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Abstract

The oceanic southern margin of Gondwana, from southern South America through
South Africa, West Antarctica, New Zealand (in its pre break-up position), and
Victoria Land to Eastern Australia is one of the longest and longest-lived active
continental margins known. It was the site of the 18,000 km Terra Australis orogen,
which was initiated in Neoproterozoic times with the break-up of Rodinia, and
evolved into the Mesozoic Australides. The Gondwana margin was completed, in Late
Cambrian times, by closure of the Adamastor Ocean (between Brazilian and
southwest African components) and the Mozambique Ocean (between East and West
Gondwana), forming the Brasiliano—Pan-African mobile belts. During the Early
Palaeozoic much of the southern margin was dominated by successive episodes of
subduction-accretion. Eastern Australia, Northern Victoria Land and the
Transantarctic Mountains were affected by one of the first of these events — the Late
Cambrian Ross/Delamerian orogeny, remnants of which may be found in the
Antarctic Peninsula — but also contain two accreted terranes of unknown age and
origin. Similar events are recognized at the South American end of the margin, where
the Cambrian Pampean orogeny occurred with dextral strike-slip along the western
edge of the Rio de la Plata craton, followed by an Ordovician active margin

(Famatinian) associated with the collision of the Precordillera terrane. However, the
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central part of the margin (the Sierra de la VVentana of eastern Argentina, the Cape
Fold Belt of South Africa and the Ellsworth Mountains of West Antarctica) seem to
represent a passive margin during the Early Palaeozoic, with the accumulation of
predominantly reworked continental sedimentary deposits (Du Toit’s ‘Samfrau
Geosyncline’). In many of the outer areas, accretion and intense granitic/rhyolitic
magmatism continued during the Late Palaeozoic, with collision of several small
continental terranes, many of which are nevertheless of Gondwana origin: e.g.,
southern Patagonia and (possibly) *Chilenia’ in the South American—-South African
sectors, and the Western Province and Median Batholith terranes of New Zealand.
The rhyolitic Permo-Triassic LIP of southern South America represents a Permo-
Triassic switch to extensional tectonics, which continued into the early Jurassic, and
was followed by the establishment of the Andean subduction margin. Elsewhere at
this time the margin largely became passive, with terrane accretion continuing in New
Zealand. In the Mesozoic, the Terra Australis Orogen evolved into the accretionary
Australides, with episodic orogenesis in the New Zealand, West Antarctic and South
American sectors in Late Triassic-Early Jurassic and mid-Cretaceous times, even as

Gondwana was breaking up.

Key words: Accretionary orogen, terrane, Palaeozoic, Laurentia, Rodinia
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1. Introduction

The oceanic margin of Gondwana was of the order of 40,000 km long (Fig. 1). Its
northern boundary was the source of Avalonian and Cadomian terranes in the west
and Cimmerian terranes in the east (Unrug, 1997). Its southern margin has been
proposed as one of the largest and longest-lived accretionary orogens on Earth
(Cawood, 2005; Vaughan et al., 2005b) - the Proterozoic and Palaeozoic Terra
Australis orogen (Cawood, 2005), which evolved into the Australides (Vaughan et al.,
2005b) during the Palaeozoic and Mesozoic. This orogen was over 18000 kilometres
long, incorporating margins against the lapetus and palaeo-Pacific oceans (Unrug,
1997) (Fig. 1), and is comparable in scale to the Late Palaeozoic
Alleghenian/Hercynian/Uralian orogen of central Pangaea (Vaughan et al., 2005b).
Today, the southern margin of Gondwana can be subdivided into Australian, Victoria
Land, New Zealand, West Antarctic, South African and South American sectors

(Figure 1). Apart from the West Antarctic and South African sectors, these have
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recently been reviewed in a Geological Society Special Publication (Vaughan et al.,
2005a). The present paper focuses on the lapetus and palaeo-Pacific margin of West
Gondwana (Fig. 1), i.e. the West Antarctic and South American sectors; it does not
deal with the collisional margin between East and West Gondwana, nor with the
Avalonian/Cadomian or Cimmerian margins (Fig. 1). However, it does touch on the
New Zealand and Victoria Land sectors (including the Transantarctic Mountains) of
the margin of East Gondwana, as these may have contributed detrital material and
terranes to the accretionary margin of West Gondwana from Palaeozoic times

onwards.

Moving clockwise along the southern margin of Gondwana, from modern-day east to
west (Figure 1), starting in East Gondwana, the Phanerozoic history of the Victoria
Land sector of the margin has recently been reviewed by Tessensohn and Henjes-
Kunst (2005) and the New Zealand sector has had recent and comprehensive reviews
by Mortimer (2004) and Wandres and Bradshaw (2005). Moving into West
Gondwana, aspects of the West Antarctic sector have been reviewed in the past 10
years by Pankhurst et al. (1998b) and Vaughan and Storey (2000), but is a sector of
the margin in need of an up-to-date treatment. Rapalini (2005) reviewed the southern
South American sector of the margin from the latest Proterozoic to the late Palaeozoic
on the basis of palaeomagnetic data, and a brief review of this sector was presented in
Vaughan et al. (2005b), but an up-to-date comprehensive review of the whole South
American sector is lacking. Given the pace of recent developments (e.g., Casquet et
al., 2006; Pankhurst et al., 2006), and the considerable controversy over the

Palaeozoic history of this sector of the margin, particularly regarding the origin of the
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Precordillera or Cuyania terrane (e.g., Thomas and Astini, 2003; Finney et al., 2005),

a further review is appropriate.

2. What is West Gondwana?

In simple terms West Gondwana is that part of the supercontinent represented today in
South America, Arabia, Africa and West Antarctica. From a geological point of view,
however, this definition is over-simplified and it reflects a subdivision based on the
break-up rather than the amalgamation configuration of the supercontinent (e.g.,
Storey et al., 1996; Veevers, 2004). The earliest geologically-based separation of
Gondwana into eastern and western parts was made by Du Toit (1937) (Fig. 2). He
further separated Antarctica into eastern and western parts, as suggested by Suess
(1883-1901), assigning them to East and West Gondwana, respectively (see Thomson
and Vaughan (2005) for a brief discussion), but placed New Zealand in East
Gondwana, off the eastern coast of Australia (Fig. 2). More recently, West Gondwana
has been defined on the basis of the Archaean shields, cratons and cratonic fragments,
the intervening Mesoproterozoic and Neoproterozoic mobile belts, and the outer belts
of Proterozoic—Mesozoic terranes that make it up (e.g., Unrug, 1997; Pankhurst et al.,
1998b; Brito Neves et al., 1999; Vaughan and Storey, 2000; Murphy et al., 2004;

Tohver et al., 2006).

2.1 Cratonic elements

The major cratonic elements comprise the Amazonia-West Africa craton, Sao

Francisco-Congo craton, Kalahari-Grunehogna craton, Rio de la Plata craton, and the

Arabian—Nubian shield (Tohver et al., 2006) (Fig. 3). Cordani et al. (2003) pointed
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out that there are smaller cratonic fragments of considerable importance in
understanding the evolution of the supercontinent. These include the Central Goias
massif (Fischel et al., 2001), the Luiz Alves, Rio Apa, Sao Luis and Parana cratonic
fragments (e.g., Tohver et al., 2006) (Fig. 3). The Hoggar—Potiguar plate of Brito
Neves et al. (1999) is another potential cratonic fragment (e.g., Liegeois et al., 2003;

Ouzegane et al., 2003), although its limits are not currently delineated.

2.2 Mesoproterozoic and Neoproterozoic mobile belts

Brito Neves et al. (1999) used the term Brasiliano—Pan African collage for the
Mesoproterozoic and Neoproterozoic—Cambrian mobile belts involved in the final
amalgamation of West Gondwana. Tohver et al. (2006) listed 19 individual belts to
this collage, illustrated in Figure 3. Brito Neves et al. (1999) summarized them as the
Neoproterozoic Borborema/Trans-Saharan and Tocantins belts, and the
Neoproterozoic—Cambrian Pampean and Mantiqueira belts in modern-day South
America, and, in modern-day Africa, the Neoproterozoic Dahomeyide belt and the
Neoproterozoic—Cambrian Damara, and Zambesi belts. Other important parts of
Neoproterozoic—Cambrian West Gondwana include the Cariris-Velhos terrane (Brito
Neves et al., 1999) of northern South America—East Africa and the "Grenville"
Neoproterozoic rocks of the Haag Nunataks block of West Antarctica and the

Falklands Plateau (e.g., Storey et al., 1994; Wareham et al., 1998).

2.3 Palaeozoic—Mesozoic terranes
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Accretion of new terrane material to Gondwana was active during amalgamation
(Cawood, 2005) and continued until the late stages of break-up of the supercontinent
(e.g., Vaughan et al., 2002b). In the Phanerozoic, these include the Cambrian rocks of
the Ellsworth—-Whitmore Mountains block of West Antarctica (e.g., Curtis et al.,
1999), and the Cambrian rocks of the Western Province of New Zealand (Minker and
Cooper, 1995). Various Proterozoic fragments of West Gondwana also became part of
the margins of the Laurentia and Baltica cratons (Skehan, 1997). Murphy et al.
(2004) reviewed these and summarized them as being formed either of reworked
Neoproterozoic "juvenile crust within the Panthalassa-type ocean surrounding
Rodinia", the so-called Avalonian-type terranes, or of reworked West African
Palaeoproterozoic crust, the so-called Cadomian-type terranes. Following
amalgamation, the Gondwana margin continued to be active with addition of new
oceanic material (e.g., Cawood et al., 2002) and remobilization of existing parts of the
margin by strike-slip faulting (e.g., Cawood, 2005). Major episodes of terrane
addition and remobilization occurred during the Gondwanan Orogeny of the Permo-
Carboniferous (e.g., Cawood, 2005; Pankhurst et al., 2006) and during global
orogenesis in the Triassic—Jurassic and Cretaceous (e.g., Vaughan and Livermore,

2005).

2.4 Boundary with East Gondwana

The boundary with East Gondwana consists of a meandering zone of late
Neoproterozoic to earliest Cambrian orogenic and mobile belts, termed Pan-African,
extending from and including the Arabian—Nubian Shield in the north to Antarctica in

the south (e.g., Shackleton, 1996). Perhaps the most important of these belts is that of
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the East African—Antarctic orogeny (Jacobs and Thomas, 2004). Unrug (1997) shows
a very broad zone of potential convergence in the northern segment, which include
eastern Africa and the Arabian—Nubian Shield. The southernmost extent of this
collision zone includes the Namaqua—Natal-Maud belt on the margin of the Kalahari—
Grunehogna craton in southern Africa and Dronning Maud Land in East Antarctica
(Jacobs et al., 2003). The essentially synchronous collision Brasiliano zone is the
subject of a new survey of geological links across the present South Atlantic region

(Pankhurst et al., in press).

3. The formation and dispersal of West Gondwana

Formation of the Gondwana supercontinent appears to have overlapped with the
break-up of Rodinia (a possible supercontinent built around Laurentia), which
occurred between 1000 and 750 million years ago (e.g. Cordani et al., 2003; Meert
and Torsvik, 2003). The series of accretionary and collisional events that formed
West Gondwana began 850 million years ago and were complete by the latest
Cambrian (490 million years ago) (e.g., Brito Neves et al., 1999). It is overly
simplistic to think of the final formation of Gondwana in terms of a collision between
the East and West parts (e.g., Meert, 2001). Recent palaeomagnetic data (Tohver et
al., 2006) suggest that prior to final amalgamation of Gondwana in the mid-Cambrian,
the Amazon—West Africa block of West Gondwana was still a separate entity from
Rodinia, and was separated from other blocks that constitute West Gondwana
(Congo-Séo Francisco—Kalahari-Arabia—Rio de la Plata). Trindade et al. (2006)
provided palaeomagnetic support for this for Amazonia and proposed that

amalgamation involved successive suturing along three major orogenic belts, the
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Mozambique, Kuunga and Pampean—Araguaia belts through closure of the
Mozambique, Adamastor and Clymene oceans. However, the associated complex
collisional processes produced deformation and magmatism throughout the late
Neoproterozoic and Early Cambrian in the East African—Antarctic belt and in the
Brasiliano belt between the Kalahari and Amazonia cratons. Jacobs & Thomas (2004)
suggest dispersal of smaller continental fragments by escape tectonics associated with
a Himalayan style and scale mountain range formed in the Mozambique belt. These
major orogenies, and their topographical and erosional consequences, are the most
probable explanation for the widespread occurrence of detrital zircons of this age span
in the subsequent sedimentary record of both East and West Gondwana margins (See
also Squire et al., 2006). According to Basei et al. (2005), a narrow band of
Neoproterozoic metasedimentary rocks on the Atlantic coast of South America is
equivalent to the southwest African sequences formed by erosion of the Kalahari and
Namagua—Natal basement and was left behind on the Cretaceous opening of the South
Atlantic Ocean, so that the suture zone resulting from closure of the Adamastor ocean

now lies within southeastern Brazil and Uruguay.

During and subsequent to Late Cambrian times, West Gondwana continued to accrete
microcontinents and terrane fragments (e.g., Cawood, 2005; Vaughan and Livermore,
2005). The origin of some, such as the Precordillera terrane and its relationship to
Laurentia and the Pampia Terrane, continues to be extremely controversial (e.g.,

Thomas and Astini, 2003; Finney et al., 2005).

4. The oceanic margin of West Gondwana
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4.1 South America

In the southern South American sector of the margin, the accretionary orogen model
has to take into account widely held ideas of collisional accretion of individual
terranes of pre-existing continental crust (Fig. 4). Many of these terranes were first
proposed and named by Ramos (1988) and, although many are accepted in general,
the essential details of their delineation, composition, and the timing of their accretion

to Gondwana continue to be controversial.

The best known of these is the Precordillera terrane (Astini et al., 1995), often equated
with and referred to as Cuyania (Ramos, 1988; 2004). This has an outcrop area at least
300 km from north-to-south and less than 100 km in width where the geology is
dominated by Cambrian to Middle Ordovician limestones, succeeded unconformably
by Silurian—Devonian clastic sediments that pass upwards into typical Gondwana
sequence lacustrine deposits and red beds of Carboniferous to Triassic age. Alonso et
al. (2008) present structural and sedimentological evidence for the passive margin
nature of this sequence. The most significant feature of the limestones is a change
from a Cambrian brachiopod and trilobite fauna of Laurentian affinity to a Middle to
Late Ordovician Gondwana fauna (Benedetto, 1998; Astini et al., 2004). For many,
this supports the idea that the Precordillera terrane was derived from Laurentia, but
approached Gondwana during the Early Ordovician, followed by accretion during a
Middle Ordovician collision. This idea is supported by a wide range of evidence, e.g.,
an Early-to-Middle magmatic arc including both I- and S-type granites developed on
the marginal continental crust of Gondwana — the Famatinian arc (Pankhurst et al.,

1998a; Pankhurst et al., 2000). Other aspects compatible with this scenario are
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contemporaneous bentonite ash bands in the Precordillera limestones (Huff et al.,
1998; Fanning et al., 2004), and palaeomagnetic data (Rapalini, 2005). Middle
Ordovician metamorphism has been found in rocks east of the Precordillera (Casquet
et al., 2001; Vujovich et al., 2004) and equated with the collision stage, and Castro de
Machuca et al. (2008) ascribe an Early Silurian age to major post-collisional shear
zones. This is also the interpretation given in Chernicoff et al. (2007) who have
studied detrital zircon in a Late Ordovician—Devonian sedimentary sequence which
they regard as deposited in a post-collisional foreland basin. However, others (e.g.,
Acefiolaza et al., 2002) have proposed an alternative origin for the Precordillera
terrane in another part of West Gondwana, with Ordovician emplacement by massive
strike-slip movement along the margin. Attempts to resolve these opposing
hypotheses for the origin source of the Precordillera terrane continue without final
agreement, largely based on the patterns of detrital zircon provenance ages

determined by U-Pb geochronology (Thomas and Astini, 2003; Finney et al., 2005).

Another aspect of the Precordillera terrane hypothesis is the nature and origin of its
underlying crustal basement. Unfortunately, this is not unambiguously exposed. There
is indirect indication for it consisting of a high-grade metamorphic complex of
‘Grenvillian” age through the occurrence of ~1000 Ma amphibolite xenoliths brought
up in a Miocene dacite through the easternmost limestone outcrops (Kay et al., 1996).
High-grade rocks of 1200-1000 Ma have since been discovered throughout the
Western Sierras Pampeanas sequences to the east of the Precordillera (McDonough et
al., 1993; Varela et al., 1996; Pankhurst and Rapela, 1998; Casquet et al., 2001; 2005;
2006). Ordovician limestones are associated with high-grade granite gneiss of

‘Grenville’ age as far south as Ponon Trehue (Fig. 4, Heredia, 2002; Cingolani et al.,

11
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2005) and ‘Grenville’-age tonalites at Las Matras (Sato et al., 2000). Initially these
occurrences were mostly considered to be representative of the middle crustal
basement of the Precordillera terrane, consistent with a Laurentian origin, but more
recently (e.g., Galindo et al., 2004; Casquet et al., 2006) it has been suggested that the
‘Grenville’-age rocks of the Western Sierras Pampeanas could be regarded as
autochthonous Gondwana basement during the Ordovician, and Casquet et al. (2006;
2007) have interpreted some at least as equivalent to the Arequipa-Antofalla block,
normally regarded as unambiguously autochthonous. The true nature of the

Precordillera basement thus remains questionable.

The Eastern Sierras Pampeanas constitute another putative continental terrane
accretion event (the Pampia terrane of Ramos, 1988, see Fig. 4). This is a belt of
migmatitic gneisses, low-grade metasediments, granites and metabasites which
underwent orogenic deformation, metamorphism and anatexis in Early-to-Middle
Cambrian times (Rapela et al., 1998a; Rapela et al., 1998b; Rapela et al., 2002),
although Guereschi and Martino (2008) suggest that an even older migmatization
event may also have occurred. Their Early Palaeozoic history is thus incompatible
with the Palaeoproterozoic Rio de la Plata craton to the east and the passive margin
limestones of the Precordillera sequence to the west, suggesting an exotic terrane. The
predominant Nd model age signature of these rocks is a Mesoproterozoic one (as is
that of the Famatinian rocks to the west). For this reason, Rapela et al. (1998b)
followed previous authors in thinking that the metasedimentary component must have
been derived from such a source to the east as a foreland sequence above an eastward
dipping subduction zone; however, no Mesoproterozoic source is exposed. They

suggested that the terrane was not allochthonous but had previously been rifted-off

12
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from a similar position on the Gondwana margin in Neoproterozoic times, and was
similar to the Arequipa—Antofalla blocks of northern Chile and Peru. Simpson et al.
(2003) and Schwartz and Gromet (2004) proposed subduction of a spreading ridge in
Middle Cambrian times as an alternative to collision of a continental block. As a
recent development based on detrital zircon U-Pb and whole-rock Sm—Nd data,
Escayola et al. (2007) have proposed a radical model in which subduction towards the
west occurred in Neoproterozoic times, with sediments being deposited in a back-arc
basin from both the Grenville-age Western Sierras Pampeanas and the arc itself rather
than from the Rio de la Plata craton to the east. The high-grade metamorphism of the
Pampean belt followed Early Cambrian closure of the back-arc basin. This could
explain the metabasites (as basin floor remnants) but there is no evidence for the arc
itself. The problem of the Pampean orogeny is ripe for new data to resolve these and
possibly other alternatives, and Rapela et al. (in press) present new evidence on the
extent of the craton, the origin of the Pampean belt metasedimentary rocks and the

Cambrian tectonic events leading to their juxtaposition.

The latest collisional event proposed by Ramos (1988) for the central part of this
sector in that of the hypothetical Chilenia terrane (Fig. 4). This is supposed to have
occurred in Devonian time, and was principally invoked in order to explain granite
magmatism of this age that occurs both within the Pampean belt and to the south. A
major unit in the former category is the Achala batholith in the southern Sierras de
Cordoba. This consists of evolved S-type granites (some with high U contents), of
generally post-orogenic characteristics (Lira and Kirschbaum, 1990). Geuna et al.
(2007) present palaecomagnetic data that support rapid cooling soon after

crystallization.
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Finally, moving south to Patagonia, we arrive at a situation that has been a long-lived
puzzle. The source of the problem is the ?Cambrian to Permian Gondwanide
sedimentary sequence that forms a Late Permian fold and thrust belt in the Sierra de la
Ventana (aka Sierras Australes) of southernmost Buenos Aires province, Argentina
(Fig. 4). As emphasized by du Toit (1937), this has an obvious continuation in the
Cape Fold Belt of South Africa and the Ellsworth Mountains sequence of West
Antarctica — all of these must have been joined together as a single stratigraphical and

tectonic system during the Late Palaeozoic evolution of Gondwana.

Ramos (1984; 1986) proposed that an allochthonous (exotic) Patagonian terrane
collided with cratonic South America (supercontinental Gondwana) along the Rio
Colorado zone (Fig. 4) in Carboniferous times. This was thought to have resulted
from southwest-dipping subduction beneath the North Patagonian Massif. Devonian—
Carboniferous penetrative deformation, southward-verging folds and southward-
directed thrusting of supracrustal rocks of the northeastern North Patagonian Massif
was described by Chernicoff and Caminos (1996) and elaborated in a detailed
structural study by von Gosen (2003), who argued for Permian rather than
Carboniferous crustal shortening, and possibly a northeastward-directed accretionary

process.

A major revision of the original collision model for Patagonia has been proposed by
Pankhurst et al. (2006). They claim that the majority of rocks in the North Patagonian
Massif are autochthonous to Gondwana. The basement to the immediate south of the

Sierra de la Ventana itself includes Late Neoproterozoic and Cambrian granites and
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volcanic rocks of a similar age to those of the Pampean orogeny, albeit in a different
tectonic setting, and the northeastern part of the North Patagonian Massif has
Ordovician granite magmatism and metamorphism equivalent to the Famatinian
orogeny. There is no evidence of a Grenville-age belt similar to the Western Sierras
Pampeanas, but this could possibly be hidden beneath the deep Mesozoic and younger
sediments of the Rio Colorado basin. Thus any collision must have occurred to the
south of this massif with its deformed Cambro-Ordovician cover. The discovery of
Early Carboniferous subduction-related magmatism followed by mid-Carboniferous
S-type granites in a belt that runs southeastwards from the western margin of the
North Patagonian Massif led to the proposal that this was essentially the zone of
collision, and that the distinctive crustal complexes of the Deseado Massif to the south
represents part of the colliding terrane (Pankhurst et al., 2006). The pre-Jurassic
geology of the Deseado Massif is very poorly exposed, but it includes Late
Neoproterozoic sedimentation, Cambrian plutonism, and both Silurian and Devonian

granite magmatism (Pankhurst et al., 2003).

Another prominent feature of the Palaeozoic geology of southern South America is
the enormously voluminous and extensive eruption of Permian and Triassic rhyolitic
rocks and the emplacement of associated granites (ca 290-220 Ma) — the Choiyoi
complex (Kay et al., 1989; Mpodozis and Kay, 1990). These are so far most closely
controlled in terms of their chronology in Patagonia, where they have a wide range
ages and isotopic characteristics. Initiation in Early Permian times was ascribed by
Pankhurst et al. (2006) to post-collisional break-off of the down-going slab, perhaps
with delamination of the crust beneath the North Patagonian Massif, leading to large-

scale access of heat to the middle crust. It was suggested that this could have lead to
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promulgation of the slab break-off towards the north along the Gondwana margin,
where the magmatism of the Permo-Triassic Choiyoi Group may be more closely

related to east-directed subduction than to collision.

Some of the youngest rocks in this sector of West Gondwana are the accretionary
complexes forming the farthest outboard part of the margin (e.g., Vaughan and
Storey, 2000; Hervé and Fanning, 2003; Mortimer, 2004; Glen, 2005). These largely
formed after Gondwana was assembled and are semi-continuous from southern South
America to eastern Australia, ranging in age from Carboniferous to Cretaceous.
Detrital zircon studies show that he material within these complexes are of
Gondwanan origin (Hervé et al., 2003; Augustsson et al., 2006). Sepulveda et al.
(2008) show that a relatively recent example, the Madre de Dios terrane (Fig. 4),
contains evidence of a Late Carboniferous—Early Permian mid-ocean ridge origin. The
terrane was accreted to the Gondwana margin during deformation in Late Triassic-
Early Jurassic times, called the Chonide orogeny (Hervé et al., 2003; Sepulveda et al.,
2008) in Patagonia, but which was part of a global event (Vaughan and Livermore,

2005).

4.2 South Africa

The Cape Fold Belt of South Africa (e.g., Johnston, 2000) (including the Falkland
Islands block (Mitchell et al., 1986; Storey et al., 1999)), together with the Sierra de la
Ventana of eastern Argentina (e.g., Rapela et al., 2003) and the Ellsworth Mountains
of West Antarctica (e.g., Curtis, 2001), forms the central part of the margin of West

Gondwana. The basement consists of the 2000-1000 Ma metamorphic volcano-
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sedimentary rocks of the Namaqua-Natal belt (e.g., Dewey et al., 2006; Eglington,
2006; McCourt et al., 2006), which was deformed during late Neoproterozoic to early
Palaeozoic Gondwana amalgamation (e.g., Jacobs et al., 2003). The Phanerozoic
continental margin sedimentary succession is represented by the 6-10 km thick,
siliciclastic Cape Supergroup (Broquet, 1992; Barnett et al., 1997) and subsequent
glacial, marine and terrestrial-fluvial successions of the Karoo Supergroup, which
includes the Dwyka, Ecca, Beaufort and Stormberg lithostratigraphic units
(Catuneanu et al., 2005). The sedimentary succession ranges in age from
Neoproterozoic to mid-Jurassic, terminated by basin-wide basaltic volcanism of the
Karoo Igneous Province (e.g., Duncan et al., 1997). This sector of the margin appears
to represent a passive margin during the Early Palaeozoic (Shone and Booth, 2005),
with the accumulation of predominantly reworked continental sedimentary deposits
(the ‘Samfrau Geosyncline’ (Du Toit, 1937)). It was deformed by the Gondwanide
Orogeny in the Late Permian-Early Triassic (e.g., Johnston, 2000). This major fold
belt is often modelled as an intraplate orogen representing far-field-deformation
related to distant subduction (e.g., Johnston, 2000), although Dalziel et al. (2000)
suggested that flattening of the subduction zone could have been driven by interaction
with mantle plume that was subsequently responsible for continental break-up.
However, a recent re-evaluation by Pankhurst et al. (2006), using data from the South
American, Sierra de la Ventana section of the fold belt, supports a possible collisional

origin.

4.3 West Antarctica
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West Antarctica was originally split into four (Dalziel and Elliot, 1982), or five
(Storey et al., 1988), tectonic blocks. The innermost of these is the Ellsworth-
Whitmore mountains block, which has sedimentological affinities to the Cape Fold
Belt of South Africa (Curtis et al., 1999; Curtis, 2001). It preserves a passive margin
volcano-sedimentary succession that ranges from the Cambrian to the Permo-Triassic
and may have been derived from the Natal embayment (Randall and Mac Niocaill,

2004).

Recent reassessments of the large-scale structure of West Antarctica suggests that the
remaining blocks of West Antarctica can be subdivided into at least three main terrane
belts that appear to be continuous from the New Zealand sector of East Gondwana to
the Antarctic Peninsula (Pankhurst et al., 1998b; VVaughan and Storey, 2000). The
innermost and oldest of these is termed the Ross province in West Antarctica and
called the Eastern Domain in the Antarctic Peninsula (Vaughan and Storey, 2000).
The Hf-isotope composition of inherited zircons in Late Palaeozoic—Mesozoic
granites, migmatites and paragneisses from the Antarctic Peninsula show that they are
derived from Mesoproterozoic sources and have been taken to suggest that this
domain is underlain by crust of that age (e.g., Flowerdew et al., 2006). The oldest
rocks of this Palaeozoic ocean-marginal domain are the Ordovician turbidite
sequences of the Swanson Formation of Marie Byrd Land (Pankhurst et al., 1998b).
These have no equivalents elsewhere in West Antarctica although turbidites of similar
age are seen in the Robertson Bay terrane of Victoria Land in East Gondwana (Stump,
1995). These are intruded by the Ford Granodiorite in Marie Byrd Land, which are
equivalent in age to the older granitoids from Target Hill in the northern Antarctic

Peninsula (Millar et al., 2002). A suite of granitoids emplaced between 340 and 320
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million years ago (Pankhurst et al., 1998b) are widely developed in Marie Byrd Land
and are also seen at Target Hill in the northern Antarctic Peninsula (Millar et al.,
2002). Although not developed in Marie Byrd Land, the Eastern Domain in the
Antarctic Peninsula contains a sequence of Middle Jurassic Gondwana break-up
rhyolite volcanic rocks, the Ellsworth Land Volcanic Group (Hunter et al., 2006b),
and an Early Jurassic to Cretaceous (Willan and Hunter, 2005; Hunter et al., 2006a)
sequence of deep and shallow marine clastic sedimentary rocks called the Latady
Group (Laudon et al., 1983; Hunter and Cantrill, 2006). The latest event seen in this
domain is the mid-Cretaceous emplacement of arc plutons of the voluminous Lassiter

Coast Intrusive Suite (e.g., Flowerdew et al., 2005).

Outboard of the Ross Province/Eastern Domain is a series of magmatic arc terranes
termed the Amundsen Province in Marie Byrd Land (Pankhurst et al., 1998b) and the
Central Domain in the Antarctic Peninsula (Vaughan and Storey, 2000). The
Amundsen Province and Central Domain are largely magmatic and show many
similarities in compositional types and in timing of magmatic emplacement (Vaughan
and Storey, 2000). Plutonism appears to have peaked in three discrete episodes in the
Late Triassic, mid-Jurassic, and Late Jurassic to Early Cretaceous (Leat et al., 1995;
Vaughan and Storey, 2000). Recent geophysical data from the Antarctic Peninsula
suggest that the Central Domain is composite and made up of smaller terranes
(Ferraccioli et al., 2006). So far, a mafic eastern Central Domain and a granitic
western Central Domain have been identified (Ferraccioli et al., 2006). Major
deformational episodes affected the Central Domain in Late Triassic-early Jurassic
and mid-Cretaceous times (Vaughan et al., 2002a; Vaughan et al., 2002b; Vaughan

and Livermore, 2005).
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The outermost of the West Antarctic terrane belts is termed the Western Domain in
the Antarctic Peninsula (Vaughan and Storey, 2000). It has no equivalent in Marie
Byrd Land although similar accretionary complex terranes are developed in New
Zealand and in southern South America (Vaughan and Storey, 2000). Accretionary
complex rocks range in age from Late Carboniferous (Kelly et al., 2001) to Late
Cretaceous (Vaughan and Storey, 2000). The Western Domain in the Antarctic
Peninsula was affected by deformation in the Late Triassic-early Jurassic and in the

mid-Cretaceous (Vaughan and Livermore, 2005).

5. Adjacent parts of the oceanic margin of East Gondwana

5.1 New Zealand

The New Zealand sector of the eastern Gondwana margin (e.g. Mortimer, 2004;
Wandres and Bradshaw, 2005) is made up of a collage of terranes, composed of
basement rocks ranging in age from early Cambrian to late Early Cretaceous. These
can be grouped into three provinces, the Western Province, the Median Province, and
the Eastern Province (Coombs et al., 1976; Bishop et al., 1985; Bradshaw, 1989). The
Western Province is made up of two terranes that formed the Palaeozoic margin of
East Gondwana and largely consist of lower Palaeozoic metasedimentary rocks cut by
series of Devonian, Carboniferous and Early Cretaceous granite plutons (e.g., Cooper,
1989; Muir et al., 1996; Waight et al., 1998). In addition there are some minor
volcanic and metamorphic rocks of Cambrian age (e.g., Munker and Crawford, 2000).

The Median Province is largely magmatic and consists of suites of Carboniferous to
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Early Cretaceous subduction-related arc plutons with subordinate volcanic and
sedimentary rocks (e.g., Muir et al., 1998; Mortimer et al., 1999). The Eastern
Province (e.g., Mortimer, 2004; Wandres and Bradshaw, 2005) consists of arc, fore-
arc and accretionary complex rocks that formed and accumulated during Permian to
Cretaceous plate convergence and subduction. These have been subdivided into up to
13 terranes, several of which are grouped into a Torlesse Superterrane (Campbell,
2000). As pointed out by Wandres and Bradshaw (2005) the bulk of New Zealand
continental crust is submerged by the sea. Adams (2008) examines the terrane
evidence from this hidden area by studying Rb-Sr metamorphic and U-Pb detrital
zircon ages from the emergent island parts of the submerged continental crust, called
"Zealandia". The data show that the Campbell Plateau segment of Zealandia has clear
affinities with the Western Province/Ross Province and the Median
Province/Amundsen Province, with little evidence for extension of the Eastern

Province.

5.2 Victoria Land and the Transantarctic Mountains

Although strictly part of East Gondwana, the Transantarctic Mountains are important
because they both acted as a source for sediments deposited in West Gondwana,
particularly in West Antarctica (e.g., Flowerdew et al., 2006), and were themselves a
sedimentary sink for sediments derived from West Gondwana in Late Palaeozoic and
Early Mesozoic times (e.g., Elliot and Fanning, 2007). At their most northerly extent,
in Northern Victoria Land, the Transantarctic Mountains are composed of Cambrian
and Ordovician terranes amalgamated during the Ross Orogeny (recently reviewed by

Tessensohn and Henjes-Kunst, 2005). The main part of the Transantarctic Mountains
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is underlain by Neoproterozoic, and possibly older (e.g., Fanning et al., 1996;
Fitzsimons, 2003), basement, intruded by granitoid plutons of the Ross Orogeny
(Stump, 1995). This is unconformably overlain by the quartzose sandstones of the
Devonian Taylor Group (Isbell, 1999). The Taylor Group was deformed by the end-
Palaeozoic Gondwanan orogeny (Cawood, 2005) and is in turn unconformably
overlain by the Permo-Triassic glacial, marine, terrestrial and fluvial sedimentary
rocks of the Victoria Group (Collinson et al., 1994). This upper sedimentary
sequence was intruded in the Lower Jurassic by sills and dikes of Ferrar Dolerite (e.g.,
Hergt et al., 1991) with co-magmatic overlying basaltic pyroclastic rocks (e.g., Elliot

and Hanson, 2001) and Kirkpatrick Basalt flood lavas (e.g., Elliot et al., 1999).

6. Concluding remarks

The longevity and extent of the Gondwana margin has ensured that it has remained
the subject of intense study for over seventy years. It was one of the birthplaces of
terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for
theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,

Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005).

An interesting question is the one of translation of terranes along the Gondwana
margin. Cawood et al.(2002) have shown evidence for translations of thousands of
kilometres along the Gondwana margin from the Permian to the Cretaceous, and this
idea has been inherent in some treatments of the older Palaeozoic tectonics. Structural
evidence suggests that large scale strike-slip faults exist (e.g. Vaughan and Storey,

2000). Some support for large-scale translation can be derived from zircon data
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although the only way that these movements can be confirmed or quantified is by

multidisciplinary studies that include palaeomagnetic analysis and interpretation.
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Figure Captions

Figure 1: Gondwana reconstruction after Unrug (1997) showing major terrane belts on
the margins of the supercontinent: NZ: New Zealand; TAM: Transantarctic
Mountains. Boundary zone between East and West Gondwana after Unrug
(1997) shown as overlay: ANS: Arabian—Nubian Shield; N-N-M: Namaqua-—
Natal-Maud belt.

Figure 2: Gondwana reconstruction after Du Toit (1937), showing earliest subdivision
of the supercontinent into eastern and western parts.

Figure 3: Reconstruction of West Gondwana after Tohver et al.(2006) showing
cratonic and Brasiliano—Panafrican elements. Cratons shown in light grey:
Am, Amazonia; ANS, Arabian—Nubian Shield, C, Congo; GM, Goias Massif;
K-G, Kalahari-Grunehogna; LA, Luis Alves, P, Parana, RA, Rio Apa, SF, Sdo
Francisco; SL, Séo Lius; WA, West Africa. Brasiliano—Panafrican belts
(ringed): Ac, Araguai; Ag, Araguaia; Bo, Borborema; Br, Brasilia; Da,
Damara; DF, Dom Feliciano; Dh/O, Dahomeides/Oubangides; G, Gariep; H,
Hoggar; Ka, Kaoko; K/Z, Katangan/Zambezi; LA, Lufilian Arc; M,
Mozambique; P, Paraguai; R/M, Ribeira/Mantequeira; Ro, Rockelides; Ta,
Tanzania; Tu, Tucavaca; WC, West Congo.

Figure 4: Schematic representation of the tectonic elements of the margin of West
Gondwana, extensively modified after Rapalini (2005) and references therein,
using further information from Pankhurst et al. (2006) and personal
communications from C.W. Rapela and C. Casquet. Amazonia, Rio Apa, Rio
de la Plata (and in some schemes, Arequipa and Antofalla) are the cratonic
blocks of Palaeoproterozoic to Neoproterozoic age. The Pampean belt (which
encompasses the Eastern Sierras Pampeanas Pampia terrane of Ramos (1988),
is shown as continuous with the Araguaia belt of Brazil, following Trindade et
al. (2006), and the approximate form of the Patagonian plate is from Pankhurst
et al. (2006). The known extent of Grenville-age belts of Sunsas (S) and the
Western Sierras Pampeanas (W) is indicated, although the latter also occurs
beneath the Argentine Precordillera (Cy), as either stratigraphical or tectonic
basement. The Ordovician Famatinian orogenic belt (F) overprints the earlier
complexes, including those of the Antofalla block, where Lucassen et al.
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(2000) recognise Pampean metamorphism and magmatism as reflecting an
accretionary orogeny.
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