Effects of solar dimming and brightening on the terrestrial carbon sink

L. M. Mercado¹, N. Bellouin², S. Sitch², O. Boucher², C. Huntingford¹, P.M. Cox³

¹Centre for Ecology and Hydrology, Wallingford, UK, ²Met Office Hadley Centre, UK, ³School of Engineering Computer Science and Mathematics, University of Exeter, UK.

E-mail: lmme@ceh.ac.uk

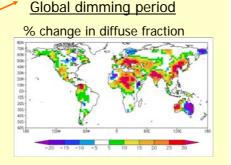
Aim To estimate the impact of changes in diffuse radiation on land productivity and carbon storage

Introduction

Changes in cloud cover, scattering and absorption of light by tropospheric and stratospheric aerosols

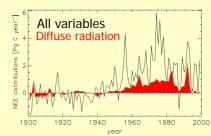
□Caused: Solar Dimming^{1,2,3}, an observed decrease in total incident radiation over 1950-1980 and regional

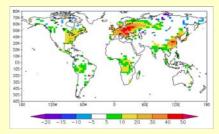
brightening since the 1980³.


□Impacts: Plant photosynthesis, which is more efficient under diffuse light^{4,5}

Methods

☐ Met Office Land Surface Model: accounts for variations of direct and diffuse radiation on sunlit and shaded canopy photosynthesis⁶.


 □ Model Forcing: CRU 1901-2000 (T, P, Cloud cover)⁷
 □ GCM direct & diffuse radiation reconstruction (incl. Tropospheric & Stratospheric Aerosols)⁸



Results: Historical

Simulated Net Ecosystem Exchange

Contribution of diffuse fraction change to land carbon accumulation [g C m⁻² yr ⁻¹]

Future

on future land C sink

200
150
150
32%

1950

Impact of radiation changes

Summary

- ☐ Global dimming & brightening contributes to a decreasing and an increasing land C sink, respectively.
- ☐ Diffuse radiation contribution to land C sink is likely to decrease under decreased aerosol emissions.

References

1 Stanhill, G. and Cohen, S. Agric. For. Meteorol., 107, 255-278, 2001 2 Liepert, B. G., Geophysical Research letters, 29, 1421, 2002. 3 Wild, M. et al.. Science 308 (5723), 847, 2005 4 Gu, L. H. et al., Science 299 (5615), 2035, 2003 5 Roderick, M. L. et al., Oecologia 129 (1), 21, 2001

5 Roderick, M. L. et al., Oecologia 129 (1), 21, 2006 Mercado, L. M. et al., Tellus 59B (3), 553, 2007.7 New, M. et al. J. Clim., 13, 2217-2238, 2000

8 Bellouin, N, Met Office Hadley Centre Technical Note 73, 2007.

2100