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Abstract

Estimates of hydrological parameters at ungauged sites have traditionally been
obtained from regression equations. This study investigates alternative methods based
on the classification of catchments according to their flow regime, the assignment of
ungauged catchments to a class based on physical characteristics of the catchment,
and the use of similarity measures to transfer parameters from gauged to ungauged
catchments. The report considers the methods that can be adopted in this type of
approach, and the many variations that must be considered in their implementation.
The methods are examined using a set of 99 catchments from the UK, and are seen
to be efficacious in estimating the unit hydrograph time to peak and standard
percentage runoff, as defined by the UK Flood Studies Report. A step-by-step guide
and worked example show how the method can be applied in practice.
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Executive Summary

A much used method of estimating hydrological parameters at ungauged sites has
been to use empirically derived regression equations, The UK Flood Studies Report
adopts such an approach to derive rainfall-runoff model parameters (unit hydrograph
time-to-peak and percentage runoff) for use in a design flood estimation procedure.
However, users of this procedure are strongly recommended to examine parameters
derived on similar nearby gauged catchments to refine or replace the regression
estimates at the ungauged site. This recommendation is backed up by experience in
using the methods rather than an analysis of data. If, in practice, the best parameter
estimate is obtained using so-called local data then it seems reasonable to attempt to
develop an estimation procedure based on this approach rather than regression
analysis. This report examines a variety of methods that adopt this type of approach,
and the best of these are found to be as good, or better, than the regression based
method.

A three part approach was used in the study. Firstly, catchments were classified
(clustered) according to observed flow indices to give a broad distinction between
hydrological regimes. Secondiy, a method of assigning catchments to the classes
based on physical properties of the basins was developed. Thirdly, the catchment
properties and cluster membership were used in five different ways to estimate the
hydrological parameters. The five methods included averaging the observed parameter
values from sites within the same cluster that are most similar to the ungauged sites,
and developing separate regression equations for catchments in each cluster.
Variations on the former of these allowed the similar catchments to be from more
than one cluster where there was some ambiguity about to which cluster the ungauged
site belonged, and also to add a geographical distance limit to the search for similar
catchments.

Many issues need to be resolved in adopting this approach. The clustering process
can be performed using different procedures (eg. agglomerative or hierarchical) and
different flow variables (or transformations of variables), and since the hydrological
data form a continuum rather than a clumped data set, a decision on the number of
clusters is also needed. The assignment process uses discriminant analysis but, as in
the clustering process, requires a review of which catchment data are most useful,
although this time the data are the physical properties rather than the flow indices.

The data available for this study come from 99 catichments mainly in England and
Wales, but with a few from southern Scotland. Seven variables derived from
observed data were available to describe various aspects of the flow regime, and a set
of nine catchment characteristics abstracted from maps described the physical nature
of the drainage basin.



Clustering of the catchments used the K-means algorithm applied to principal
components derived from all seven flow variables. Assignment of catchments to
clusters used discriminant analysis applied to canonical variables obtained from all of
the available characteristics. An examination of the parameter estimation methods
showed that good results were being obtained with very few (ie. two or three)
clusters. In both of these cases the catchments were divided into groups that contained
roughly the same number of members (two clusters' 51 and 46 members: three
clusters 34, 29 and 36 members). Some geographic trends could be seen in the
catchments but location was not a strong distinguishing feature of the groups. The
assignment process correctly placed 91 and 76 (of 99) catchments in the two and
three cluster cases respectively. The poorer performance of the assignment process
in the three ctuster case demonstrates why moving to a greater number of clusters,
in which the type of catchment becomes better defined, is not necessarily the best
option.

The clustering and assignment process described thus far considers all flow variables
equally and could be used as an aid in studies of, for example, low flows or floods.
The cluster membership information has been taken and used in the specific example
of estimating the Flood Studies Report variables time-to-peak and standard percentage
runoff.

Of the methods investigated the best for the estimation of standard percentage runoff
was found to be from the two cluster scheme using the arithmetic mean of values
observed at the two most similar catchments within the cluster to which the ungauged
catchment is assigned. The similarity of the catchments should be assessed using the
particular definition given in this report, which is based on the five Winter Rainfall
Acceptance Potential classes. This estimation method represents a considerable
improvement over the regression equation presented in Flood Studies Supplementary
Report No.16 both in terms of bias and RMS error. This result reinforces the advice
to use local data to refine regression equation estimates. The method can be
considered a formalization of this general advice into a defined procedure.

The results for the estimation of time-to-peak are less clear cut. The equation
presented in Flood Studies Supplementary Report No. 16 is robust and reliable in most
applications, and errors in its estimation have a less dramatic effect than do errors in
percentage runoff. The best alternative to the regression approach was found to be
from a weighted mean of regression estimates obtained from individual equations for
each cluster. This method works well in both the two and three cluster cases, giving
slightly lower RMS error than the regression equation but with slightly higher bias.
Overall there is not sufficient gain with the new method to justify the complexity of
the new method.

Further refinements are considered in which one flow variable is available at the site
of interest. This information can be used both in the assignment process and the
estimation process. The Base Flow Index is beneficial in improving percentage runoff
estimation compared with both the method developed for the transfer of local
parameter values, and the regression equation using Base Flow Index contained in
Supplementary Report No.16.



NOTATION

Cx.  centroid coordinate for feature m of cluster k

distance between catchment i and j

E; regression estimate of the rainfall-runoff model parameter for catchment i
from cluster k

I, number of catchments in cluster k

J number of catchment characteristics

j catchment characteristic index

K number of clusters

k cluster number

L, set of n nearest neighbours for catchment i

M number of attributes (flow response measures)

m attribute number

N number of catchments

n number of nearest neighbours used in the estimation of parameters
n¢ number of catchments used in the similarity comparison

nn number of nearest neighbours to catchment i that are from cluster k
nm,  number of catchments in cluster k

P« probability that catchment i is a member of cluster k

pre prior probability of membership in cluster k

q number of canonical variables, min (J, K-1)

R, rainfall-runoff model parameter for catchment |

S sample covariance matrix for catchment characteristics

V, vector of canonical variables for catchment i

vw matrix of canonical variable weights

W, weight for feature m
X value of feature m on catchment i

Y; catchment characteristic j for catchment |

Y, mean of catchment characteristic |

YS, standard deviation of catchment characteristic j

Y vector of standardized catchment characteristics for catchment i

A total within group variability

O variability measure for cluster k

0, weight applied to the rainfall-runoff model parameter for catchment |

W, weight applied to catchment characteristic t in the distance metric



1 Introduction

An approach to the estimation of extreme flow probabilities for ungauged catchments,
or catchments for which only limited flow data are available, is to use a rainfall-
runoff model to transform a design rainfall event into a peak flow value with a
specified probability of exceedence. For catchments in the UK, the Flood Studies
Report (NERC, 1975) describes a methodology for conducting flood frequency
analysis for ungauged catchments based on this type of procedure. When applying
this method to ungauged catchments, it is necessary to determine model parameters
using data describing the physical characteristics of the catchment. The two most
important mode} parameters are the unit hydrograph time to peak, Tp, and the
standard percentage runoff, SPR, which is a measure of the percentage of rainfall that
generates runoff. A third rainfall-runoff model parameter, the peak flow of the one
hour unit hydrograph, Qp, can be estimated from the value of Tp. The Flood Studies
Report (FSR) presents regression equations for obtaining estimates of these model
parameters. Later work, Flood Studies Supplementary Report No. 16 (IH, 1985),
used slightly redefined definitions of the model parameters, and presented new
regression equations for use at ungauged sites.

This regression based approach to the estimation of hydrological parameters is by no
means unique to the UK or to the studies mentioned above. The time of concentration
has been used in design flood studies for many years; the Bransby-Williams (1922)
equation is one of the best known for estimating this characteristic time at an
ungauged site. Even restricting a survey to the estimation of unit hydrograph model
parameters yields a considerable literature. In a British context Nash (1960) presents
regression equations for the estimation of unit hydrograph parameters, but offers no
advice on how to estimate rainfall loss model parameters. Heerdegen & Reich (1974),
in their study of catchments in Pennsylvania, USA, and Cordery & Pilgrim (1983)
in a study of Australian catchments also fail to relate parameters describing a rainfall
loss model to characteristics of the catchment or rainfall event.

The FSR recognised that there would be considerable uncertainty associated with the
model parameter estimates obtained from the regression equations, and suggested that
this might be reduced by incorporating loca! data (i.e., results from the analysis of
flood event data recorded on nearby catchments). The first formalization of this
recommendation is to be found in Lowing & Reed (1980). For time to peak, the
recommendation is a simple scaling of the regression equation estimate by a local
scaling factor (i.e., the observed value divided by the estimated value averaged over
all nearby sites), subject to conditions concerning the similarity of the site of interest
and its neighbour. These conditions are that the catchments are of about the same size
and that they are both on the same river channel. The suggested size constraint was
that the larger catchment should be no more than five times the area of the smaller.
For SPR, it was suggested that a value should be transferred from a nearby site if the
neighbouring catchment is broadly similarly in terms of geology, topography, and
land use. These recommendations were based on “experience of using the model”
rather than an analysis of gauged data.



Two issues are raised by these recommendations. Firstly, is it possible to demonstrate
that this use of local data is beneficial, and if so can the benefit be quantified?
Secondly, if it is better to use local values of SPR rather than the regression equation,
should a method of estimation based solely on the use of local data be recommended
in place of the regression equation?

This report examines alternative methodologies for estimating the requisite rainfall-
runoff model parameters based on the use of local data, and compares such estimates
with those derived from the FSSR16 regression equations. However, an important
feature of this study was to move away from the idea of using data only from
catchments in the proximity of the study catchment, towards the use of information
from sites that are similar, but not necessarily close, to the ungauged catchment. The
only available method by which an ungauged catchment can be judged similar to, or
different from, others is by comparing catchment characteristics.

The problem described above has some parallels with work in regional flood
frequency analysis based on estimating extreme flow probabilities at gauged or
ungauged sites using annual flow data from a collection of gauged locations. Wiltshire
(1986) employed a combination of cluster analysis and discriminant analysis to
estimate extreme flows at ungauged sites. Acreman (1987) and Acreman & Wiltshire
(1989) suggested a framework for regional flood frequency analysis that dispenses
with the need for unique regions. Burn (1990) presented an evaluation of such a
technique referred to as the Region of Influence approach wherein flood frequency
analysis for a selected site uses information from all other gauged sites that are
sufficiently similar to the site of interest,

In the present study, preliminary work showed that some catchments with similar
physical characteristics had different flow regimes, and that an initial division of
catchments into a number of groups may prove necessary, or beneficial, in estimating
hydrological parameters at the ungauged site. The fact that this seemed necessary
indicates that the guidelines for assessing the similarity of catchments prior to transfer
of model parameters were an essential consideration in the use of data from nearby
sites.

In addition to comparing methods ot model parameter estimation using catchment
characteristics, this study considers how the derived flow parameter, base flow index
(BFI), can be used to improve estimation. This parallels the use of BFI in a
regression equation to estimate SPR that is recommended in preference to the
catchment characteristics regression by FSSR16.



2  Approach

The FSSR16 approach to model parameter estimation was to consider all catchments
together and to find the best, physically acceptable, regression model. Local data
could then be used according to the suggested guidelines and at the users’ discretion
to refine the estimates. In this study, we start by grouping the catchments into a small
number of classes according to their hydrological similarity. While it may have been
possible to make this hydrological classification based only on the variables of interest
(i.e., Tp and SPR), it was considered better to include a greater number of flow
variables as this would give a more general view of the catchment’s flow regime, and
lead to a classification that may be appropriate beyond the present application. The
information about class membership is an extra item of data that may then be used
in building a parameter estimation model. Various models are considered for
parameter eslimation, including a regression approach identical to that used in
FSSR16, and a "transfer value™ approach similar to the one built into the "local data”
recommendations. Thus in the (trivial) case of grouping the catchments into one class,
estimation using the traditional regression equation, and local data approaches may
be compared. Where a greater number of classes are used, then an extra component
must be added to consider how ungauged catchments can be assigned to one of the
groups defined by hydrological similarity. The approach therefore comprises three
parts.

1 Classification of catchments based on hydrologic similarity.

2 Assignment of catchments to classes based on their catchment characteristics.

3 Development of a method of model parameter estimation based on available
information, including probable class membership.

2.1 GROUPING OF CATCHMENTS

The intent within the grouping process is to subdivide the entire set of catchments
based on similarity in the flow response of the catchments. Thus, for example,
catchments that have a very quick runoff response should be distinguished from those
that have a slower and more sustained response.

2.1.1 Clustering Methods

To carry out the grouping of the catchments, cluster analysis (see, for example,
Anderberg 1973) can be employed. There are two generic types of cluster analysis;
the agglomerative or hierarchical approach and methods based on partitioning the data
set. The former approach is based on assembling individual objects into larger groups
whereas the latter approach is based on dividing a data continuum into distinct
groups. The nature of our problem and the intent of the catchment grouping process



conform more closely to the second approach and therefore in this work, the version
of the K-means clustering algorithm described by Burn (1989) was used.

2.1.2 The K-Means Algorithm

This algorithm divides the entire set of objects (catchments) into K clusters (groups)
based on the values of M features, or attributes, of the objects. For the work
described herein, the features comprised either a subset of the available flow response
measures, or variables derived as a linear combination of the flow response measures.
The objective of the clustering process is to minimise:

T T LW -Cy (1)
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where W, is the weight applied to feature m in the Euclidean distance measure; X',
is the value of feature m for object i, C*, is the centroid coordinate for feature m of
cluster k; K is the number of clusters; [, is the set of objects in cluster k; and M is
the total number of features,

The K-means algorithm involves selecting K objects to function as seed points, or
initial cluster centroids. Each of the objects is then assigned to the cluster
corresponding to the centroid that it is nearest to where proximity is measured in
terms of a weighted Euclidean distance in the M-dimensional space defined by the
features selected (see Equation 1). After all of the objects have been assigned to a
cluster, the centroid for each cluster is recalculated based on the membership of the
cluster. Each object is then again assigned to the cluster corresponding to the centroid
that it is now nearest to, and after all objects have been assigned, the centroids are
recalculated. This process is repeated until no object changes cluster membership in
successive applications of the assignment step. Within the clustering process, there
are several issues to be resolved, including:

1 The identification of a global optima.
2 The determination of an appropriate number of clusters.
3 The selection of clustering variables and associated weightings.

Identification of a global optima

This issue arises from the nature of the K-means algorithm. The algorithm, as
outlined above, will identify the optimal partitioning of the catchments for the
particular combination of K catchments selected as seed points. Although the results
tend to be reasonably robust with respect to the starting seed points, there is no
guarantee that a global, as opposed 10 a local, optima has been achieved. To
compensate for this, the catchments that act as the seed points were randomly selected
and the algorithm was repeatedly solved with different combinations of catchments
functioning as seed points. It was found that 200 repetitions of the process provided
a reasonable assurance that a global optima had been identified.



Determination of number of clusters

The selection of the number of clusters (groups) 1o divide the catchments into
involves choosing a particular value for K. Formal approaches for selecting the
preferred number of clusters have been outlined in the literature (Galeatti er al.,
1986) where the intent is to obtain homogeneous groupings of the objects while still
retaining a reasonable number of objects in each group. The employment of such a
procedure to this application would have resulted in a fairly large number of groups
(of the order of ten clusters) with a corresponding smali number of members in each
group. Since the intent with the clustering component of the estimation process is to
obtain a broad classification of the catchments, in terms of flow response, a more
subjective process was used to select K. Results were examined with the number of
groups ranging from two to five and a subset of these results were retained for
consideration within the remaining stages of the procedure.

Selection of variables and weights

The clustering variables selected are used as the features, or attributes, in the
proximity measure which defines catchment similarity. Since the ultimate intent is to
estimate the value of Tp and SPR for the ungauged catchments, one option would be
to use only these two variables as the attributes in the distance metric. While this
would result in clusters of catchments that are similar in terms of the two variables
that are of primary interest, this is not necessarily the best approach to partitioning
the data. Since it will subsequently be necessary to assign catchments to a cluster
based on data describing the catchment characteristics, it is apparent that adopting a
broader definition of catchment similarity will be likely to improve the assignment
of catchments to the appropriate group using catchment characteristic data. As such,
the approach ultimately taken herein was to consider all available flow response
variables within the clustering process. However, the question of the relative
importance, or weight, to assign to the various variables still remains. Related to the
question of appropriate weights is the issue of correlation between the flow response
variables. If two variables are correlated, they are, to some extent, measures of the
same attribute of catchment flow response. It could, therefore, be argued that a
reduced weight in the distance metric should be assigned to such variables to reflect
this. However, the subjective assignment of weights will potentially impact the
resulting partitioning of the caichments, implying that an objective weighting scheme
is desirable.

Alternative approaches to clustering, in terms of a combination of the available flow
response variables, are based on calculating principal components from the entire set
of flow response variables and using the significant principal components as attributes
in the proximity measure. Nathan & McMahon (1990) describe a number of
clustering options that incorporate principal components. One result of adopting the
principal components approach is to reduce the dimensionality of the problem while
still retaining the effects of all of the variables in the analysis. The principal
component approach will also provide an objective assignment of weightings to the
original variables in that the weightings are determined directly from the principal
components analysis. In addition, the correlation between variables is explicitly
accounted for in that variables with a high correlation will tend to be associated with
the same principal component. Within the principal component approach to clustering,
several alternatives exist, including:



1 Clustering of unweighted principal components;
2 Clustering of principal components weighted by eigenvalue;
3 Clustering of rotated principal components, either weighted or unweighted.

The first option assumes that each principal component is of equal importance in
defining catchment similarity whereas the second option assumes that the importance
of the principal components is related to the fraction of the variance of the original
data explained by the component. The third option entails:a rotation of the principal
components which results in a clearer distinction of the variables associated with each
of the principal components.

2.2 ASSIGNMENT OF UNGAUGED CATCHMENTS

The assignment of ungauged catchments to one of the clusters identified in the first
stage of the process can be accomplished using discriminant analysis. However, not
all of the variables describing the physical characteristics of a catchment are
necessarily of use in discriminating between the clusters. Furthermore, the preferred
variables for use in the discrimination process may change as a function of the
number of groups into which the original set of catchments has been divided. The
first step in the assignment of ungauged catchments to a cluster was thus the
identification of a suitable set of catchment characteristic data for use within a
discriminant analysis technique.

2.2.1 Selection of catchment characteristics

Formal statistical procedures exist for the identification of relevant variables (SAS,
1985). These include step-wise discriminant analysis, which attempts to determine the
best combination of variables to distinguish between a given set of clusters, and
canonical discriminant analysis, which detines a set of canonical variables that are
linear combinations of all of the variables considered. A total of g canonical variables
can be calculated where q = min{J, K-1) where J is the number of catchment
characteristic variables and K is the number of clusters, as before. The canonical
discriminant analysis procedure calculates a set of weights and the canonical variables
can then be calculated using these weights through:

VawTy, (2)

where V, is the (K-1) dimensional vector of canonical variables for catchment i; vw
is the matrix of weights, of dimension J by (K-1), determined from the canonical
discriminant analysis; and vy, is a J-dimensional vector of standardized catchment
characteristics. The elements of the vector y, are calculated through:

Y-Y.

/

where y; is the jth element of the standardized catchment characteristic vector for
catchment i; Y is the jth element of the catchment characteristic vector for catchment



i; and Y, and YS; are the mean and standard deviation for catchment characteristic
j calculated from all catchments in the data set.

Both the stepwise and canonical discriminant analysis procedures assume that the set
of variables used in the discriminant analysis follow a multivariate Gaussian
distribution. Since the nature of the data describing catchment characteristics may
result in the validity of this distribution assumption being questionable, additional
analysis was used to assist with the determination of an appropriate set of variables.
The main additional investigative tool used was a graphical display of various
combinations of variables. This was used to subjectively evaluate the capability of the
variables to distinguish between the defined clusters. The strategy taken was to use
the results of the step-wise discriminant analysis and the canonical discriminant
analysis as a starting point for identifying potentially useful variables, or combinations
of variables. Graphics plots were then used to confirm the utility of proposed
combinations of variables. Finally, the results of actually assigning gauged catchments
to the clusters, where the appropriate cluster membership is known a priori, were
used to refine the selection of discriminating variables.

2.2.2 Discriminant analysis

Once a set of discriminating variables was selected, the specific discriminant analysis
technique adopted was a non-parametric discriminant analysis technique based on the
nearest neighbour approach (SAS, 1985). This approach involves assigning a
catchment to a cluster in accordance with the cluster membership of the n catchments
nearest to the ungauged catchment. The proximity of gauged catchments to the
catchment to be classified is defined in terms of a distance metric using the catchment
characteristics identified as being of relevance. Two common options for the distance
metric are the Euclidean distance and the Mahalanobis distance, where the latter
accounts for correlation between the variables. The Euclidean distance between two
catchments is defined as:

d=(Y,-¥)(Y-Y) @)

where d; is the distance between catchment i and catchment j; and Y; is the catchment
characteristic vector for catchment i. The Mahalanobis distance metric is defined as:

d,=(Y,-Y)'S"(¥,-Y) (5)

where S is the sample covariance matrix of the catchment characteristic data and all
other variables are as previously defined. The output from this procedure includes:
1) the probability of membership for each catchment in each cluster, based on the
cluster membership of the n nearest neighbours; 2) the cluster to which each
catchment is assigned; and 3) a summary of the performance of the assignment
process. In this discriminant analysis procedure, a catchment is assigned to the cluster
to which it has the highest probability of membership. The probability of membership
for a catchment in a cluster is given by:

nn, pr,
Py=— (6)
L(nn,pr)

=l



where p, is the probability that catchment i is a member of cluster k; nn, is the
number of nearest neighbours to catchment i that are from cluster k; pr, is the prior
probability of membership in cluster k; and the summation is over all clusters. The
prior probability of membership in a cluster is defined as:

pr,n% M

where nm, is the number of members (catchments) in cluster k; and N is the total
number of catchments.

2.3 ESTIMATION OF RAINFALL-RUNOFF MODEL
PARAMETERS

In Sections 2.1 and 2.2, a methodology has been described that will allow catchments
to be classified according to their hydrological similarity, and assigned to classes
based on their physical properties. The next stage is to consider how catchment
characteristics data, and class membership information, can be used to estimate the
rainfall-runoff model parameters. Again many possibilities present themselves for
consideration. The initial aim of the study was to use the similarity of the catchments
in characteristic space, to determine how variables might be transferred between
catchments. Having classified the catchments, this similarity could be assessed by
only considering other catchments within the same group, by including a term in the
similarity measure that reflects group membership, or by ignoring the groupings
altogether.

In any of these scenarios, the first step is to determine a subset of the catchment
characteristics to be used in the similarity measure. It is to be expected that the set
of characteristics will vary according to the hydrological variable that is to be
estimated, and between different classifications of the catchments.

To determine an appropriate set of catchment characteristic variables, the correlation
was calculated between the difference in each catchment characteristic, for all
combinations of station pairs, and the corresponding difference for each rainfall-
runoff model parameter. From this analysis, a set of variables with significant
correlations were identified and retained for possible use in the estimation process.
The retained variables were evaluated in terms of their capability to identify
catchments that are similar in terms of the rainfall-runoff model parameters.
Specifically, the agreement between the nc nearest catchments in terms of a rainfall-
runoff model parameter and the nc nearest catchments in terms of a combination of
catchment characteristics was determined. The catchment proximities were calculated
in terms of the Euclidean distance. The analysis was carried out individually for each
catchment in the collection of catchments and a network average performance was
determined. In this way, it was possible to evaluate potential combinations of
variables for each of the rainfall-runoff model parameters of interest.

With the variables identified through the above analysis, several options were



developed for estimating the rainfall-runoff model parameters for an ungauged
catchment.

Option 1

Option 1 entails identifying the n nearest neighbours to the ungauged catchment from
the catchments in the cluster to which the ungauged catchment has been assigned. The
proximity of gauged catchments to the catchment of interest is calculated as a
weighted Euclidean distance in the T-dimensional space defined by the catchment
characteristics selected for the particular runoff parameter of interest. Catchment
proximity is thus given as:

dy=T w0,y ®)

where d, is the distance from catchment i to catchment 1; « is the weight applied to
catchment characteristic t; and y, is the standardized value for catchment
characteristic t for catchment i. The estimate for the rainfall-runoff model parameter
for the ungauged catchment is then calculated as the weighted average of the rainfall-
runoff model parameter values for the n nearest catchments, resulting in:

k=l TR, 9)
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where R, is the estimate of a rainfall-runoff model parameter for catchment i; n is the
number of nearest neighbours selected; L, is the set of catchments that comprise the
n nearest neighbours to catchment i; @ is the weight applied to the rainfall-runoff
model parameter value for catchment I; and R, is the rainfall-runoff model parameter
value for catchment |.

Option 2

Option 2 is similar to Option 1 except that the search for the n nearest neighbours is
restricted to those catchments which are less than a specified geographic distance
from the caichment of interest. The logic behind this option is that catchments that
are physically close together should be similar in terms of both catchment
characteristics that affect runoff production (such as rainfall, soil type, etc.) and also,
therefore, in terms of runoff response. The distance constraint imposed on the search
domain for similar catchments is intended to avoid spurious similarities where
catchments with very different flow response measures happen to have similar
catchment characteristics.

Option 3

Option 3 entails identifying the n nearest neighbours where the pool of available
catchments corresponds to the set of catchments from all clusters to which the
ungauged catchment has a probability of membership that exceeds a specified
probability threshold level. This option is considered since the catchment assignment
process will result in some catchments being incorrectly classified as to cluster
membership. This results from an imprecise relationship between similarity in flow



response and similarity in catchment characteristics. Furthermore, not all of the
catchments will be unambiguously assigned to one cluster but rather there may be
several clusters which can lay a claim to the catchment. This could arise as a result
of the inability of the discriminant analysis procedure to properly classify the
catchment but could also, however, reflect the fact that the catchment is somewhat
similar to catchments from several clusters and does not properly fit entirely in any
one cluster. This predicament, which may be referred to as the border effect,
invariably occurs when a continuous data space is divided into discrete segments. A
catchment of this type will benefit from an expanded pool of catchments such that the
n nearest catchments could well comprise a set of catchments coming from more than
one cluster. The estimation of the rainfall-runoff model parameters for this option is
as described in Equation (9).

Option 4

This option adopts a regression based approach in which separate regression
relationships between catchment characteristics and the rainfall-runoff model
parameters are developed for each of the clusters. The variables included in the
regression relationships are those used in the regression equations developed in
FSSR16, and of course the case of a single cluster is essentially equivalent to the
regressions of FSSRI6. For an ungauged catchment, separate cluster specific
estimates of the runoff parameter of interest are obtained from each of the regression
relationships. The final estimate is obtained as a weighted combination of the
individual estimates where the weights are the probability of membership of the
catchment in each of the clusters, resulting in:

Rz Pk, (10)

where p, is the probability of membership in cluster k for catchment i; E, is the
regression estimate of the rainfall-runoff model parameter for catchment i from
cluster k; and all other symbols are as previously defined.

Option 5

The final approach entails considering all catchments when determining the n nearest
neighbours, regardless of the cluster membership of the catchments. The estimation
of rainfall-runoff model parameters then proceeds as in Equation (9). Option 5
corresponds to Option 3 with a probability of membership threshold of zero. The
purpose of this option was to evaluate the merits of the initial classification of the
catchments into groups. If this option were to be the preferred approach, this would
imply that there is nothing to be gained from the clustering process.

Summary and comparison of options

For all of the above options, except Option 4, the value of n is a parameter which can
be varied to identify the value which provides the best estimate for the particular
rainfall-runoff model parameter. Similarly, the distance threshold in Option 2 and the
probability of membership threshold in Option 3 are parameters that can be modified
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in order to improve the estimation. Figure 1 presents a schematic comparison of the
estimation options considered. None of these options exactly represents the FSR
recommended procedure for using local data. However, the distance threshold in
Option 2 restricts the search space to those catchments that are physically close to the
catchment of interest, and Option S represents an unrestricted search for catchments
that are similar in terms of catchment characteristics. Both of these options have
parallels with the FSR recommended procedure.

Opiion

OPTION 1

GIMTION 2

PTION 2

O I'ON 4

PTION §

Figure 1

Description

Nearest nerghbours 1 cluster.

Nearest neighbours in clusier
nlus distance threshold.

Nearest neighbours in anv cluster
with membership probability
greater than threshold.

Regressian in zach Clusicr. Use
werphied reean of regression
Csimaies

Nearest neichbours
without clustenirg.

Parameters

n - ncasest neighbours

o

- nearest neighbours
- dhstange threshold

o

n - nearest neighbours
t - probabiliy threshold

segressien ¢eeificients

nearest neiphbours

Options 1.2.3 & 5 also require
weights to define nearest
neighbours.

Parameter estimation options

fHuseration

Proximity from equation (8)
Estimaie from equation (9)

As above, but caichment must
be within distance d,

As for Opuioa 1, but using
cacchments i passible clusters,

Fatimzrie wsing equation (108

Fsumate us far Opoon

[llustrations are for 2-dimensional
parameter space with 3 clusters.
% - site of nlerest
- gauged site
W45 - excluded region



3  Available Data

The data required for the approaches outlined above consisted of both measures of
catchment flow response and data describing the catchment characteristics. In addition
to the data needed to derive the rainfall-runoff model parameters (Tp and SPR), other
measures of the flow response of a catchment that are of potential use for defining
similarity in catchment response were available. The additional flow response
measures considered included a seasonality index (RBAR) which describes the
regularity of the timing of peak flows (RBAR can vary from 0, for a catchment
where every day of the year is equally likely to correspond to the peak flow, to | for
a catchment where the peak flow always occurs on the same day); the average daily
flow (ADF) in m*s"; a low flow measure (Q95) which is the flow value which is
exceeded 95% of the time, expressed as a percentage of the average daily flow; a
base flow index (BFI) which expresses the base flow component of runoff as a
fraction of the total runoff; the mean value of the annual flood series, normalized by
dividing by the drainage area, giving QBAR in m’s’km?; and the coefficient of
variation of the annual flood series (CV) which is dimensionless.

The flow response measures outlined above have been estimated from the available
streamflow record for each catchment. The reliability, or representativeness, of the
estimates is a function of both the amount of streamflow data available (i.e., the
length of the data record) and the quality of the gauging station. To be included in
the data base used herein, the data record at a catchment had to contain at least ten
years of annual flow data to provide reasonable estimates for the mean and the
coefficient of variation of the annual flood series. For the estimation of the
seasonality index, a minimum of five years of peaks over threshold data were
required and data from at least five storm events were required for the estimation of
the rainfall-runoff model parameters. Finally, each gauging station has a quality
rating associated with the estimation of the low flow regime. A gauging station for
a catchment had to be rated as "good” or “"very good" for the catchment to be
included. The total number of catchments with data available for all of the above-
noted flow response measures was quite small. However, if Q95 and ADF were to
be excluded, a total of 99 catchments, satisfying the above-noted quality criteria,
would have data for all of the remaining variables. Since Q95 is correlated with BF!
(@ = .69) and ADF divided by the catchment drainage area is correlated with QBAR
(e = .89), it was felt that excluding these two measures of flow response would be
justified. A listing of this data, which includes the catchment identification numbers
and the flow response measures, is presented in Appendix A.

Prior to clustering the catchments, the time to peak, Tp, was transformed to define
a new variable, LTp, where:

LTp=log(Tp) (1)

This new variable was used in the clustering process in place of time to peak due to
the substantially greater skewness of the time to peak relative to the remaining flow
response measures. This transformation of variable thus results in greater uniformity

12



in the skewness of the flow response measures used as attributes in the cluster
analysis.

In addition to the flow response measures, data describing the catchment
characteristics of the catchments were also required since estimates of the various
flow response measures are generally not available at catchments that are ungauged.
The available data base for each catchment included the drainage area (AREA) in
km?; the main stream length (MSL) in km; the dry valley factor (DVF) which is the
length of dry valley from the catchment divide to the head of the mainstream divided
by the distance from the catchment outlet to the divide; a measure of channel slope
(SL1085) calculated as the difference in elevation, in metres, between two points
along the main channel corresponding to 10% and 85% of channel length upstream
of the catchment outlet divided by the distance (in km) along the channel between
these two points; the stream frequency (STMFRQ) which is the number of stream
junctions in the channel network divided by the catchment area; the standard annual
average rainfall (SAAR) for the period from 1941 to 1970 in mm/year; the fraction
of the catchment draining through lakes (LAKE); the fraction of the catchment that
is urbanised (URBAN); and soil classification variables (SOIL1, SOIL2, SOIL3,
SOIL4, SOIL5) which give the fraction of the catchment corresponding to each of
five soil classes. The soil classes are based on the winter rainfall acceptance potential
(WRAP) of the soil. An additional variahle, SOIL, is defined as a linear combination
of the five individual soil variables. A listing of the values for all of the catchment
characteristic data for the catchments used in this study is contained in Appendix A.

Table | contains the mean and standard deviation as well as the minimum and
maximum values for all of the variables included in the data set. As can be inferred
from this table, the catchments used in this study were predominantly of a moderate
size (i.e., maximum drainage area of 544 km”) from largely non-urbanised areas.
Many of the physiographic features exhibit a substantial range in value (e.g., slopes
that range from less than 1 to in excess of 60 m/km) implying that the data set
includes catchments with diverse characteristics.

For all clustering options considered, the set of variables used as catchment attributes
were standardized prior to clustering. The standardization was accomplished by
dividing each variable by its standard deviation where the standard deviation of a
variable is calculated from the entire set of catchments. The purpose of
standardization is to account for differing amounts of variability in the various
catchment attributes used and to remove the effects of the arbitrary selection of the
units of measure for a catchment attribute.
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Table 1 Summary statistics for catchment data

Variable Units Mean Standard Minimum  Maximum
Deviation

Flow Response Meusures

Tp hours 9.19 6.77 218 428
Qp mYs ' 100km? 27.6 139 6.50 68.7
SPR %o ns 13.4 7.49 74.3
RBAR 0.52 0.12 .19 0.82
BFI 0.49 0.14 0.15 (.86
QBAR m's'km? (.44 .39 0.02 1.95
Cv 0.42 0.17 0.15 1.16
Curchment Characteristics
AREA o’ 165. 135, 8.0 544,
MSIL. km 25.0 15.6 3.90 84.6
DVF (.05 0.08 0.00 0.53
SLI108S nvkm 9.30 10.% 0.92 6317
STMFRQ k' 1.34 112 0.10 6.28
SAAR nun 1155 505 559 030
LAKE 025 155 000 260
URBAN 52 112 .000 Bi0
SOl 115 21 000 100
SOI2 A71 204 .00 1.00
SOIL3 4% 2N MG 1.00
SOnA4 96 154 00 1.00
SOILS 270 A6 .N0o 1.00
SOIL 396 070 130 500
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4  Analysis

4.1 GROUPING OF CATCHMENTS

4.1.1 Application of K-means algorithm

As noted in Section 2.1.1, it is possible to apply the K-means algorithm in a number
of different ways. The strategy ultimately selected was clustering using the principal
components approach. Principal components were calculated from the data set
comprising all seven flow response measures. The clustering variables then
corresponded to all principal components with an eigenvalue greater than unity, which
resulted in the retention of three principal components. The weighting on each of the
principal components for each flow response measure is shown in Table 2. The
values for the three principal components for each of the catchments are presented in
Appendix A. The variables with the largest weight on the first principal component
are LTp, Qp, and QBAR which implies that this principal component represents a
measure of the magnitude of the flood response. The variables associated with the
second principal component are SPR and BFI implying that this component can be
viewed as a measure of runoff production. The third principal component has the
variables RBAR and CV associated with it suggesting that this principal component
reflects the annual variability in flood response, both in terms of the timing (RBAR)
and the magnitude (CV) of the response.

Each of the three significant principal components identified were weighted by the
associated eigenvalue resulting in weightings of 3.13, 1.44, and 1.0S, respectively.
The weighted principal components clustering option was selected since the
eigenvalues, which indicate the amount of the variability of the data explained by the
associated principal component, provide a useful way of quantifying the relative
importance of each of the principal components. There appeared to be no intrinsic
advantage to the two rotated principal components options considered so these were
not pursued in depth.

The number of clusters delineated using the three weighted principal components was
varied from two to five. After examining the results of these partitionings, it was

decided to focus on the results for the two and three groups cases. The pertinent
results are summarized below.

4.1.2 Resulting classifications

Two Clusters

Table 3 provides a summary of the characteristics of the groups identified for the two
cluster case. The number of catchments in each group is roughly the same and each
group contributes essentially the same amount to the total within group variability of
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the data. The variability for a cluster is calculated as:

5=% E W (X' -C') (12)

i€l may

where 8, is the variability measure for cluster k, and all other symbols are as
previously defined. The variability contribution is shown in Table 3 as a fraction and
is calculated as 6, divided by the total within group variability, which is given by:

A=Ts, (13)

tsl

where A is the total within group variability. The cluster membership for each
catchment is given in Appendix A.

An examination of the geographic location of the catchments reveals that group 1
consists of catchments primarily from the western portion of the UK while group 2
contains catchments from the eastern and central areas (see Figure 2). It is apparent,
however, that geographic location is not a strong distinguishing feature of the
clusters. Figures 3 to 5 contain scatter plots of the first three principal components
for the catchments. From these scatter plots it can be seen that the first principal
component strongly distinguishes between the two groups with group 1 associated
with high values on this component and group 2 associated with low values.
However, the second and third principal components do not differentiate between the
catchments in the two clusters. This latter result can also be inferred from the
centroid coordinates presented in Table 3.

In terms of the flow response measures, group 1 is characterised by high values for
Qp, SPR, and QBAR and low values for LTp and BFI. Catchments in this group thus
tend to exhibit a rapid, flashy, runoff response with a high runoff production. Group
2 catchments have high values for LTp and BFI and low values for Qp, SPR, and
QBAR. These catchments therefore tend to exhibit a slow and sustained runoff
response with comparatively low runoff production. Figures 6 to 9 contain scatter
plots of the flow response variables for the catchments. The drainage area for each
catchment, although not a variable used in the clustering process, is also included to
ascertain if there are any scaling factors, related to catchment size, associated with
the partitioning of the catchments. Figure 6 reveals that the catchments are well
separated in terms of LTp and SPR. A similar result for Qp and BFI is noted from
Figure 7. Figure 8 reveals that CV is not a distinguishing variable for the clusters but
there are patterns in terms of QBAR. Figure 9 implies that neither RBAR nor AREA
is capable of distinguishing between the clusters.

Three Clusters

Table 4 summarizes the characteristics of the groups for the case of three clusters.
From this table, it can be seen that there are roughly the same number of catchments
in each of the three groups. The variability contribution of the three groups is not,
however, as evenly dispersed as for the case of two clusters. The somewhat larger
fraction of the variability contributed by group 1 implies that the catchments in this
group are not as cohesive, or tightly grouped, as the catchments in the other two
groups. The cluster membership for each catchment is given in Appendix A,
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Figure 10 reveals that the catchments in group 1 are primarily from the west of the
UK, group 2 contains catchments that are not located in the north, while group 3 has
a slight southern bias but is basically quite evenly dispersed. As for the case of two
clusters, the geographic location of a catchment is not a strong distinguishing feature
of the clusters. Figures 11 to 13 contain scatter plots of the three principal
components for the catchments from which it can be seen that group | catchments
have high values for principal component 1, group 2 catchments have low values for
both of the first two principal components, and group 3 has low values for principal
component 1 and high values for principal component 2. The groups are well
separated in terms of the first two principal components but the third principal
component does not differentiate between members of the various groups. This latter
result, also apparent from the centroid coordinates in Table 4, undoubtedly follows
from the comparatively low magnitude of the eigenvalue associated with the third
principal component. A value of only slightly above one for the eigenvalue implies
that this component is not as important as the other two components for explaining
the variance of the original variables. The fact that this component does not
substantially differentiate between the clusters is therefore consistent with the
characteristics of the data.

In terms of the flow response measures, group ! contains catchments with high values
for Qp and QBAR and low values for LTp. The catchments in this group therefore
have a flashy runoff response that produces comparatively large floods. Group 2
consists of catchments with high values for LTp and BFI and low values for Qp,
SPR, and QBAR. These catchments thus have a slow and sustained runoff response
with comparatively low runoff production. Group 3 catchments have high values for
LTp and SPR and low values for Qp, QBAR, and BFI. The catchments in this group
also have a slow and sustained runoff response but have a comparatively high runoff
production. The three groups are well defined in terms of LTp and SPR (see Figure
14) and also in terms of Qp and BFI (see Figure 15). QBAR is able to distinguish
between group | and the other two groups (see Figure 16) but there is no discernable
pattern in terms of CV (Figure 16) or RBAR (Figure 17). As with the case of two
clusters, there are no noticeable catchment size patterns.

4.2 ASSIGNMENT OF UNGAUGED CATCHMENTS

4.2.1 Selection of variables for discriminant analysis

The first stage in the catchment assignment process involves the identification of
relevant catchment characteristics for use as discriminating variables. Step-wise
discriminant analysis was first applied to the entire set of variables describing
catchment characteristics to determine a preferred set of variables for each of the
partitionings of the catchments considered. For the case of two clusters, the variables
which exhibited a capability for discriminating between clusters were, in order of
importance, SOILS, SAAR, SOIL, STMFRQ, SOIL1, and SL1085. Since several of
these variables are correlated, the variables ultimately selected by the step-wise
discriminant procedure were SOILS, SOIL1, URBAN, SAAR, and SOIL4, where the
variables are listed in the order in which they entered as discriminating variables. It
is noteworthy that the variable URBAN is selected even though this variable was not
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one of the variables identified as having a discriminating capability for the entire data
set. This variable is entered because it is capable of discriminating between the
clusters after other variables are included in the discriminant function.

For the case of three clusters, the initial variables, in order of importance, were
SOILS5, SOIL, SAAR, SL1085, STMFRQ, SOIL4, and SOIL1. The variables
ultimately selected by the step-wise discriminant analysis procedure were SOILS,
SOIL, URBAN, and SL1085. Although there were more variables that exhibited a
capability for discriminating between the clusters for this case as opposed to the two
cluster case, there were fewer variables ultimately selected.

As indicated earlier, the step-wise discriminant analysis procedure assumes that the
variables considered follow the multivariate Gaussian distribution. Since this
distributional assumption is suspect at best, the variables identified by the step-wise
discriminant analysis process were merely used as a starting point in the variable
selection procedure. For example, Figure 18 shows a scatter plot of SOILS and SOIL
for the three cluster data set. It is clear from Figure 18 that these two variables alone
are unlikely to provide satisfactory results within the catchment assignment process,
although some patterns do exist in the data. Note that SOIL5 and SOIL were the first
two variables selected by the step-wise discriminant analysis procedure. Figure 19
shows a scatter plot of SOILS and SOILI for the two cluster data set. This plot
reveals a more promising configuration in that the catchments from group 1 tend to
have a low fraction of soil type 1 whereas catchments from group 2 tend to have a
low fraction of soil type 5.

Canonical discriminant analysis was next used to identify a set of canonical variables
that are capable of discriminating between the clusters. Tables 5 and 6 present the
weighting matrices for the canonical variables for the case of two and three clusters,
respectively. Note that one canonical variable can be calculated for the two cluster
case while two canonical variables can be calculated for the case of three clusters.
The canonical variables calculated using the weighting coefficients from Tables S and
6 and the relationship given in Equation (2) were considered as potential
discriminating variables. The values for the canonical variables for each catchment
are presented in Appendix A.

Since both of the above approaches to identifying variables for use in the catchment
assignment process involve a distributional assumption, the variables suggested by the
above procedures were subjected to further scrutiny before a final set of variables was
selected. Scatter plots of the type shown in Figures 18 and 19 were examined for
different combinations of pairs of variables. From plots of this type, it was possible
to identify a limited number of promising combinations of variables which were then
tested in the nearest neighbour discriminant analysis procedure. From this process,
the option involving the use of canonical variables was selected for both the two and
the three cluster case. Figure 20 shows a scatter plot of the first and second canonical
variables for the three cluster case. This plot reveals that the two canonical variables
separate the catchments, as to cluster membership, reasonably well. The first
canonical variable tends to separate cluster 1 from the remaining two clusters while
the second variable distinguishes between members of cluster 2 and cluster 3. The
single canonical variable for the two cluster case was also observed to provide a
satisfactory separation of the catchments.
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4.2.2 Results of assignment process

The nearest neighbour discriminant analysis procedure was then applied with the
canonical variables used as the discriminating variables. Table 7 summarizes the
performance of the discriminant analysis procedure for the two cluster case and Table
8 gives the corresponding results for the case of three clusters. From Table 7 it is
seen that the procedure has correctly classified 91 out of 99 catchments with 5
catchments from cluster 1 and 3 from cluster 2 being incorrectly classifted. The
results in Table 7 are based on catchment assignment using the nearest five
neighbours. The results in Table 8 indicate a considerably lower overall success rate,
with 76 out of 99 catchments correctly classified. The nearest three neighbours were
used to obtain these results. It is to be expected that as the number of clusters is
increased, (e.g., with a transition from two to three groups) the number of catchments
correctly classified will decrease. However, increasing the number of clusters will
also result in greater homogeneity of the catchments in each group. A trade-off
clearly exists between the capability to correctly classify a catchment and the
similarity of the collection of catchments in the group to which the catchment is
assigned.

The classification performance, as summarized in Tables 7 and 8, does not constitute
a completely satisfactory evaluation of the effectiveness of the catchment assignment
process. The results presented are based on a comparison of the actual cluster
membership of a catchment with the cluster to which a catchment has been assigned
based on the largest probability of membership. There is thus no distinction made
between the case where a catchment is unambiguously assigned to a cluster (i.e., a
probability of membership of unity) and the case where the probability of membership
is slightly larger for one cluster than it is for any of the other clusters. In either case,
a success or failure is determined by the agreement or disagreement between the
actua! cluster and the assigned cluster for the catchment. An incorrect assignment
could result when the probability of membership for an incorrect cluster is slightly
higher than the probability of membership for the true cluster. Such a situation would
not necessarily be a cause for concern, particularly if the catchment was on the
border between the two clusters in question and its actual cluster membership was
therefore somewhat ambiguous. Conversely, if a cluster has a probability of
membership of near zero for its true cluster then this is clearly an unsatisfactory
classification performance. Two of the parameter estimation options (Options 3 and
4) incorporate the probability of membership in the various clusters in an attempt to
account for the former type of behaviour.

4.3 ESTIMATION OF RAINFALL-RUNOFF MODEL
PARAMETERS

4.3.1 A baseline for comparison

Estimates of rainfall-runoff model parameters obtained using the procedure developed
herein were compared with estimates obtained from the regression equations given
in FSSR16. For the time to peak, the regression estimate is from:
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Tp,=283 SL1085 % (1+URBAN)?*SAAR-* MSL>+0.5 (14)

where Tp, is the regression estimate for the time to peak of the one hour unit
hydrograph; and all other terms are as previously defined. The regression estimate
for the standard percentage runoff is from:

SPR =10SOIL1+30SOIL2+371SOIL3+47S0IL4+53SOILS (15)

where SPR, is the regression estimate for the standard percentage runoff; and all other
variables are as previously defined. Parameters for regression equations of the same
form as Equations (14) and (15) were estimated using only the data from this study
and were found to be in good agreement with the results presented above. The
coefficients obtained from FSSRI16 were used in preference to the coefficients
obtained from our (smaller) data set since the intent is to develop an estimation
system which can be applied to ungauged catchments in the UK. As such, the
regression relationships developed from the larger data set available for the FSSR16
study represent the appropriate basis for comparison.

To evaluate the relative merit of the estimation framework developed herein, each of
the catchments was sequentially considered to be ungauged. The catchment presumed
to be ungauged was assigned to a cluster based on the classification process described
above. Estimates of the runotf parameters were then obtained using the appropriate
regression equation and the parameter estimation options developed herein. For the
latter approach, the pool of available catchments consisted of all other catchments in
the data base. This process was then repeated with each of the remaining catchments
individually considered to be ungauged. It was thus possible t0 compare estimates of
rainfall-runoff model parameters from catchments for which the true values could be
assumed known. Values for three performance measures were calculated for each of
the estimation options developed herein as well as for the FSR regression approach.
The performance of the estimators was evaluated in terms of measures of the bias,
the imprecision, and the worst performance for the estimator. The bias measure is
calculated as:

vy R-R
Blas=Ly 55 (16)
NETR

where BIAS is the normalized bias; N is the number of catchments in the data base;
R ; is the estimate for a rainfall-runcoff mode! parameter (i.e., either Tp or SPR) for
catchment i; and R; is the actual value for the rainfall-runoff model parameter for
catchment i. The imprecision is calculated as:
NE;
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where RMSE is the normalized root mean squared error, which is used as a measure
of imprecision. The measure of the worst performance is calculated as:
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(18)

where D, is the normalized measure of the worst estimate for a rainfall-runoff
model parameter, for a given estimator.

4.3.2 Determination of catchment proximity

The nearest neighbour based estimation options (Options 1, 2, 3, and 5) require a
measure of catchment proximity that is based on a subset of the variables in the
catchment characteristic data base. From an examination of the correlation structure
of differences in variable values for pairs of catchments, a reduced set of potential
variables was identified for each of the rainfall-runoff model parameters of interest.
Further examination of the agreement between catchment pair similarity, as measured
by catchment characteristic variables, with catchment similarity in terms of rainfall-
runoff model parameters, resulted in the selection of a final set of variables for
defining catchment proximity for each rainfall-runoff model parameter. The variables
selected for time to peak were SL1085, SAAR, and MSL. For the standard
percentage runoff, the variables selected were the five soil class variables, SOIL1,
SOIL2, SOIL3, SOIL4, and SOIL5. It is interesting to note that the variables
ultimately selected are all included in the FSSR16 regression equations, although
URBAN, which is included in the Tp regression equation, was not found to be
beneficial for determining catchment proximity for Tp estimation.

4.3.3 Assessment of estimation options

Two clusters

Table 9 presents a summary of the estimation performance for the two cluster case
for Tp and SPR estimated using the five options developed herein and the FSSR16
regression equation. The cluster specific regression equations for Tp, included in
option 4, are given as:

Tp,,=95SL1085-%(1 + URBAN) " $SAAR-*MSL"+0.5 (19)

where Tp,, is the regression estimate for Tp from cluster 1, and:

1p,,=1555L1085-*(1+ URBAN) ' >SAAR“MSL*+0.5 (20)

where Tp,, is the regression estimate for Tp from cluster 2. The two nearest
neighbours, based on weighted Euclidean distance (Equation 8), form the basis for
the estimation of SPR with options 1 to 3 while the five nearest neighbours are used
for option 5. The number of nearest neighbours selected for-each case corresponded
to the number which gave the best estimation performance. A simple search routine
was used to select the weights for the five soil class variables (0.50, 0.95, 0.90, 1.75,
and 1.25, respectively). The preferred weights were found for the option which gave
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the best performance with equal weights. The results in Table 9 then present the
performance of each option when this same set of weights was used for each option,
except for option 4. The values of the weights reflect the relative importance within
the clusters of differences in each of the soil class variables for determining
catchments with similar SPR values.

The estimation of Tp using option 4 gives a small negative bias but also results in
lower RMSE and lower maximum error values than for the FSSR16 regression
estimate. The other options examined for estimating Tp did not perform as well as
option 4. It should be noted that the distance threshold for option 2 was forced to be
sufficiently small so that the catchments considered for information transfer could be
deemed to be in close physical proximity. This explains why option 2 results can be
worse than the results for option 1. Without imposing a constraint on the distance
threshold, option 2 could, of course, be equivalent to option 1. For SPR, estimation
using option 1 results in substantially lower bias, relative to the FSR approach, as
well as improved performance in terms of both RMSE and D_,,. Option 3 resulted
in estimates nearly as good as those for option 1 while the remaining options were
inferior. Option 5, which is the no clustering option, was noted to be a particularly
poor choice which implies that the initial clustering of catchments is meritorious.
Option 4, involving cluster specific regression relationships, was not implemented for
the estimation of SPR since the individual regression relationships obtained were not
physically realistic.

Three clusters

Table 10 summarizes the performance of the estimators for the case of three clusters.
The cluster specific regression equations, required for option 4, are given as:

Tp,,=325L1085"'(1 + URBAN) ' °SAARPMSL*+0.5 @1

for cluster 1, and:

Tp,,=122SL1085 (1 + URBAN)Y " *SAAR“MSL>+0.5 22)

for cluster 2, and:

Tp,,=ST0SL1085 (1 + URBAN) ™ ‘SAAR ™ *MSL*' +0.5 (23)

for cluster 3. The preferred values for the weights applied to the variables in the
Euclidean distance measure were found to be 0.85, 1.20, 0.95, 1.70, and 1.20,
respectively, for the five soil class variables. The weights for the three cluster case,
although similar to those for the two cluster case, do differ from the earlier results
reflecting differences in the range of catchment characteristics for the catchments in
each cluster. The estimation of Tp with option 4 results in a slight negative bias and
a lower RMSE than the FSSRI16 regression estimate. As with the results for two
clusters, the other options examined tended to perform worse than option 4. For the
estimation of SPR, option 1 results in improved performance in terms of BIAS,
RMSE, and D__,, relative to the FSSR16 alternative. The remaining options resulted
in estimates that were worse than the results from option 1, with Option 5 again noted
to be a particularly poor choice.
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4.3.4 The preferred approach

The preferred approach for estimating SPR for an ungauged catchment is to use
option 1 and two clusters. The estimates obtained using this option are better, in
terms of all three performance measures, than results from the FSSR16 approach and
the best of the results from using three clusters. For the estimation of Tp, the
selection of a preferred approach is more ambiguous since no single estimator is best
for all three performance measures. In fact, the best value of each of the performance
measures occurs for a different estimator. The FSSR16 approach results in the lowest
bias with the three cluster option 4 providing the next best result. The RMSE values
are essentially equivalent for option 4 with two and three clusters. Both of these
alternatives provide better RMSE performance than is obtained with the FSSR16
approach. In terms of the maximum error criteria, the two cluster option 4 results are
somewhat better than both of the other alternatives, although the difference is not
large. The selection of a preferred estimation approach for Tp could entail assigning
a relative importance to the three evaluation criteria so that the performance measure
values are combined into a single number. This process would, however, require
subjective inputs that may not be easy to obtain. A perusal of the results indicates that
one would be likely to select either option 4 with three clusters or the FSSR16
approach, with perhaps preference for the former. However, considering the ease of
implementing each alternative, the FSSR16 regression approach is best retained.

Table 2 Weightings of the variables on the three principal components
Varnable Principal Principal Principal
Component 1 Component 2 Component 3
LTp -.455 0.425 0.035
Qp 0.483 -.367 -.008
SPR 0.306 0.642 -004
RBAR -.202 -016 0.673
BF1 -.381 -.509 0.107
QBAR 0.500 -074 0.155
Cv -.169 - 086 -4
Table 3 Summary of characteristics for two clusters
Cluster Number Variability Centroid Coordinates
Number of Members Contnibution e 1 PC 2 PC 3
1 51 .520 -20 0.37 1.73
2 48 480 -1.78 0.25 1.59
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Table 4

Summary of characteristics for three clusters

Cluster Number Yanability Centroid Coordinates
Number of Members Contribution PC 1 PC 2 e 3
I k) 412 ()ll_‘) B 0.07 162
29 2835 157 -.44 1.81
3 36 302 -1.24 1.13 1.58
Table 5

Weights on the catchment characteristics for the canonical variable
JSor two clusters

Catchment Canonical Variable

Characteristic :
MSL -.1922
DVF 0774

SLL1085 -.2422
STMFRQ -.1292
SAAR 0.9152
LAKE -0761
URBAN 3104
SO -44.226
501L2 -105.60
SOIL3 -125.19
50114 -179.47
SOILS -200.60
SOIL 79,241
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Table 6 Weights on the catchment characteristics for the canonical variables
Sfor three clusters

Catchment Canonical Variable
Characteristic A 2
MSL -.0697 -.4442
DVF 1237 -2576
SL1085 2550 1507
STMFRQ 1389 -.3938
SAAR 3066 -.1749
LAKE - 1500 00253
URBAN 4058 1661
SOIL] -8.9814 11.265
501iL2 323 53.656
S0IL3 7.947 72.926
S50IL4 15.365 109.66
SOILS 21.668 128.01
SOIL -22.460 -68.866
Table 7 Results of catchment assignment for two clusters
Cluster Number Number of Members Percent
of Classified inio Clusters Cormrectly
Members 1 2 Classified
1 51 46 5 90.2
2 48 3 45 93.8
Total 99 49 50
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Tuble 8 Results of catchment assignment for three clusters

Cluster Number Nutuber of Members Percent

of Classified into Clusters Correctly
Members o 1 2 3 Classified

1 34 25 i 6 73.5 B

29 24 82.8

3 36 K 6 27 75.0
Total 99 o 32 i3 o 34 -
Table 9 Runoff parameter estimation performance for two cluster case

?unoff Option n BI/-\S RMSE D...

Event
Parameter

Tp i 1 - 6 156 443 1.923

1 516 2.376

183 446 1.923

-.044 277 645

146 554 2.447

FSSR16 00 28R4 187

SP-R - ] 2 _.l()4tl ) E 1,277

85 399 1.623

)52 REE 1.277

108 433 1.799

FSSR16 120 RU 1.703

t s option was not pursued for SPR.
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Table 10 Runoff parameter estimation performance for three cluster case

Runoff Option n BIAS RMSE Deu
Event
Parameter
Tp ! 3 169 499 1.923
116 492 2.098
156 486 1.985
- 026 276 R7
146 554 2447
FSSR16 000 284 187
SPR : 1 - 3 ) 000 372 [.()()2" B
0587 392 1.681]
0758 384 1.5490
120 440 1.799
FSSR16 20 R 1,703

* This option was not pursued for SPR.
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S Catchments with Some Flow Data

The analysis to this stage has considered the estimation of rainfall-runoff model
parameters for catchments for which no flow data are available. This section explores
the possibility of using a limited amount of flow data, that may be available for a
catchment, to enhance the parameter estimation. This situation, which is referred to
as the partially gauged case, could arise when the catchment of interest has a very
short gauging record resulting in insufficient storm event data from which to obtain
estimates of the rainfall-runoff model parameters. However, the estimation of values
for some of the other flow response measures may still be possible with the available
flow record. A flow response measure from a catchment with some flow data could
be used in the catchment assignment process, in order to (i) enhance the classification
of a catchment, (ii) as a variable in the similarity measure for determining the n
nearest neighbours to the catchment of interest, and (iii) to estimate the model
parameter through a regression relationship.

To explore the utility of additional information, portions of the latter two stages of
the investigation (i.e., catchment assignment and parameter estimation) were repeated
considering the catchments to have data for one of the flow response measures. BFI
and QBAR are the two flow response measures that are most likely to be available
for a catchment that has only a limited flow record. The utility of each of these
measures for enhancing the estimation of rainfall-runoff model parameters was
examined separately. To simplity this stage of the analysis, the same basic framework
has been adopted as was used for the case of ungauged catchments. In particular, the
canonical variable approach was again used in the discriminant analysis procedure
although the availability of a flow response measure will result in new canonical
variables that should lead to enhanced classification of the catchments. In addition,
the same parameter estimation options were considered with the available flow
response measure also considered as a potential variable for defining catchment
proximity.

5.1 RESULTS

5.1.1 Catchment assignment

A new set of canonical variables was calculated including the additional variable (i.e.,
BFi or QBAR) in the procedure. Table 11 gives the new weights for the calculation
of canonical variables for the two cluster case and Table 12 contains the
corresponding three cluster weightings. The new canonical variables for each
catchment are presented in Appendix A. Using the new canonical variables in the
catchment assignment process resulted in the same overall success rate for the two
cluster results when BFI was the additional variable (based on the nearest seven
neighbours). When QBAR was used in the formation of the canonical variable, the
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result was one fewer catchment correctly classified (based on the nearest five
neighbours). Given that the original results of the catchment assignment process for
the two cluster case were quite good, it is perhaps not surprising that the additional
information has not improved the overall success rate of the process. It should be
noted that, although the overall success rate was basically unchanged, the probability
of membership in the two clusters for a given catchment will frequently have
changed, thus potentially altering the estimation performance for the options that
utilize this information.

For the case of three clusters, the somewhat less satisfactory original catchment
classification results were improved as a result of including either of the additional
variables. When BFI was available, the overall success rate was 83 out of 99
catchments, an improvement of seven in the number of catchments correctly
classified. These results, which are summarized in Table 13, are based on using the
nearest three neighbours. Using QBAR as the additional variable resulted in an
overall success rate of 78 out of 99 catchments correctly classified, again based on
the nearest three neighbours. These results are presented in Table 14. BFI is clearly
the more useful variable, of the two flow response measures considered, for the
catchment assignment process.

5.1.2 Parameter estimation

Revised procedures for estimating rainfall-runoff model parameters were based on the
availability of either BFI or QBAR for a catchment. BFI was found to be most useful
for the estimation of SPR while QBAR was found to be of greater benefit for
estimating Tp. Revised SPR estimation procedures, using BFI, were therefore
examined, and revised procedures, using QBAR, were examined for estimating Tp.

For Tp, the addition of QBAR as a proximity measure resulted in only marginal
improvement in the estimation results. The improvement in estimates of Tp thus
arises primarily from the enhanced classification of the caichments. Table 15
summarizes the results for the estimation of Tp using QBAR within the catchment
assignment process. Note that only the best estimation option for each parameter and
cluster combination is presented in Table 15. It is interesting to note that the results
for the two cluster case are marginally better than the previous results even though
the overall success rate of the catchment assignment process was slightly worse. This
illustrates the inadequacy of the overall success rate as a measure of the utility of a
classification of the catchments for the purposes of parameter estimation. Table 15
reveals that the improvement in estimation for both the two and three cluster case is
small, although there is a marginally stronger case for selecting option 4 with three
clusters as the preferred alternative.

BFI is beneficial for defining the set of catchments that are the nearest neighbours to
the catchment of interest for estimating SPR. In addition, it was found that the use
of the SOIL variable in combination with BFl was preferred to using BFI with the
five individual soi! class variables that were used previously. The utility of BF] as a
measure of catchment proximity is not surprising since BFI and SPR are related. The
FSSR16 presents a regression equation for estimating SPR when BF1 is known. This
equation results in improved estimates of SPR, relative to the estimates obtained using
the relationship given in Equation (15), and thus provides the new reference for
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comparison with the other options. The FSSR16 regression equation is given as:

SPR =72.0-66.5BFI 24)

where all symbols are as previously defined. The results for the best options for
estimating SPR using BFI are presented in Table 15. This table reveals substantially
improved estimates relative to the results previously obtained for the ungauged
catchment case. Both the two and three cluster cases result in essentially unbiased
estimates of SPR with a slightly lower RMSE for the two cluster case relative to the
three cluster case. Both of the nearest neighbour based approaches give substantially
better results than the FSSR16 approach, especially in terms of the bias measure. For
the two cluster case, option 1 is the preferred approach, as was previously the case.
The weights selected for the variables in the catchment proximity measure were 1.6
for SOIL and 1.0 for BFI. For the three cluster case, option 3 gives the best results.
The probability threshold for this option was set to 0.25. The weights applied to the
SOIL and BFI variables were 1.5 and 1.0, respectively.

5.2 SUMMARY

The results presented in this section indicate that the availability of the BFI can
greatly improve the estimation of SPR for an ungauged catchment. The resulting
estimates are essentially unbiased and have improved values for RMSE and D_,
relative to those obtainable when an estimate of BFI is not available. The
improvement in the results comes from a combination of enhanced catchment
classification, which is most notable for the three cluster case, and through a better
identification of catchments that are similar to the catchment of interest. The
availability of QBAR improves the estimation of Tp, but the performance gain is not
substantial,

It should be noted that if QBAR is available, it would be inappropriate to use this
information only to refine the estimate of Tp. The user should compare the rainfall-
runoff model estimate of the flow event with a return period corresponding to QBAR
with the value of QBAR and consider how the model parameters (especially SPR)
might be modified to reconcile any difference. In an application in which relatively
frequent flood magnitudes are being estimated, serious consideration should be given
to a rejection of the rainfall-runoff method in favour of the statistical method
described in the FSR. When used in these ways the QBAR data will, undoubtedly,
improve the required flood estimate.
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Table 11 Weights on the catchment characteristics and additional data for the
canonical variable for two clusters

Catchment Canonical Variable

Charactenistic BA QBAR
1 l
MSL -.3140 -.1903
DVF .0483 {0683
SL108S -.2903 -.3767
STMFRQ -.3374 - 1050
SAAR 7428 4855
LAKE - 085 -0332
URBAN 3834 2753
SOIL! -32.766 -42 846
SOIL2 -81.670 -102.94
SOI.3 982138 -122.35
501 -141.66 -175.94
SOILS -158.13 -196.34
SOIL 64.582 77.974
BFI -.8233

QBAR 5940
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Table 12 Weights on the catchment characteristics and additional data for the
canonical variable for three clusters

Catchment Canonical Variable
Characteristic BT QBAR
! 2 1 2
MSIL. - 1260 - 2815 0010 -4508
DVF -.2371 -D6HYR 1494 -.2256
SL1085 -0173 RIKY 0519 3283
STMFRQ - 1213 -.0394 .2307 -.393%
SAAR - (837 L2300 -.2504 3344
LAKE .0337 -.1356 -0952 -0432
URBAN -.2500 3628 3304 2623
SOILI -2.1578 -7.0660 -8.5478 8.1154
SOI.2 31.5966 19.493 -3.6119 49.638
SOIL3 7.5911 35.895 1.4239 69.481
S0I1L.4 12.415 5%.135 5.0528 105.37
SOILS 15033 72.136 9.1138 123.95
SOIL. -12.31% -52.506 -14.127 -69.495
BEI 101828 549
QBAR 7979 -.6324




Table 13 Results of catchment assignment for three clusters with BFI

Cluster Nuinber Number of Members Percent
of Classified into Clusters Correctly
Members 1 2 3 Classified
] 34 28 ] 5 824
29 25 86.2
3 36 4 2 30 833
Total 99 ia 28 - 37
Table 14 Results of catchment assignment for three clusters with QBAR
Cluster Numt;cr Nl.nnbcr of I\“lcmhcrs | ] I’e:rccm__
of Classified ino Clusters Correctly
Members ] 2 3 Classified
1 KL 25 - 4 S 735
29 27 Y31
3 16 7 26 722
Total 99 28 - 38 13
Table 15 Runoff parameter estimation performance with additional data
Runoff Number QOption n BIAS RMSE D..
Event of

Parameter Clusters

To 2 4 -045 271 645
-029 275 705

FSSR16 000 284 787

SPR 2 1 I -001 287 987
002 298 987

FSSR16 (BFT) 104 333 1.163
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6 Conclusions and Recommendations

This report has presented a methodology for estimating rainfall-runoff model
parameters for catchments that are either ungauged, or for which only a limited flow
record is available. The procedure involves:

An initial grouping of the available set of gauged catchments, in terms of
measures of runoff response;
2 The determination of the group membership for an ungauged catchment;
The estimation of rainfall-runoff model parameters based on the results of the
catchment assignment process.

(VS

The methodology developed gives estimates of the standard percentage runoff that are
substantially improved relative to estimates obtained using a regression approach. If
an estimate of the base flow index for the catchment is available, the estimate of the
standard percentage runoff can be improved even further. An estimate of the base
flow index may be obtainable if a fairly short flow record is available for the
catchment.

The application of the methodology to the estimation of the time to peak of the unit
hydrograph resulted in estimates that were not definitively superior to the estimates
from regression. This may be at least partially due to the comparatively good
estimates that are obtained with the regression relationship. If an estimate of the mean
annual flood for the catchment is available, the estimates can be improved, but the
benefits of this additional information are fairly small.

A step-by-step guide for users wishing to apply the methods contained in this report
is presented in Appendix B. That appendix also contains a worked example.

Future work should consider the application of the estimation framework outlined
herein for the prediction of other hydrologic parameters for ungauged catchments.
This could include additional flood event characteristics or involve the estimation of
low flow characteristics tor ungauged catchments. Consideration should also be given
to refining the estimation procedure for the time to peak. Since the regression based
approach is superior for some catchments and the methodology developed herein is
superior for others, it would be interesting to determine if there are catchment
characteristics that can be used to determine which approach should be taken for a
particular ungauged catchment. It is thus possible that a composite estimation
procedure could be developed involving a combination of the alternatives examined
herein.
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Appendix A Data listings

VARTABLE CATCHHMENT NUMBER

19001 19002 20001 23002 23005 24005 24007

Flow Response Heasures

Tp 7.08 7.01 §8.98 5.25 6.60 7.18 5.64
Qp 25.1 19.0 18.1 36.0 40.4 27.3 34.0
SPR 51.6 62.6 .36.6 37.1 53.8 28.9 37.3
RBAR .49 ¢.50 0.33 0.35 0.48 0.31 0.30
BFI 0.38 0.34 0.52 0.43 0.27 0.52 0.45
QBAR 0.311 0.411 0.173 0.231 0.709 0.210 0.311
cv 0.33 0.41 0.50 0.64 0.40 0.40 0.44
Catchment Characteristics
AREA 369.0 43.8 307.0 118.0 284 .9 178.5 44 .6
HSL 42.0 17.9 31.9 21.4 36.3 31.7 11.9
DVF 0.01 0.04 0.03 0.02 0.01 0.00 0.04
SL.1085 5.8 5.1 6.1 11.8 4.9 6.4 14.9
STMFRQ 0.75 1.07 0.64 2.14 2.20 1.32 1.64
SAAR 909 . 1024 736. 962. 1322. 752. 797.
ILAKE .04 0.00 0.02 0.00 0.00 0.0C 0.00
URBAN 0.11 0.07 6.02 0.00 .00 0.05 0.00
S011) 0.000 0.000 0.050 0.000 0.000 0.010 0.000
S0IL2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S01L3 0.000 0.000 0.220 0.000 0.000 0.000 0.000
SO1L4 0.800 1.000 0.720 0.033 0.000 0.980 0.962
SOILS 0.200 0.000 0.020 0.967 1.000 0.010 0.038
SOIL 0.460 0.450 0.430 0.498 0.500 0.447 0.452
Principal Components
PC1 -1.18 -0.99 -2.41 -1.23 0.22 -1.92 -1.02
pC2 1.50 2.27 0.58 0.00 1.44 -0.15 0.13
PC3 1.80 1.52 0.29 -0.30 1.51 0.58 0.32

Cluster Membership
CLUSTER2 1
CLUSTER3 3 3 3

Canonical Variables for Two Clusters

Base Case

CAN1 0.413 0.672 -0.733 0 645 V.638 -0.674 -0 006
With BFI

CAN1 0.624 0.976 -1 080 0.941 2.626 -1 11 -0.415
With QBAR

CAN1 0.363 0.683 -0 764 0.325 l.820 -0..)24 -0.047

Canonicgl Variables for Three Clusters

Base Case

CANI1 -0.502 -~-0.802 -2.278 1.716 i 681 -0 937 -0 797
CAN2 -1 750 -1 B45 -2.596 0.228 -0.640 -1.59F7 -1 765
With BFI

CAN1 -1.195 -1.163 0.133 -1.419 -2.904 0.38% -0.199
CAN2 -1.703 -2.040 -1.213 1 200 0 135 -1, 324 -1.524
wWith QDAR

CAN1 -0.305 -0.510 -1 915 1.242 2.006 =0 7% -0 5BR2
CAN?2 -1.764  -1.946 -2 _866 O K21 -0.56Y9 -1 &6 -1 814
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VARTABLE

25003

2

Flow Response Measures

Tp 3.98
Qp 51.7
SPR 66.8
RBAR 0.34
BF1 0.15
QBAR 1.429
cv 0.19

]

CATCHMENT NUMBER

7001 27027 27035 28026 28033

9,52 7.90 7.01 24.94 2.56
19.3 25.8 21.5 8.8 58.0
42.3 50.7 41.0 48.6 244
0.48 0.51 0.47 0.49 0.46
0.50 0.37 0.37 0.47 0.45
.278 0.618 0.216 0.108 0.560
0.43 0.22 0.16 0.34 0.44

Catchment Characteristics

AREA 11.4
HSL 5.1
DVF 0 11
SL10BS 35.8
STMFRQ 3.51
SAAR 2027.
LAKE 0.00
URBAN 0.00
S0I111 0.000
SOI1L2 0.000
SOIL3 0.000
SOlL4 0.000
SOILS 1.000
SOIL 0.500

Principal Components

PCl 2.92
pC2 1.74
PC3 1.75

Cluster Membership
CLUSTER2 1
CLUSTER3 1

Canonical Variables
Base Case

CAN1 2.555
With NFI

CAN] 3.R42
With QBAR

CAN1 2.859

Canonical Variables
Base Case

CAN] 3.292
CAN2 -0 340
With BIl

CAN1 -4.187
CAN2 1.314
With QBAR

CAN] 3 724
CAN2 -0.162

&

[ BN = B = I o B o R e}

B4.3 443.0 282 3 368.0 8.0
84.6 55.1 31.7 4.1 2.9
0.00 0.01 0.08 0.07 0.19
2.5 4.5 4.5 1.4 33.4
1.23 1.67 1.80 0.49 1.99
975. 1381, 1134 679. 1363.

0.25 0.09 0.13 0.00 0.00
0.02 0.00 0.02 0.07 0.00

.015 0.188 0.082 0.000 0.000
.000 0.000 0.600 0.012 0.000
.000 0.000 0.000 0.000 0.000
.708 0.152 0.565 0 988 0.006
L277 0.660 0.352 0.000 1 000
L459 0.427 0.443 0.448 0.500

2.27 -0.76 -1.43 -3.27 017
0.93 1.54 1.22 2 37 -1 74
1.41 2.47 2.37 1.83 1.26

3 3

Two Clusters

853 0.850 0.919 -0.195 1.67)
425 1.384 1 224 -0.305 1.680
. 759 0.976 0n.658 -0.310 1 21C

Three Clusters

.290 0.252 -0.374 ~-1.135 2.770
.640 -0.95) -1 709 -1.913 0.169

.312 -1.550 -1.359 -0.204 -1.794
392 -0.815 -1.636 -1.936 2.122

.756 {.559 -0.472 -0.995 2 165
.8%6 -1.030 -1.457 -1.93] 1.074

50

2

]

for ko R en i o B & B = |

8070

2.65
39.6
42.5
0.27
0.45
.586
0.90

| e}
[SEI

35.9
1.54
985.

0.00
000
169
000
.000
.831
LAB6

0 19
0.58
1.69

. 240
.615

184

.069
278

016
120

791
.€26



VARIABLE

25001

CATCHMENT NUHBER

29004 30001 3

Flow Response Measures

Tp 7.17
Qp 21.1
cop TE
RBAR 0.50
BFI 0.84
QBAR 0.023
cv 0.564

Catchment Characteristics

AREA 108.3
MSL 20.2
DVF 0.04
SL1085 3.3
STMFRQ 0.i0
SAAR 729.
LAKE 0.00
URBAN .00
SOIL] 0.845
SOIL2 0.000
SOIL3 0.000
SOILA 0.155
SOILS 0.000
SO1L 0.197
Principal Components
PCl -4.20
PC2 -2.25
PC3 1.21
Cluster Hembership
CLUSTER?2 2
CLUSTER3 2

Canonical Variables
Base Case

CAN1 -2.447
With BFI

CAN1 =3 045
With QBAR

CANI -2.554

Canonical Variables

Base Case

CAN1 -1.912
CAN2 3.079
Wicth BFI1

CAN1 4,325
CAN2 1.119
With QBAR

CAN1 -2.497
CAN2 2.B855

8.12 19.94
19.2 10.0
0.60 0.50
0.46 0.68
0.137 0-.060 0
.59 0.51
S4.7 297.9
12.1 46.8
0.14 0.01
2.0 2.1
0.22 0.25
635. 631,
0.00 0.00
0.00 0.02
0.319 0.401 0
0.101 0.046 0
0.000 0.000 1
0.580 0.553 ¢
0.000 0.000 0
0.339 0.323 0
-2.83 -4.36 -
0.38 0.32 -
1.32 1.31
2 i
for Two Clusters
-1.333 -1.703 -1

-0.587 -2.426 -2.

-1.264  -)1.740 -1

for Three Clusters

-31.337 -1.775 -1

0 719 0.152 -0.

0.448 2.260 2.
-0.975 -0.718 -0.

-1.340 -1.830 -1.
0.432 -0.081 -0.

51

0004

9.34
21.8

~An oA
LL L

0.45
0.65
.127
0.44

61 6
15.1
0.02
3.3
0.89
697
0.00
0.00
.000
.000
.000
.000
000
400

3.20
0.64
1.26

.643
681

647

.316
082

175
342

293
277

33015

277.1
39.1
0.07

1.0
0.40
656.
0.00
0.05
.174
.6oo0
. 196
631
.¢00
.388

(== e R Y v e

-3.83
1.28
1.89

-1.561

-1.848

-1.645

-1.352
-0.598

0.836
-1.222

-1.361
-0.706

33029

10.46
13.3
1.7
0.62
0.86

0.029
0.36

98.8
7.0
0.53
1.6
0.51
634,
0.00
0.00
. 750
.250
.000
.000
.000
188

(== R B e - B B

4. 71
-1.57
2.67

-2.03)

-2.75¢4

-2.01¢

-0.992
2.102

128
1.1R8

=1.27]
1.900

3

1

0

OO O 0O

3045

8.12

7.5
éi.%
0.68
0.64
.045
0.64

28.3

7.8
0.13

3.3
0.14
627.
0.00
¢.00
.000
.000
.000
.000
.000
.400

4. B4
0.11
1.70

.L88

286

.586

249
.066

.928
.349

.377
.022



37001

32.82
8.2
47.9
0.59
0.40
0.079
0.43

303.3
62.6
0.02
1.2
1.17
610.
0.00
0.10
.000
.010
. 763
.227
.000
410

[ e B T B e Y = ]

-3.60
2.74
1.96

.084
-1.967
-2 094

-]
-1

.132
415

-0.477
-1.909

-0.916

VARIABLE CATCHMENT NUMBER
33809 34003 34005 35008
Flow Response Measure
Tp 18.65 13.32 23.90 11.14
Qp 11.3 12.8 8.3 15.8
SPR 55.5 13.1 22.6 44.3
RBAR 0.37 0.57 0.64 0.61
BFI 0.32 0.83 0.65 0.39
QBAR ¢.113 0.04] 0.044 0.118
cv 0.60 0.53 0.63 0.56
Catchment Characteristics
AREA 65.3 164.7 73.2 128.9
MSL 19.0 22.4 22.7 14 .6
DVF 0.05 0.06 0.03 0.07
SL.1085 1.6 2.1 1.7 3.4
STMFRQ 0.66 0.33 0.40 0.40
SAAR 559. 686 . 647 . 606,
[.AKFE. 0 00 0.03 0.00 0.00
UURBAN 0.00 0.00 0.00 0.02
SOIL1 0.000 1.000 0.10&4 0.900
S0I1L,2 0 000 0.000 0.000 0.118
SOIL3 0 84S 0.000 0.896 0.882
SOI1L4 0 155 0.000 0.000 0.000
SQILS 0.000 0.000 0.000 0.000
SOIL 0.408 0.150 0.374 0.388
Principal Components
PC1 -2.45 -4.87 -4 .96 -2 N1
PC2 2.86 -1.30 0.29 1.58
PC3 -0.05% 1.69 1.53 1.44
Cluster Membership
CLUSTER2 2
CLUSTER3 3 2 2z
Canonical Variables for Two Clusters
Nase Case
CAN] -1 349 -3.629 -1.931 ~-1.832
kKith BFI
CANI1 -0.478 -3.731 -2 717 -1.063
With QBAR
CAN1 -1 264 =-3.584 -). 994 -).766
Canonical Variables for Three ((lusters
Base Case
CAN] -1.511 -1 924 ~-1.507 ~-1.164
CANZ -0.644 4.259 0 304 G 430
With BFI
CAN1 -0.599 4 504 2.255 0.062
CAN2 -2.128 1.577 ~-0.384 -1.078
With QBAR
CAN1 -1.285 -2.477 -1.620 -1.125
CAN2 -0.955 3.849 0.136 0.173

52

-1.560

37007

13.38
14.3
38.9
0.54
0.39

0.116
0.48

136.3
26.9
0.01

1.9
1.10
606.
0.00
013
000
026
.877
Q%7
.0n0
L4602

(o= B o B oo B - B oo BN o §

-2.82
1.54
1.43

.6AR

15¢

L6h7

-0.802
-138

-0.232
-1.117

-0.804
-0.316

3

0

(== B B o B = B B o ]

8007

3.67
45.3
37.2
0.19
0.41
. 346
0.44

21.4
5.6
0.24
7.5
0.80
611.
0.00
0.29
.000
-161
.811
.028
.000
. 385

0.04
0.32
0.29

990

199

719

.308
.595

.860
090

.586
L340



VARIABLE
39005
Flow Response Measur
Tp 3.21
Qp 57.7
SPR 18.2
KBAK 0.50
BFI 0.61
QBAR 0.266
Cv 0.39

CATCHMENT NUMBER

Catchment Characteristics

ARFA 43.6
HSL 7.4
DVF 0.52
SL1085 2.3
STMFRQ 0.20
SAAR 633.
LAKE 0.00
URBAN 0.81
SOILL 0.115
SOTL.2 0.712
SOTL3 0.000
SOIL4 0.172
SOILS 0.000
SO1L 0 309

Principal Components

PC1 -0.98

PC2 -2.39

PC3 1.70
Cluster Hembership

CLUSTERZ 1

CLUSTER3 1
Canonical Variables

Base Case

CAN1 2.106

With BFI

CAN1 2 518

With QBAR

CAN) 2.202

Canonical Variables
Base (Case

CAN1 2.409
CAN2 1.151
With BFI

CAN1 -1 324
CAN2 2.288
With QBAR

CAN1 2.343
CAN2 1.397

39007 ago12
e
12.60 4.15
11.9 37.1
19.1 19.1
0.52 0.28
0.68 0.73
0.060 0.191
0.27 0.38
154 .8 69.1
32.3 11.8
0.08 0.02
1.0 3.7
0.38 0.19
710 679.
0.00 0.00
0.33 0.46
0.173 0.310
0.116 0.153
0.418 0.000
0.292 0.537
0.000 0 000
0.359 0.334
-3.95 -1.92
-0.34 -2.01
2.38 0.65
2 2
for Two Clusters
-0.905 -0.071
-1.586 -0.570
-1.085 -0.097
for Three Clusters
-0.061 0.211 -
0.813 1.858 -
1.503 1.875 -
0.953 1.768 -
-0.421 -0.104 -
0.981 1.889 -

53

39017

9.21
22.7
57.4
0.47
0.15
0.308
0.64

18.6

7.1
0.14

4.8
0.238
650.
0.00
0.00
.000
.000
.000
.00
.000
.450

OO =0 0Q

-0.98
2.71
0 20

0.113
1.804

0.2R4

1.173
1.589

2.556
3.054

0.700
1.921

39022

20.54
11.4
40.1
0.57
0.75

0.103
0.30

164 .5
22.1
0.15

1.6
0.36
751.
0.00
0.02
408
.001
.000
.591
.000
.327

SO oo oo

-4.09
0.74
2.65

.661
.635

L7437

.215
0.774

2.652
0.280

433
0.668

39026

20. 34

9.8
34.8
0.63
0.40
0.11!}
0.67

199 .4
27.9
6.0l
2.1
0.64
700.
0 0%
0 02
L1411
.000
.000
.859
.000
.408

COoO 00O O0O0

-3.76
1.61
1.16

LG5

0.032

437

-1.783
-1.25¢6

-0.235
=2.435

-1.613
-1.4R0

39052

5.53
22.2
29.4
0.19
0.42
0.172
0.47

50.2
11.0
0.06

3.5
0.78
687.
0.00
0.18
.000
.000
.306
.694
.000
.435

oD OO0 00

-1.54
0.19
-0.47

0.349

0.527

0.284

€98
133

-0.
-1.

-0.55%9
-1.395

-0.613
-1.150



VARIABLE

39053 4

Flow Response Measure

Tp 8.98
Qp 18.8
SPR 51.1
RBAR 0.38
BFI 0.43
QBAR 0.271 0
cv 0.25
Catchment Characteristi
AREA 89.9
MSL 14.6
DVEF 0.00
SL1085 2.3
STHFRQ 1.23
SAAR 825.
LAKE 0.19
URBAN 0.09
SO0IL1 0.000 0
SOIL2 0.000 0
SOIL3 0.000 0
SQIL4 1.000 0
SOTLS 0.000 0
SOIL 0.450 0

Principal Components

PC1 -1.52 -
PC2 1.68 -
PC3 1.57 -
Cluster Membership
CLUSTER2 1
CLUSTER3 3

Canonical Variables for

Base Case

CAN1 0.152 -2
With BFl

CAN1 0.257 -2.
With QBAR

CAN] 0.304 -2

Canonical Variables for
Base Case

CATCHMENT NUMBER

0006 40009

7.19 B.77

24.9 24.7
23.90 43.5
0.46 0.59
0.62 0.44
.183 0.217

1.16 0.34

cs

50.3 136.2
13.5 19.4
0.06 0.02
6.2 3.2
0.54 1.43
733. 808

0.00 0.02
0.03 0.01

.596 0.000
117 0.000
.012 0.000
.276 1.000
.000 0.000
.253 0.450

3.44 -2.00
1.13 1.05
1.68 2.31

2 3

Two Clusters

.756 0.048 -
278 -0.245
660 0.016 -

Three Clusters

CAN1 -1.458 -1 285 ~-1.240 -
CAN2 -1.535 2.929 -1.981 -
With BFI

CAN1 -0.227 2.339 -0.192 -
CAN2 -2.172  0.745 -2.065 -
With QBAR

CANI -1.017 -1.577 -0.980 -
CAN2 -1.889 2.583 -2.102 -

54

40010

16.64
10.4
48.6
0.53
0.32

0.154
1.12

224 3
30.9
0.03

1.6
0 79
764,
0.04
0.03
17
.000
.135
.748
.00
408

OO O OO o

-3.27
2.19
-1.33

0.811

0.036

0.841

1.408
1.0435

0.907
2.298

1.282
1.199

41005

17.32
12.6
45.2
0.53
0.48

0.210
0.53

180.9
26.7
0.02

2.1
1.32
835,
0.12
0.04
.000
.000
.000
.000
.000
450

[= B = I o o e )

-3.10
1.69
1.26

-0.010

-0.439

0 006

~1.459
-2.086

G.064
-2.205

-1.118
-2.288

41006

12.85
24.9
60 .4
0.56
0.42
0.418
0.36

87.8
16.4
0.01

4.0
1.03
837.
0.00
0.02
.00C
.000
.000
.000
.000
A4S0

[ R = = I ]

-1.55
2.15
2.15

-1.166
-1.716

-0.29]
-1.95¢

-0.618
-2.(88

41022

7.24
24.8
49.7
0.59
0.35
0.384
0.47

52.0
16.5
0.02
4.9
1.33
887
0.00
0.01
L2461
.000
.000
.759
.000
.378

OO0 0o o O

-1.38
1.44
1.74

-0.329

0.388

-0 160

-1 288
-0.682

-0.542
-1.872

-0.951
-1.043



CATCHHENT NUMBER

45002 45003 45004 46003

7.49 11.68 9.05 4.68
27.1 20.3 20.0 44.5
33.1 43 .4 L2.5 30.1
0.70 0.63 0.60 0.57
0.52 0.52 0.50 0.52
0.358 0.359 0.370 0.943

VARIABLE
41028
Flow Response Measures
Tp 8§.58
Qp 23.1
SPR 48.0
RBAR 0.69
BFI .37
QBAR 0.320
cv 0.33

0.35 0.50 0.49 0.34

Catchment Characteristics

ARFA 24.0
HSL i0.0
DVF 0.02
SL108S 4.9
STHMFRQ 0.84
SAAR 847.
LAKE 0.00
URBAN 0.01
SOIL1 0.044
SOIL2 0.000
SOIL3 0.000
SOTL4 0.956
SOILS 0.000
SOIL 0.437

Principal Components

PC1 -1.77

PC2 1.52

PC3 2.88
Cluster Hembership

CLUSTER2 i

CLUSTER3 3
Canonical Variabhles

Base (ase

CAN1 0.339

With BF]

CAN] 0.662

With (BAR

CAN1 ¢.387

Canonical Variahles
Base Case

CANJ -1.231
CANZ -1.413
With BFi

CAN1 -0.578
CAN2 -2.066
With QBAR

CAN1 -0.949
CAN2 -1.625

421.7 226 .1 288.5 247.6
48.1 26.4 33.6 35.2
0.04 0.01 0.01 0.03

5.7 6.1 3.6 16.5
0.85 0.59 0.79 0.78
1420. 996. 1052 1696.

0.00 0.00 0.00 0.00
0.00 0.00 0.01 0.00

0.000 0.535 6.508 0.277
0.862 0.017 ¢.000 0.254
0.000 0.000 0.168 0.000
0.006 0.447 0.324 0.000
0.131 0.0060 0.000 0.46%
0.327 0.287 0.289 0.352

-2.27 -2.63 -2.34 -0.4]
0.03 0.95 0.82 -0.99
2.97 1.98 1.86 2.50

2 3
for Two Clusters
-0.056 -1.052 -1.R85 0.103
-0.059 -0.697 -1.374 0.296
-0.188 -0.970 ~-1.781 0.341
for Three Clusters

-0.186 -1.470 -1.345 0.763
0.486 1.040 1.293 1.45%0

0.492 1.307 1.166 0.307
0.205 -0.582 -0.438 1.453

-0.435 -1.505 -1.384 0.855
0.591 0.717 0.957 1.328

55

46005

3.72
59.9
58.3
0.46
0.42
1.953
0.29

21 5
11.8
0.08
22.6
0.92
1987
0.00
0.00
000
.000
.000
.000
-000
.500

(== B = B e B o B

2.75
0.02
2.43

2.9A2

3.15¢8

4,207

2.562
0.30¢

-1.742
1.96¢

4.162
-0.639

4

0

1

COoO Do 0O

7607

5.25
37.7
28.7
0.46
0.54
.391
0.15

54.9
16.6
0.05
1778
0.75
477.
0.00
0.00
.039
.708
.000
.000
.252
L34

1.15
0.65
2.51

.056

079

387

.623
.876

.761
.€56

. 106
.293



VARIABLE

48004

48005

Flow Response Heasures

Tp
Qp
SPR
RBAR
BFI
QBAR
cv

7.39
28.9
33.5
0.62
0.72
0.420
0.50

4 .37
47.0
12.7
0.73
0.67
0.304
0.44

Catchment Characteristics

AREA
MSI
DVF
SL.1085
STHFRQ
SAAR
LAKE
URBAN
SOILI
SOIL2
SOIL3
SOIL4
SOILS
SOIL

Principal Components

PC1
PC2
PC3

25.3
10.0
¢.08
17.5
1.66
1512.
0.00
0.00
000
L 264
.000
.000
.736
L4447

(== lelele N

-2.67
-0.81
2.10

Cluster Membership

CLUSTER2
CLUSTER3

Canonical Variables for

Base Case
CAN1
With
CAN1
With QBAR
CAN]

BFI

Canonical Variables for

Base Case
CAN1
CANZ
With
CAN1
CAN2
Wicth QBAR
CAN1

CAN2

BF1

2
2

1.297

-0 048

0.809

1.762
0.735

1.107
2.682

0.983
1.509

19.1

7.2
0.08
13 1
1.77
1107.
0.00
0.06
.000
.000
.000
.000
.000
.300

OO0 00O —-O

-2.25
-2.43
2.B4

2

-0.778

-1.282

-0.764

0.078
1.806

1.909
1.626

=0.170
1.772

CATCHMENT NUMBER

48009

10.35
22.1
37.2
0.65
0.63

0.432
0.46

22.7
12.2
0.01
18.0
1.63
1622.
0.02
0.00
.000
.200
.000
.000
.800
460

DO O @

-2.82
0.12
2.39

2

Two Clusters

1.728
0.845

1.153

1.742
0.618

0.447
2.290

0.860
1.486

56

49003

5.61
35.4
41.6
0.58
0.38
0.709
0.42

21.7

6.7
0.16
10.8
1 20
1714,
0.00
0.00
.000
.007
.000
.000
.993
499

[wae I e e Y o Y e I e

-1.02
0.00
2.19

3.225

2.508

Three.Clusters

2.168
-0.313

-0.703
1.868

1.824
0.314

5

0

[ B B B = B o B - )

2004

6.69
26.5
43.4
0.61
0.48
.278
0.16

90.1
14.3
0.08

5.1
0.70
943,
0.00
0.02
.170
.000
.226
.603
.000
.388

1.62
0.73
3.20

.352

. 209

. 280

.197
.974

0.337

428

144
.058

52005

9.73
21.8
35.9
0.70
0.58
0.328
0.44

202.0
37 3
0.04

5.6
0.72
995.

0.00

0.06
0.162
L4086
.000
L4432
.Qno
L340

oo o OO

-2.87
0 24
2.6€

-1.304

-1 526

-l.22!4

=0.705
0.62¢

1.204
0.052

-0.683
0.422

52006

11.37
17.8
33.9
0.63
6.41

0.222
6 37

2131
6.7
0.05

5.5
1.27
907.
0.03
0.05
.192
.000
.581
.226
.000
363

OO oo oo

-2.65
1.04
2.42

-1.107

-0.583

-0.984
0.190

0.109
-0.938

-1.073
0.093



VARIABLE

CATCHHMENT NUMBER

52010 52016 53005 53007

Flow Response Heasures

Tp 10.73 4.31 9.88 10.57

Qp 23.3 34.6 18.4 20.2

SPR 47.4 13.9 18.6 28.9

RBAR 0.46 0.58 0.56 0.50

BFI 0.47 0.71 0.62 0.52

QBAR 0.363 0.21i8 0.208 0 240

cv 0.43 0.59 0.39 0.34
Catchment Characteristics

AREA 135.2 15.7 147 .4 261 .6

MSL 20.4 7.1 24.6 27.7

DVF 0.02 0.02 ¢.03 0.06

SL1085 4.7 26.8 3.0 2.3

STHFRQ 0.77 0.89 0.73 0.33

SAAR 881. 969. 9712. 966 .

LAKE 0.00 0.00 0.00 0.00

URBAN 0.00 0.00 0.05 0.02

SO1L1 0.002 0.000 0.612 0 309

SOIL2 0.000 0.553 0.000 0.037

SOIL3 0.686 0.000 0.097 0.321

S0IL4 0.312 0.447 0.292 0.332

SOILS 0.000 0.000 0.000 ¢.000

SOIL 0.415 0.367 0.262 0.336
Principal Components

PCi -1.88 -2.17 -3.39 -2.67

PC2 1.24 -2.24 -0.58 0.31

PC3 1.32 1.39 2.08 1.91
Cluster Membership

CLUSTERZ2 2

CLUSTER3 3 2 z
Canonical Variables for Two Clusters

Base Case

CAN1 -0.996 -0.842 ~-1.880 -0.389

With BF]

CAN1 -1.146 -2.013 -1 752 -0.395

With QBAR

CANL -0.846 -1.147 -1.945 -0.452
Canonical Variables for Three Clusters

Base Case

CAN1 -1.187 -0.303 ~-1.388 ~-1.425

CAN2 -0.627 0.867 1.845 ~-0.084

With BFI

CAN1 0.538 2.362 2.107 0.946

CAN2 -1.204 1.142 0.168 ~-1.079

With QBAR

CAN1 -0.881 -0.836 ~1.737 ~-1.490

CAN2 -0.957 1.130 1.676 -0.228

57

5

0

1

o 000000

3009

7.80
20.1
14.9
0.57
0.62
.211
0.42

72.6
16.1
0.02

8.1
0.80
018.
0.00
0.07
.656
.000
.018
.326
.000
.252

3.27
0.98
2.04

.047

. 783

.210

.985
.668

L243
.933

.591

2.649

54004

12.42
10.7
41 1
0.28
0.60
0.114
0.43

262 0O
28.8
0.07

1 9
0.72
691

0.00

0.25
.052
.000
.000
.94L8
.000
L4348

000 o0

-2.95
0.97
0.36

018

84p

. 180

L38)
126

0.531
.506

L4629
.993

54011

12.82
15.5
34.9
0.43
0.65
0.124
0.46

184 0
26.9
0.01
4.9
0.45
675.
0.00
0.03
.352
.000
.000
.648
.000
344

DO 0000

-3.35
0.35
1.09

795

.301

. 824

J364
0.749

2.118
L1356

.500
0.559



VARIABLE CATCHMENT NUMBFER
54016 54019 54022 55008 55012
Flow Response Heasures
Tp 25.25 42.75 2.35 2.18 6.12
Qp 7.1 6.5 53.9 68 7 31.9
SPR 27.1 40 .7 36.7 43.7 50.7
RBAR 0.53 0.46 0.43 0.39 0.60
BF1 0.61 0.48 0.32 0.32 0.39
QBAR 0.058 0.102 1.598 1.819 0.726
cv 0,3 0.56 0.34 0.52 0.40
Catchment Characteristics
AREA 259.0 347.0 B.7 10.6 244 .2
MSIL 40.2 56.7 4 7 5.4 36.0
DVF 0.05 0.046 0.04 0.06 0.01
S1,1085 0.9 1.4 63.7 47 .4 8.0
STHFRQ 0.27 0.51 3.60 2.88 1.39
SAAR 713. 692. 2249 2395. 1643.
LAKF, 0.00 0.00 0.00 0.00 0.00
URBAN 0.00 0.04 0.00 0.00 0.00
SOIL1 0.500 0.300 0.000 0.000 0.000
SOIL2 0.030 0.000 0.000 0.000 0.584
S01L3 0.000 0.700 0.000 0.000 0.000
SOIL4 0.470 0.000 0.000 0.600 0.000
SOILS 0.000 0.000 1.000 1.000 0.416
SOIL 0.296 0.325 0.500 0.500 0.383
Principal Compenents
PC1 -4.34 -4.14 2.20 3.11 -0.60
PC2 0.88 2.28 -0 27 -1.00 1 01
PC3 2.15 0.78 1.80 0.92 2.24
Cluster Membership
CLUSTER? 2
CLUSTER3 2 3
Canconical Variables for Two Clusters
Basc Case
CANI -1 493 -2.540 2 7261 2.983 0.595
With BFI
CAN1 -t 653 -2.219 2 352 3.217 1 242
With QBAR
CAN1 -1.571 -2.528 2 295 3.412 0.714
Canonical Variahles for Three Clusters
Base Case
CAN1 -1.869 ~-1.555 3.989 3.634 0.701
CANZ 0.410 0.179 0.172 0.066 0.583
With BFI
CANL 1.786 0.716 -2.745 =-2.729 -0.896
CANZ -0.973 -1.248 2.951 2.543 0.489
With QBAR
CAN) -2.020 -1.545 31.980 4.168 0.766
CANZ 0.205 -0.077 0.733 0 158 0.554

58

55021

22.40
96
jz.6
0.82
0.65
0.103
0.26

371.0
48.5
0.01
4 0
0.64
948
0.00
0.01
.000
.891
.045
.000
.063
317

(== = R e R - i ]

~4.49
0. 84
4.07

-1 0460

-1.590

=1.122

L7107
0.823

1.792
0.408

.932
0.789

55022

12.80
17.4
47 .6
0 77
0.51

0.233
0 25

142.0
29.8
0.01

3.0
2.73
944,
0.00
0.00
.000
.000
.000
.000
.000
.300

O DD 0O -0

-2.82
I .46
3.76

-1 295

-t 250

566
0.873

0.757
0.058

390
0.536



5

0

1

1

SO0 @

VARIABLE CATCHHENT NUMBER
55025 56003 56004 56005
Flow Response Measures
Tp 5.87 3.53 7.70 5.25
Qp 34.2 43 .4 29.5 29.6
SPR 29.3 29.8 L46.2 0.7
RBAR 0.66 0.66 0.65 0.56
BFI 0.58 0.52 0.47 0.55
QBAR 0.392 0.399 0.632 0.499
cv 0.88 0.54 0.43 0.37
Catchment Characteristics
AREA 132.0 62 1 543.9 98.1
HSL 18.7 20.2 48.7 25.4
DVF 0.04 0.04 0.01 0.02
SI.1085 4.0 9.0 4.6 14 2
STHFRQ 0.98 0.98 1.26 1.17
SAAR 999, 1253. 1488, 1469
LAKE 0.17 0.00 0.08 0.00
URBAN 0.00 0.00 0.02 0.16
SQILY 0.000 0.000 0.000 0.000
S0I11.2 1.000 0.751 0.600 0.295
SOIL3 0.000 0.000 0.000 0.327
SOIL4A 0.000 0.000 0.000 0.000
SOILS 0.000 0.249 0.400 0.378
SOIL 0.300 0.350 0.380 0.408
Principal Components
PC1 -2.50 -1.28 -1.41 -1.66
PC2 -0.99 -1.18 0.72 -0.52
PC3 0.59 1.93 2 43 2.19
Cluster Membership
CLUSTER2 2
CLUSTER3 2 3
Canonical Variables for Two Clusters
Base (ase
CAN1 -1 260 0 124 0.355 0.514
with BFI
CANI -0.915 0 330 0.602 0.207
Wwith QBAR
CANI -0.769 0.113 0.562 0.244
Canonical Variables for Three Clusters
Base Case
CANI -1.089 0 094 0.219 1.157
CAN2 1 781 1 116 0.185 0.778
With BFI
CAN] 1.587 0.491 -0.330 @ 175
CANZ 0.206 0.709 0.129 1.578
With QBAR
CAN1 -0.685 -0.090 0.4L66 0.669
CANZ 1.066 1.127 -0.004 1.227

59

6006

4.56
44.9
46.6
0.66
0.45
. 887
0.39

83.8
22.4
0.01

8.9
1.67
661.
0.11
0.00
.000
L4718
.000
.000
.522
404

0.07
0.01
2.71

.655

107

. 040

.807
.955

L6386
.853

174
.653

L8686

.129

645

.393

0.848

.30}

0.535

.206
.385

57005

6.13
22.1
39.4
0.63
0.47
0.645
0 38

654 .8
42.3
0.05

9.2
2 17

1838

0.15

0.05
.000
.000
L4400
.000
.600
.460

D0 0 Q00O

Q.45
2 54

1.334

0.94]

1.092

0.843
170

.929
6.112

0.733
157



VARIABLE

57006

58001

Flow Response Measures

4. 43
33.0
29.7
0.60
0.49
0.688
0.28

158.0
20.1
0.02
10.3
2.63

1839,

0.00

0.04

.021

.169

.472

.000

.339

412

j== R e B e B B o [ o

-1.01
-0.55%

Tp 2.50
Qp 47.0
SPR 35.3
RBAR 0.52
BFI 0.42
QBAR 0.987
cv 0.34
Catchment Characteristics
AREA 100.5
MSL 22.9
DVF 0.02
SL1085 7.7
STHFRQ 3.04
SAAR 2200,
LAKE 0 06
URBAN 0.13
SOIL1 0.000
SOIL2 0.000
SOIL3 0.510
SOILG 0.000
SOILS 0.490
SOIL 0.449
Principal Components
PC1 0.68
PC2 -0.88
PC3 2.13

Cluster Membership
CLUSTER2 1
CI.USTER3 t

Canonical Veriables
Base Case

CAN1 2 194
With BFI

CAN] ! 880
With QBAR

CAN1 2 127

Canonical Variables
Base Case

CAN1 1.480
CAN2 -0.970
With BFI

CANI -1.269
CAN2 0.635
With QBAR

CAN1 1.518
CAN2 -0 656

2.79

1

for Two Clusters

0.772

0.308

0.574

CATCHHENT NUMBER

58002

4.87
39.6
30.4
0.53
0.34
1.048
0.45

190.9
28.3
0 04
13.5
4,04
1981.
0.00

0.01
.000
.000
.101
.Q00
.885
.483

oo Coo

-0.01
-0.22
175

3.180

2 798

3.203

58006

3.82
40.7
445
0.55
0.35
0.979
0.38

65.8
14.7
0.03
25.9
2.51
2107
0.12
0.00
.000
.000
-000
.000
.000
.500

[=T B e B o B ]

0.45
0 26
2 12

2.675

3.078

2.432

for Three Clusters

0.766
-0.354

~0.166
0.623

0.545
-0.021

3.502
-0.259

-2.056
2.635

3.540
0.252

2.495
-0.120

-2.288
1.484

2.161
0.521

58008

4.32
43.5
55.3
.53
0.39
1.046
0.35

43.0
14.0
0.01
14.9
6.28
1756.
0.00
0.00
.000
.000
150
.000
.850
LG485

Lo B oo B e B oo B o B ]

0.74
0.65
219

1.613

1.053

1.924

2.408
-1.548

-2.059
1.046

3.040
-1.493

5

0

1

[= e R am It e R oo B -]

8009

5.32
1.4
25 .4
0.53
0.58
.528
0.40

62.5
13 1]
0.01
7.7
2.10
382.
0.00
0.05
.380
L3231
. 285
.000
.004
.272

1.75
0.94
1.95

CGB3

.369

.39¢4
136

.740
143

553
.919

60002

6.92
22.2
46.2
0.60
0.43
0.452
0.27

297.8
50.0
0.01

4.6
0.82

1637.

0.00

0.00

.000
761

.G00

.000

.239

348

SO0 oD 0C

-1 46
11
275

n.516

0 957

n.320

0.003
0.235

-0.386
-0.115

-0.299
0.443



CATCHHENT NUMBER

61003 64001

5.46  4.86
38.0 25.6
40.5  48.3
0.55  0.52

0.57 0.36
0.535 0.650
0.25 0.19

31.3 471.3

VARIABLE
61001
Flow Response Measures
Tp 7.09
Qp 25.6
SPR 25.2
RBAR 0.62
BFI 0.65
QBAR 0.257
cv 0.26
Catchment Characteristics
AREA 197 .6
HSL 27.6
DVF 0.00
SL1085 3.2
STHFRQ 0.89
SAAR 1282.
LAKE 0.00
URBAN 0.00
S01L1 0.000
SO1L.2 0.992
SOIL3 0.000
SOILG 0.000
SOILS 0.008
50711 0.302
Principal Components
PC1 -2.72
PC2 Q.74
PC3 297

Cluster Membership
CLUSTER2 2
CLUSTER3 2

Canonical Varianbles
Base Case

CAN! -0.211

With BF!

CAN1 -0.698

With QBAR

CAN1 -0.293
Canonical Variables

Base Case

CANI -0 685

CANZ2 1.138

With BFI

CANI 1.961

CAN2 0.619

With QBAR

CAN1 -0 962

CAN2 1.106

9.4 37.5
0.03 0.01
25.5 5.2
1.85 2.70

1465. 1836,
0.00 0.0¢C
0.00 0.00
0.000 0.000
0.911 0.500
0.000 0.000
0.000 0.000
0.089 0.500
0.2318 0.400
-1.05 -0.37
-0.27 1.14
2 65 2.66

1 1
for Two Clusters
-0.233 1.248
-0.459 1.683
-0.340 1.111
for Three Clusters

0.420 1 025
1.532 -0.318 -

1.119 -1.488 -2

1.507 0.248

0.046 0.879
1.684 -0.012 -

61

65001

4.19
27.9
30.7
0.43
0.31
1.228
0 26

68.6
15.2
0.01
33.6
5.93
3030.
0.26
0.00
000
.099
.000
.000
.901
-4B0

CoOOoO0COo o

0.36
0.18
2.03

J.120

3.038

2.601

3.099
1.108

793
1.559

2.539
0.068

66011

4.22
41.0
57.7
0.55
0.28
1 083
0.1

3445

29.0

0.00

17.2

4.18
2162.
0.08
0.00
.000
493
.000
.000
.507
.401

[ == R B = B B s ]

118
1.28
2.79

0.999

1.708

1.191

1.623
-0.135

-2.148
0.616

1.888
-0.093

6

0

1

O OO0 OO

7003

5.28
42.1
74 .3
0.33
0.50
.579
0.43

20.2

7.1
0.07
13.8
1.83
300.
0.00
.00
.000
. 000
.000
.000
.000
. 500

0.33
1 4]
.66

.055
. 265

.02}
774

827
.707

6

0

2

DOoO0OoC oo

7008

7.06
17 5
18.3
0.47
0.56
114
0.37

27.1
45.8
0.00
5.0
0.93
201,
¢.01
Q.04
. 245
.594
.000
.045
116
293

2.95
0.54
1.61

. 685
€21

L2164
L400

005
.559



VARIABLE CATCHMENT NUMBER
68006 69027 71003 71004 72002
Flow Response Heasures
Tp 5.62 7.44 2.87 5.16 5.69
Qp 45.6 1.3 59.9 30.0 27.8
SPR 43.2 40 .2 54.1 39 7 59.2
RBAR 0.37 0.33 0.43 0.72 0.45
RFI 0.55 0.56 0.35 0.43 0.32
QBAR 0 393 0 570 1.351 0.558 0.536
cv 0.42 0.32 0.44 0 59 0.19
Catchment Characteristics
AREA 150.0 150.0 10.4 316.0 275.0
HSL 3.9 41.4 5.2 37 1 34 .2
NnvF 0.00 0.00 0.00 0.00 ¢.00
SL1085 10.0 5.6 37.8 5.0 7.7
STMFRQ 1.42 0.72 1.36 0.89 1.00
SAAR 1053, 1181 1786. 1211. 1251.
LAKE 0.04 0.17 0.00 0.08 0.00
URBAN 0.02 0.22 0.00 0.09 0.01
SOIL1 0.033 0.000 0.000 0.000 0.0o00
S0I1L2 0.022 0.009 0.000 0.000 0.076
SOIL3 0.000 0.000 0.000 0.000 0.000
S0TL4 0.598 0.343 0.065 0.541 0.502
SOILS 0.347 0.648 0.935 0.459 0.413
SOIL 0.454 0.481 0.497 0.473 0.455
Principal Components
PC1 -0.74 -1.16 2.16 -1.50 -0.10
PC2 -0.28 013 ~0.07 0 19 1.89
PC3 0.91 1.15 1 31 2.08 2.16
Cluster Menbership
CLUSTER2 1
CLUSTER3 ! 1
Canonical Variables for Two (lusters
Base (ase
CANI 0.226 1.422 2.170 1 212 1 223
With BFI
CAN] -0.489 1.079 2.315 1 266 1.647
wWith QBAR
CAN] 0.173 1.570 2.546 ) 308 1.180
Canonical Variables for Thrce Clusters
Base Case
CAN1L -0.109 0.850 2.769 0 152 0.951
CAN2 =1.021 -0.484 -0.196 -1.218 -0.155
With BFI
CAN] 0.273 -0.453 -2.2217 -1.029 -1.301
CAN2 -0.310 0.526 1.787 -0 747 0.315
With QBAR
CANI -0.028 1 109 3.280 0.457 0.905
CANZ -0.965 -0.502 -0.175 -1.274 0.039

62

17002

5.40
42.3
51.}
0.54
0.38
0.803
0.24

495.0
53.4
0.01

3.7
2.11

1507.

0.064

0.00

.000

.Q00

.388

.000

.609

660

o O o 000

0 24
0.77
2 &0

] 198

1 121

1 462

=1.447
-0.38¢

1 313
-1.580



VARIABLE

CATCHMENT NUMBER

84008 840)2
Flow Response Heasures
Tp 3.87 6.07
Qp 34 .6 32.9
SPR 57.8 56.7
RBAR 0.4} ¢.39
BFI 0.32 0.36
QBAR 0.654 0.523
oV 0.36 0.24
Catchment Characteristics
AREA 51.3 227.2
MSL 18.9 61.2
DVF 0.04 0.00
SL1085 13.4 6.6
STHFRQ [.05 1.06
SAAR 1187. 1276.
LAKE 0.00 0.12
URBAN 0.26 0.27
S01L1 0.000 0.000
S0IL2 0.000 0.000
SCIL3 0.098 0.340
S0ILA 0.738 0.469
SOILS 0.164 0.191
SOIL 0.453 0.443
Principal Components
PC1 Q.45 -0.10
PC2 1.27 1.52
PC3 i 29 1 67
Cluster Membership
CLUSTER2 1
CLUSTER3 1
Canonical Variables for
Base Case
CANL 1.000 1.010
With BFI
CAN] 1.665 1.240
With QBAR
CAN1 1.079 1.008
Canonical Variables for
Base Case
CAN1 0.681 -0.]03
CAN2 -0.741 -2.095
With BFI
CAN1 -1.866 ~-1.734
CAN2 -0.447 -1.659
With (BAR
CAN1 0.890 0.203
CAN2 -0.709 -2.073

63

Two Clusters

Three Clusters



Appendix B Guide to application of methods

This appendix details the procedures to be followed in order to apply the
methodology outlined in this report to a catchment for which estimates of Tp and SPR
are required. The basis for the estimation of the rainfall-runoff model parameters is
the data for the catchments used in this work. The appropriate information for the
catchments is contained in Appendix A.

Step 1 Assemble catchment characteristics

Assemble catchment characteristic data for the catchment of interest and
compare with the range of values for the various catchment characteristics
used herein. The maximum and minimum values for each catchment
characteristic are summarized in Table 1. Caution should be exercised if the
new catchment of interest is substantially difterent from the catchments in the
data base since the methodology involves interpolating between runoff event
parameter values for the gauged catchments. Estimates from this procedure
may therefore be unreliable for catchments that are substantively different
from the catchments in the data base.

Step 2 Standardize the variables

Standardize the catchment characteristic data for the new catchment using the
relationship in Equation (3), and the mean and standard deviation for the
catchment characteristics presented in Table 1.

Estimation of Tp

To estimate Tp in the ungauged case, work through steps 3 to 5. If value of QBAR
can be derived from data observed at the site of interest, then jump to step 6.

Step 3 Calculate canonical variables

Calculate the two canonical variables for the catchment using the standardized
catchment characteristic vector with Equation (2) and the weights summarized
in Table 6.

Step 4 Identify the three nearest catchments

Identify the three nearest catchments to the new catchment in terms of the
two canonical variables. Determine the probability of membership of the
catchment in each of the three clusters using Equation (6). The cluster
membership of each catchment, which is required for this calculation, is
given in Appendix A.



Step 5 Estimare Tp
Estimate Tp using the cluster specific estimates of Tp from the relationships
in Equations (21) to (23). The final estimate is obtained by combining these
three estimates using the probability of membership of the catchment in each
of the three clusters and Equation (9).

Step 6 Estimating Tp with derived QBAR value
Use the standardized characteristic vector, augmented with the standardized
QBAR value, to calculate two canonical variables for the catchment with

Equation (2) and the weights in Table 12. Use these two canonical variables
in the above procedure starting at step 4.

Estimation of SPR

If an estimate of BFI is available, go to Step 10.
Step 7 Calculate canonical variable

Calculate a single canonicat variable for the catchment using Equation (2) and
the weightings in Table 5.

Step 8 Identify five nearest catchments
Using the single canonical variable, identify the nearest five catchments and
determine the probability of membership of the catchment in cluster 1 and
cluster 2 using Equation (6).

Step 9 Find nearest two catchments in cluster and calculate mean SPR
Estimate SPR as the arithmetic mean of the SPR values for the two nearest
neighbour catchments from the cluster for which the catchment has the largest

probability of membership. Catchment proximity is measured as the weighted
Fuclidean distance in terms of the five (standardized) soil class variables.

The following steps are for estimating SPR when a value of BFI is available.

Step 10 Calculate new canonical variable
Use the standardized characteristic vector, augmented with the standardized
BFI value, to calculate the canonical variable for the catchment with Equation
(2) and the weights in Table 11.

Step 11 Identify seven nearest catchments

Using the single canonical variable, identify the nearest seven catchments and
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determine the probability of membership of the catchment in cluster 1 and
cluster 2 using Equation (6).

Step 12 Use SPR from nearest neighbour in cluster
Estimate the SPR value as the SPR for the catchment that is nearest to the
catchment from those catchments that are in the cluster for which the new
catchment has the largest probability of membership. Catchment proximity,

for identifying the nearest neighbour, is measured as the weighted Euclidean
distance in terms of the variables SOIL and BFI.

Example: Eden at Kirkby Stephen

Step 1 Assemble catchment characteristics

The catchment characteristics are listed below. They are all within the range of the
characteristics given in Table 1.

Step 2 Standardize the variables
Value Mean Std dev Standardized

MSL 20.77 24.958 15.555 -0.26924
DVF 0.02 (.0498 0.0811 -0.36745
SL1085 18.47 9.296 10.8408 0.84625
STMFRQ 4.03 1.3439 1.121 2.39616
SAAR 1439 1154.62 504.72 0.56344
LAKE 0 0.0259 0.0554 -0.46751
URBAN 0 0.0516 0.1121 -0.4603
SOIL1 0 0.1154 0.2106 -0.54796
SOIL2 0 0.1706 0.2942 -0.57988
SOIL3 0 0.1475 0.2722 -0.54188
SOIL4 0.16 0.2963 0.3537 -0.3835
SOILS 0.84 0.2700 0.3595 1.58554
SOIL 0.492 0.3958 0.0787 1.2224

Estimation of Tp

Step 3 Calculate canonical variables

Standardized Canonical weights
MSL -0.26924 -0.0697 -0.4442
DVF -0.36745 0.1237 -0.2576
SL1085 0.84625 0.2550 0.1507
STMFRQ 2.39616 0.1389 40.3938
SAAR 0.56344 0.3066 -0.1749
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LAKE -0.46751 -0.1500 0.0253

URBAN -0.4603 0.4058 0.1661

SOIL1 -0.54796 -8914 11.2646
SOIL2 -0.57988 0.3231 53.6559
SOIL3 0.54188 7.9474 72.9260
SOIL4 -0.3835 15.3645 109.6562
SOILS 1.58554 -21.6675 128.0141
SOIL 1.2224 -22.4602 68.8663
Canonical variables 1.9479 -1.0576
Step 4 Identify the three nearest catchments

The following five catchments have canonical variables fairly close to the values
obtained in step 3.

CVl1 cv2 Euclidian Cluster
distance

Target 1.9479 -1.0576

23005 1.6810 -0.6402 0.495

49003 2.1678 -0.3134 0.776

57004 1.3932 -0.8482 0.592 3
57006 1.4804 -0.9696 0.476 1
58008 2.4083 -1.5481 0.673

The cluster membership for the nearest three is shown in the last column.

Prior probabilities of being in clusters 1 and 3 are 34/99 and 36/99 respectively.

Cluster Probability of membership
1 2x(34/99)/[2x(34/99) + 1x(36/99)) = 0.6538
0 0 = 0.
3 1x{36/99)/[2x(34/99) + 1x(36/99)) = 0.3462
Step 5 Estimate Tp

The regression equations for the three clusters are:

Cluster Estimated Tp
1 4.86
2 6.01
3 3.86
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Weighting these using the probabilities of cluster membership given above gives a
best estimate of 4.525 hours.

Step 6 Estimating Tp with derived QBAR value
Standardize QBAR
QBAR value .791 Standardized value 2.064

Calculate canonical variable

Standardized Canonical weights
MSL -0.26924 0.0010 -0.4508
DVF 0.36745 0.1494 -0.2256
SL1085 0.84625 0.0519 0.3283
STMFRQ 2.39616 0.2307 0.3938
SAAR 0.56344 -0.2504 0.3344
LAKE -0.46751 -0.0952 0.0432
URBAN -0.4603 0.3304 0.2623
SOIL1 -0.54796 -8.5478 8.1154
SOIL2 -0.57988 -3.6119 49.638
SOIL3 -0.54188 1.4239 69.481
SOIL4 -0.3835 5.0528 105.37
SOILS 1.58554 9.1138 123.95
SOIL 1.2224 -14.127 -69.495
QBAR 2.064 0.7979 -0.324
Canonical variables 31814 -1.5862

Find the three nearest neighbours and their cluster membership

Catchment Canonical variables Cluster
25003 3.724 -0.162 1
58008 3.04 -1.493 1
71003 328 0175 1

The catchment is unambiguously assigned to cluster 1.

From Step 5 the Tp estimate for the catchment using the cluster 1 regression equation
is 4.86 hours.

68



Estimation of SPR

Step 7 Calculate canonical variable

Standardized Canonical weight
MSL 0.26924 0.1922
DVF -0.36745 0.0774
SL1085 0.84625 -0.2422
STMFRQ 2.39616 0.1292
SAAR 0.56344 0.9152
LAKE -0.46751 -0.0761
URBAN -0.4603 0.3104
SOIL1 -0.54796 -44.2259
SOIL2 -0.57988 -105.603
SOIL3 -0.54188 -125.603
SOIL4 -0.3835 -179.871
SOILS 1.58554 -200.596
SOIL 1.2224 79.2414
Canonical variables 1.3504
Step 8 Identify five nearest carchments

CVvl Euclidian Cluster

distance

Target 1.3504
48004 1.2967 0.0537 2
57005 1.3340 0.0164 1
64001 1.2475 0.1029 1
69027 1.4223 0.0719 1
72002 1.2230 0.1274 )

The cluster membership for these catchments is given in the last column.

Prior probabilities of being in clusters 1 and 2 are 51/99 and 48/99 respectively.

Cluster Probability of membership
1 4x(51/99)/(4x(51/99) + 1x(48/99)) = 0.8095
2 1x(48/99)/[4x(51/99) + 1x(49/99)] = 0.1905

The catchment is therefore assigned to cluster 1
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Step 9 Find nearest two catchments in cluster and calculate mean SPR.

Catchment SOIL1 SOIL2 SOIL3 SOIL4 SOILS Weighted Euclidian

distance
Target 0 0 0 0.16 0.84
71003 0 0 0 0.065 0.935 0.462
23005 0 0 0 0.0 1.0 0.778

Remember that the distance is calculated using the standardized variables and the
weighting factors for the five SOIL values are 0.50, 0.95, 0.90, 1.75, and 1.25
respectively. Catchment 71003 is the closest but there are seven other catchments in
the data set that are in cluster 1 and have 100% SOIL type 5.

Catchment SPR

23005 538
25003 64.8
28033 244
46005 58.3
54022 36.7
55008 43.7
58006 4.5
67003 743
71003 54.1

The recommendation is to use the average of the nearest two catchments, and while
71003 must be used there is a dilemma about which other catchment to use. This
could be resolved by taking nearby catchments (23005 & 25003) which would give
an estimate of 57.6% . The average of all the values is 50.5%.

Refinement of SPR estimate using BFI
Step 10 Calculate new canonical variable
BFI value for catchment 0.24 (Mean 0.49, sd .14 hence normalized value -1,786)

Canonical variable is 2.070

Step 11 Identify seven nearest carchments

Catchment Canonical Distance Cluster
variable

Target 2.070

39017 1.804 0.266

{table continues on page 71)
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54022 2.352 0.282

57004 1.729 0.341
57006 1.880 0.190
710063 2.315 0.245
64001 1.683 0.388
72002 1.647 0.423

The catchment is therefore assigned to cluster 1.

Step 12 Use SPR from nearest neighbour in cluster
Catchment BFI  SOIL Weighted Euclidian  SPR
distance

Target 0.24 0.492

23005 027 05 250 53.8
65001 031  0.48 .536 30.7
25003 0.1s 05 .656 64.8
38017 0.34 0.483 729 304

Remember that the distance is calculated using the standardized variables and the
weighting factors for BFI and SOIL are 1.0 and 1.6 respectively. Catchment 23005
is the closest and its value of 53.8% is taken as the estimate of SPR. The target
catchment has a lower value of BFI than this closest catchment, which would hint at
a slightly higher SPR,

Summary

Time to peak

Estimate from FSSR16 4.78 hours
From above 4.53 hours
From above with QBAR 4.86 hours
Derived from event data 3.84 hours

Standard Percentage Runoff

Estimate from FSSR16 520 %
From above 550%

FSSR16 estimate with BFI 56.0 %
From above with BFI 538 %

Derived from event data 66.8 %
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