h a t  a  h i e r a r c h i c a l  s t r a t e g y  can have disadvantages i f  t h e r e  
i s  no s p e c i a l  reason f o r  requi r ing  t h e  nes t ed  s t r u c t u r e  of such a s t r a t e g y .  
For example, i f  t h e  aim i s  t o  decide whether a  d i v i s i o n  i n t o  2 groups 
g ives  a  b e t t e r  r ep resen ta t ion  of t h e  d a t a  than a d i v i s i o n  i n t o  3 groups, 

.- i t  is necessary  t o  compare the  b e s t  d i v i s i o n  i n t o  2 groups wi th  t h e  b e s t  
d i v i s i o n  i n t o  3 groups, and a h i e r a r c h i c a l  s t r a t e g y  w i l l  no t  n e c e s s a r i l y  
g ive  both. Many of the  most widely-used c l u s t e r i n g  algori thms employ 
agglomerative h i e r a r c h i c a l  s t r a t e g i e s  based on some s o r t  of in t e r -ob jec t  
s i m i l a r i t y  o r  d i s t ance  measure. Because the  measure i s  based on s e v e r a l  
p r o p e r t i e s ,  such methods a r e  p o l y t h e t i c .  Agglomerative h i e r a r c h i c a l  
s t r a t e g i e s  a re  inhe ren t ly  prone t o  a  small  amount o f  m i s c l a s s i f i c a t l o n  
a t  t h e  lowest ,  i n t e r - o b j e c t ,  l e v e l ,  where t h e  p o s s i b i l i t y  of e r r o r  i s  
g r e a t e s t .  On the  o t h e r  hand, wi th  d i v i s i v e  techniques,  t h e r e  i s  a 
g r e a t e r  danger of inappropr i a t e  a l l o c a t i o n  of some o b j e c t s  t h a t  cannot 
l a t e r  be co r rec ted  unless  some s p e c i a l  terminal  r e a l l o c a t i o n  procedure 
i s  used. Inappropr ia te  a l l o c a t i o n  is p a r t i c u l a r l y  l i k e l y  with monothetic 
techniques,  because each d i v i s i o n  is based on 2 s t a t e s  o f  a  s i n g l e  c h a r a c t e r ,  
and any Object which i s  aberrant  i n  t h a t  cha rac te r  w i l l  be m i s c l a s s i f i e d .  
Another problem wi th  d i v i s i v e  techniques i s  t h a t  each group is  made t o  
d iv ide  i n t o  2 a t  each l e v e l ,  an a r b i t r a r y  r e s t r i c t i o n  t h a t  may no t  r e f l e c t  
t he  inhe ren t  p r o p e r t i e s  of t h e  o b j e c t s .  

I n  sea rch ing  f o r  in t e r -ob jec t  r e l a t i o n s h i p s  which may be r e f l e c t e d  i n  t h e  
da ta ,  t he  d i f f e r e n t  poss ib le  p a t t e r n s  should be borne i n  mind. With most 
types of c l u s t e r i n g  algori thm, i t  is easy t o  i d e n t i f y  t h e  p a t t e r n  i n  which 
d i s t i n c t  groups a r e  sepa ra ted  by d i s c o n t i n u i t i e s  i n  m u l t i v a r i a t e  space ,  b u t  
t h i s  type  of s t r u c t u r e  i s  by no means common. If t h e  group c e n t r e s  a r e  
d i s t i n c t ,  bu t  t h e  t a i l s  of  t h e  frequency d i s t r i b u t i o n s  ove r l ap ,  s ing le -  
l inkage  c l u s t e r  ana lys i s  w i l l  be unable t o  e f f e c t  a c l e a r  d i v i s i o n  i n t o  
c l u s t e r s ,  although i t  can s e r v e  t o  i n d i c a t e  where t h e  c l u s t e r  c e n t r e s  might 
l i e .  Subsequently, o t h e r  methods could be used t o  d i s s e c t  t h e  o b j e c t s  
i n t o  groups, b u t ,  because t h e  t a i l s  of the  d i s t r i b u t i o n s  ove r l ap ,  a 
c r i t e r i o n  i s  needed f o r  t h e  a l l o c a t i o n  of p o i n t s  i n  regions  Of over lap .  

Where p o i n t s  r ep resen t ing  t h e  o b j e c t s  a r e  more o r  less u n i f ~ ~ l y  d i s t r i b u t e d  
i n  m u l t i v a r i a t e  space and form a continuum, s o  t h a t  there is no  c l e a r  
s t r u c t u r e  i n  the  d a t a ,  c l a s s i f i c a t i o n  i n  t h e  strict sense  i s  impossible;  
i n s t e a d ,  t h e  problem i s  overcome by d i s s e c t i o n  using c r i t e r i a  def ined  by t h e  
ob jec t ives  of t h e  a n a l y s t .  



The shapes of c lu s t e r s  produced by c lus t e r  analysis alogorithms may a l so  
pose problems. In  many c lus te r ing  methods, some form of constra int  is 
imposed on the  spread of t he  c lus te rs .  Wishart (1969) dtscussed the 
proper t ies  of 13 such methods, and included them i n  the  general category 
of 'minimum variance' methods. Some of the  methods used by p lan t  o c o l o g i s t ~  
impose 'minimum variance' constra ints .  The minimum variance constra int  
makes these methods unhelpful, and even misleading, i f  the  aim is  t o  f i nd  
the s t ruc tu re  which actual ly  ex i s t s  i n  the  data,  unless i t  is known i n  
advance tha t  the  s t ruc ture  i s  of a type f o r  which the  constra int  is 
appropriate. However, methods which have t h i s  cha rac t e r i s t i c  can be 
useful i n  dissection.  On the other  hand, single-linkage c lus t e r  
analysis can ident i fy  c lus te rs  which are  not only elongated, but a lso 
of complex shapes, i f  they are d i s t i nc t .  

In applying a hierarchical  agglomerative c luster ing s t ra tegy ,  the  user 
has a choice of s imi la r i ty  o r  distance measure and of c luster ing procedure. 
The choice needs t o  be made with some care. Similar i ty  coef f ic ien ts  are  
normally appropriate t o  binary data and distance measures t o  continuous 
data ,  althougu soma distance measures do have binary equivalents. Gower's 
(1971) general s imi la r i ty  coeff ic ient  can be used with mixed data types. 
The proper t ies  of t he  various measures are  discussed i n  d e t a i l  by'Sneath 
and Sokal (1973) and Cli f ford and Stephenson (1975). Many of the  conuuonly- 
used hierarchical  c luster ing procedures have proper t ies  which, i n  a t  
l e a s t  some applications,  are  undesirable (Fisher & van Ness 1971; Jardine & 
Sibson 1971; Sneath & Sokal 1973). 

This br ie f  survey Of numerical methods which can be useful i n  habi ta t  
c l a s s i f i ca t ion  suggests t ha t  a f i r s t  stop should be an ordination of the  
data. When the  points  representing the  sampling locat ions  a r e  p lo t ted  on 
the ordination axes, re la t ionships  among the points can be examined. I t  
should become c l ea r  whether o r  not c lass i f ica t ion  sensu strictu i s  possible ,  
o r  if a dissection i s  indicated.  The researcher may choose t o  perform a 
c lu s t e r  analysis on the ordination scores. Even i f  t ha t  i s  not done, the 
ordination char ts  are  informative and useful.  Which ordination procedure 
should be used depends upon the nature of t he  data.  I f  a l l  of the 
a t t r i bu t e s  are  continuous, o r  i f  a l l  of t he  a t t r i bu t e s  a r e  binary with 
no more than, say,  30 a t t r i b u t e s ,  and the  data are  not en t i r e ly  of plant  
species presence o r  absence, then pr incipal  component analysis  is  
appropriate. I f  the  data are of mixed types, then pr incipal  co-ordinates 
analysis using Gower's general s imi l a r i t y  coeff ic ient  should be used. 
The question of d i f fe ren t  types of data w i l l  be discussed i n  a l a t e r  
sect ion.  In the next sec t ion ,  the application of c l a s s i f i ca t ion  and 
dissect ion techniques w i l l  be discussed i n  more de t a i l .  

3 POSSIBLE APPLICATIONS OF CLASSIFICATION AND DISSECTION TECHNIQUES 

There a r e  two main ways i n  which classification o r  dissect ion could be 
useful:  (1) as a s t r a t i f i c a t i o n  f o r  future  sampling, and (2) t o  enable 
proper t ies  t o  be predicted fo r  new objects.  We must then consider what 
proper t ies  a c l a s s i f i ca t ion  o r  dissect ion should have f o r  these two 
purposes, s o  t ha t  we can choose an appropriate c lu s t e r  analysis  method. 

Stratification 

S t r a t i f i c a t i o n  yields  more efficient, and therefore more prec ise ,  
estimators where the variables under consideration a re  homogeneous 



wi th in  t h e  s t r a t a  produced b u t  a r e  heterogeneous i n  t h e  o v e r a l l  
populat ion.  The t h e o r e t i c a l  j u s t i f i c a t i o n  f o r  s t r a t i f i c a t i o n  is i n  
t h e  reduct ion  of sampling var iances  compared with s imple random 
sampling. The more homogeneous t h e  s t r a t a  r e s u l t i n g  fm t h e  
s t r a t i f i c a t i o n  process ,  t h e  l a r g e r  w i l l  be t h a  be t r een- s t r a t a  
variance and the  sma l l e r  t h e  w i t h i n - s t r a t a  variance and sampling 
var iance  (Colder & Yeomans 1973). These c r i t e r i a  can be s a t i s f i e d  
by t h e  use of a k-means c l u s t e r i n g  algorithm. K-means c l u s t e r i n g  
(Hart igan 1975) is a non-hierarchical  method f o r  producirig a s p e c i f i e d  
number of d i s j o i n t  c l u s t e r s  such t h a t  the  wi th in -c lus t e r  sum of squares 
is minimized. No k-means algori thm produces a ' g loba l  optimum' s o l u t i o n  
unless  N ( t h e  number of o b j e c t s )  is very small  and t h e r e  a r e  Only two 
groups. Ins t ead ,  t h e  aim i s  t o  produce a ' l o c a l  optimum', ie. a Solu t ion  
f o r  a given value o f  k (number o f  groups) such t h a t  no movement of an 
ob jec t  from one c l u s t e r  t o  another  w i l l  reduce t h e  wi th in-c lus ter  sum of 
squares .  The algori thm given by Hart igan and Wong (1979) is very e f f i c i e n t .  
Such algori thms a r e  c a l l e d  t r a n s f e r  ( o r  i t e r a t i v e  r e loca t ion )  algori thms.  
I n  p r a c t i c e ,  i t  i s  o f t e n  p r e f e r a b l e  t o  apply t h e  k-means algori thm t o  
component va lues  a f t e r  p r i n c i p a l  component ana lys i s .  The reason f o r  t h i s  
i s  t h a t  t h e  method is s t r i c t l y  Euclidean;  by using component va lues ,  
problems of s c a l i n g  of t h e  v a r i a b l e s  and c o r r e l a t i o n s  among v a r i a b l e s  a re  
overcome. 

, 
Some workers i n  I.T.E. have used i n d i c a t o r s p e c i e s  a n a l y s i s  (ISA) a s  a 
method f o r  s t r a t i f i c a t i o n  (Bunce e t  a l .  1975). This  method w i l l  no t  be 
d iscussed  i n  d e t a i l  here ,  a s  i t  has been d iscussed  i n  d e t a i l  i n  two o t h e r  
papers  (Howard & Howard 1980, 1981). B a l l  and Williams used ISA on 
a t t r i b u t e s  ftom continuous d a t a  r ead  from maps, f o r  436 l O k m  x lOkm Natlonal  
Grid squares  wi th  'upland' c h a r a c t e r i s t i c s .  They chose 8 ISA c l a s s e s  :or 
f u r t h e r  s tudy (I.T.E. 1978). Howard and Howard (1981) used p r i n c i p a l  
component a n a l y s i s  and k-means c l u s t e r i n g  on the  o r i g i n a l  continuous da ta .  
The k-means 8 groups obta ined  from t h e  f i r s t  16 components of the  product- 
moment c o r r e l a t i o n  matr ix and an o v e r a l l  sum of  squares  of 7334, t h a t  of 
the  ISA 8-class  p a r t i t i o n  was 9135. I t  was c l e a r  t h a t  ISA d id  no t  s a t i s f y  
t h e  minimum var iance  requirements f o r  s t a t i s t i c a l  s t r a t i f i c a t i o n ,  and many 
of the  ISA groups tended t o  be heterogeneous. 

P r i n c i p a l  component a n a l y s i s  cannot be used on d isordered  m u l t i s t a t e  o r  
mixed-mode data .  Ordered m u l t i s t a t e  d a t a  may not  con ta in  use fu l  d i s t a n c e  
information.  Gower's (1971) genera l  s i m i l a r i t y  c o e f f i c i e n t  was designed 
f o r  use  with such da ta .  Provided t h a t  the re  a r e  no missing va lues ,  t h e  
r e s u l t i n g  s i m i l a r i t y  matr ix i s  p o s i t i v e  semi-def in i te ,  which means t h a t  
t h e  s i m i l a r i t i e s  can be converted t o  d i s t ances  wi th  Euclidean p r o p e r t i e s .  
Applicat ion of p r i n c i p a l  co-ordinates  ana lys i s  t o  the  s i m i l a r i t y  matr ix  
g ives  s c a t t e r p l o t s  of t h e  p o i n t s  i n  a Euclidean space ,  and k-means c l u s t e r i n g  
could be app l i ed  t o  those as  f o r  p r i n c i p a l  component a n a l y s i s .  An, 
a l t e r n a t i v e ,  o r  perhaps a complementary, approach (eg. see Aitchison 1978) 
would be t o  apply t o  the  d i s t ance  matr ix  a c l u s t e r i n g  technique with minimum 
var iance  p r o p e r t i e s  (Wishart 1969). 

While k-means c l u s t e r i n g ,  based on d a t a  which a r e  random v a r i a b l e s ,  g i v e s  
groups which have s t a t i s t i c a l l y  d e s i r a b l e  p r o p e r t i e s  f o r  s t r a t i f i c a t i o n ,  
groups s o  produced t e l l  u s  noth ing  d i r e c t l y  about t h e  members of t h e  groups,  
except  t h a t  they should have s i m i l a r  p rope r t i e s .  The within-group v a r i a t i o n  
makes i t  impossible t o  make a p r e c i s e  p red ic t ion  of t h e  p r o p e r t i e s  of a 
member of t h e  group (un l ike  Cower's maximal p r e d i c t i v e  c l n s s i f i c a t i o n  
d i s c u s ~ e d  below). However, a k-means s t r a t i f i c a t i o n  can be used a s  a 
b a s i s  f o r  sampling, and t h e  da ta  c o l l e c t e d  i n  t h e  sampling can then be  



t rea ted  i n  a way which yields  good predictions,  eg. regresalon analysis .  
I f  we l e t  d be the animal population density a t  a given locat ion,  then 
the value of d w i l l  be determined by some set of environmental factors .  

We could wri te  
d = f ( e1 ,  8 2 ,  ...... 

where e l ,  e2i and so on represent environmental fac tors ,  and the  
relat'onship might be expected t o  vary w i t h  time. 

This approach i s  i l l u s t r a t e d  by the work of Hirst (1975). I n  studying 
ungulate-habitat re la t ionships  i n  a south African woodland/savanna ecosystem, 
Hirs t  (1975) commented: "A natural  community o r  group of communities can 
be regarded as a multivariate complex with t he  d i s t r ibu t ion  of any spec i f i c  
organism therein being a function of the  d i s t r ibu t ion  of one o r  more b i o t i c  
o r  physical  community fac tors .  Animals which exhibi t  a heterogeneous 
d i s t r i bu t ion  over a given area are  responding qua l i ta t ive ly  and quaa t i ta t ive ly  
t o  hab i t a t  fac tors  which r e l a t e  d i rec t ly  o r  ind i rec t ly  t o  t h e i r  well-being 
and survival .  Certain of these fac tors  may be so  important t ha t  a 
re la t ionship between them and the animal's d i s t r ibu t ion  obviously e x i s t s .  
African woodland savanna is f l o r i s t i c a l l y ,  edaphically, and s t ruc tu ra l ly  
complex, and animal-habitat re la t ionships  may not be ea s i ly  discernible .  
Multiple regression using a d i g i t a l  computer o f fe rs  a possible means of 
measuring the r e l a t i ve  importance of a large number of hab i ta t  fac tors  
i n  co l lec t ive ly  and individually determining the d i s t r ibu t ion  of ungulates 
over a heterogeneous area". 

Using a 300111 x 300m g r id  marked on 1:20 000 sca le  a e r i a l  photographs, H i r s t  
recorded the vegetation and used association analysis (Williams & Lsmbert 
1958) t o  del ineate  14 vegetational types o r  habi ta ts .  I t  is noteworthy tha t  
association analysis ,  now hardly used by plant  ecologis ts ,  produces groups 
such tha t  the  distance between group centroids i s  maximal, i e .  the groups 
tend to  have minimum variance proper t ies .  A habi ta t  map was prepared, and 
within each habi ta t  t he  following features  were recorded: Woody species - 
t r e e  and shrub density, density of favoured browse species,  shade cover, 
degree of clumping of woody p lan ts ;  Herbaceous species - Herbaceous basal  
cover, grass and forb height,  abundance parameters of favoured grasses and 
forbs,  above-ground standing crop and production of herbaceous forage; 
So i l s  - physical composition, water i n f i l t r a t i o n  in to  unsaturated s o i l  
i n  the wet season; Water-availability i n  pools. These features  were recorded 
as 23 habi ta t  charac te r i s t ics .  

The d is t r ibu t ion  of t he  various vegetational components w a s  found t o  be 
large17 determined by the  same topoedaphic features ,  so t ha t  many of t he  
vegetational charac te r i s t ics  measured were strongly correla ted.  A pr incipal  
component analysis of the  25 habi ta t  charac te r i s t ics  was car r ied  out ,  and 
10 components (accounting f o r  98% of the  t o t a l  variance) could be usefully 
i den t i f i ed  i n  terms of ecological gradients.  By sampling along t ransec ts ,  
estimates of dens i t i es  of each of 7 ungulate species were obtained. The 
estimated density within each habi ta t  a t  any one time of sampling was taken 
as  one observation of t he  dependent variable. There was thus a t o t a l  of 
(no. of t ransec ts )  x (no. of habi ta ts)  observations f o r  each species.  The 
independent var iables  i n  each case were the 10 pr inc ipa l  components. 
Multiple regression, using second-degree polynomials where the  re la t ionships  
were non-linear, showed tha t  each ungulate species had a unique combination 
of  cha rac t e r i s t i c s  t o  which i t  responded i n  a pos i t ive  o r  negative, l i n e a r  
or curv i l inear ,  fashion. 



A s  was noted above, while  k-means c l u s t e r i n g ,  based on d a t a  which a r e  
random v a r i a b l e s ,  g ives  groups which have s t a t i s t i c a l l y  d e s i r a b l e  p r o p e r t i e s  
f o r  s t r a t i f i c a t i o n ,  groups so produced t e l l  u s  nothing d i r e c t l y  about t h e  
members of t h e  groups, except t h a t  they should have s i m i l a r  p r o p e r t i e s .  I f ,  
on t h e  o t h e r  hand, we had a number o f  groups whose a t t r i b u t e s  a r e  
preponderantly cons tant ,  then ,  because of high constancy and mutual 
i n t e r r e l a t i o n s h i p s  of a t t r i b u t e s ,  such a grouping would ca r ry  a  high 
p r e d i c t i v e  va lue  f o r  a  new ob jec t  assigned t o  i t  (Sneath 8 Sokal 1973 
~ 1 8 8 ) .  When t h e  sample o b j e c t s  a r e  no t  sub jec t  t o  random v a r i a t i o n ,  
i e .  when t h e r e  is no v a r i a t i o n  of t h e  s e l e c t e d  a t t r i b u t e s  wi th in  groups, 
but  t h e  a t t r i b u t e s  change from group t o  group, t h e  members of each group 
a r e  completely i d e n t i c a l ,  and any one member c h a r a c t e r i s e s  t h e  group. 
Repeated sampling w i l l  reproduce exac t ly  the  same s e t s  o f  values.  With 
k groups, a  sample of o b j e c t s  w i l l  g ive  us  only k d i f f e r e n t  sets o f  
values however l a r g e  t h e  sample, t h e  only information obtained by 
repeated  sampling r e l a t e s  t o  the  r e l a t i v e  abundance of t h e  d i f f e r e n t  
groups (Gower, 1970). 

This  s i t u a t i o n  a r i s e s  n a t u r a l l y  i n  t h e  taxonomy of organisms, and l eads  t o  
Gower's (1974) maximal p r e d i c t i v e  c l a s s i f i c a t i o n .  If we have a matr ix of v 
b inary  a t t r i b u t e s  f o r  a l l  t he  members o f  c l a s s  C ,  then a b ina ry  row vector  
m of length  v can be cons t ruc ted  which l is ts  the  p r o p e r t i e s  t h a t  one would - 
p r e d i c t  f o r  an ob jec t  on being informed t h a t  i t  balonged t o  t h a t  c l a s s .  For  
t h e  i t h  c l a s s ,  summed over a l l  c l a s s  members, t h e r e  w i l l  be  W i  c o r r e c t  
p r e d i c t i o n s ,  and f o r  a l l  k c l a s s e s  t h e r e  a r e  W = 5 W i  c o r r e c t  p red ic r ions .  

i=1 

The maximal p r e d i c t i v e  c r i t e r i o n  s e l e c t s  t h a t  p a r t i t i o n  of n o b j e c t s  i x t o  
k c l a s s e s  which maximises Wk. The average number Bk of p r o p e r t i e s  
c o r r e c t l y  p red ic t ed  f o r  members of each c l a s s ,  us ing  t h e  c l a s s  p r e d i c t a r s  
of t h e  o t h e r  k-1 c l a s s e s ,  measures t h e  sepa ra t ion  between c l a s s e s .  The 
b e s t  choice of k i s  r e l a t e d  t o  maximising Wk - Bk. I n  p r a c t i c e ,  maximal 
p r e d i c t i v e  c l a s s i f i c a t i o n  is implemented by using a t r a n s f e r  algori thm of 
t h e  type used i n  k-means c l u s t e r i n g ,  bu t  using dnv ia t ions  from c l a s s  
p r e d i c t o r s  i n s t e a d  of from c l a s s  means (Gower 1974). 

In maximal p r e d i c t i v e  c l a s s e s ,  a l l  members of the  i t h  c l a s s  have more 
p r o p e r t i e s  i n  common with t h e i r  own c l a s s  p r e d i c t o r  =i than wi th  t h e  
p r e d i c t o r  of any o t h e r  c l a s s .  Therefore,  an i n d i v i d u a l  can be i d e n t i f i e d  
( i e .  ass igaed t o  i t s  c o r r e c t  c l a s s )  by comparing i t  wi th  t h e  k c l a s s  
p r e d i c t o r s .  The sample belongs t o  t h e  c l a s s  g iv ing  most matches. F i n a l l y ,  
i t  can be compared wi th  members of t h a t  c l a s s  u n t i l  a  p e r f e c t  match is 
found. 

With popula t ions  of inanimate o b j e c t s ,  appropr i a t e  a t t r i b u t e s  may be  easy 
t o  f i n d .  If s u i t a b l e  b inary  a t t r i b u t e s  cannot b e  found, mul t i - level  
q u a l i t a t i v e  d a t a  can be used (Gower 1974). 

Gower's maximal p r e d i c t i v e  c l a s s i f i c a t i o n  does not  appear t o  have been much 
used i n  ecology. Curran and Swithinbank (1981) used it on a presence-absence 
d a t a  matr ix  f o r  110 quadra ts  and 110 p l a n t  species .  The va lues  f o r  Wk-Bk 
suggested t h a t  t h e  optimum number o f  c l a s s e s  was 7,  and t h e s e  c l a s s e s  represented  
developmental phases a s soc ia t ed  with management p r a c t i c e s .  Of t he  110 p l a n t  
s p e c i e s ,  26 were used as  c l a s s  p r e d i c t o r s ,  11 of them appearing i n  more than  
one c l a s s .  



I t  should be self-evident tha t  clarrsif ications (or  dissections) which 
are produced fo r  the  study of fox (or  other animal) population densi t ies  
are  specinl  c l a s s i f i ca t ions  and require problem-specific information. 
A major problem fo r  researchers is l ike ly  t o  be the se lec t ion  of 
appropriate a t t r i bu t e s .  Because data can be recorded i n  d i f f e r en t  
ways, and the type of data  great ly  influences the numerical methods 
which can be used, types of data are discussed i n  d e t a i l  i n  the  next 
section.  

4 TYPES OF DATA 

The f a c t  t h a t ,  i n  po ly the t ic  c l a s s i f i ca t ions ,  groups of object6 share 
a l a g e  proportion of t h e i r  properties but do not necessari ly agree i n  
any one property, has some important consequences. F i r s t l y ,  i t  introduces 
the concept of s imi l a r i t y  (or  difference, o r  distance) among objects.  In  
prac t ice ,  t h i s  may be expressed i n  a variety of ways, some of which w i l l  
be mentioned below. I t  a lso r a i s e s  the problem of how many propert ies  
to  use, and which proper t ies  t o  s e l ec t .  

As there i s  no theoret ical  b & s i s  on which t o  choose the number of 
proper t ies  used, the choice is l ike ly  t o  be mnde on p rac t i ca l  grounds, 
and much depends on the objectives of the  user. In  ecological  invest i -  
gatLocs, there i s  usually a f i n i t e  but extremely large s e t  of properties 
which could be recorded, but most of these are  not recognized by the 
ecolog=st because they have no obvious p rac t i ca l  r e l a t i on  t o  the topic  
being investignted. Thus, there i s  inevitably some degree of select ion 
i n  any choice of proper t ies  t o  be examined. 

Pracr ical  considerations are i i ke ly  t o  l i m i t  the number of properties 
used. Apart from the f a c t  that  a large number of proper t ies  w i l l  r esu l t  
i n  more computer time, and storage space, being required i n  the analysis 
of the  data,  mathematical and s t a t i s t i c a l  proper t ies  of the data matrix 
must be considered. The la rger  the number of proper t ies  chosen, the more 
l ike ly  i t  w i l l  be tha t  many of the proper t ies  w i l l  be highly correla ted,  
and w i l l  thus contribute no useful information, although they w i l l  
contribute to  the  'no ise ' .  In some numerical methods, i t  i s  necessary 
t o  f i nd  the cigenvalues and eigenvectors of a matrix. In  pr incipal  
component analysis and fac tor  analysis ,  the matrix has the order of the  
number of a t t r i bu t e s .  The la rger  the matrix, the  l e s s  s t ab l e  are t he  
eigenvalues (cigenvalues and eigenvectors are  important matrix proper t ies ,  
fmd are defined i n  basic  matrix algebra t ex t  books such aa Searle 1966). 
If there  are too many binary a t t r i bu t e s ,  values of s imi l a r i t y  coef f ic ien ts  
w i l l  depend on accidental  matches o r  'noise ' .  

Although i t  is important not t o  include too many a t t r i b u t e s  i n  a numerical 
analysis ,  the ecologis t  w i l l  be concerned tha t  he may use too few, and 
thus omit an important a t t r i bu t e .  An empirical approach t o  a s s i s t  the user 
i n  deciding whether o r  not t o  add addit ional proper t ies  would be t o  perform 
an analysis on the or ig ina l  s e t  of proper t ies ,  add more, and repeat the 
analysis.  I f  the r e su l t s  are  s imi l a r ,  the c l a s s i f i ca t ion  is s tab le  and 
the addit ional proper t ies  are  not required. 



A b e t t e r  approach would be t o  make a preliminary study of t he  proposed 
variables by pr incipal  component or  fac tor  analysis. In ecology, observed 
variables are often manifestations of a smaller number of fac tors  of which 
the observer may be unaware. The variables which the invest igator  thinks 
are  important may be informative, but they may not be the ones which are  
correla ted with r e a l  s t ruc ture  (eg. see  Muir 1962). Pr incipal  component 
o r  fac tor  analysis can a s s i s t  i n  the finding of important variables i n  
the underlying factors .  

Broadly speaking, a c lass i f ica t ion  based on a large number of proper t ies ,  
chosen only because they are available o r  are easy t o  obtain ,  w i l l  be a 
general c lass i f ica t ion .  I t  w i l l  serve a variety of purposes, but i s  
unlikely t o  be optimum f o r  any spec i f i c  purpose. An example of a general 
c l a s s i f i ca t ion  is  the group of plants  tha t  gardeners c a l l  "alpines", which 
share numerous growth and physiological charac te r i s t ics  r e f l ec t ing  t h e i r  
adaptation t o  alpine conditions (Sneath & Sokal 1973). On the other  hand, 
if a c l a s s i f i ca t ion  i s  being constructed f o r  some spec i f i c  purpose, then there  
is a need f o r  problem-specific information, and a c las# i f ica t ion  based on 
selected properties i s  more l ike ly  t o  be optimal with respect t o  those 
proper t ies ,  but might not be of general use. 

The way i n  which the data are col lected can have an important bearing on 
, subsequent s t a t i s t i c a l  and numerical analysis. Data consis t  of a t t r i b u t e  

scores. Conventionally, i n  s t a t i s t i c s ,  the term ' a t t r i b u t e '  i s  used f o r  
q u a l i t i e s  possessed o r  not possessed, by an individual. The t e rn  'varinc?e1 
i s  usually used fo r  quant i t i es  which may vary continuously. Aowever, ic 
pat tern analysis the term ' a t t r i b u t e '  has come t o  be used i n  a w i d e r  se-se. 
T b i s  is convenient, since we do not need t o  d i f f e r en t i a t e  between contincous 
and d iscre te  data i n  general discussion where the nature of t he  data i s  
not i n  question. There are many d i f fe ren t  kinds of a t t r i bu t e s ,  see f o r  
example Sneath and Sokal (1973); Cl i f ford and Stephenson (1975); W i l l i ~ s  
(19761, The most common kinds of a t t r i bu t e s  are: ( i )  Binary, eg. presence - 
absence; (ii) Disordered mult is ta te  (a l so  cal led nominal a t t r i b u t e s ) ,  such 
as colour o r  rock type; (iii) Ordered mult is ta te  (a lso cal led ordinal  
a t t r i b u t e s ) ,  eg. r a r e ,  common, abundant; ( iv )  Merist ic (d i sc re te  integer  
numbers), eg. number of pe t a l s ;  (v) Continuous, i e .  neaaures on a 
continuous sca le  (a l so  cal led quant i ta t ive  o r  numeric a t t r i bu t e s ) .  

The sca le  on which the a t t r i bu t e s  are  scored o r  measured w i l l  have an 
important influence on the subsequent data analysis. Presence-absence 
and disordered mult is ta te  data are on a nominal scale .  With disordered 
mult is ta te  data ,  a given individual can be referred t o  only one s t a t e .  
The s t a t e s  may be numbered f o r  computational convenience, but no meaning 
can be attached t o  the order i n  which the s t a t e s  are  taken. An ordinal 
sca le  is used when various levels  can be established f o r  an a t t r i b u t e ,  
but the sca le  values es tab l i sh  only the order of t he  observations, they 
do not contain any information on r e l a t i v e  distances. With ordered 
mul t i s ta te  data ,  fo r  example, ra re ,  common, abundant, could be coded 
as 1, 2 ,  3 ,  but these scores would not represent the r e l a t i ve  abundances, 
i e  the distances between the  s t a t e s  are  undefined. With in t e rva l  and rPtio 
sca les ,  there  i s  a concept of distance. On an in t e rva l  ecale ,  both the 
order and magnitude of an a t t r i b u t e  s t a t e  can be found r e l a t i v e  t o  some 
a rb i t r a ry  zero value, as i n  temperature scales.  A r a t i o  sca le  i s  used 
when the order and magnitude of an a t t r i b u t e  s t a t e  can be referred t o  
some na tura l  o r ig in ,  as i n  measurement of length o r  weight. On such a 



sca le ,  the  r a t i o s  between sca le  values a r e  meaningful, as  are the sums 
and diifarences.  Probably few b io logis t s  have much formal background 
i n  typco of measurement nnd sca les ,  Torgerson's (1958) book is useful 
f o r  t h i s .  

In nmer i ca l  taxonomy, as i n  ordinary s t a t i s t i c s ,  there  is  a grea te r  
choice of algorithms f o r  dealing with continuous a t t r i bu t e s  than with 
binary a t t r i bu t e s .  Ordered and disordered mul t i s ta te  data can be a 
nuismce t o  handle, f o r  many purposes there  is  no en t i r e iy  sa t i s fac tory  
way of t r ea t ing  such data numerically. llleristic a t t r i b u t e s ,  which can 
take only in t eg ra l  values, can also be a nuisance. In  many cases,  they 
cannct sensibly be t rea ted  as  continuous; consider a case of counts 
of f l o r a l  pa r t s  i n  a sample which contains some p lan ts  with two pe ta l s  
and some with four. A s  Williams (1976) pointed ou t ,  f inding t h a t  the 
mean is three implies t ha t  dicotyledons have become monocotyledons. 
In such a case, the a t t r i b u t e  could be coded as disordered mult is ta te .  
On the other  hand, i n  some cases the mean value i s  in te rpre tab le ,  and 
the data could be t rea ted  as continuous f o r  p rac t ica l  purposes. 

Continuous a t t r i bu t e s  a r s  rarely  continuous i n  the s t r i c t  sense, s ince 
measurements are  always made with l imited accuracy, anil there  i s  always 
soffie degree of rounding o f f .  In pract ice ,  the difference between continuous 
and discrete  a t t r i bu t e s  depends on the chance tha t  d i f fe ren t  observations 
take the same value. For prac t ica l  purposes, counts tha t  follow a 
Polason d is t r ibu t ion  with a large mean can be regarded aa continuous, 
s i2cs  only a small proportion of the  observations w i l l  take any one value. 
On :he other hand, a continuous a t t r i b u t e  grouped so  coarsely tha t  only a 
feu values actual ly  occur must, f o r  a t  l e a s t  some types of analysis ,  be 
t rea ted  d i f f e r en t ly .  I f  an a t t r i h t c  tckes a wide range of values, but has 
a concentration a t  one value, ,usual ly  zero (eg. counts of paras i tes  on a 
hos t ) ,  i t  may be b e t t e r  t o  score it as ordered mul t i s ta te ,  eg. zero, low, 
meclum, high (Marriott 1974). 

Data may be coarsely grouped, e i t h e r  because measurements have been made 
with l imited accuracy, o r  are replaced by rough assessments such as low, 
medium, high. For many purposes, such grouping i s  not important. The 
assessment can be replaced by su i t ab l e  scores,  giving whatever weight i s  
considered appropriate t o  t he  differences between the groups. In many of 
the c l a s s i ca l  multivariate methods, the  cen t ra l  l i m i t  theorem then j u s t i f i e s  
t rea t ing  them as  if they were jo in t ly  normally dis t r ibuted.  However, i n  
soae applications care is needed. This is especial ly  t rue  i n  c l u s t e r  
analysis.  I f  the  aim is t o  f ind  a useful o r  meaningful grouping of t he  
da:%, a coarsely-grouped a t t r i b u t e  may exer t  a disproportionate influence 
on tae  r e su l t  (Marriott 1974). 

One way of dealing with disordered mul t i s ta te  data is t o  replace them by 
duxny binary a t t r i b u t e s .  Thus, t he  colours red,  white, and blue could be 
coded as two binary a t t r i bu t e s ,  one taking the value 1 f o r  red and 0 for  
blue and white, t he  other taking the  valve 1 f o r  white and 0 fo r  red and 
blue. However, t h i s  method becomes ra ther  cumbersome i f  there  are many 
disordered mul t i s ta te  a t t r i bu t e s ,  o r  many disordered s t a t e s .  This method 
can a l so  be mialeading i f  it  is used i n  conjunction with an analysi# t ha t  
does not take i n t o  account the f ac t  t h a t  the  resu l t ing  binary a t t r i bu t e s  
an, correla ted (eg. some forms of c lu s t e r  analysis) .  With many observations 
of t h i s  type it  i e  preferable to base a c lu s t e r  analysis  on some s o r t  of 
s imi la r i ty  o r  d i ss imi la r i ty  measure (Marriott 1974). However, the comments 
of Rubin (19671, given below, should be taken in to  account. 



J u s t  a s  i n  u n i v a r i a t e  app l i ca t ions  t h e  s tandard  e r r o r  of a propor t ion  can 
be used f o r  s i g n i f i c a n c e  tests and confidence i n t e r v a l s  as if t h e  propor t ion  
were normally d i s t r i b u t e d ,  s o  i n  t h e  m u l t i v a r i a t e  case  t h e  c e n t r a l  l i m i t  
theorem o f t e n  j u s t i f i e s  t r e a t i n g  binary da ta  a s  approximately m u l t i v a r i a t e  
normal. However, if a l l  t h e  d a t a  a r e  of t h i s  type,  o t h e r  models a r e  
a v a i l a b l e ,  and some s p e c i a l  methods have been evolved (Marr io t t  1974). 

Differences of opinion e x i s t  on t h e  value o f  binary d a t a  i n  eco log ica l  
work, but  t h e  consensus of opinion seems t o  be t h a t  o t h e r  d a t a  nre 
p r e f e r a b l e  ( C l i f f o r d  & Stephenson 1975, p30). I n  a b o t a n i c a l  context ,  
Greig-Smith (1964, p160) s t a t e d :  "We a r e ,  i n  f a c t ,  dea l ing  wi th  a popula t ion  
of i n d i v i d u a l s  ( i f  s t ands  may be so regarded) which d i f f e r  from one another  
i n  terms of continuous v a r i a b l e s  of which presence and absence a r e  only a 
c ~ d e  expression".  I n  p l a n t  and animal ecology, the  tendency is t o  regard 
dominance o r  abundance (by some measure) a s  important ( see  eg. t he  papers  
i n  Sec t ion  I11 of Ord e t  a l .  1979). Resul t s  of analyses  us ing  d a t a  wi th  
numerical va lues  a r e  more informative than those us ing  b inary  da ta .  For 
example, Williams e t  aZ. (1973) found t h a t  while p l a n t  s p e c i e s  presence- 
absence was adequate i n  a simple s tudy involving only e i g h t  s i t e s ,  f o r  t e n  
s i t e s  t h e r e  was "some advantage" i n  us ing  numbers, whi le  f o r  80 Sites 
q u a n t i t a t i v e  da ta  were d i s t i n c t l y  p r e f e r a b l e .  Barkham (1968) found 
q u a n t i t a t i v e  d a t a  t o  be more informative than presence-absence d a t a  i n  a 

,. s tudy of t h e  vegeta t ion  of Cotswold beechwoods. Presence-absence d a t a  
appear t o  work wel l  when t h e r e  a r e  major d i f f e rences  i n  spec ies  d i s t r i b u t i o n  
between s i t e s ,  bu t  they a r e  not  very use fu l  f o r  d e t a i l e d  s t u d i e s  of p a t t e r n  
if t h e r e  a r e  r e l a t i v e l y  few spec ies  with l e s s  c lear -cut  d i f f e rences  between 
s i t e s .  The use of binary d a t a  i n  ecology can only be j u s t i f i e d  if i t  i s  
d i f f i c u l t  t o  ob ta in  anything olrto, o r  i f  t h e r e  i s  a dec la red  l ack  of i n t e r e s t  
i n  t h e  information which i s  l o s t  by us ing  binary d a t a  i n s t e a d  o f ,  s ay ,  
continuous l a t n .  

These a t t r i b u t e  ca tegor i e s  a r e  not d i s t i n c t ,  they depend t o  some ex ten t  on 
t h e  sampling and coding procedure,  and da ta  i n  one form can be converted 
t o  another .  I n  genera l ,  t h e  conversion of continuous a t t r i b u t e s  ( o r  
d i s c r e t e  a t t r i b u t e s  t h a t  can be t r e a t e d  as  continuous) t o  b inary  a t t r i b u t e s  
is usua l ly  u n s a t i s f a c t o r y .  I f  a normally d i s t r i b u t e d  v a r i a t e  is dividod 
i n t o  two s e c t i o n s  along t h e  mean, a l l  e n t i t i e s  on e i t h e r  s i d e  of the  mean 
would have i d e n t i c a l  binary s c o r e s ,  however f a r  from t h e  mean. Rubin (1967) 
drew a t t e n t i o n  t o  a d i f f i c u l t y  which a r i s e s  when a continuous a t t r i b u t e  i s  
chopped i n t o  a s e t  of i n t e r v a l s  each of which is scored  a s  a s e p a r a t e  
a t t r i b u t e - s t a t e .  He used the  example of age, which couldbechanged t o  a 
d i s c r e t e  a t t r i b u t e  of 8 s t a t e s  thus :  

(1) 0 - 9  (5) 40 - 49 
(2) 10 - 19 (6) 50 - 59 
(3) 20 - 29 (7)  60 - 69 
(4)  30 - 39 (8)  over  69 

The obvious d i f f i c u l t y  when us ing  t h i s  approach is t h a t  two persons aged 
29 and 30 w i l l  be regarded a s  d i s s i m i l a r ,  whereas two persons of 30 and 39 
w i l l  be regarded a s  s i m i l a r .  H e  suggested t h a t  i n  t h e  c a l c u l a t i o n  of 
s i m i l a r i t i e s ,  t h e  problem could be overcome by having t h e  u s e r  spec i fy  
two d i f f e r e n t  c r i t e r i a :  (a )  an i n t e r v a l ,  expressed i n  t h e  unit. of a 
v a r i a t e ,  such t h a t  two o b j e c t s  which have a d i f f e r e n c e  on t h a t  v a r i a t e  
sma l l e r  than t h e  chosen i n t e r v a l  w i l l  be considered t o  match ( so  t h a t  a 
one w i l l  be added t o  t h e  number of matches when computing t h e  s i m i l a r i t y  
c o e f f i c i e n t ) ;  (b) a second i n t e r v a l ,  expressed i n  t h e  u n i t s  of a v a r i a t e ,  
such t h a t  two o b j e c t s  which have a d i f f e rence  on t h i s  v a r i a t e  l a r g e r  than  
t h e  given i n t e r v a l  w i l l  be considered not t o  match (and a zero  w i l l  be 



added t o  the number of matches). For differences which l i e  between 
these two specif ied values be suggests uaing l i nea r  interpolat ion.  
This ~ e t h o d  has t he  advantage of avoiding sharp d i scont inu i t ies  i n  a 
s imi la r i ty  coef f ic ien t  when changes i n  the  data are s l i g h t ,  and the 
burdan on the user to  provide values f o r  the two in te rva ls  is no grea te r  
than tha t  Of breaking a continuous var ia te  in to  a rb i t ra ry  in t e rva l s .  
A s imi la r  method could be used for  ordered mult is ta te  data. 

Also, i n  the calculat ion of s imi l a r i t y  coef f ic ien ts ,  there  can be 
problems with mixed a t t r i bu t e s .  Rubin (1967) drew a t ten t ion  t o  
d i f f i c u l t i e s  which occur when d i f fe ren t  a t t r i bu t e s  have d i f f e r en t  
n u c r r s  Of s t a t e s .  I f  we give equal weight t o  a binary a t t r i b u t e  
and t o  an a t t r i b u t e  with four s t a t e s ,  then, on average, t he  binary 
a t t r i b u t e  w i l l  contribute matches more of ten t o  a s imi l a r i t y  coef f ic ien t  
than w i l l  the  f o u r s t a t e  a t t r i bu t e .  Furthermore, i f  we fragment t i e  
s t a t e s  of an a t t r i b u t e  su f f i c i en t ly ,  a match between two objects  w i l l  
becone more and more ra re ,  and the a t t r i b u t e  w i l l  become useless i n  the  
ana:ysis. Weighting a t t r i bu t e s  on the number of s t a t e s  is not t he  
Solution, Since then an occasional match might completely dominate the  
s imi l a r i t y  coeff ic ient .  The problem rea l ly  l i e s  i n  the or ig ina l  choice 
of s t a t e s  f o r  each a t t r i bu t e .  I f  there is too much var ia t ion i n  the  
nunber of s t a t e s  from a t t r i b u t e  t o  a t t r i b u t e ,  then the many-state 
a t t r i bu t e s  w i l l  not play as important a par t  i n  a c l a s s i f i ca t ion  
procedure as w i l l  the  few-state a t t r i bu t e s .  

On tbe other  hand, i f  one chooses s t a t e s  so  tha t  most objects  assume 
only one or  two of the  s t a t e s  chosen, then one has thrown away information 
which could have increased our imoowladgs of the  stllrcture of .the data eet. 
RuSa suggested tha t  the  idea l  solution might be t o  have an equal nunber 
of s t a t e s  f o r  each a t t r i bu t e , .  and approximately equal frequencies f o r  each 
s t a t e .  This problem is not pecul iar  t o  the calculat ion of s imi la r i ty  
coef f ic ien ts .  Once an a t t r i b u t e  has been fragmented i n t o  too many s t a t e s ,  
o r  lumped in to  too few, information has been l o s t  and is unrecovernble, no 
matter what the type of analysis.  The pa r t i cu l a r  problem f o r  c l a s s i f i ca t ion  
i s  tba t  a randomly-chosen binary a t t r i bu t e  may be more important i n  
determining s t ruc tu re  than several  many-state a t t r i bu t e s ,  even i f  the 
l a t t e r  exhibi t  a high degree of s t ruc ture  when considered by themselves. 

5 DATA ACQUISITION 

Related to  the  above problems i s  the prac t ica l  problem of how t o  acquire 
the data.  This is rea l ly  a subject  which needs separate,  de ta i led ,  treatment, 
and only some main aspects w i l l  be discussed here. In  any land c l a s s i f i ca t ion  
data acquis i t ion is complicated by problems of sample area. I f  data are  
obtained from maps, the  sca le  of the  map used is also important. The problem 
of the sample area is famil iar  t o  botanis ts  i n  the  problem of quadrat s i ze .  
For example, if two species respond s imi la r ly  t o  n control l ing fac tor  which 
bas a defined pa t te rn  of values, they w i l l  show pos i t ive  association up t o  
the  s i z e  of quadrat corresponding t o  the  sca le  of heterogeneity of the 
control l ing f ac to r .  Above tha t  quadrat s i z e ,  the indicat ions  of 
association w i l l  disappear (see eg. Greig-Smith 1964; Pielou 1969). 

The problem of map sca le  i s  ra ther  d i f fe ren t .  A map is only a p i c t o r i a l  
representation of a portion of t he  ea r th ' s  surface.  With physical  features ,  
as represented on Ordnance Survey maps, t he  l imi ta t ions  of map sca le  make 
i t  necessaw t o  simplify the representation of many surface features ,  



w h i l s t  o t h e r  f e a t u r e s ,  such a s  roads,  may be exaggerated d e l i b e r a t e l y .  
I n  t h e  production of maps, i t  i s  necessary t o  s t r i k e  a balance between 
d e t a i l  and c l a r i t y ,  and i n e v i t a b l y ,  some information is l o s t  o r  d i s t o r t e d ,  
according t o  the  map s c a l e  (see  Harley 1975). 

Vegetation o f t e n  p lays  a major p a r t  i n  land c l a s s i f i c a t i o n s .  Dammon 
(1979) d iscussed  vegeta t ion  p r o p e r t i e s  which a r e  u s e f u l  i n  de tec t ing  
and mapping vegeta t ion  p a t t e r n s  a t  various s c a l e s .  H i s  d i scuss ion  of 
s i z e  of mapping u n i t  f o r  var ious  map s c a l e s  is worth reading by anyone 
i n t e r e s t e d  i n  t h i s  t o p i c .  

Some information may be more accura te ly  and e a s i l y  obta ined  from a i r  
photographs, f o r  example genera l  s lope  angle and a l t i t u d e .  A s i n g l e  
s imple value expressing t h e  a l t i t u d e  of a sample a r e a  could be obtained 
by t ak ing  t h e  mean of N p o i n t s  loca ted  i n  the  a rea .  The problem 
wi th  doing t h i s  on a map is t h a t  most o f  the  p o i n t s  are l i k e l y  t o  f a l l  
between contour l i n e s ,  and it would be necessary t o  use  non-l inear  
i n t e r p o l a t i o n  t o  f i n d  the  a l t i t u d e  of each p o i n t ,  which is not  r e a l l y  
p r a c t i c a b l e  without complex equipment. On t h e  o t h e r  hand, i t  could 
be done e a s i l y  us ing  a i r  photographs. Ba l l  and W i l l i a m s ,  i n  t h e  s tudy 
mentioned l a t e r ,  measured t h e  propor t ion  of land i n  d i f f e r e n t  a l t i t u d e  
hands i n  lOkm x lOkm National  Grid squares  on Ordnance Survey maps. 
There a r e  two problems wi th  t h i s  approach, f i r s t l y  it is fragmentiog 
a continuous proper ty  i n t o  i n t e r v a l s ,  a s  discussed above, and secondly, 
i t  requ i re s  s e v e r a l  a t t r i b u t e s  t o  express  one proper ty .  This  means t h a t  
the  p roper ty ,  a l t i t u d e ,  i s  e f f e c t i v e l y  weighted, and could dominate 
an a n a l y s i s  i r r e s p e c t i v e  of i t s  eco log ica l  importance. 

The es t imat ion  of s l o p e  angle  from topographic maps by hand is t i n e -  
consuming, and i s  l i a b l e  t o  a cons iderable  degree of s u b j e c t i v i t y  end 
approximation. C l e r i c i  (1980) descr ibed  a method f o r  t h e  automatic 
drawing of s lope  maps from contour maps. H i s  method i s  based on t h e  
determinat ion of t h e  s lope  (def ined  as  the  i n c l i n a t i o n  of t h e  p lane  
which is  t a rgen t i a l  t o  t h e  su r face )  a t  regular ly-spaced p o i n t s  on a 
mathematical model of t h e  topographic su r face .  F i r s t  o f  a l l ,  a l t i t u d e s  
and x-y co-ordinates o f  po in t s  on a topographic contour map a r e  recorded 
using a d i g i t i z e r .  A computer i s  then used t o  superimpose a square  g r i d  
on t h e  s e t  of d a t a  po in t s  and f i t  a polynomial t r end  s u r f a c e  t o  t h e  
a r e a  around each g r i d  i n t e r s e c t i o n .  A denser g r i d  i s  then superimposed 
on t h e  computed t r end  s u r f a c e ,  and t h e  s lope  is c a l c u l a t e d  a t  each 
i n t e r s e c t i o n .  F i n a l l y ,  a map is produced by t r a c i n g  the  i s o l i n e s  obta ined  
by i n t e r p o l a t i o n  of t h e  s l o p e  po in t s .  The method can be developed t o  g e t  
f u r t h e r  information such as  t h e  concavity o r  convexity o f  t h e  su r face  
and i t s  aspec t .  

Yet another  problem concerns t h e  a c q u i s i t i o n  of d a t a  from ' t a c t o r  maps', 
i e .  maps o f  t h e  d i s t r i b u t i o n  of s p e c i a l  f e a t u r e s  o r  p r o p e r t i e s .  MacDougall 
(1975) discussed  sources o f ,  and magnitudes o f ,  e r r o r  i n  f a c t o r  maps. 
With s o i l  maps, i t  must be noted t h a t  a s o i l  mapping u n i t  is a s i n g l e  
express ion  of a m u l t i v a r i a t e  system wi th  a vec tor  o f  means and a v a r i ~ c e  
covariance matr ix.  If a proper ty  is deduced from a so i l  map, f o r  any 
p a r t i c u l a r  p o i n t ,  i t  is u n l i k e l y  t h a t  any es t ima te  of the l i k e l y  accuracy 
of such a sample could be obtained.  I n  t h e  t r a d i t i o n a l  approach t o  s o i l  
mapping, s o i l s  a r e  i d e n t i f i e d  i n  p i t s  and t h e  boundaries of mapping u n i t s  
a r e  drawn by i n t e r p o l a t i o n  from auger borings using k n m  r e l a t i o n s h i p s  
with landscape f a c e t s ,  geology, and vegeta t ion .  The mapping u n i t s  a r e  
defined and descr ibed  i n  terms of t h e  s o i l  s e r i e s  they  conta in .  I n  most 
cases ,  one s e r i e s  dominates t h e  mapping u n i t  which then bea r s  t h a t  s e r i e s  



name; more complex un i t s  carry the names of co-dominant s e r i e s .  In 
e i t h e r  case, t he  un i t s  Contain l e s se r  areaa of o the r  p r o f i l e  c lasses .  
The p ro f i l e  c lasses  ( s o i l  s e r i e s ,  var iants ,  and phases) included i n  
the sapping u z i t  may be l i s t e d ,  and t h e i r  frequency of occurrence 
assessed (eg. Claydan It Evans 1974). Various authors have discussed 
the concept of 'pur i ty '  Of s o i l  mapping un i t s  (eg. Bascomb & Ja rv i s  
1976; Beckett & Bie 1975, 1976) as well as s o i l  map accuracy (Legros 
1973). The sca le  of mapping and the  nature of the country impose 
what var ia t ion must be accepted (Ball 1964). 

6 SOME PUBLISHED NUMERICAL CLASSIFICATIONS (AND DISSECTIONS) OF HABITATS 

I t  is ins t ruc t ive  t o  look a t  some published c lass i f ica t ions  ( in  t h i s  
discussion i t  i s  convenient to  include diSsections and t o  use the term 
classification i n  i ts  widest sense) ,  to  see  what can be l ea rn t  from 
them. Thilenius (1972) investigated deer habi ta t s  i n  the Ponderosa pine 
fo re s t  of the  Black H i l l s ,  South Dakota. In  the published paper, h i s  
main e f f o r t  was i n  the c l a s s i f i ca t ion  of t he  habi ta t s ,  and l i t t l e  was 
done t o  r e l a t e  the  c lasses  obtained to  deer populations o r  a c t i v i t i e s .  
There i s  always a danger tha t  c l a s s i f i ca t ion  may become an end i n  i t s e l f  
and, i n t e r e s t i ng  though the subject  may be, a c l a s s i f i ca t ion  o r  dissection 
should be shown t o  serve some useful end. Thilenius sampled the pine 
fo re s t  a t  100 locat ions ,  each locat ion being a "macro-plot" 60f t  x 100ft .  
A t a t a l  of 39 proper t ies ,  giving 334 coded a t t r i b u t e s ,  was recorded: 
Vegetation (3  properties) - frequency of overstorey t r e e s ,  frequency of 
large shrubs, frequency of small shrubs, grasses ,  sedges and forbs,  a l l  
i n  percent; S o i l s  had 27 proper t ies  (recorded as mixed data types, 
continuous, mer i s t ic ,  disordered mult is ta te  and ordered mult is ta te)  as  
required by the standards of t he  U.S. So i l  Survey; S i t e  was represented 
by 9 proper t ies  of mixed data types. 

The choice of proper t ies  i s  in te res t ing .  The vegetation types seem highly 
relevant t o  the  problem. For some purposes, the physical  s t ruc ture  Of the 
vegetation cover may be more important than i ts  species composition, f o r  
exmgle  i n  providing cover from predators and s h e l t e r  fromweather. The 
use of so many s o i l  proper t ies  seems excessive. The choice of the standards 
of the U.S. Soi l  Survey suggests beaurocratic,  ra ther  than s c i e n t i f i c ,  
reasons f o r  using so many propert ies ,  many of which would be unlikely 
to  have much influence on deer populations. A s  with the  vegetation cover, 
choice of s o i l  proper t ies  should be relevant t o  the aims of the study. For 
some purposes, eg. i n  studying foxes, s o i l  depth, s toniness ,  presence I 
of inaurated o r  compacted horizons, might be as important as  s o i l  chemical 
proper t ies ,  s ince the physical proper t ies  are  relevant t o  t he  construction 
of dens. 

Thilenius standardized h i s  diverse a t t r i bu t e s  by s e t t i n g  the  maximum value 
f o r  each a t t r i b u t e  t o  100. An inter-location s imi l a r i t y  matrix was then 
calculated using a quant i ta t ive  modification of Jaccard's  coeff ic ient  
(see Bray & Curt is  1957). I t  should be noted tha t  i n  c l u s t e r  analysis ,  
the choice of a s imi l a r i t y  measure needs careful  thought, aa di f fe ren t  
measures have d i f fe ren t  proper t ies  (see e.g. Sneath & Sokal 1973; 
Cl i f ford  & Stephenson 1975). Thilenius 's  Similar i ty  matrix w a s  subjected 
to  c l u s t e r  analysis  by t h e  weighted pair-group centroid method (see 
Jardine & Sibson 1971; Sneath & Sokal 1973). This i s  an agglomerative 
hierarchical  procedure which i s  now considered obsolete by many workers, 
as i t  has been shown t o  have some undesirable proper t ies  (Fisher & van 
Xess 1971; Jardine & Sibson 1971). 



A t  t he  0.54 s i m i l a r i t y  l e v e l ,  t h r e e  c l u s t e r s  w e r e  obta lned  which, al though 
they could be r e l a t e d  i n  a  genera l  manner t o  the  g ross  eco log ica l  and 
geographical f e a t u r e s  of t h e  a r e a ,  were h ighly  v a r i a b l e  with r e spec t  t o  
o t h e r  a t t r i b u t e s  and i n  the  loca t ions  of  which they w e r e  composed. A t  t h e  
0.60 s i m i l a r i t y  l e v e l ,  13 c l u s t e r s  were defined,  and these  produced a  
genera l  order ing  o f  the  l o c a t i o n s  from t h e  most x e r i c  t o  t h e  most mesic. 
The only attempt which Thi lenius  (1972) made t o  r e l a t e  h i s  h a b i t a t  
c l a s s i f i c a t i o n  t o  dee r  populat ions and a c t i v i t i e s  was t o  g ive  a  t a b l e  
of mean p e l l e t  group d e n s i t i e s  f o r  t h e  13 c l u s t e r s .  A s t a t i s t i c a l  test 
of these  means suggested t h a t  t h e  1 3  c l u s t e r s  f e l l  i n t o  3 groups of 
" h a b i t a t  un i t s "  which had s i m i l a r  mean p e l l e t  group d e n s i t i e s .  I t  is 
i n t e r e s t i n g  t h a t  h a b i t a t  u n i t s  having s i m i l a r  p e l l e t  group d e n s i t i e s  
belonged t o  more than one o f  t h e  t h r e e  c l u s t e r s  obta ined  at t h e  0.54 
s i m i l a r i t y  l e v e l ,  which sugges ts  t h a t  t h e  numerical procedures used had 
not  produced groups with good p r o p e r t i e s  f o r  def in ing  t h e  h a b i t a t s  with 
r e spec t  t o  deer  use.  

Radloff and B e t t e r s  (1978) performed a  somewhat s i m i l a r  c l a s ~ i f i ~ a t i 0 n  O f  

f o r e s t  s i t e s  and f o r  no s t a t e d  purpose. They c o l l e c t e d  information on 147 
square s i t e s ,  each 2.4ha i n  a r e a ,  l oca ted  i n  a  s t r a t i f i e d  random des ign  
wi th in  the  Pike  National  Fores t ,  Colorado. S ix  phys ica l  p r o p e r t i e s  were 
recorded f o r  each s i t e  from topographic maps: aspect  (coded 1 f o r  SSW t o  

, 14 f o r  NNE); percent  s l o p e ;  a l t i t u d e ;  t e r r a i n  form ( r idge  top ,  spur  r i d g e ,  
l e v e l ,  swale - an o l d  Engl ish  word f o r  a  hollow o r  depress ion ,  va l l ey  
bottom); l o c a l  t e r r a i n r e l i e f  ( s t r a i g h t ,  undulat ing,  d i s s e c t e d ) ;  and p o s i t i o n  
on s lope  ( lower,  middle, upper) .  F ive  s o i l  c h a r a c t e r i s t i c s  were obta ined  
from s o i l  maps: minimum and maximum depths of the  solum; s t r u c t u r e ;  s u r f a c e  
s o i l  permeabi l i ty ;  moisture capaci ty .  Since t h e  s tudy has  no p a r t i c u l a r  
aim, t h e r e  i s  no b a s i s  on which t o  a s sess  t h e  value of  t h e i r  choice of 
p r o p e r t i e s .  

Because of the  mixed na ture  of t h e  a t t r i b u t e s ,  Radloff and B e t t e r s  computed 
an i n t e r - s i t e  s i m i l a r i t y  matr ix  using Gower's (1971) genera l  s i m i l a r i t y  
c o e f f i c i e n t .  This c o e f f i c i e n t  has two main advantages. F i r s t ,  i t  can be 
used wi th  mixtures of b inary ,  ordered o r  d isordered  m u l t i s t a t e ,  o r  
continuous a t t r i b u t e s .  Second, the  s i m i l a r i t y  matr ix  i s  p o s i t i v e  semi- 
d e f i n i t e  un les s  t h e r e  a r e  missing values.  This  means t h a t  t h e  N o b j e c t s  
can be represented  as  p o i n t s  i n  Euclidean space (Gower 1966). The measure 
a l s o  g ives  t h e  use r  the  op t ion  of counting o r  not  counting j o i n t  absences, 
ie. double zero  matches. 

Like Th i l en ius ,  Radloff and B e t t e r s  used a  cen t ro id  c l u s t e r i n g  procedure,  
which gave 1 3  c l u s t e r s  a t  t h e  0 . 8  s i m i l a r i t y  l e v e l .  Canonical v a r i a t e s  
(mul t ip le  d iscr iminant )  ana lys i s  was then used t o  d i sp lay  t h e  r e l a t i o n s h i p  
among ind iv idua l s  and c l a s s e s .  

This s tudy provides some i n t e r e s t i n g  l e s sons .  Radloff and B e t t e r s  poin ted  
out  t h a t  t h e i r  i n i t i a l  c l u s t e r i n g  gave groups which corresponded e x a c t l y  
with the  s o i l  s e r i e s  c l a s s i f i c a t i o n .  The use of 5  c o r r e l a t e d  s o i l  p r o p e r t i e s  
e s s e n t i a l l y  r e s u l t e d  i n  s o i l s - r e l a t e d  information having a  5-fold weighting.  
To counterac t  t h i s ,  each of t h e  non-soi l  a t t r i b u t e s  w a s  weighted 5-fold. 
Canonical v a r i a t e s  o r d i n a t i o n  has been used by va r ious  workers t o  d iap lay  
the  r e s u l t s  of a  c l u s t e r i n g  (eg. Gr iga l  & Ohmann 1975). I t  can a l s o  b e  
used t o  a l l o c a t e  new o b j e c t s  t o  e x i s t i n g  groups. The method has t h e  
t h e o r e t i c a l  requirement t h a t  t h e  groups should have homogeneous variance-  
covariance ma t r i ces ,  although t h e r e  i s  a  body of emphir ical  evidence 
a v a i l a b l e  which sugges ts  t h a t  t h e  method may be moderately robust  t o  
depar tures  from homogeneity. An a l t e r n a t i v e  o rd ina t ion  would be by 
p r i n c i p a l  co-ordinates  ana lys i s  (Gower 1966), us ing  t h e  Gover s i m i l a r i t y  
c o e f f i c i e n t .  I n  p r a c t i c e ,  computing problems may be  encountered wi th  a  



large number of objects ,  but Gower (1968) has shown how this c.n be 
overcome t o  some extent.  

hi el, a1.(1979) tackled the problem of combining s i m i l a r  lend uni t s  
within the Angeles National Forest ,  southern Cal i fornia ,  f o r  the  purpose 
of f i r e  management planning, by a combination of three mult ivar ia te  
methods: (1) pr incipal  component analysis ( t o  reduce the number of 
dimensions and provide orthogonal component values; (2) c lus t e r  analysis 
by an unweighted pair-group method using ari thmetic averages (operating 
on Euclidean distances calculated from t h e  component values);  end 
(3) examination o f ,  and reforming o f ,  these i n i t i a l  groups by discriminant 
furc t ion  analysis.  The basic  un i t s  (objects) of t he  analysis  were major 
drainage basins which had been delineated ea f i r e  damage appraisal  un i t s  
i n  a previous study. The a t t r i bu t e s  used were those assumed t o  a f fec t  
the  long-term fire damage poten t ia l  of a drainage baein, and they were 
chosen a f t e r  a l i t e r a t u r e  review and discla~slons with waterahed s c i e n t i s t s  
e n d  nanagers i n  fores t ry ,  flood, and geological services .  The data were 
col lected from maps and reports ,  10 charac te r i s t ics  were expressed i n  15 
variabies . 
Principal  component analysis,  followed by varimax (orthogonal) ro ta t ion ,  
sho.<ed tha t  t he  f i r s t  5 components accounted f o r  70% of the  variation i n  the 
or ig ina l  15 var iables ,  and those components were used t o  calculate  a 
Euclidean (presumably Pythagorean) inter-object  distance matrix. No reason 
was given for  preferr ing a hierarchical  c luster ing procedure, o r  f o r  ^.he 
pa r t i cu l a r  procedure chosen. One is of ten led  t o  suspect t ha t  the choice 
of zethod is  largely what happens t o  be i n  the avai lable  package. TLe 
c lus te r ing  method used i n  t h i s  case has been c r i t i c i s e d  on mathematical 
grcmds (Jardine and Sibson 1971), but i n  the  context of the  work of 
O r i  ,t az. the method has the advantage of having minimum variance 
c t a r a c t e r i s t i c s  (Wishart 1969). A disadvantage i s  t h a t  the number of 
g r ~ u p s  used has t o  be decided subjectively and O m i  e t  ai!. selected 10 
c lus te rs .  Discriminant function analysis reduced the number of c lu s t e r s  
t o  4.  I t  would be very in t e r e s t i ng  t o  compare t h i s  r e su l t  with the r e su l t  
of a k-means c luster ing.  

Thonpson e t  aZ. (1980) examined broad vegetation pat terns  of a land area 
of auproximately 90 000km2 i n  the Canadian Northwest Te r r i t o r i e s  t o  determine 
the r e l a t i ve  importance of areas of vegetation as Caribou habi ta t s .  The 
a res  was divided in to  54 sampling un i t s  on the  basis  of LAND8AT data ,  and 
an a e r i a l  reconnaissance was made of sampling un i t  boundaries t o  ensure 
tha t  sampling un i t s  which had the  sane theme pa t te rn  on t h e  LANDSAT Images 
appeared t o  have the same vegetation. The proportions of 8 previously- 
recczxised vegetation cover types were found from sample t r m s e c t s  i n  43 
of the  54 sampling uni ts .  Using the t ransect  data ,  the  43 sampling uni t s  
were submitted to  c lu s t e r  analysis uslng Ward's (1983) agglomerative 
hierarchical  method, an i t e r a t i v e  relocation procedure, end Wishart's 
(1969) mode analysis.  Ward's method minimises the within-group sum of 
squares a t  each pa r t i t i on ,  and has minimum-variance charac te r i s t ics  
(Wishart 1969). The three procedures were found t o  give s i m i l a r  r e su l t s .  
Thompson e t  at. found, by discriminant function analysis ,  t ha t  6 of the 8 
vsgetation cover types were s ign i f ican t  i n  discriminating among the 
complexes. Analysis of pellet-group counts by cover types showed de f in i t e  
trends i n  seasonal use by Caribou. 

On the North American continent,  LANDSAT data are  being increasingly used 
f o r  mapping vegetation. Hathout (1980) described a technique, involving 
the use of a f i l m  density s l i c e r  with image enhancement, f o r  using black 
and white LANDSAT transparencies t o  provide a vegetation map of Riding 



Mountain National  Park,  Manitoba, Canada. This enhancement technique 
is s a i d  t o  be p a r t i c u l a r l y  use fu l  i n  l and  use  s t u d i e s  because t h e  low 
reso lu t ion  of space photographs does no t  lend i t s e l f  t o  t h e  d i r e c t  
e x t r a c t i o n  of r e l evan t  information.  Enhanced images produced by t h i s  
technique were found t o  provide reasonably accura te  d a t a  for mapping 
t h e  l and  cover of t h e  National  Park. Nine land cover c l a a s e s  were 
recognized, and were compared with a 1967 vegeta t ion  mpp o f  t h e  a r e a ,  
as  we l l  as  with f i e l d  observat ions .  The accuracy of t h e  map produced by 
image enhancement w a s  a s  fol lows:  

Cover Class I n t e r p r e t a t i o n  accuracy % 

1. Lakes o r  swampland 
2. Deciduous t r e e  domination 
3. Coniferous t r e e  domination 
4. Pure deciduous f o r e s t  
5. Pure coniferous f o r e s t  
6.  Grassland o r  open f o r e s t  
7. Very open a reas  (shrubland) 
8. Burnt f o r e s t  and marshland 
9. Very dry a reas  ( h i l l t o p s )  

/ Hathout suggested t h a t  enhanced LANDSAT imagery might be used a s  a primary 
source f o r  vegeta t ion  mapping, with very l i t t l e  a s s i s t a n c e  from ground 
survey of suspected  a reas  of changes. I t  remains t o  be  seen if t h i s  ffierhod 
is useful  i n  B r i t a i n ,  where many changes occur i n  a r e l a t i v e l y  small  a i s r ance .  

7 CONCLUSIONS AND FUTURE POSSIBILITIES 

There a r e  c l e a r l y  many problems which must be overcome i f  numerical ce thods ,  
and p n r t i c u l a r l y  h a b i t a t  c l a s s i f i c a t i o n ,  a r e  t o  be used t o  p r e d i c t  fox 
populat ion d e n s i t i e s .  The d i scuss ions  i n  t h i s  paper suggest  two broad 
approaches, using e s t a b l i s h e d  numerical methods. I n  t h e  f i r s t  approach, 
a h a b i t a t  c l a s s i f i c a t i o n  ( i n  the  widest  sense)  i s  used as  a b a s i s  f o r  
d e t a i l e d  sampling. From the  d a t a  obta ined  i n  t h i s  sampling, t h e  
r e l a t i o n s h i p s  between populat ion dens i ty  and environmental v a r i a b l e s  
could be found by regress ion  methods. I n  the  second approach,fox 
populat ion dens i ty  i s  obta ined  d i r e c t l y  from a maximal p r e d i c t i v e  
c l a s s i f i c a t i o n .  

1. The f i r s t  approach requ i re s  an o rd ina t ion  of t h e  d a t a ,  t h e  o rd ina t ion  
space having Euclidean p r o p e r t i e s .  With continuous environmental d a t a ,  
o r  wi th  less than about 30 binary v a r i a b l e s ,  t h e  o r d i n a t i o n  could be  by 
p r i n c i p a l  component ana lys i s  a s  long a s  t h e  requirement f o r  l i n e a r  r e l a t i o n -  
s h i p s  among t h e  v a r i a b l e s  is s a t i s f i e d .  With m u l t i s t a t e ,  o r  mixed d a t a  
types,  o rd ina t ion  could be by p r i n c i p a l  co-ordinates  a n a l y s i s  using 
Cower's genera l  s i m i l a r i t y  c o e f f i c i e n t .  Both types of o rd ina t ion  g i v e  
co-ordinates  f o r  t h e  p o i n t s ,  r ep resen t ing  the  sampling u n i t s ,  i n  Euclidean 
space (provided t h a t  t h e r e  a r e  no missing values) .  

S t a t i s t i c a l l y ,  a s t r a t i f i c a t i o n  i s  requi red  t o  have minimum w i t h i n - s t r a t a  
var iance  and maximum between-strata  var iance .  If o rd ina t ion  shows t h a t  t h e r e  
a r e  c l e a r  d i s c o n t i n u i t i e s  between groups of p o i n t s ,  then  a s imple c l u s t e r i n g  
procedure such as  s i n g l e  l inkage  c l u s t e r  ana lys i s  might be  s u i t a b l e .  More 
usua l ly ,  t h e r e  w i l l  no t  be  c l e a r  groupings and k-means c l u s t e r i n g  w i l l  be  



necessary. A complementary exercise fo r  mixed data  would be t o  apply 
a minimum-variance hierarchical  c lus te r ing  technique t o  t he  r imi l a r i t y  
(o r  corresponding distance) matrix. 

2 .  I f  the  data a re  a l l  binary, a l l  mul t i s ta te ,  o r  mixed types,  it is 
possible  t o  proceed d i r ec t l y  t o  Cower's maximal predict ive  c l a s s i f i ca t i on .  
Using t h i s  method, quant i t a t ive  var iables  (eg population density) have t o  be 
t r ea t ed  as qua l i t a t i ve  and the  impl ic i t  ordering information h~ t o  be 
ignored. The way i n  which t h i s  i s  done w i l l  c l e a r ly  a f f ec t  t he  accuracy 
of the  predicted fox population density.  

Conparative t e s t s  of the  possible approaches discuased above w i l l  he 
necessary before a researcher can be sure  t h a t  a given method w i l l  
s a t i s f y  the  object ives  of t he  study. The c r i t e r i a  i n  such tests w i l l  
be the  accuracy and pr rc i s ion  of t he  predict ions  of fox population dens i t i es  
i n  re la t ion  t o  the cost  and e f f o r t  involved. Accuracy is defined as the  
closeness of predictions t o  t he  exact ,  t r ue  values. Precision re fe rs  t o  
the dispersion of predictions from repeated observations about some centre ,  
i r respec t ive  of whether o r  not the  l a t t e r  approximates t o  t he  t rue  mean. 

The r e a l  problem may well be t o  gather su f f i c i en t  quan t i t i e s  of good data  
with which t o  e s t ab l i sh  the  re la t ionship between environmental fac tors  
and fox population density.  In  pa r t i cu l a r ,  problems of s i z e  of sample 
area need t o  be solved. The consequences of recording the  data i n  
d i f f e r en t  ways a r e  discussed i n  d e t a i l  i n  t h i s  paper, and the  need f o r  
p r 0 b l e m - S p e ~ i f i ~  information is  emphasized. As ye t ,  there  seems t o  be no 
general consensus of opinion among fox ecologis ts  a s  t o  what hab i ta t  
fac tors  are l i ke ly  t o  be important. Indeed, there  i s  evidence t ha t  i n  
d i f f e r en t  types of hab i t a t ,  d i f f e r en t  fac tors  become important. More 
work i s  needed on these fundamental problems before good predict iocs  
can be made. A recent paper by Capen (1981) may be of some assistance 
i n  hab i ta t  response s tud ies .  

One p rac t i ca l  problem i n  c l u s t e r  analysis i s  what t o  do when the number 
of objects  t o  be classified is unmanageably large.  A solut ion suggested 
by Sneath (1964) i s  t o  run a random sample of the  objects  with the program, 
and from each well-defined c lu s t e r  pick three  objects  as reference points  
f o r  t ha t  c lus te r .  Run a second sample including these reference ob jec t s ,  
and repeat u n t i l  a l l  the objects have been processed. Many objects w i l l  . 
belong t o  c lu s t e r s  previously recognised. The remaining ' so l i t a ry '  
objects should be re-run together w i t h  the  reference objects  t o  see i f  
smaller  c lu s t e r s  a r e  formed. Using three  reference objects  per  c lu s t e r  
a lso  provides an i n t e rna l  check on the procedure, s ince  they should 
always c l u s t e r  closely together.  

I am gra te fu l  t o  D r .  P . J .  Bacon fo r  helpful  discussions a d  suggestions 
during the  preparation of t h i s  paper. 
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