
1 

 
© Oxford Journals 
 
This version available at http://nora.nerc.ac.uk/6797/ 
 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the authors and/or other rights owners. Users 
should read the terms and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. Some differences between this and the publisher’s version 
remain. You are advised to consult the publisher’s version if you wish 
to cite from this article. 
 
http://www.oxfordjournals.org/ 
 

 
 
 
Article (refereed) 
 
 
 
Morecroft, Michael D.; Stokes, Victoria J.; Taylor, 
Michele E.; Morison, James I. L., 2008.  Effects of 
climate and management history on the distribution 
and growth of sycamore (Acer pseudoplatanus L.) in a 
southern British woodland in comparison to native 
competitors.  Forestry, 81(1):59-74; 
doi:10.1093/forestry/cpm045. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contact CEH NORA team at  
nora@ceh.ac.uk 

 
 
 

The NERC and CEH  trade marks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 



2 

Effects of climate and management history on the distribution and growth of 1 
sycamore (Acer pseudoplatanus L.) in a southern British woodland in comparison 2 
to native competitors  3 
 4 
Morecroft M.D.*1, Stokes, V.J2, Taylor, M.E.3, Morison J.I.L.4 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
1Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, 15 
Wallingford.  OX10 8BB. 01491 692461.  mdm@ceh.ac.uk 16 
* Corresponding author 17 
 18 
2Forest Research, Alice Holt Lodge, Wrecclesham, Farnham, Surrey, GU10 4LH. 19 
 20 
3Centre for Ecology & Hydrology, Oxford University Field Station, Wytham, Oxford.  21 
OX2 8QJ. 22 
 23 
4 Department of Biological Sciences, University of Essex, Wivenhoe Park, 24 
Colchester, CO4 3SQ.  25 



3 

Summary 1 

Sycamore (Acer pseudoplatanus L.) is an invasive, non-native species in Great Britain 2 

and its management in conservation areas is controversial.  Climate change adds 3 

further uncertainty to decision-making.  We investigated the role of management 4 

history in determining present-day abundance and the effects of climatic variability on 5 

growth, photosynthesis and phenology at Wytham Woods, a UK Environmental 6 

Change Network (ECN) monitoring site.  Relatively few sycamore trees were found 7 

in undisturbed ancient, semi-natural woodland and recent plantations, despite being 8 

common in other areas of the site.  Sycamore grew more slowly than ash (Fraxinus 9 

excelsior L.), its principal competitor, but at a similar rate to pedunculate oak 10 

(Quercus robur L.) in the period 1993-2005.  There were fewer sycamore than ash 11 

seedlings, regardless of which species dominated the canopy.  Growth of sycamore 12 

was slower in dry periods than wet ones and lower photosynthetic rates were 13 

measured in canopy leaves under dry compared to wet soil conditions.  This study 14 

therefore suggests that sycamore does not present a serious threat to undisturbed 15 

ancient woodland on the site and that it may eventually decline in areas of the site 16 

where it competes with ash, in the absence of disturbance.  It may also decline under 17 

climate change if summer droughts become more frequent.18 
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Introduction 1 

Sycamore has expanded its range in north west Europe in recent centuries.  It is non-2 

native in Great Britain and has colonised widely since it was introduced, probably in 3 

medieval times (Jones, 1945).  It grows quickly compared to most broadleaved 4 

species and can produce a good timber crop (Savill, 1997; Binggeli & Rushton, 1999).  5 

Its invasive nature has however led to sycamore being regarded as a threat to the 6 

conservation of native woodlands, particularly where ash has historically been the 7 

dominant tree species (Scurfield, 1959; Binggeli, 1992, 1993; Peterken, 1996).  8 

Attempts are often made to remove the species in conservation areas, although this is 9 

usually only practical for the most sensitive sites (Morton Boyd, 1992).  The view of 10 

sycamore as a threat to biodiversity has moderated in recent years as studies have 11 

shown that it supports a range of epiphytes, herbivores and ground flora, comparable 12 

to those of many native species (Binggeli, 1993; Peterken, 2001).  There is also 13 

evidence that sycamore and ash each tend to regenerate better under the canopy of the 14 

other species and may establish a cyclical pattern with dominance alternating between 15 

the two species (Waters and Savill, 1992; Savill et al., 1995).  Sycamore may 16 

therefore potentially offer good opportunities for combining wood production with the 17 

support of biodiversity in some circumstances, such as the creation of new farm 18 

woodlands, where preserving existing tree species composition is not a priority.  19 

However, sycamore remains a controversial species and the necessity for control to 20 

protect conservation sites is still a matter for debate.  Much information on the species 21 

is essentially anecdotal and there is a need for more detailed scientific study. 22 

 23 

Climate change adds to the complexity of the issues surrounding sycamore.  Current 24 

projections (Hulme et al., 2002) indicate that Great Britain is likely to become 25 
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warmer, with proportionally less precipitation falling in summer, leading to an 1 

increased incidence of summer droughts in southern and eastern areas, including most 2 

of England.  Modelling by Broadmeadow et al. (2005) indicates that the productivity 3 

of sycamore will decline in much of central, southern and eastern England because of 4 

its sensitivity to drought.  The same projections indicated that most of its competitors, 5 

such as ash and pedunculate oak, would be less adversely affected.  Drought 6 

sensitivity is consistent with sycamore’s natural distribution, which is centred on cool, 7 

damp, mountainous regions in central Europe (Jones, 1945; Rusanen & Myking, 8 

2003).  It is also consistent with the observation that within semi-natural British 9 

woodlands, sycamore is most dominant in the relatively cool, wet areas of the north 10 

and west (Pigott, 1984; Rodwell et al., 1991; Forestry Commission, 1997).  These 11 

conjectures are however based on the extrapolation of correlations with geographical 12 

variations in present-day climate.  Geographical patterns are not an infallible guide to 13 

the climatic sensitivities of species as distributions and productivity can also be 14 

influenced by, for example, soil type and management history.  It is therefore 15 

important to understand the underlying processes which control species responses to 16 

climate change and to look for direct evidence of climatic impacts.   17 

 18 

There is some evidence of sycamore’s drought sensitivity, although examples are not 19 

extensive.  Lemoine et al. (2001) and Tissier et al. (2004) present evidence from 20 

within the natural range of sycamore in France, that its xylem vessels are relatively 21 

susceptible to cavitation under dry conditions.  During drought in the UK in 1976, 22 

Coultherd (1978) reported some death of sycamore, but only in association with sooty 23 

bark disease (Cryptostroma corticale). 24 

 25 
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Rising temperatures may have an effect on the competitive balance between sycamore 1 

and other species, distinct from any effects of an increased frequency of droughts.  In 2 

particular, the sensitivity of phenology to temperature is well known and earlier 3 

leafing of trees in recent decades has been documented at the European scale (Menzel 4 

et al. 2006) and within the UK (Sparks & Carey, 1995; Fitter & Fitter 2002).  There is 5 

some evidence (Fenn, 2005; T. Sparks, unpublished data) that the timing of sycamore 6 

leafing is more sensitive to temperature than that of ash and that its growing season is 7 

therefore lengthening to a greater extent.  In these circumstances, warming may have 8 

the opposite effect to that of drought by giving sycamore a competitive advantage. 9 

 10 

Further understanding of sycamore’s ecology and ecophysiology is therefore 11 

necessary to develop a better understanding of its likely responses to climate change.  12 

Recent decades have seen a wide range of different weather conditions in Britain (Fig. 13 

1).  The summer of 1995 was very dry (Marsh, 1996) and was followed by two years 14 

of unusually low rainfall; the period 1998 to 2002 was, however, marked by very high 15 

precipitation.  The summer of 2003 was extremely hot and dry.  This range of weather 16 

conditions provided an opportunity to investigate the effects on sycamore.  We have 17 

done this by bringing together a range of physical and biological monitoring data 18 

collected at Wytham Woods, in southern England, under the UK Environmental 19 

Change Network programme.  This is a well-studied and instrumented site where it is 20 

also possible to take account of management history and to gain access to the tree 21 

canopy, by means of a walkway.  This range of research and monitoring allows us to 22 

address the following questions: 23 

 24 
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1) Is there any difference in the extent to which sycamore has colonised different 1 

areas of Wytham Woods? Do different management histories make the stand more or 2 

less susceptible to invasion? 3 

 4 

2) Is there any evidence that sycamore is out-competing ash or growing faster? 5 

 6 

3)  Has tree growth decreased or mortality increased in sycamore trees during dry 7 

compared to wet periods? 8 

 9 

4) Does tree growth reflect changes in photosynthesis in the canopy during wet and 10 

dry periods? 11 

 12 

5) Is there any interspecific difference in phenological responses to temperature which 13 

might affect the outcome of competition in the long-term? 14 

 15 

Throughout the paper we compare sycamore with ash because of the interest in their 16 

relative competitive advantages and pedunculate oak, which is also found widely in 17 

British woods.  Oak and sycamore are both accessible from a canopy walkway at 18 

Wytham.  Earlier work in the canopy showed that photosynthesis of sycamore was 19 

lower than that of oak (Morecroft & Roberts, 1999).  This work was carried out in the 20 

summer of 1996, which was a relatively dry year, following an extremely dry summer 21 

in 1995, leading to reduced soil moisture levels.  One possible explanation for the 22 

difference in photosynthetic rates was a greater sensitivity of sycamore than oak to 23 

these dry conditions.  A PhD study (Stokes, 2002), made similar measurements on the 24 
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same trees in wetter conditions in 1999 and 2000 and gave us the opportunity to test 1 

this hypothesis. 2 

 3 
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Materials and Methods 1 

Study site 2 

Wytham Woods (51° 46’ N 1° 20’ W; UK National Grid: SP 46 08) covers 3 

approximately 400 ha and includes a wide range of different soil and vegetation types.  4 

It has been a research site, owned and managed by Oxford University, since the 5 

1940s.  Present and historical management of the site are well-documented (Gibson, 6 

1986, Grayson & Jones, 1955) and tree, shrub and ground layer have been monitored 7 

since the mid 1970s (Dawkins & Field, 1978, Kirby et al., 1996; Kirby & Thomas, 8 

2000).  Since 1992 the site has been part of the ECN, under which climate, air 9 

pollution, soils and selected animal populations have been monitored in addition to 10 

further recording of vegetation and tree growth (www.ecn.ac.uk; Sykes & Lane, 11 

1996).   12 

 13 

For the purposes of this paper five broad types of management histories can be 14 

recognised (Fig. 2), based on the work of Gibson (1986) and Grayson & Jones (1955): 15 

1) Undisturbed ancient semi-natural woodland.  Ancient woodland is woodland 16 

which has had a continuity of forest cover since approximately 1600; the period for 17 

which historical records are usually available in England (Peterken, 1981).  At 18 

Wytham, this woodland was managed as a ‘coppice with standards’ system (mixture 19 

of coppice stools interspersed with full height trees).  However coppicing was 20 

discontinued over the course of the twentieth century and these areas have been 21 

largely unmanaged for between 40 and 100 years (differing locations were abandoned 22 

at different times).  Hazel (Corylus avellana L.) is the most frequent coppice species 23 

and pedunculate oak  the most frequent standard. 24 
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2) Disturbed ancient woodland.  Ancient woodland areas which were formally 1 

managed as coppice with standards, but converted to high forest during the twentieth 2 

century.  Timber has been extracted at various times but they have not been clear-3 

felled.  Extensive natural regeneration has occurred, along with some localised 4 

planting. 5 

3) Secondary woodland.  Areas which have naturally reverted to closed canopy 6 

woodland over the last 200 years, having previously been grassland or wood pasture, 7 

(with scattered trees but no continuous canopy).  A small amount of localised planting 8 

has taken place and there has been some timber extraction. 9 

4) 19th century plantations.  Formerly open areas which were planted in the 19th 10 

century.  This planting was largely ornamental with widely spaced trees, particularly 11 

of beech (Fagus sylvatica L.).  Management has been minimal in recent decades. 12 

5) 20th century plantations.  Plantations, mostly of beech and pedunculate oak, mixed 13 

with exotic conifers in some places, planted between 1950 and 1970.  Some were 14 

planted on grassland others on cleared ancient woodland areas.  Most have been 15 

managed by thinning, following standard forestry practice.  16 

For the last 30 years, only the twentieth century plantations have been subject to 17 

silvicultural management, entailing occasional thinning. 18 

 19 

Long-term Monitoring 20 

A survey of tree species in 294 sample plots of 10 x 10 m (0.01 ha), systematically 21 

located on a 100m grid, was carried out in the summer of 1993 and in a few cases 22 

1994 (subsequently we refer to 1993 to include plots surveyed in either year), 23 

following the ECN ‘baseline’ survey methodology (Sykes & Lane, 1996).  41 of these 24 

plots were randomly selected for on-going monitoring, with tree diameter at breast 25 
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height (DBH – diameter at 1.3m) measured every 3 years and tree height every 9 1 

years.  Up to 10 trees over 5cm DBH were selected on the basis of proximity to 2 

random coordinates in each plot and the DBH measured with a diameter tape.  Tree 3 

height was measured with a hypsometer (Blume-Leiss altimeter, Berlin-Steglitz, 4 

Germany) at a known distance (measured with a tape measure) from each tree.  Trees 5 

were classified according to their crown classes (Sykes & Lane, 1996): 6 

1. Dominant - trees with crowns extending above the general level of the crown cover 7 

and receiving full light from above and partly from the side. 8 

2. Subdominant - trees with crowns forming the general level of the crown cover and 9 

receiving full light from above but comparatively little from the sides. 10 

3. Intermediate - trees shorter than those in the two preceding classes but with crowns 11 

extending into the crown cover formed by dominant and co-dominant trees; receiving 12 

a little direct light from above but virtually none from the sides. 13 

4. Suppressed - trees with crowns entirely below the general level of the crown cover, 14 

receiving little light either from above or from the side. 15 

 16 

We report data for the period 1993 to 2006, comprising 4 measurement periods of 17 

three years each.  Tree seedlings (young trees or shrubs, grown from seed, with a 18 

DBH less than 0.5 cm) were counted by species in each plot in 10 400 x 400mm 19 

quadrats (selected with a random number table), within the plots. 20 

 21 

The date of first leafing in all three species across the site as a whole was recorded 22 

from 1994 onwards.  This was defined as the first observation of a leaf having fully 23 

emerged from the bud (but not expanded).  Observations were made by professional 24 
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scientists working on the ECN programme and visiting the same areas of the site 1 

regularly (several times per week). 2 

 3 

Meteorological variables, including temperature and precipitation were monitored 4 

with an Automatic Weather Station (Didcot Instruments, Didcot, UK) at a grassland 5 

area in the middle of the site as part of the ECN programme (Morecroft et al. 1998). 6 

 7 

Photosynthesis measurements 8 

A scaffolding walkway, approximately 12 m above the ground, gave access to the 9 

canopies of 5 sycamore and 5 oak trees.  The sycamore trees were approximately 50 – 10 

100 years old (27 cm mean DBH), the oak 150-200 years old (66cm mean DBH).  11 

The location is described in more detail by Morecroft & Roberts (1999) and Roberts 12 

et al. (1999).  13 

 14 

In this paper we compare rates of photosynthesis in 1996, when soil conditions were 15 

dry with those made in 1999 and 2000 when they were wet.  Measurements were 16 

taken throughout the growing season when conditions were suitable (particularly that 17 

the leaves were dry).  In 1996 an ADC LCA 2 infrared gas analyser (IRGA) with 18 

PLC(B) leaf chamber (ADC Ltd., Hoddesdon, Herts, UK) was used.  In 1999 and 19 

2000 this was replaced by a PP Systems CIRAS 1, with PLC(B) leaf chamber (PP 20 

Systems, Hitchin, Herts, UK).  For each species 5 leaves exposed to full sunlight in 21 

the upper canopy were measured on each of the 5 trees (intermediate and shade leaves 22 

were also sampled; data not presented).  In 1996 a single measurement was taken for 23 

each leaf, in the later years a mean of 5 measurements over one minute was used for 24 

each leaf. Measurements were taken in the middle part of the day (09.00-14.00 GMT) 25 
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when gas exchange rates were maximal (Stokes, 2002).  In order to estimate 1 

maximum net photosynthetic rates (Amax), only those measurements made when the 2 

light was saturating for photosynthesis are included here.  This was defined as a 3 

Photosynthetic Photon Flux Density of greater than 1000 μmol m-2 s-1, as measured by 4 

the leaf chamber sensors.  Further details can be found in Morecroft & Roberts (1999) 5 

and Stokes (2002). 6 

Data analysis 7 

Data were analysed using Systat 11 (Systat Software Inc, 2004).  Differences in 8 

distribution of species between contrasting areas were tested using chi-squared tests.  9 

DBH increments were analysed using Analysis of Variance (ANOVA) and Repeat 10 

Measures Analysis of Variance (RMANOVA).  Initial investigations indicated that 11 

diameter increment in all species was related to starting DBH, so DBH in 1993 was 12 

included as a co-variate in ANOVA and RMANOVA models.  Gas exchange 13 

measurements were compared visually with means and standard errors.  Trees which 14 

died during the period and those for which measurements started after 1993 were not 15 

included in the analysis of growth.  Phenological data were tested for correlations 16 

with temperature in preceding periods.  17 
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Results 1 

 2 

Distribution of Sycamore 3 

Sycamore was the second most frequently occurring tree species in the baseline 4 

survey plots (Table 1), with ash the most frequent species.  Sycamore was not 5 

randomly distributed (chi squared test: χ2=67.09; d.f. = 4; P <0.0001) but was found 6 

more frequently in plots located in secondary woodland, disturbed ancient woodland 7 

and 19th century plantations (Fig. 3a).  Proportionally fewer plots in undisturbed 8 

ancient woodlands and twentieth century plantations had sycamore trees.  There were 9 

significant differences in the frequencies with which sycamore occurred with other 10 

species (χ2=20.09; d.f. = 9; P = 0.017).  The species with which it was most 11 

frequently associated was ash (Fig. 3b); they were found together in 56 of the 143 12 

plots in which sycamore occurred.  Other species with which sycamore frequently 13 

occurred included elder (Sambucus nigra L.) and hawthorn (Crataegus monogyna 14 

Jacq.).  Ash is also non-randomly distributed (χ2=14.24; d.f. = 4; P = 0.007) being 15 

most common in secondary woodland (60% of plots) and least common in ancient 16 

woodland (28% of plots).  It therefore shows similar patterns to sycamore, although 17 

the differences are less pronounced. 18 

 19 

Growth and Mortality 20 

Between 1993 and 2005 mean diameter growth was lower in sycamore (1.5 ± 0.3 cm) 21 

than either ash (4.5 ± 0.5 cm) or oak (2.2 ± 0.5 cm).  ANOVA showed a significant 22 

effect of species (F=17.049, d.f. = 2; P < 0.001) and starting DBH (F=15.239, d.f. = 1; 23 

P < 0.001).  Because of the effect of starting DBH, size and growth were investigated 24 

separately in canopy dominant, sub-dominant and intermediate trees (there were too 25 
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few suppressed ash and oak trees to compare).  In each of these three categories the 1 

increment in DBH was larger in ash than sycamore or oak (Fig. 4a). The starting DBH 2 

of sycamore and ash were very similar in canopy dominant and intermediate trees 3 

(Fig. 4b); amongst sub-dominant trees, it was higher in sycamore than ash 4 

(Kolmogorov Smirnov test, p=0.041) (Fig. 4b).  Sycamore and ash increments were 5 

also compared in the 12 plots where the two species occurred together; in all plots 6 

mean diameter growth of ash was higher than that of sycamore.  The difference in 7 

growth rates between sycamore and ash is therefore not likely to be an artefact of size 8 

or canopy position.  The mean starting diameter of canopy dominant oak trees was, 9 

however, substantially larger than those of ash and sycamore and the greater growth 10 

increment in oak than sycamore presumably reflects this; sub-dominant and 11 

intermediate oaks were similar in size to sycamore and similar increments were found 12 

(Fig. 4b).   13 

 14 

Measurements in 1993 and 2002 indicated that height had increased most in ash trees 15 

(1.7±0.4 m), with little or no height growth in sycamore (0.2±0.3 m) and oak (0.3±0.7 16 

m). 17 

 18 

DBH growth in each of the 3-year intervals was examined separately (Fig. 5a) for 19 

each of the three species by RMANOVA.  To facilitate comparison between species 20 

in different periods on a like-for-like basis, trees over 50 cm DBH (6 oak, 1 sycamore, 21 

1 ash) were excluded.  Sycamore was the only species in which there was a significant 22 

difference with time (Table 2), with growth highest during the period 1999-2002 (Fig. 23 

5a), which climate records show was 24% wetter than the other periods (Fig. 5b).  24 

There was no significant difference between periods in oak (Table 2), although it 25 
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showed a similar pattern to sycamore (Fig. 5a)..  Ash grew more than the other two 1 

species in all periods (Fig. 5a) with no significant difference between time periods 2 

(Table 2). 3 

 4 

Mortality of the three species was low and there was no significant difference between 5 

species.  Of the 290 trees and shrubs which were originally monitored in the plots, 31 6 

died between 1993 and 2005 including 3 of the original 54 sycamores, 2 out of 21 7 

oaks and 1 out of 54 ash.   8 

 9 

Seedlings 10 

There was no evidence that sycamore seedlings were more abundant under ash 11 

canopies, or vice-versa, in the monitoring plots in either 1993 or 2002 (Fig. 6).  The 12 

larger baseline survey also failed to show any effect (data not presented).  However 13 

numbers of seedlings of all species were very low, particularly in 1993 and very few 14 

were older than one or two years old; saplings were almost absent from the wood.   15 

 16 

Photosynthesis 17 

Of the 3 years in which photosynthesis was measured in the canopy, Amax values in 18 

sycamore were lowest in the dry year, 1996 (Fig. 7); The highest mean Amax on any 19 

particular day in 1996 was only 6.1 μmol m-2 s-1, compared to 12.1 μmol m-2 s-1 in 20 

1999 and 10.4 μmol m-2 s-1  in 2000.   Values of Amax in oak were also lower in 1996 21 

(Morecroft et al. 2003) but the difference between years was smaller.  Comparing the 22 

two species in different years, it can be seen that oak consistently had higher Amax 23 

than sycamore, but the difference between the two species was greatest in the 1996.  24 

This difference in Amax was associated with differences in stomatal conductance (the 25 
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capacity for CO2 to diffuse into the leaves, which is largely regulated by the number 1 

and degree of opening of the stomata) of the two species. 2 

 3 

Phenology 4 

Sycamore came into leaf earlier than the other species in 12 of the 13 years (Fig. 8a).  5 

The date of leafing was significantly correlated with March temperature in all three 6 

species (Table 3; Fig. 8b).  This correlation was less strong in ash than the other two 7 

species and its leafing was more strongly correlated with mean March-April 8 

temperature than that for March alone (Table 3).  9 
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Discussion 1 

Is there any difference in the extent to which sycamore has colonised different 2 

areas? 3 

It is striking how little sycamore has colonised the undisturbed ancient woodland 4 

areas of Wytham, despite its abundance in other parts of the site.  This may reflect 5 

poor establishment and growth in shade as these areas have been largely unmanaged 6 

for much of the twentieth century.  This is consistent with the observations of Savill 7 

(1997) and Morton Boyd (1992) that sycamore tends not to become dominant in 8 

woodlands with a dense canopy.  There was also relatively little colonisation of recent 9 

plantations which were managed for timber production; in this case establishment of 10 

sycamore may have been prevented by weed control and thinning as well as low light 11 

levels following canopy closure.  It is also possible that more colonisation of recent 12 

plantations would take place with time. 13 

 14 

Is there any evidence that sycamore is out-competing ash or growing faster? 15 

We found no evidence of sycamore out-performing ash, its main competitor, either as 16 

amongst mature trees or seedlings.   17 

 18 

DBH increment was consistently higher in ash than sycamore throughout the period 19 

and ash also showed greater height growth.  Drought sensitivity (discussed further 20 

below) appears to have contributed to sycamore’s overall lower growth rate, but it still 21 

grew less than ash during the relatively wet period, 1999-2002.  Data from the 22 

Radcliffe Meteorological Station, 5km away from the site in Oxford, showed that this 23 

was the eighth wettest such period since 1767.  It is therefore unlikely that the growth 24 

of sycamore would have exceeded that of ash under any climatic conditions over the 25 
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last two centuries at this site.  One possible factor contributing to the lower overall 1 

growth rates of sycamore is damage by grey squirrel (Sciurus carolinensis), which 2 

sycamore is vulnerable to (Mayle et al., 2007).  In writing about Wytham, Elton 3 

(1966, p.227) commented that squirrels ‘cause tremendous damage to sycamores by 4 

stripping the bark, frequently killing parts or all of the younger trees’.  Squirrel 5 

damage has continued at the site, despite regular control by shooting and poisoning; 6 

we did not however identify it as a cause of mortality in our study.   7 

  8 

Ash seedlings were more abundant than those of sycamore in both 1993 and 2002.  9 

During the period of our study, the site has been subject to grazing pressure from 10 

large deer populations (fallow, Dama dama, muntjac, Muntiacus reevsii and roe, 11 

Capreolus capreolus) (Kirby & Thomas 2000; Morecroft et al. 2001; Perrins & 12 

Overall, 2001).  Linhart & Whelan (1987) reported that sycamore seedlings were 13 

more adversely affected by sheep grazing than those of ash and they may also be more 14 

sensitive to deer herbivory.  There was no evidence of sycamore seedlings performing 15 

better under ash canopies and ash growing better under sycamore canopies, 16 

contrasting with the results of Waters & Savill, (1992) and Savill et al. (1997), despite 17 

the study being carried out on the same site.  This may however, be obscured by the 18 

high levels of deer herbivory.  19 

 20 

Has tree growth decreased or mortality increased in sycamore trees during dry 21 

compared to wet periods? 22 

The proposition that sycamore is drought-sensitive is supported by the fact that it 23 

grew more during the 1999-2002 wet period than the dry ones.  On this basis, it is also 24 

clear that ash is less drought-sensitive than sycamore; the evidence for oak is more 25 
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ambiguous.  There was, however, no evidence of increased mortality in dry periods.  1 

The relatively dry 3 year intervals (1993-6, 1996-9, 2002-5) were in fact slightly 2 

wetter than average in the Radcliffe meteorological record.  The dry weather that they 3 

included, particularly the summers of 1995 and 2003 (Fig. 1), may, to some extent, 4 

have been offset by the wetter weather in the three year periods (by, for example, 5 

ensuring high soil water contents at the start of the summer).  In the context of climate 6 

change further work is required on the interactive effects of precipitation at different 7 

times of year. 8 

 9 

 Does tree growth reflect changes in photosynthesis in the canopy during wet and 10 

dry periods? 11 

The reduction in sycamore growth during dry conditions is most easily interpreted as 12 

a result of reduced photosynthesis resulting from stomatal closure.  The gas exchange 13 

measurements support this interpretation, demonstrating that sycamore photosynthesis 14 

was lower in the drier conditions of 1996 than in 1999 and 2000.  Photosynthesis of 15 

oak was slightly lower in 1996 than 1999 and 2000 but to a lesser extent than 16 

sycamore.  The difference between the two species observed by Morecroft & Roberts 17 

(1999) in 1996 is therefore likely to be an effect of differing responses to the dry 18 

conditions.     Sooty bark disease is promoted by hot, dry conditions (Coultherd, 1978; 19 

Desprez-Loustau et al., 2006) and was associated with sycamore mortality in the 1976 20 

drought, but no outbreaks were noted in this case.   21 

 22 

Is there any interspecific difference in phenological responses to temperature which 23 

might affect the outcome of competition in the long-term? 24 
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The sensitivity of phenology to temperature has been demonstrated for all three 1 

species, with similar relationships to temperature.  The time series is relatively short 2 

and the different species’ sensitivities to different periods in the spring (which may 3 

differ in their relative warmth in different years) complicates the interpretation of 4 

results.  It is, however, unlikely that a lengthening of the growing season would give 5 

sycamore a competitive advantage over ash.  Not only is there little difference in 6 

responsiveness to temperature, but also solar radiation increases substantially over the 7 

course of the spring.  An extension of ash’s growing season in late April or early May 8 

would have a proportionally bigger impact on total carbon uptake than a similar 9 

extension of sycamore’s growing season, earlier in the year. The predicted increase in 10 

drought frequency would also tend to outweigh the effects of an earlier start to the 11 

growing season.  12 

 13 

Conclusions and application 14 

These results suggest that sycamore does not currently pose a serious threat to the 15 

undisturbed ancient woodland at Wytham and that it is not outcompeting ash in the 16 

rest of the woods.  The evidence is that ash is growing faster and producing more 17 

seedlings than sycamore.  Sycamore is likely to have been planted at Wytham from 18 

the early 19th century onwards (Elton, 1966), but many of the present trees have 19 

naturally regenerated and this appears to have been favoured by the conditions in the 20 

secondary and disturbed woodlands.  In contrast the minimum intervention regime in 21 

the undisturbed ancient woodland has presented few opportunities for sycamore to 22 

gain a foothold.  It is possible that sycamore would eventually decline in those areas 23 

where it currently coexists with ash, in the absence of active management. 24 

 25 
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The resistance of ancient woodlands to sycamore invasion under a minimum 1 

intervention regime, may not be so clear cut in other situations; in particularly 2 

sycamore is likely to be more of a threat in wetter areas.  However, Climate change 3 

will tend to decrease sycamore growth over much of England, if, as projections 4 

suggest, summer droughts increase in frequency.  Our results provide empirical 5 

support for the projections of Broadmeadow et al. (2005), indicating a decline in the 6 

productivity of sycamore with climate change over much of England.  Sycamore is 7 

therefore likely to be a reduced threat to conservation in future, however, as a timber 8 

crop, foresters may find it a less productive species. 9 
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Tables 1 

 2 

Table 1  Number of ECN baseline plots in which different tree species were recorded 3 

in canopy and shrub layer (seedlings excluded). 4 

 5 

Species Number of plots 

Fraxinus excelsior 143 

Acer pseudoplatanus 114 

Corylus avellana 109 

Crategus monogyna 105 

Quercus robur 82 

Sambucus nigra 53 

Fagus sylvatica 43 

Acer campestre 40 

Prunus spinosa 32 

Betula pendula 29 

Salix caprea 12 

 6 
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Table 2  RMANOVA results for growth increments in 3 year periods between 1993 1 

and 2005. Time with starting DBH (1993) as a covariate. 2 

 3 

 Time DBH in 1993 Time x DBH 

 F d.f. P F d.f. P F d.f. P 

Sycamore 4.761 3 0.003 4.831 1 0.033 3.5 3 0.017 

Ash 1.415 3 0.241 6.429 1 0.014 2.052 3 0.109 

Oak 1.702 3 0.186 0.675 1 0.429 1.597 3 0.209 

          

 4 
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Table 3  Correlation coefficients (r2) between date of leafing and mean temperature of 1 

different months or combination of months for three species between 1994 and 2006 2 

at Wytham Woods.  Bold text indicates significant differences: *p<0.05; **p<0.01. 3 

 4 

 5 

 Species 

Period Sycamore Ash Oak 

January 0.00 0.06 0.07 

February 0.09 0.16 0.03 

March 0.44* 0.36* 0.43* 

April 0.11 0.33 0.04 

January-April 0.15 0.26 0.06 

January-March 0.23 0.17 0.09 

February-April 0.18 0.45* 0.15 

January-February 0.05 0.02 0.00 

February-March 0.29 0.33* 0.21 

March-April 0.17 0.53** 0.22 

 6 

 7 
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Figure Legends 1 

 2 

Fig. 1  Temperature and precipitation at Wytham, 1993-2005.  Data are presented as 3 

mean temperature and total precipitation for each season: spring (March-May), 4 

summer (June-August), Autumn (September-November), winter (December – 5 

February). 6 

 7 

Fig. 2  Map of Wytham Woods showing location of ECN baseline plots in relation to 8 

management history, categories defined in Methods section.  Plots in which sycamore 9 

was recorded are solid black, those in which it was not recorded are filled white.  10 

 11 

Fig. 3 (a) Frequency of occurrence (percentage) of sycamore in plots in areas with 12 

contrasting management histories. (b) Frequency (percentage) of occurrence of 13 

sycamore in the same plot as other species. 14 

 15 

Fig. 4  (a) Diameter (DBH) growth of the three species over the whole period, 1993-16 

2005 broken down according to crown class.  (b) Starting DBH (1993) of different 17 

species according to crown class 18 

 19 

Fig. 5  (a) Growth (DBH) of sycamore, ash and oak in four contrasting 3-year periods 20 

from 1993 to 2006. (b) Climate (total precipitation and mean temperature) during the 21 

same four periods. 22 

 23 

Fig. 6  Number of seedlings of sycamore and ash recorded in plots under sycamore 24 

and ash canopies in (a) 1993 and (b) 2002.   25 
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 1 

Fig. 7 Maximum photosynthetic rate (Amax) of sycamore throughout the growing 2 

season in (a) 3 contrasting years and then in comparison to oak for (b) a dry year, 3 

1996, and for two wet years: (c) 1999 and (d) 2000.  Where data were collected on 4 

more than one day within the same week they have been combined for clarity.  (The 5 

data in (b) have been previously presented in Morecroft & Roberts (1999) and are 6 

included here for comparative purposes). 7 

 8 

Fig. 8 (a) Leafing date (day of year) of sycamore, ash and oak from 1994 to 2006, 9 

with mean March temperature. (b) Relationship between leafing date of sycamore, ash 10 

and oak and March temperature.  Correlation coefficients are given in Table 2.  Linear 11 

trend lines are fitted to the data series.  Equations: sycamore y = -6.2x + 133; ash y = -12 

5.1x + 139; oak y = -4.1x + 139. 13 


