


Report No. 102

Regional flood and storm hazard assessment

M.Y. Dales and D.W. Reed

March 1989

Final report to the Department
Institute of Hydrology of the Environment Contract No.
Wallingford PECD 717/135 "Regional flood
Oxon and storm hazard over
OX10 8BB, UK reservoired catchments"



Abstract

The report is the outcome of a 3-year investigation of "regional flood and
storm hazard over reservoired catchments" funded by the Department of the
Environment's reservoir safety committee. It describes an analysis of spatial
dependence in annual maximum 1, 2, 4 and 8-day rainfalls in the UK

A procedure is presented for assessing the annual collective risk of an extreme
rainfall being experienced at one (or more) of a network of critical sites. The

concept of an equivalent number of independent sites is introduced: the
number is shown to be strongly influenced by the number of sites and their
spatial density, with lesser effects attributable to region, rainfall duration and
return period.

A corollary of spatial dependence is that, when an extreme rainfall event
occurs, it may lead to design exceedances occurring simultaneously at a
number of sites. The report draws conclusions for the perception of reservoir
flood risk in the UK. Attention is also drawn to marked regional variations
in point rainfall growth curves that are not fully represented in existing design
procedures.
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Glossary of Abbreviations

BNCOLD British National Committee on Large Dams
CE Central
CEMAGREF Centre National du Machinisme Agricole, du Genie

Rural, des Eaux et des Forets.
CV Coefficient of variation
DoE Department of the Environment
E Eastern
EVI Extreme Value, type 1
EV2 Extreme Value, type 2
EV3 Extreme Value, type 3
FSR Flood Studies Report
GEV General Extreme Value
ICE Institution of Civil Engineers
LD Lake District
NAG Numerical Algorithms Group
NE North East
NERC Natural Environment Research Council
NI Northern Ireland
NW North West
PMF Probable Maximum Flood
PWM Probability Weighted Moments
S Southern
SAAR Standard Average Annual Rainfall
SC Scotland
see standard error of estimate
SW South West
TCEV Two Component Extreme Value
UK United Kingdom
WA Wales
WC West Country



Nomenclature

Symbol Meaning Section where
first used

a GEV parameter 3.2.2
ar value of GEV "a" for regional maximum 4.6

curve
at value of GEV "a" for typical curve 4.6
a Wakeby parameter 3.2.3
a constant in regression equation for InNe 8.5
AREA area spanned by network of sites (km2) 4.4
b Wakeby parameter 3.2.3
b coefficient in regression equation for ur-ut 8.2.2
b coefficient in regression in equation for lnNe 8.5
c Wakeby parameter 3.2.3
c, C coefficient in regression equation for ar-at 8.2.2
c coefficient in regression equation for InNe 8.5
CINDEX clustering index 10.8.2
CV coefficient of varation (i.e. standard deviation/

mean) 2.4.3
d Wakeby parameter 3.2.3
a mean intersite distance (km) 4.4
D rainfall duration (days) 7.2
E epicentrage coefficient 5.2
ER epicentrage relative to lower (upper) bound 8.4.3
F (cumulative) distribution function 3.2
Fr distribution function for regional maximum curve 5.3
Ft distribution function for typical curve 5.3
g skewness coefficient 2.4.4
Gij sample from (cumulative) distribution relating to

ith maxima at jth site 2.5.3
h rainfall duration (hours) 5.2
k GEV parameter 3.2.2
kr value of GEV "k" for regional maximum curve 4.6
kt value of GEV "k" for typical curve 4.6
I likelihood of a design exceedance occurring in a

given time horizon 10.3
m Wakeby parameter 3.2.3
m length of record or time horizon for risk

assessment (years) 10.3
M5 quantile corresponding to 5-year return

period on annual maximum scale 2.5.2
MT quantile corresponding to T-year return

period on annual maximum scale 3.6
MT/MS FSR rainfall growth factors 3.6
M number of station-years of record in region 10.7.1
Me equivalent number of independent station-years 10.7.3
Mp,r,s PWM of order p,r,s 3.2.4
n length of record (years) 2.5.3
nj(x) number of years for which Xj < x 5.4
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n.joint(X) number of years for which both Xi s x and
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N number of sites (or gauges or catchments) 1.3.2
NAVAIL number of sites available in regional analysis 8.1
Ne equivalent number of independent sites 1.3.2 &

5.3
pi plotting position on Gumbel scale for jth

smallest value 3.2.5
q Buishand's dependence function (synonymous

with Ne) 5.4
QBAR mean of annual maximum peak flows 2.5.2
r (collective) annual risk of a design exceedance 1.1 &

8.3.2
r subscript denoting regional maximum curve
F mean correlation coefficient between rainfall at

all pairs of sites in a given network 1.3.2
r2 percentage of variation explained by regression

equation (adjusted for number of degrees of
freedom) 8.5

R test statistic (in G-point test) 2.5.3
RjJ annual maximum rainfall for ith year at jth site

(mm) 2.6.4
RBAR mean of annual maximum rainfall (mm)

[1-day duration unless otherwise stated] 2.4.2
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Yr reduced variate in regional maximum distribution

(for a given value) 5.3
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1. Introduction

1.1 BACKGROUND TO STUDY

Current flood design standards for reservoir spillways and other structures
relate to the risk of flooding at a particular site. The potential for damage
and loss of life in the event of exceedance of a dam design flood means that
a very high standard of safety must apply. Consequently many old earth dams
sited above a community are in risk category A and warrant a design criterion
of the probable maximum flood, PMF. Others are in risk category B and
warrant a design flood equal to the 10,000 year event or 0.5 PMF (whichever
is the larger). These design standards are set down in Table 1 of the ICE
guide to floods and reservoir safety (Institution of Civil Engineers, 1978).

Most impounding reservoirs to which the 1975 Reservoirs Act applies have
now been inspected with reference to these standards. In recent years there
has been considerable expenditure in reservoir remedial works. Some of this
expenditure is on repairs and renovations. However, much has been
attributable to raising the structural integrity of dams (for example, by
provision of upstream control valves on discharge pipes) and to increasing the
design standard with respect to floods. Given the good record of dam safety
in the UK (with respect to absence of loss of life and severe damage to
property) in the last 60 years, the substantial increase in expenditure on
reservoir flood provision following publication of the ICE guide - reinforced in
recent years by full enforcement of the 1975 Reservoirs Act - is not without
critics. The question may reasonably be asked: "Are reservoir flood
standards unreasonably high?"

Hydrological research alone cannot answer this question. However, following
an interim review of the ICE guide (see Clarke and Phillips, 1984), the
Department of the Environment's reservoir research committee commissioned
an investigation of "regional flood and storm hazard over reservoired
catchments". This report is the outcome of the agreed programme of research
(Appendix 1).

The project examines the collective risk of a design flood exceedance occurring
at one of a network of reservoirs. The network might comprise reservoirs in
a given region, or reservoirs owned by a particular organization, or all major
impounding reservoirs in the UK.

It has been estimated (Agnew, 1986) that there are about 2,400 large raised
reservoirs in Great Britain subject to the Reservoirs Act 1975. Perhaps 2,000
of these are impounding reservoirs, of which the majority are in risk category
A or B. Although the Reservoirs Act 1975 does not apply to Northern
Ireland, Cooper (1987) reports a systematic programme of investigations and
repair to 60 large, raised impounding reservoirs in the Province.

For illustration, assume that the 1,000 highest risk reservoirs have over the
last 20 years had an average design flood provision of the 10,000-year event.
Then, based on simple probability, the risk of there being one or more
design exceedance in this period at these reservoirs is:
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r = 1 - (1 - 1/10,000)±ooo X 20 = 1 0.135 = 0.865 (1.1)

indicating that an overtopping incident at a major dam somewhere in the UK
could have been expected to occur in this period. The last documented
overtopping of a major UK dam in fact occurred on 10 July 1968 at Chew
Magna (Heaton-Armstrong, 1984).

The calculation by Equation 1.1 is, however, misleading because it assumes that
extreme floods at the 1,000 sites are independent. In reality there is well
established interdependence between extreme rainfalls (and hence extreme
floods) at separate sites. This arises partly because of the spatial scale of
extreme storms (typically 1 to 50 km) and partly because of the uneven
disposition of reservoirs in the UKI Figure 1.1, taken from an earlier study of
residual flows from reservoired catchments (Gustard 0 al., 1986), illustrates
that there is strong clustering of reservoirs in upland areas, notably in the
Pennines. No comprehensive register of impounding reservoirs subject to the
1975 Reservoirs Act has yet been published. Whereas major dams are
generally to be found in upland areas, lesser structures such as ornamental
lakes and ponds - many of which also come under the Act - are probably
more uniformly distributed across the country than depicted in Fig. 1.1.

Spatial dependence between extreme rainfalls at reservoired sites provides a
possible explanation of the low frequency of design flood exceedances observed
at UK reservoirs. A corollary of spatial dependence is that, while the risk of
one or more design exceedances in a 20-year period at the 1,000 most
significant dams in the UK is probably much lower than is given by Eqn. 1.1,
there is the possibility that when an extreme storm does occur it may affect
more than one reservoir. For a chain of reservoirs in a particular valley, a
design exceedance at one reservoir may be sufficient to trigger a "cascade
failure". However, there is spatial dependency in extreme rainfalls on a broader
scale, and the possibility of multiple design exceedances in several valleys, while
remote, is not negligible.

By developing a general method of assessing collective risks, the study provides
information to enable policy makers to appreciate the implications of particular
standards of reservoir flood design, whether this be at the local, regional or
national scale. For brevity, the report uses the terminology regional to denote
a risk assessment or maximum rainfall pertaining to any given collection of
sites. While regional water authorities may be interested in such assessments
within their own boundaries, this report often uses the word "regional" in the
more general sense.

1.2 APPROACH

The objective has been approached through a detailed and innovative analysis
of extreme rainfalls. Statistical techniques lie at the heart of the study and
the bulk of the report is given over to discussion of the methods used and
the results obtained. However, every effort has been made to present the
analyses with clarity and to ensure that the resultant risk assessment procedure
can be applied by the non-specialist in probability theory.
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The project has focussed on the analysis of rainfall data for two reasons.
Firstly, there are very many more long-term rainfall records than flow records.
This enables inferences about the spatial dependence of extreme events to be
made for higher return periods and denser networks. Secondly, the spatial
dependence in extreme floods arises largely from that seen in rainfall data, the
only serious exception being joint rain/snowmelt floods such as occurred in
March 1947 in much of south and east England. The spatial dependence
between floods is complicated by the differing response characteristics of
catchments. However, it is generally accepted that physical differences between
catchments become less influential at higher return periods of incident rainfall.

13 PREVIOUS STUDIES

13.1 Introduction

The Flood Studies Report (Natural Environment Research Council, 1975)
makes only passing reference to spatial dependence in extreme rainfalls. Purely
for illustrative purposes, FSR 11.4.2.1 (i.e. Subsection 4.2.1 of Volume II of the
Flood Studies Report) discusses the frequency of occurrence of heavy 2-hour
rainfalls in southeast England. It notes that a fall of 90 mm in 2 hours is
reported somewhere in the region about once every 10 years but that such a
fall at a particular site has a return period of about 1,000 years.

Specific studies of the spatial dependence of extreme rainfalls are a relative
novelty and three recent studies in Australia, the Netherlands and France
provide a varied backdrop to the present analysis.

13.2 The "railway line" problem and the concept of an equivalent
number of independent catchments

Fricke et at (1983) consider resolution of a rather specific problem: that of
ensuring that the design flood criteria for bridges and culverts along a railway
line provide the required reliability of communication along its length. The
frequency of traffic interruptions is a function of the interdependence of flood
events in adjacent catchments, as well as the total number of crossings.
Through correlation studies of 1, 2 and 3-day rainfalls for 38 gauges with a
common 30-year record, they model inter-gauge correlation in terms of
inter-gauge distance and storm duration. Then, taking account of the
disposition of the N catchments draining across the railway line, they deduce
an equivalent number of independent catchments, Ne, based on a relationship
developed by Yevjevich (1972):

Ne = N/I(1+F(N-1)] (1.2)

where F is the mean correlation coefficient between all pairs of raingauges
(were these to be sited at the catchment centroids). Note that Ne = N if
the rainfalls are uncorrelated (independence) and Ne = 1 if F = 1 (total
dependence).
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The approach is extended to consider storm durations appropriate to particular
groups of catchments, taking account of their response characteristics. The
extrapolation to durations of less than 1 day is only approximate. For example,
they do not distinguish between 1-day and 24-hour maxima (the former tend
to be systematically smaller because few 24-hour falls coincide precisely with a
measurement day).

A key weakness in their approach is the lack of a suitable criterion to
prescribe which heavy rainfalls to include in constructing the mean correlation
coefficient, F. It is necessary to set some threshold below which gauge values
are excluded. Fricke et al (1983) favour the use of two thresholds: for
example, L, correlating 1-day rainfalls they use only those days for which
gauge A registers more than 50 mm and gauge B registers more than 1 mm.
Clearly the choice of thresholds is arbitrary and thus, to a large extent, is the
resultant assessment of spatial dependence by Equation 1.2.

133 Bivariate extreme value analysis and the station-year method

Buishand (1984) uses the theory of bivariate extremes to explore the
dependence between rainfall 'maxima at pairs of sites. Considering daily
rainfall data from 140 stations for a 30-year common period, he shows that
the dependence between 1-day annual maxima decreases with increasing
distance (as one expects from physical considerations) and with increasing
return period (which one suspects). From this analysis Buishand deduces that
the dependence is sufficiently small at high return period to justify use of the
"station-year" approach to combining rainfall data from many stations to
develop a regional growth curve, thereby enabling inferences to be made about
very rare events. The one proviso is that stations should be grouped in such
a fashion that near neighbours are avoided. For 1-day rainfalls in the
Netherlands, Buishand suggests that gauges more than 30 km apart are
sufficiently independent. Because longer duration rainfalls are expected to be
more spatialiy dependent, a sparser network might be required when grouping
stations for a "station-year" analysis of (say) 2-day rainfalls.

In some flood estimation problems it may be relevant to distinguish summer
and winter rainfall extremes. Buishand finds that the bivariate dependence of
1-day winter maxima is much stronger than for all-year maxima, that the
decrease with distance is less rapid, and that the dependence increases with
return period until about the 20-year mark. Beyond that he finds that the
dependence begins to decrease, but, if an approach to asymptotic independence
occurs, it does so well beyond the 50-year return period for which he has
confidence in his estimates. The method of analysis used by Buishand is
discussed further in Section 5.4.

13.4 An approach to the general problem of maximum rainfall
at a network of N sites - the epicentrage method

Galea et al (1983) consider the general problem of estimating the maximum
rainfall that can be expected at a group of N sites. Their method is to
construct an annual maximum series comprising the largest values observed in

4



a given raingauge network, with different gauges supplying the maximum in
different years. They consider a 7 year common period of data from 21
rain recorders spanning an area of about 100 km' in the Orgeval. They
examine the relationship between the typical rainfall frequency curve and that
for the artificially constructed "regional maximum" series, for a range of
durations from 2 to 24 hours. The comparison is made by reference to the
"epicentrage coefficient", which is defined as the ratio of the regional
maximum and typical site rainfalls for a given return period (Fig. 5.1). The
epicentrage method is discussed further in Section 5.2.

1.4 STRUCTURE OF REPORT

A preliminary step is to review the statistics of point rainfall extremes and to
consider their regionalization (Chapter 2). Various statistical distributions are
examined in Chapter 3, where it is decided to represent rainfall growth curves
by General Extreme Value (GEV) distributions, fitted to annual maximum data
by the method of probability-weighted moments (PWM).

The concept of the regional maximum rainfall for a network of sites is
introduced in Chapter 4, and the exploration is begun of the influence of the
number of sites (N) and area spanned (AREA) on the position of the
regional maximum growth curve for 1-day rainfalls. Chapter 5 describes
several ways in which the regional maximum and typical growth curves can be
compared and the concept of an equivalent number of independent sites (Ne)
is found to provide a useful index of spatial dependence.

The analysis of regional maximum rainfalls is extended to denser networks in
Chapter 6 and to longer durations in Chapter 7. A general model of spatial
dependence is constructed in Chapter 8. After a brief examination of seasonal
influences in Chapter 9, Chapter 10 summarizes a procedure for collective risk
assessments, illustrates its application to networks of reservoirs, and discusses
broader implications of spatial dependence in hydrological extremes.
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2. Rainfall extremes

21 THE DATA SETS

The rainfall data used in the study are daily accumulations for the standard
observing period 09.00 h to 09.00 h and were provided by the UK
Meteorological Office. The data have partly been quality controlled by the
Meteorological Office (Shearman, 1975). It is sometimes suggested that
quality control of data tends to smooth out the extremes. Within the
resources of this study it was not practical to determine, either quantitatively
or qualitatively, whether the methods of data collection, quality control and
gauge selection exert any bias in the representation of extremes. Thus the
data were accepted at face value.

Two data sets are considered: a long-term data set from a relatively sparse
network of raingauges and a much denser short-term data set.

The long-term data set consists of 401 gauges with at least 40 years of
record. The majority of these gauges are in England, the densest areas being
in the Trent and Thames basins (Fig. 2.1).

The short-term data set comprises 1727 gauges in England & Wales and 412
gauges in Scotland & N. Ireland: each gauge has at least 15 years of data
between 1961 and 1981. The short-term data provide more detailed
information regarding the spatial aspect of maxima and are considered primarily
in Chapter 6.

2.2 EXTRACTION OF ANNUAL MAMMA

The annual maximum was taken as the largest value occurring within the
calendar year. The date of occurrence of the maximum was assigned to the
first day (for durations of more than 1 day); hence an event crossing from
December to January is deemed to have occurred in the earlier year.

The 1-day and 2-day annual maxima were extracted from the rainfall records
using the following rules:

(i) for full years of record (365 or 366 values): find the maximum
1-day (or 2-day) value and the date of occurrence

(ii) for years with less than 6 months of valid data: assume maximum
unknown for that year (recorded as -1)

(iii) for years with between 6 and 12 months of data: find recorded
maximum and cross-check with nearby gauges.

For case (iii) the procedure adopted was to estimate daily rainfall values for
all missing days and to test whether any exceeds the recorded maximum. If
one of the estimated values is greater than that recorded, the true annual
maximum for the year is treated as unknown (i.e. as case (ii)). Otherwise the
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recorded maximum is adopted (i.e. as case (i)). Further details are given in
Appendix 2.

The above rules were applied in extracting annual maxima for the long-term
data set. The cross-checking procedure (case (iii)) was particularly powerful
for years from 1961 onwards, when data for the Meteorological Office's
complete set of daily raingauges were available. When extracting annual
maxima for the short-term data set, special checks were made for the North
West and North East, the regions most intensively studied. For other
regions, a simpler rule was applied: annual maxima for the short-term data
set were accepted if they came from more than 9 months of record and
rejected otherwise.

2.3 PERIOD OF RECORD CHOSEN FOR ANALYSIS

The gauge record lengths in the long-term data set vary from 40 to 108
years, starting as early as 1870 and as late as 1940. Figure 2.2 shows the
number of gauges in England & Wales for which valid annual maxima were
available in the long-term data set. The decay from 1960 onwards reflects
the fact that many long-term gauges were either moved or discontinued in the
1960's and 1970's.

A standard period was adopted in the analysis so that reasonable comparisons
could be made between gauges. mfe period taken needs to be as long as
possible (to facilitate reliable fitting of extreme value distributions) but also to
be such that enough gauges are in operation in a given year to form the
regional maxima (Chapter 4). Had the primary objective of the study been to
improve the synthesis of point rainfall frequency curves, such restrictions would
not, of course, have been imposed.

A 67-year period, 1915-1981, was taken as the standard period on the basis
that two-thirds of the long-term gauges were in operation in 1915. Fewer
long-term gauges were in operation in 1981 and, using the same two-thirds
criterion, the end year would be 1974. However, data were taken up to 1981
to include the years of the short-term data set.

A check was made for possible secular trends in the 1-day annual maximum
rainfalls which might disallow standardization on the period 1915-1981. Figures
2.3 show chronological plots of the 1-day annual maxima for some of the
regions delineated in Fig. 2.1 and discussed in Section 2.5. The rainfalls are
standardized by the gauge average annual rainfall, SAAR

There do not appear to be any obvious trends in the data series for 1-day
annual maxima and, in particular, no evidence to suggest that excluding the
period before 1915 will cause any bias in the results.

This conclusion does not fully concur with observations by Bleasdale (1970),
Rodda (1970), Perry & Howells (1982) and others that shifts have occurred in
the frequency of heavy 1-day rainfalls in some areas. Figures 2.3 appear to
demonstrate that such shifts do not stand out at regional scale. Later, Perry
& Howells (1986) found little evidence of systematic changes in the frequency
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of heavy 1-day rainfalls other than in mid and south Wales and southwest
England.

A formal regression analysis of the standardized 1-day rainfalls in Wales (Fig.
2.3WA) revealed only a weak upwards trend, which was not significant at the
95% level.

2.4 BASIC STIATISTICS OF 1-DAY MAXIMA

2.4.1 Introduction

The mean, coefficient of variation and skewness of the annual maximum 1-day
rainfalls were calculated for each gauge in the long-term data set for the
period 1915-1981. The results were mapped for the country and are presented
in Figs. 2.4 to 2.6.

2.4.2 Mean of annual maxima, RBAR

Adopting a notation analogous to that used for floods in the FSR, the mean
of the annual maxima at a given station is denoted by RBAR. The RBAR
map (Fig. 2.4) is reasonably coherent and stable, with neighbouring stations
being generally in good agreement. The results show general patterns over the
country, with slightly higher values in the west than in the east, and higher
values along the south coast. The highest values are associated with the
more mountainous regions of the Highlands, Lake District, Snowdonia, Brecon
Beacons and Dartmoor.

2.43 Coefficient of variation of annual maxima, CV

The coefficient of variation, CV, ranges from 0.17 for gauge 584771 (Fisher
Tarn reservoir) in the Lake District to 0.72 at 145760 (Horncastle) in
Lincolnshire. The latter has a mean 1-day maximum of 35.7 mm but had
rainfalls of 100.3, 97.8 and 183.9 mm in 1920, 1940 and 1960 respectively,
which have led to the high CV.

The CV map (Fig. 2.5) is a little less coherent than the RBAR map:
neighbouring values sometimes vary by 0.10 and occasionally by much more
(e.g. adjacent gauges in Dorset have CVs of 0.26 and 0.53). This variation in
CV generally arises from sampling; high values in (statistically) short records
have an appreciable influence on the CV.

The CV map nevertheless gives some indication of a possible regionalization of
heavy rainfall frequency. Northwest England has generally low CV which is
consistent with depressional rainfall, i.e. heavy 1-day rainfalls are a recurrent
feature in each year. The east has generally high CV due to the occasional
heavy thunderstorm in an otherwise low-rainfall region. The West Country is
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an unusual region having received the three largest 1-day rainfalls observed in
the UK (Reynolds, 1978), and this is reflected in the high CVs at a number
of gauges.

Wales and Scotland have mrixed CVs, with the east coast of Scotland being
generally higher than the west, following the trend in England. N. Ireland
has mixed CV but generally quite low except for site 962647 (Coleraine) with
a CV of 0.62.

24.4 Skewness of annual maxima, g

The skewness map (Fig. 2.6) is more variable than the RBAR and CV maps,
as is to be expected given its larger sampling variability. However it does
show notable trends. The skews are generally low in northwest England,
moderately low in Wales and parts of central England (as are the CVs), and
high in the Somerset area (which has high CV). In south and east England
the results are more mixed than for the CVs.

2.4.5 Correlations with other variables

Values of RBAR, CV and skew were examined for possible correlations with
eastings, northings, altitude and SAAR. The results in Table 2.1 indicate that
the mean 1-day annual maximum rainfall, RBAR, is strongly correlated with
SAAR (r=0.96) for England & Wales, with r=0.93 when Scotland & N. Ireland
are included. This relationship is considered further in Section 2.7.

RBAR is moderately correlated with eastings (r=-0.48) for England & Wales,
showing a decrease from west to east, but there is no significant correlation
with northings, either for England & Wales or Scotland & N. Ireland.

The correlation between RBAR and CV is poor (r=-0.25), suggesting that CV
may be an important variable describing something that RBAR does not. CV
is poorly correlated with most of the other variables but has good correlation
with skew (r=0.76) and a moderate negative correlation with SAAR (r=-0.40).

2-5 REGIONALIZATION

25.1 Introduction

The main aim of the study is to examine the relationship between point and
regional maximum rainfall (Chapter 4 et seq). The previous section has shown
that there are regional differences in the statistics of point rainfall with the
lowest CV and skews in northwest England and the highest in eastern
England and the West Country. It was therefore decided to divide the country
into regions which can be considered reasonably homogeneous with regard to
1-day annual maximum rainfall. In this context a region is deemed to be

10



Table 21 Correlation tables for long-term data set: I-day annual
maximwn rainfalls

(a) England & Wales (345 values)

easting 1.00
northing 0.00 1.00
SAAR - 0.58** 0.04 1.00
altitude - 0.33** 0.09 0.54** 1.00
RBAR - 0.48** - 0.03 0.96** 0.48** 1.00
CV 0.28** - 0.17** - 0.38** - 0.26** - 0.25** 1.00
skew 0.06 - 0.24** - 0.12 - 0.07 - 0.05 0.76** 1.00

east north SAAR alt. RBAR CV skew

(b) Scotland & N. Ireland (56 values)

easting 1.00
northing 0.66** 1.00
SAAR - 0.28 0.02 1.00
altitude 0.16 - 0.12 0.15 1.00
RBAR 0.07 0.07 0.82** 0.24 1.00
CV 0.19 0.08 - 0.43** -0.10 - 0.22 1.00
skew 0.10 0.05 - 0.21 -0.12 - 0.10 0.76** 1.00

east north SAAR alt. RBAR CV skew

(c) UK (401 values)

easting 1.00
northing - 0.34** 1.00
SAAR - 0.55** 0.18'* 1.00
altitude - 0.23** 0.07 0.48** 1.00
RBAR - 0.36** 0.02 0.93** 0.45** 1.00
CV 0.26** - 0.16'* - 0.40** - 0.24** - 0.25** 1.00
skew 0.04 - 0.14* - 0.13 - 0.08 - 0.06 0.76** 1.00

east north SAAR alt. RBAR CV skew

* highly significant (99% level)
** very highly significant (99.9% level)
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homogeneous if, after standardizaton (Subsection 3.3.1), the annual maximum
rainfall data are consistent with the adoption of a typical point growth curve.

25.2 Previous regionalizations

In presenting methods for estimating rainfall depth-duration-frequency for any
site in the UK, Volume 11 of the Flood Studies Report (NERC, 1975)
differentiates only two geographical regions: England & Wales and Scotland &
N. Ireland. However, Jackson and Larke (1975) demonstrate significant
regional variations in heavy rainfall frequency by reference to seven regions in
England & Wales (Fig. 2.7a).

The apparent discrepancy with the FSR 11 method is explained by the latter's
use of M5 rainfall depth as a means of generalizing rainfall growth factors
(FSR 11.2.3). (M5 is the value with return period 5 years, derived from the
series of annual maxima.) For any given duration, these M5 rainfall depths
have a strong regional pattern. The extent to which the FSR H method
disguises regional variations in rainfall frequency is discussed further in Section
3.6. As regards Jackson and Larke's regions, it is unclear how they were
chosen other than on the basis of meteorological insight anid a practical desire
to conform to hydrometric areas.

Other researchers distinguish rainfall regions according to the regime seen in
monthly and annual accumulations. For example, Gregory (1975) regionalized
on the basis of annual rainfall fluctuations using factor analysis techniques.
More recently, Wigley et al (1984) divided England & Wales into five regions
through principal component and correlation analyses of annual, seasonal and
monthly data for the period 1861-1970, although only 25 of the 55 sites used
were within England & Wales.

It is relevant to consider also regionalization methods developed for flood
frequency. The Flood Studies Report statistical method of flood estimation
(FSR 1.4.3.9) uses ten geographical regions (Fig. 2.7b). These were chosen a
pnon to correspond to major hydrometric area groupings but were subsequently
upheld as useful in discriminating flood growth behaviour (Stevens and Lynn,
1978).

More recently, attempts have been made to regionalize flood frequency
according to catchment characteristics, both physical ones (such as soil type
and stream slope) and climatic ones (such as SAAR). Acreman and Sinclair
(1986) regionalize Scotland using cluster analysis of catchment characteristics
and show that the non-geographical region,s thus identified are generally
homogeneous with respect to general extreme value (GEV) distribution fits to
flood peak data

Wiltshire (1986a) regionalized UK flood frequency by specific partitioning
according to three key catchment characteristics: drainage area, SAAR and
urban proportion. The catchment-characteristic thresholds defining the
partitioning were determined by an analysis of the coefficient of variation, CV,
of the annual maximum flood peaks. The thresholds were chosen to minimize
within-region, and maximize between-region variations in CV. Subsequently,
Wiltshire (1986b) developed an alternative test of regional homogeneity based
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on the folded non-exceedance probabilities of individual flood maxima and this
is now summarized.

253 The G-point test of regional homogeneity

Suppose that there is a known frequency distribution (underlying the maxima
in the region) which has a cumulative distribution function G and let xij
denote the ith maxima at the jth site. Then the "G-points" G-=G(xij) will be
a random sample from a uniform distribution on [0,1]. If, however, the
region is heterogeneous, Gij will have properties rather different from those
expected of a sample from a uniform distribution.

Wiltshire's G-point test examines the extent of this departure through the test
statistic:

N (G:'- - G.'. )2

R = 12 i: : - . (2.1)
j=l nj

where:

Gij - 12Gij - 11 (2.2)

this "folds" the distribution in order to amplify the differences. Here n. is
the length of record at the jth of N sites, G denotes the mean of the 6.'
at the ith site and G.' denotes the regional mean weighted by record length.
The test statistic R is a ratio of the observed variance in the 0' - to that
expected for a uniform distribution. (The variance of a uniform distribution
on [0,1] is 1/12, hence the 12 in Equation 2.1).

For a homogeneous region and for moderately large ni, the statistic R is
distributed as x2 with N-1 degrees of freedom. The hypothesis of regional
homogeneity is therefore rejected if the calculated R exceeds tabulated values
of x2 at the appropriate significance level.

Wiltshire's methods of grouping catchments for flood frequency analysis do not
produce regions which are explicitly geographical. This may be a reasonable
strategy for flood frequency regions because flood response is influenced by
catchment factors. However, rainfall frequency is primarily dependent on
climate (rather than catchment) characteristics and a greater degree of spatial
coherence is therefore expected in rainfall regions compared to flood regions.
Site factors, such as exposure to wind, doubtless disturb this spatial
"smoothness" in some localities, but at too small a scale to be of concern in
this analysis.

The approach taken in this study is to seek geographical regions within which
heavy rainfall frequency can be considered reasonably homogeneous. Regions
were proposed a pror, tested for regional homogeneity (principally using the
above R statistic) and then adjusted if necessary. The guiding influence in
constructing regional groupings was the pattern of variation seen in the CV
map (Fig. 2.5), the objective being to minimize within-region variability.
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25.4 Initial choice of regions

Regionalization of 1-day maximum rainfalls in the present study began with
regions resembling those used by Jackson and Larke (Fig. 2.7a). Immediate
modifications were to subdivide area G into eastern and southern components,
and to include Lincolnshire in the former (rather than in area F). These
initial regions (Fig. 2.7c) correspond with major hydrometric area groupings
and bear some resemblance to those used to regionalize floods in the FSR
statistical method (Fig. 2.7b).

Table 2.2 summarizes application of the G-point test to the initial regions.
Calculation of the R statistic is based on adoption of a GEV distribution for
the typical point growth curve (Chapter 3). Thus the test examines the extent
to which the pooled growth curve is representative of the individual site data
From Table 2.2 it is seen that only the Trent, East, Thames and West
Pennine regions are homogeneous at the 5% level of significance. The other
regions have calculated R values in excess of the 5% critical value.

Table 22 Homogeneity tests - initial regions

Region Number of Calculated Critical R statistic, x2

gauges, N R statistic N-1
5% level 1% level

East Pennine 36 55.6 * 49.8 57.3
Trent 41 45.2 55.8 63.7
East 46 58.8 61.6 69.9
Thames 55 49.6 72.1 81.0
South 48 69.3 * 64.0 72.4
SW/Wessex 43 77.0 58.1 66.2
Wales/Severn 45 89.9 ** 60.5 68.7
West Pennine 33 37.0 46.2 53.5

* the hypothesis (of regional homogeneity) is rejected at the 5%
significance level

the hypothesis is rejected at the 1% significance level

2.55 Final choice of regions

Having found the initial regions (Fig. 2.7c) wanting, reference was made to the
CV map of 1-day annual maximum rainfall (Fig. 2.5). In proposing new
regions, the aim was to seek groupings which exhibited common CV values.
had sufficient long-term gauges to permit meaningful analyses of regional
maxima (Chapter 4), and which adhered to hydrometric area boundaries. In
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the event it was not possible to fulfil all three criteria in every case.

The diversity of CV values seen in the Southern, Wessex and Severn-Trent
Water Authority regions led to the decision to disregard administrative
boundaries. The regions finally adopted are defined in Appendix 3 and
illustrated in Fig. 2.7d. (These are the regions superposed on Figs. 2.4 to
2.6 and later diagrams.) A few words on each region will serve to illustrate
the mixture of empirical and intuitive judgement that went into the final
choice of regions.

The high CV values in Eastern England were found to extend into the
Thames catchment north of the Chilterns, the Warwickshire Avon,
south-eastern parts of the Trent, and the Great Stour and lower Medway in
Kent. The other high CV area in the West Country comprises the Wessex
water authority region (excluding the Dorset Avon) and the Axe, Otter and
the Exe (to Exeter). Remaining regions in Southern and South West England
have generally moderate CV.

Figure 2.5 indicates a progressive west-east trend in CV across Wales, Central
and Eastern England. Although the sparseness of the long-term gauge
network in Wales limits confidence in delineating boundaries, it is clear that
only the upper reaches of the Teme and Severn share the moderate to low
CV values seen in Wales. This is broadly in line with a topographic
separation of upland parts of the Severn basin. The Central region is well
defined to the north by much lower CV values in the North West and
Pennines.

Particular difficulty was experienced in achieving homogeneous regions in
Northern England. This was ultimately met by treating the Lake District as a
separate region and by partitioning North West and North East England some
distance east of the Pennine chain. The boundary adopted cuts across all the
major east-flowing rivers at about the 800 mm SAAR contour. In terms of
the main objective of the study - to assess the collective risk of reservoir
design flood exceedances - it is pertinent to note that the North West and
Pennine region thus defined includes almost all reservoirs in the Pennine
chain. For brevity, the region is hereafter referred to as the North West.

Table 2.3 summarizes the G-point tests on the final regions. The South West
region exhibits significant heterogeneity and is rejected at the 5% level, while
Wales exhibits very significant heterogeneity and the hypothesis of regional
homogeneity is rejected at the 1% level. However, all the other regions are
deemed homogeneous in the sense that their data are reasonably consistent
with adoption of their typical point growth curve (Chapter 3). It is seen
from Table 2.3 that the Central and West Country regions pass the G-point
test particularly convincingly.

It should be noted that the discriminatory power of statistical homogeneity
tests is limited (see Subsection 2.5.6); they will only detect gross heterogeneity.
It is therefore conceded that the Wales region in particular is of doubtful
homogeneity, a conclusion largely pre-empted by the sparseness of the gauge
network in relation to the varied topography.

Formal homogeneity tests were not carried out on the Scotland & N. Ireland
regions. Subdivision of either was impractical due to the limited number of
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Table 23 Homogeneity tests - final regions

Region Number of Calculated Critical R statistic, x2

gauges, N R statistic N-1
5% level 1% level

North East 33 39.9 46.2 53.5
Eastern 75 80.4 95.1 105.2
Southern 73 88.3 92.8 102.8
West Country 25 25.0 36.4 43.0
South West 23 37.7 ' 33.9 40.3
Wales 28 48.2 * 40.1 47.0
Central 38 23.8 52.2 59.9
North West 34 44.4 47.4 54.7
Lake District 16 21.4 25.0 30.6

* the hypothesis (of regional homogeneity) is rejected at the 5%
significance level

** the hypothesis is rejected at the 1% significance level

long-term gauges available. Although the N. Ireland network is reasonably
compact, Fig. 2.5 shows considerable variability in CV. With respect to
Scotland, it would seem intuitively reasonable to continue the east-west division
northwards. However, this was not done because it would have elongated the
North West and North East regions to such an extent as to impede the
regional maximum analysis of Chapter 4.

A final outcome of the homogeneity tests was that the West Country and
Eastern regions, and the Central and North Eastern regions, could have been
merged without either larger region becoming heterogeneous in terms of 1-day
maximum rainfalls. Thus the more important differences in heavy rainfall
regime appear along a southeast-northwest axis. This provides a possible
explanation for the southeast-northwest divide evident in flood growth curves
(Stevens and Lynn, 1978). However, at longer durations a slightly different
pattern emerges (Chapter 7).

2.5.6 Postscript

The statistical assessment of regional homogeneity is a developing field of
hydrological research and Hosking (1987a) provides a critical review. Although
Wiltshire (1986b) found the G-point test to perform better than a CV-based
test, he concedes that its power to detect heterogeneity is limited by the
gauge numbers and record lengths generally available in hydrological studies.
The present authors doubt that either test takes account of spatial dependence
between gauge records.
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With regard to the rainfall regions developed in Subsection 2.5.5, it is
suggested that these reflect real differences in heavy rainfall regime over the
UK. Some of the regions - notably Scotland, Wales and the South West -
are of doubtful homogeneity; the analysis of further data may reveal more
appropriate subdivisions. In the context of the current project the delineation
of regions is a stepping stone to the analysis of regional maximum rainfalls
(Chapter 4). However, it is recognised that the rainfall regionalization has
wider relevance and that the regions adopted in this study will inevitably
attract comment.

2.6 SUMMARY INFORMATION FOR REGIONS

2.6.1 Introduction

Having defined regions, it is helpful to summarize their basic characteristics
(largely through descriptive statistics) before deriving typical rainfall growth
curves in Chapter 3. Table 2.4 gives general information about the regions
and their gauge networks. The regions range in size from about 6,000 km2

(Lake District) to 70,000 km2 (Scotland) with a typical size of about 15,000
km2. The number of long-term gauges in each region ranges from 16 to 75.
The corresponding gauge densities range from 0.5 gauges/1000 km2 (Scotland)
to 4.1 gauges/1000 km2 (Southern).

Table 24 Long-term gauge networks

Region Approx. regional Number Gauge Mean record length in
area of gauges density 1915-1981 analysis period

(1000 km2) (per 1000 km2 ) (years) (%)

North East 18.0 33 1.8 56.4 84
Eastern 32.5 75 2.3 56.8 85
Southern 18.0 73 4.1 57.5 86
West Country 8.0 25 3.1 55.0 82
South West 7.5 23 3.1 57.6 86
Wales 23.0 28 1.2 55.8 83
Central 10.0 37 3.7 60.2 90
North West 14.0 34 2.4 53.8 80
Lake District 6.0 16 2.7 56.3 84
Scotland 69.5 32 0.5 54.2 81
N. Ireland 13.0 24 1.8 53.5 80

2.6.2 Gauge altitude and SAAR

The altitude and SAAR of the long-term gauges have been classified into
intervals and are illustrated in Figures 2.8 and 2.9. There is a reasonable
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range of altitudes for most of the regions although the highest sites are only
414 in, one in the South West, the other in Wales.

The SAAR values show quite a good grouping within regions. This is a
desirable feature as FSR 11 approximate methods for M5-2day rainfall
estimation are given in terms of SAAR, and M5 depths lie at the heart of
the FSR II generalization. It is therefore not surprising that the regions
which show the greatest range in SAAR include those about which some
concern was expressed in Section 2.5 regarding possible inhomogeneity, namely
the South West, Wales and Scotland.

2.63 M5-lday rainfall

M5-lday depths were estimated by quartile analysis (FSR 11.2.3) and again
showed some within-region homogeneity. As previously referred to, M5 depths
were used to classify rainfall growth curves in the FSR 11 method. The
pattern of M5-lday depths resembled that of SAAR (Fig. 2.9), with the
greatest within-region variation again in the South West, Wales, the Lake
District and Scotland.

2.6.4 Summary statistics of 1-day maxima

Typical mean, CV and skew values for the regions were calculated by the
pooling techniques recommended in FSR 1.2.3.3:

X njRBAR.
RBAR j (2.3)

Xnj

= (n f(2.4)
- [nj -2 i1[RBAR j 

and g (2.5)
CV' X(nj-1)

where RBAR- is the mean of the n. annual maximum rainfalls (Rlj, R2j .
RnQ) at the jth gauge, CVj is 1their coefficient of variation and the
unannotated summations are over all gauges in the region.

RBAR denotes the typical mean annual maximum rainfall. From Table 2.5 it
is seen that the gauge networks in the Lake District, Wales and the South
West have the highest mean annual 1-day rainfalls.

CV denotes the typical coefficient of variation. The values given in Table 2.5
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support the variations seen in the CV map when formulating the regions in
Section 2.5. The West Country and Eastern regions have the highest
variability in annual maximum 1-day rainfalls, while the Lake District, the
North West and Wales have the lowest.

The typical skew, g, is a measure of the asymmetry of the annual maxima. It
is rather more sensitive to sample size than CV and its interpretation is
limited by the correlation between CV and skew discussed in Subsection 2.4.5.
The regions with highest g are the West Country, Eastern and N. Ireland.

Table 25 Typical mean, CV and skew of 1-day maima

Region RBAR CVg
(mm)

North East 33.6 .350 1.73
Eastern 32.6 .395 2.55
Southern 35.2 .321 2.04
West Country 40.2 .418 3.61
South West 46.9 .316 2.14
Wales 48.4 .292 1.55
Central 33.3 .337 1.36
North West 38.5 .273 1.38
Lake District 50.6 .262 1.19
Scotland 40.7 .319 1.97
N. Ireland 36.7 .332 2.43

2.7 RELATIONSHIP BETWEEN 1-DAY RBAR AND SAAR

2.7.1 Introduction

SAAR represents the average annual rainfall for the standard period 1941-1970
and has already been mapped in detail (e.g. FSR Fig. 11.3.1). These maps were
prepared using information from approximately 600 long-term and 6000 short-
term gauges.

It is sometimes argued (e.g. FSR 1.4.2.4) that a rainfall index based on annual
data (SAAR) is inappropriate to studies of flood-producing rainfalls whose
durations are generally measured in days or hours. However, a plot
(Fig. 2.10a) of mean annual 1-day rainfall, RBAR, against SAAR reveals a
strong correlation (r 2=86%). Some time was spent in exploring the
relationship as a possible route to estimating RBAR at an ungauged site.

It is evident from Fig. ZlOa that the relationship between RBAR and SAAR
is a composite one, with a reduction in gradient as SAAR increases from
about 500 mm to 1,000 mm but a markedly steeper gradient beyond about
1,500 mm.
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2.7.2 Model

A recent re-analysis of seasonal M5 and M100 rainfalls (Field, 1986) suggests
that a change in heavy rainfall regime may occur at a SAAR value of about
t 1,400 mm.- The approach taken in developing a model was therefore to
subdivide the. Fig. 2.10a data at SAAR = 1,400. This resulted in the
composite model:

= 1.428 SAAR° 0 4 82 SAAR < 1400

R 0.0335 SAAR SAAR 3 1400

yielding the fit illustrated in Fig. 2.10b. The model explains 89% of the
variance in RBAR.

2.73 Verification on short-term data

The average record length of the 2,138 short-term gauges (Chapter 6) is 19.9
years, compared to 56.4 years for the long-term. Thus estimates of RBAR
will be more erratic. (FSR I.4.3.10 suggests that the standard error will be
about two-thirds greater). In addition, it should be noted that many of the
short-term gauges have SAAR values estimated by interpolation (on the SAAR
map) or correlation (with a nearby long-term gauge). It is therefore
expected that the relationship between RBAR and SAAR will be less well
defined for the short-term data.

Figure 2.10c illustrates the fit that the composite model (Equation 2.6)
provides to the short-term data While it only explains 72% of the variance
in RBAR, Fig. 2.10c reveals no systematic deficiency in the model provided by
Equation 2.6.

2.7.4 Appraisal

The form of the Equation 2.6 model for RBAR is rather unusual. It was
not proved categorically better than, say, a two-part linear relationship; nor was
the 1,400 mm breakpoint determined objectively. However, further exploration
of the relationship was dispensed with when it was realized (Subsection 8.3.2)
that collective risk assessments can be made without estimation of RBAR
values.
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Fig. 21 Location of gauges in long-term data set
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3. Typical point rainfall growth curves

3.1 INTRODUCI1ON

The aim of this chapter is to obtain rainfall growth curves for each region.
The regions have been formed on the basis of the homogeneity of the 1-day
CV, so it is expected that a typical growth curve will adequately represent all
the sites in a region. From the growth curves, information such as the
1,000-year return period rainfall for a site within the North East region can
be found.

The established procedure for finding rainfall growth curves for sites or
catchments is to use the growth factors presented in Table 2.7 of FSR 11,
which depend only on the M5 rainfall value. This method will be discussed
further in Section 3.6.

The FSR II method does not lend itself readily to the study of "regional
maximum" rainfalls and the analysis has therefore centred on use of statistical
distributions for extreme values, as adopted for floods in FSR 1.

Recent studies of extreme rainfall, by Uppala (1978) and Buishand (1986) have
fitted the General Extreme Value (GEV) distribution. Revfeim (1983) adopted
a method equivalent to use of a Gumbel distribution.

Other distributions have been considered by other authors, including the log
Pearson m by Phien & Jivajirajah (1984) and the Two Component Extreme
Value distribution (TCEV) by Fiorentino & Gabriele (1984).

3.2 DISTRIBUTIONS

3.2.1 Introduction

The three distributions considered here are the GEV, Wakeby and TCEV.
These distributions have been applied to UK flood data, and used in
simulation experiments, but have not previously been widely applied to UK
rainfall data. The distributions are introduced in the next three subsections
before the fitting procedures are summarized in Subsection 3.2.5.

3.2.2 General Extreme Value (GEV) distribution

The GEV was developed by Jenkinson (1955) as a generalization of the three
Fisher-Tippett extreme value distributions. Its distribution has the form
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exp[-(1-k(x-u)/a)l / k] k0O
F(x) = (3.1)

exp[-exp(-(x-u)/a ) ] k=O

For k=O the GEV reduces to the Gumbel or EV1 distribution. For the cases
k<O and k>O the GEV corresponds to the EV2 (Frechet) and EV3 (negative
Weibull) distributions respectively.

An inverse form is used to calculate the size of an event with a given return
period:

u + a (1 - exp(-k y))/k k#O
x = (3.2)

u + a y k=O (3.2)

where y is the Gumbel reduced variate given by

y = -In (-In F(x)) = -In (-In (1-l/T)) (3.3)

and T is the return period. (See FSR 1.1.2.4). It can be seen from
Equation 3.2 that, for the case k<O, the GEV variate has a lower bound of
u * a/k; for k>O this is an upper bound.

Figure 3.1 distinguishes the three types of GEV when plotted against the
Gumbel reduced variate, y.

3.23 Wakeby distribution

The Wakeby is a 5-parameter distribution given in the inverse form as

x = m + a[l- 1(l-F)b] - c[1-(l-F)-d] (3.4)

where F.= F(x)

It was proposed initially by Houghton (1978) to account for the separation
effect found in floods (see Subsection 3.4.2). Because the Wakeby is a
5-parameter distribution, it has wide flexibility and can mimic the shapes of
the GEV, Lognormal and Log Pearson HI distributions.

The heavy upper tail of the Wakeby can give rise to the occasional high
outlier sometimes found in rainfall and flood data The parameters can be
estimated by the method of probability weighted moments (PWM, see
Subsection 3.2.5) and, because of the large number of parameters, it is
customary to treat c and d as regional parameters. The parameter m is the
lower bound of the distribution.
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3.2.4 Two component extreme value (TCEV) distribution

The TCEV distribution was introduced by Rossi et al (1984) who noticed that
outlier events appear to come from different meteorological conditions than
other maxima. The TCEV is derived by assuming that the numbers of events
of each type follow a Poisson distribution and that the magnitudes are
exponentially distributed. The TCEV is given by:

F(x) - exp(-xle 1 - x2 e 2) x¢0 (3.5)

which is equivalent to the product of two EV1 distribution functions.

When X1>X2, the parameters (Xl\el) describe the more frequent events (the
basic series) and (X2, °2) the larger and rarer events (the outlier series). This
distribution has a discontinuity at x=0 but, for most hydrological applications,
the probability of an event with x<0 is negligible and the distribution can be
considered to be continuous (Rossi et al, 1984).

3.25 Estimation procedure

The probability weighted moments (PWM) method of fitting the distributions
was used in preference to other methods. The PWM method was
introduced by Greenwood et at (1979) and is especially useful for distributions
that can be written in the inverse form such as the GEV, and Wakeby.
Although the TCEV cannot be so written, PWM estimates have been derived
by Arnell & Beran (1987).

For regional estimation the PWM estimates have been shown to be generally
as good as maximum likelihood estimates, for sample sizes typical in hydrology
(Landwehr et al, 1979a).

Their main advantage is computational simplicity: the PWM estimates are linear
functions of the data and are less sensitive to outliers than conventional
moments. The probability weighted moments are defined as:

Mprs = E[XP{F(X)}r(l-F(X))s] (3.6)

when X denotes a random variable having distribution function F. The
conventional non-central moments are given by MpA0 0 for p=1,2.... However,
for estimation purposes, the particular PWMs given by

8 r = i'lr0o = E[X(F(X))r] r=0,1,2... (3.7)

can be used (e.g. Hoshing et al., 1984)

Estimates of the PWMs are given by:

A = X _ (pj )rxj (3.8)
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where X-.X.,-x,.., n are the data (ordered in ascending order) and pj is the
plotting poslion defined by

j-0.35
Pj n (3.9)

For the GEV case:

x(F) = u + a{1-(-ln F)k}/k k•0 (3.10)

and the population PWMs are given by

rBr_1 - u + a (1-r - k r(l+k))/k k>-1, k#0 (3.11)

where r(z) is the Gamma function.

Estimates of the parameters are calculated from the first three PWMs ( BO,
B1 and 02). The parameter k is found as the solution of:

(3 02 - B0) 1 - 3- k

(3.12)
(2 B1 - 80) 1 - 2-k

which, for k>-0.5, may be approximated by

7.8590c + 2.9554c 2 (3.13)

(201 - BO) 1n2
where c -- (3.14)

(3B2 - Bo) ln3

The other two parameters are calculated as

A (201- 30)k
a (3.15)

r(l+k)(1-2 - ~ )

and u = 0 + a (r(l+)-1)/k . (3.16)

PWM solutions for the Wakeby distribution are given by Landwehr et al
(1979b) and, for the TCEV distribution, by Arnell & Beran (1987).
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323 REGIONAL APPLUCATION

33.1 Standardization

In order to combine data from individual gauges into a regional average, or
typical, rainfall growth curve, it is first necessary to standardize the data in
some way. This is because the growth curve expresses the relative magnitude
of rare events compared to more frequent ones, and is not concerned with
the absolute values.

In rainfall studies it has been customary to standardize by dividing either by
SAAR or MS. Because SAAR is an average annual rainfall (calculated over
the period 1941-1970) it is not especially appropriate to a study of 1-day and
2-day maximum rainfalls (based on the wider period 1915-1981). On the
other hand there is the advantage that SAAR has been mapped in detail
throughout the UK.

M5 is the rainfall depth (for a given duration) of 5-year return period and is
the standardizing variable used in FSR H. It was chosen as a compromise
between a more frequent event (which would be more reliably estimated from
a given data series) and a longer return period event, e.g. M50, which would
be more characteristic of the frequency of rainfalls relevant to engineering
design (Jackson, 1977). A quoted attraction of M5 was that it could be
readily estimated by quartile analysis of the annual maximum data (FSR
11.2.2)

In flood studies it is customary to standardize by the arithmetic mean of the
annual maximum peak flows, i.e. the mean annual flood (QBAR), following
FSR I practice. Use of the mean annual event has the advantage of avoiding
any explicit distributional assumption. However, the occurrence of an
"outlier" occasionally upsets estimation of the mean and, for this reason,
the median annual event is sometimes preferred as the standardizing
variable (e.g. Buishand, 1984).

On balance it was decided that standardizing by the mean annual maximum
rainfall, RBAR, was most appropriate to the present analysis. RBAR can be
estimated more accurately than M5 (particularly for gauges in the short-term
data set) and is more directly relevant to heavy rainfall frequency estimation
than SAAR. The choice accords with the flood analyses of FSR I, but
differs from the rainfall analyses presented in FSR 11. Comparisons with the
M5 method of FSR 11 are therefore made in Section 3.6.

3.3.2 Estimation procedure

The probability weighted moments (PWM) technique is readily adapted for
regional application to standardized data The parameters of the typical
(regional growth) curve are estimated from regional PWMs using the relevant
equations, e.g. Equations 3.13 - 3.16 for the GEV distribution.

The regional PWMs are calculated from the individual site PWMs as follows.
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First, the first and second PWMs (C3 and 82) are standardized by the site
mean, 80. (From Equation 3.7 it is seen that Bo is simply the mean annual
maximum value, RBAR.) Thus

tij = 1i/0 (3.17)

denotes the standardized PWM at the jth site. These PWMs are then
averaged by a weighting on record length, ni, giving

i:til n.
T EtIj nj *(3.18)

These represent pooled standardized PWMs for the region. Setting 8O=T 0 =1,
01=TI and 82 =T2, and substituting into Equations 3.13 - 3.16, yields estimates
of u, a and k for a GEV representation of the typical curve.

The above estimation procedure is entirely objective and readily suited to
computer implementation. However, in applying the technique to derive typical
growth curves for the various regions, some reference to graphical displays
assists comparisons.

3.4 PRELIMINARY ANALYSIS OF 1-DAY RAINFALLS

3.4.1 Plot of annual maximum data

Figure 3.2 illustrates the standardized annual maximum 1-day rainfalls for the
North East region. The plot was constructed as follows.

First, the 1-day maximum rainfalls for each gauge were divided by the
respective mean, RBAR. The ordered standardized values, xi, were then
plotted against the Gumbel reduced variate:

yi - -In(-ln Fi)) (3.19)

using the Gringorten plotting positon formula:

i-0.44
Fi = 1 (3.20)

' n+0. 12

where n is the number of annual maxima and i is the rank in ascending
order. (See FSR 1.13).

Figure 3.3NE is a slightly different but equivalent plot showing the same data
Here a classification system has been used to avoid excessively cluttered plots
when superposing data from all gauges in a region. Thus the plotted numbers
in Figs. 3.3 denote the number of data points that fall in a given grid cell.
The plots shown are based on cells of width 0.25 (y units) and height 0.1 (x
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units).

One feature of these plots is the sparsity of data points around y=4.1. This
arises from the particular record lengths available in the long-term data set.
For a typical record length of 56 years (Table 2.4), the highest value plots at
y=4.60 and the second highest at 3.57; hence there are few points around
y=4.1.

3.4.2 Comparison of fits provided by the GEV, Wakeby and TCEV
distributions

The three candidate distributions - GEV, Wakeby and TCEV - were fitted to
each region in turn, using the method of probability weighted moments.

The GEV and Wakeby distributions were fitted to all 11 regions without
numerical problems. However, there was no TCEV solution for the Lake
District and North West regions and, for other regions, the estimation
procedure for the TCEV parameters sometimes required a large number of
iterations. Research has shown that PWM solutions for the TCEV cannot
be found for many combinations of sample characteristics and that there is a
specific problem in fitting to EV1 type data (Amnell & Gabriele, 1988). It
transpires that the Lake District and the North West are the two regions for
which the fitted GEV distribution is approximately EV1 (i.e. for which the
shape parameter k approaches zero).

Comparative fits provided by the various distributions are illustrated in Figs.
3.3 for the North East, West Country and North West regions. The
differences between the fitted curves are not great and no one distribution
consistently gives the highest or lowest curve. All the curves provide a
reasonable representation of the annual maximum data when these are
superposed using the Gringorten plotting position formula, as shown in Fig.
3.3. There was no evidence from these plots (or from those for other
regions) to suggest that one distribution should be used in preference to the
others. However, the inability of the TCEV estimation procedure to provide a
fit for the Lake District and North West regions led to more critical scrutiny
of the TCEV results.

Values of the TCEV parameters for the 1-day typical curves are given in
Table 3.1. In the terminology of Amnell & Beran (1987), the proportion of
events, p, which can be considered to come from the outlier series ranges
from 0.14 for the West Country to 0.50 for the Central region. These are of
similar magnitude to the outlier proportion of 0.32 found by Fiorentino &
Gabriele (1984) for rainfall in Cosenza, Italy. However, these proportions are
considerably higher than those found by application of the TCEV to flood
data (e.g. Arnell & Beran (1987) obtained an outlier proportion of Q03 for
Great Britain). Moreover, the proportions for rainfall are sufficiently high as
to call into question use of the word "outlier".

Parameter values for the GEV and Wakeby distributions are given in Tables
3.2 and 33 respectively. The parameters of the GEV typical curve are fairly
consistent from region to region, with the Lake District and the North West
being approximately EV1 and remaining regions markedly EV2. Note that,
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Table 3.1 1-day typical growth curves: TCEV distribution

Region Parameters

8* p* XI p

North East 2.02 0.639 56.7 0.409
Eastern 3.00 0.197 51.1 0.159
Southern 1.93 0.261 61.7 0.200
West Country 3.50 0.170 66.6 0.141
South West 2.52 0.263 137.2 0.204
Wales 1.92 0.201 84.6 ?
Central 1.78 0.879 45.3 0.499
North West }
Lake District no solution
Scotland 2.35 0.217 92.6 ?
N. Ireland 1.92 0.201 84.6 ?

See Arnell & Beran (1987) for definition and interpretation of
the regional TCEV parameters

Table 3.2 I-day typical growth curves: GEV distribution

Region Parameters

u a k

North East 0.835 0.236 -0.111
Eastern 0.817 0.231 -0.180
Southern 0.852 0.222 -0.083
West Country 0.816 0.217 -0.218
South West 0.852 0.198 -0.148
Wales 0.864 0.208 -0.073
Central 0.840 0.244 -0.072
North West 0.875 0.211 -0.015
Lake District 0.882 0.208 0.008
Scotland 0.852 0.207 -0.124
N. Ireland 0.847 0.209 -0.137

England & Wales 0.843 0.223 -0.115
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Table 3.3 i-day typical growth curves: Wakeby distribution

Region Parameters

a b c d m

North East 0.222 7.00 6.24 0.048 0.490
Eastern 0.241 7.30 1.58 0.167 0.473
Southern 0.238 5.89 3.76 0.068 0.523
West Country 0.235 5.90 0.93 0.240 0.505
South West 0.207 7.03 1.78 0.128 0.556
Wales 0.240 6.69 2.91 0.073 0.561
Central 0.235 6.67 20.21 0.015 0.483
North West 0.258 6.75 14.74 0.016 0.533
Lake District 0.259 5.50 10.24 0.022 0.555
Scotland 0.226 8.11 2.72 0.091 0.525
N. Ireland 0.703 62.13 13.46 0.022 0.000

Table 3.4 Mean and standard deviation of regional skews obtained
from 30-year periods of record

Key Region Number of g a(g)
30-year records

NE Northeast 57 1.15 0.57
E Eastern 125 1.50 0.85
S Southern 123 1.14 0.77
WC West Country 42 1.72 0.95
SW South West 36 1.17 0.68
WA Wales 45 1.21 0.63
CE Central 74 1.09 0.61
NW North West 51 0.74 0.50
LD Lake District 28 0.92 0.45
SC Scotland 51 1.35 0.72
NI N. Ireland 35 1.09 0.83
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because of the standardization by RBAR, the fitted parameters satisfy the
relationship:

u = 1 + a {r(1+k)-1}/k (3.21)

Turning to Table 3.3 it is seen that the parameters of the Wakeby typical
curve obtained for N. Ireland are radically different. This is an artefact of
the particular algorithm used. It could be avoided by setting the m parameter
(which defines the lower bound of the distribution) to the observed lower
bound of the data, rather than to the value zero.

Although the philosophy of the Wakeby distribution is to avoid interpretation
of the parameters, and "let the data speak", it can be seen from Table 3.3
that there is a strong inverse relationship between the c and d parameters.
This suggests that the Wakeby may be too flexible to provide consistent fits
from region to region.

3.43 '[he separation effect

One of the advantages put forward for use of the Wakeby and the TCEV is
that they can adequately describe the range of skews found in regional flood
data. Matalas et al. (1975) observed that the variability of skews in regional
flood maxima was consistently greater than that expected from similar sized
random samples drawn from the GEV or log Pearson type 3 distributions.
This is the so called separation effect. Two factors suggested as possible
causes of the phenomenon are heterogeneity in regional skew and
non-stationarity in the annual maximum series, i.e. long-term secular change
(Wallis et al, 1977).

Checks were therefore made to see whether the 1-day rainfall maxima for the
regions exhibited the separation effect. Table 3.4 summarizes the mean and
standard deviation of the skews for each region, calculated from the gauge
annual maximum data taken in 30-year subsets. This arrangement enabled a
comparison to be made with the behaviour expected in random samples of 30
drawn from a GEV distribution. The observed skewness data of Table 3.4
are seen in Fig. 3.4 to conform reasonably well to the GEV model; there is
no systematic departure and hence it is concluded that there is no obvious
tendency for UK regional rainfall data to exhibit the separation phenomenon.

3.4.4 Choice of distnbution:

The GEV distribution is preferred in the present study for the following
reasons:

(i) PWM fits could be obtained for all the regions (unlike the TCEV)
(ii) the rainfall data reveal no separation effect (for which the Wakeby

was specifically designed and the TCEV shown to accommodate)
(iii) it only has three parameters (against the four of the TCEV and the

five of the Wakeby).
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(iv) the parameters are readily interpreted: u is a shift parameter, "a"
influences the slope, and k controls the curvature.

3.5 TYPICAL GROWTH CURVES FOR 1- DAY RAINFALLS

3.5.1 Summaiy of method

Annual maximum 1-day rainfalls at each site were standardized by their mean
annual value, RBAR, before being pooled into a regional analysis based on
the rainfall regions constructed in Section 2.5. The analysis was confined to
the period 1915-1981. A GEV distribution was fitted by the method of
probability weighted moments, resulting in the parameter values given in Table
3.2. The typical curves for the regions are shown in Fig. 3.5, from which a
discussion of regional rainfall characteristics follows.

3.5.2 Discussion

Figure 3.5 shows relatively steep growth curves for the West Country and
Eastern regions and much flatter curves for the North West and Lake District.
The variation between the curves can be explained by reference to the pattern
of extreme rainfalls noted in Sections 2.4 and 2.6. The West Country and
Eastern regions have high CV and skew values whereas those for the North
West and Lake District are much lower (Table 2.5).

The skew of the GEV distribution is controlled by the k parameter through
the relation:

r(1+3k)-3r(1+2k)r(1+k)+2r3(1+k) (322)

[Mr(+2k)-r 2 (1+k)] 31 2

which is illustrated in Fig. 3.6, taken from FSR Ll.24. Because u, a and
k have been fitted by probability weighted moments (Equations 3.13-3.16), the
skews of the fitted distributions differ somewhat from the mean regional skews
given in Table 2.5. This also applies to the CVs which, for the GEV fitted to
standardized data, are given by:

CV = a [r(1+2k) - r2(1+k)]15/lki (3.23)

3.5-3 Sensitivity to period of record

The standard periods of analysis adopted in the study are 1915-1981 for the
long-term data set and 1961-1981 for the short-term data considered in
Chapter 6. The sensitivity of the typical growth curves to changes in the
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period of record was explored by fitting the GEV to different record lengths
and start dates, region by region. (In each experiment, the data were
standardized afresh by dividing by RBAR values calculated over the particular
period of record being used.)

It was found for example that the North East shows a higher skew (i.e.
reduced k) for periods including the 1920s and 1930s when there were some
exceptionally high and low 1-day maxima (see Figure 2.3NE). For most
regions it was found that there was little difference between the typical curves
obtained using all available data and those derived for the chosen 1915-1981
standard period.

Comparisons were also made with results for the Meteorological Office
standard rainfall period 1941-1970 and in some cases fairly large differences
were found. In Figs. 3.7 it is seen that the typical growth curves are very
similar for the North West but considerably different for the West Country.
Overall it would appear that the 1941-1970 period was slightly less volatile (in
terms of 1-day rainfall maxima) than 1915-1981. However, the difference
clearly seen in Fig. 3.7WC is scarcely discernible in the time series plot of
Fig. 2.3WC.

3.6 COMPARISON WIrH FSR RAINFALL GROWTH
CURVES

3.6.1 The FSRII method

The FSR II method of rainfall frequency estimation is to obtain the M5
depth for the required duration and then to apply growth factors to determine
the T-year rainfall.

The M5 values may be estimated direct from long-term records as the
geometric mean of the upper two quartile means (FSR 11.2.2). If record
lengths are too short then values can be obtained using maps. The Met.
Office produced maps of M5-2day rainfall at 1:625,000 scale, preferring this to
M5-lday to avoid the problem of large depressional events being split between
two measurement days. These maps were based on analysis of 600 stations
with an average of 60 years of record and another 6,000 stations with records
for 1961-1970.

The ratio of M5-60minute to MS-2day depths was also mapped. Sometimes
referred to as Jenkinson's r, the ratio enables estimation of M5 depths for
different durations using tables given in FSR II.3.

The method used to derive MT/M5 growth factors is summarized in FSR
11.2.3 with computational details provided by Keers and Wescott (1977).

It suffices to note here that a single set of rainfall growth curves are provided
for England & Wales, the choice of curve being determined solely by the M5
depth. This means, for example, that the growth factors applied to 7 hour
rainfalls at an upland site (1,400<SAAR<2,000) are the same as those applied
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to 24 hour rainfalls at a lowland site (500<SAAR<600), since both have MS
depths of about 41 mm. A separate set of growth curves is provided for
Scotland & N. Ireland.

3.6.2 Equivalent methods

The rather different basis of the FSR rainfall growth curves does not lend
itself easily to comparisons with the typical growth curves derived in Section
3.5. Several methods were considered for obtaining regional point growth
curves equivalent to the FSR 11 approach. In all cases, comparisons centred
on sites in the long-term data set.

Method A applies the FSR 1I philosophy to derive MT/M5 growth factors for
the region. In contrast Methods B and C apply the actual MT/M5 growth
factors given in FSR 11.2.3.

Method A

This uses a quasi-FSR 11 approach to derive MT/MS growth factors for 1-day
rainfalls in a region. The factors differ from those given in FSR 11.2.3,
primarily because of the regionalization and the concentration on 1-day data.

Method B

This applies the standard MT/M5 growth factors given in FSR 11.2.3. The
regional growth curve is obtained by averaging growth curves deduced for each
raingauge site in turn.
For each gauge:

(i) Calculate M5-lday depth by quartile analysis
(ii) Apply FSR MT/M5 growth factors to obtain MT depths
(iii) Divide MT depths by gauge mean annual maximum depth, i.e. RBAR

Then:
(iv) Average the standardized rainfalls for each return period over all

gauges in the region

Method C

This also applies the standard MT/M5 growth factors given in FSR 11.2.3.
However, these are applied after the regional average M5-lday rainfall has
been calculated.

For each gauge:
(i) Calculate M5-lday depth by quartile analysis

Then:
(ii) Average the M5-lday depths over all gauges in the region
(iii) Apply FSR MT/MS growth factors to obtain average MT depths for

region
(iv) Standardize by dividing by average RBAR for region.
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3.6.3 Analysis

Methods B and C were found to give similar results and comparisons are
therefore made only between Methods A, C and the GEV region curves.

From Figs. 3.8 a general similarity is seen between the Method A and GEV
curves but with significant departures from Method C. It is suggested that
these differences encapsulate a sharp divide between the FSR II method of
"regionalizing" rainfall growth curves by M5 value and the present use of
geographical rainfall regions developed in Section 2.5. This is illustrated by
considering results for the West Country and North West regions, which
represent opposite extremes of rainfall growth rate behaviour in Fig. 3.5.

Figure 3.8WC would appear to confirm previous findings by Bootman and
Willis (1981) that the FSR rainfall growth factors are insufficiently steep to
represent the observed behaviour of 1-day rainfalls in the West Country.
Moving to the North West (Fig. 3.8NW) it is seen that the FSR growth
factors are too steep. The Method C curves in Figs. 3.8WC and NW are
very similar, confirming that the FSR method places little distinction between
the West Country and the North West (both regions have typical M5-lday
depths of 45 to 50 mm).

The discrepancies between the present analysis (GEV) and the FSR method
(FSR C) are less extreme for the other regions (e.g. Fig. 3.8NE). It is
perhaps interesting to note that when Warrilow (1981a) checked the incidence
of 100 year events experienced at daily raingauges, he did so for the eastern
half of England. That his test bed excluded the extreme areas of the West
Country and North West regions, and comprised gauges with M5-lday rainfalls
generally much less than 50 mm, perhaps explains why Warrilow detected no
major anomaly in the FSR rainfall frequency procedure.

3.7 EXAMINATION OF RAINFALL GROWTH CURVES AT
INDIVIDUAL SITES

3.7.1 Introduction

The majority of Chapter 3 has been concerned with the derivation of typical
point rainfall growth curves for specific regions. These regions were formed in
Section 2.5 to enable studies of "regional maxima" to proceed in broadly
homogeneous units. Such studies are taken up in Chapter 4 but, at this
stage, it is of some interest to examine the performance of the GEV model
in describing rainfall frequency at individual sites. Trends and variability in
the "single site" parameters may support the choice of regions or suggest that
characteristics such as SAAR might have been a more appropriate guide in
defining rainfall regions.
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3.7.2 Previous studies

Uppala (1978) fitted GEVs to 1-day maxima in Finland and detected
systematic variations in the parameters. The distribution of annual maxima
was found to be EV2 in Western Finland (i.e. k<0) and EV3 in Eastern
Finland (i.e. k>0). A direct comparison of u and a parameters with the
present analysis is inappropriate, since Uppala considered non-standardized
annual maxima.

3.7.3 Analysis

A GEV distribution was fitted to (standardized) 1-day rainfall maxima at
individual sites and the resultant u, a and k parameters analysed. Table 3.5
extends the correlation analysis of Subsection 2.4.5. It is instructive to note
that k is equally well correlated to CV as it is to skew, whereas u is much
better correlated to CV. None of the parameters is well correlated with
eastings, northings, SAAR or altitude. The "a" parameter is generally poorly
correlated with other variables but, at a regional scale, shows moderate

Table 3.5 Extension to correlation table (Table 21) for long-term
data set- 1-day annual maximum rainfalls

(a) England and Wales (345 values)

GEV u - 0.31 0.16 0.44 0.28 0.30 - 0.95 - 0.63 1.00

para- a 0.36 0.10 - 0.41 - 0.27 - 0.31 0.19 - 0.33 - 0.25 1.00

meters k - 0.10 0.24 0.22 0.12 0.13 - 0.79 - 0.79 0.83 0.29 1.00

east north SAAR alt. RBAR CV skew u a k

(b) Scotland & N. Ireland (56 values)

GEV u - 0.21 -0.11 0.40 0.07 0.17 - 0.98 - 0.71 1.00
para- a 0.19 0.08 - 0.53 0.03 - 0.39 0.40 - 0.14 - 0.38 1.00
meters k - 0.14 -0.11 0.11 0.07 - 0.06 - 0.77 - 0.82 0.82 0.18 1.00

east north SAAR alt. RBAR CV skew u a k

(c) UK (401 values)

GEV U - 0.28 0.14 0.44 0.25 0.28 -0.95 - 0.63 1.00
para- a 0.38 -0.06 - 0.45 - 0.23 - 0.33 0.23 - 0.30 - 0.28 1.00

meters k - 0.07 0.12 0.20 0.11 0.11 - 0.78 - 0.79 0.83 0.28 1.00

east north SAAR alt. RBAR CV skew u a k
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negative correlation with RBAR for the Central, Lake District and N. Ireland
regions.

The u, a and k parameters from the individual site analyses are mapped in
Figs. 3.9-3.11. The inverse correlations with CV are evident in the general
trend of the u and k maps; for example, the West Country has noticeably low
u and k values.

3.8 A NOTE ON UPPER LIMITS TO POINT RAINFALL

FSR 11.4 provides a map for estimating maximum 24-hour rainfalls for any site
in the UK. This was based primarily on applying maximum recorded storm
efficiency to regional maximum recorded storm dewpoints but adjusted by
reference to an envelope of maximum recorded rainfalls of all durations
(Folland et al, 1981). Although not recommended for use, a figure presented
in FSR 11.2.3 associates the estimated maximum rainfall with a return period
of 35,000 years. One interpretation is that beyond return periods of about
10,000 years the rainfall growth curves become EV3-like.

There is, of course, no flattening off towards an upper bound for 1-day
rainfalls evident in Figs. 3.5. Warrilow (1981b) reconciles the EV2 growth
curves, generally seen in point rainfall analyses, with the concept of an upper
limit for rainfall by considering the effect of storm movement. He shows that
if rainfall extremes associated with storm cells belong to an EV3 distribution
then rainfalls observed at a fixed point may give the impression of following
an EV2 distribution because of the joint influence of storm movement.

Jackson (1979) reconciled the FSR rainfall growth curves (with the concept of
an upper limit) in a more empirical fashion. Having tabulated the 25 highest
3-hour rainfalls "experienced" in Great Britain, he superposes these on a plot
of the FSR estimate of the 3-hour rainfall frequency for a typical non-upland
site, using appropriate assumptions about plotting positions. The resultant plot
(Fig. 3.12) indicates a flattening off towards a possible upper limit.

A rather different explanation for the appearance of an EV2 distribution lies
in the possibility that extreme rainfalls come from a mixture of distributions,
as suggested by Tabony (1983). For example, the incidence of a few extreme
thunderstorms (coming from one statistical population) may confound the
analysis of 1-day maxima from depressional rainfall, which might in reality be
EV3. However, it is not immediately clear that such a mixture model would
necessarily conform with the concept of an upper limit to point rainfalls.

3.9 SUMMARY

Typical point rainfall growth curves have been derived for the regions defined
in Section 2.5. A particular feature is that the division between North West
and North East England was taken some distance east of the hydrometric
divide.
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The distribution favoured is the GEV and the fitting technique favoured is the
probability weighted moments method. These are used in all subsequent
analyses.

It is inferred from the G-point homogeneity tests of Section 2.5 that the
typical GEV growth curve is representative of the individual site data for the
majority of regions. However, there is doubt about the homogeneity of some
regions, notably Wales and Scotland but also the South West and N. Ireland.

The North West and Lake District regions have approximately EV1 growth
curves for 1-day rainfall, while the other regions have EV2. The regions with
the greatest curvature for 1-day maxima are the West Country and Eastern
England.

It is interesting to note that the regional pattern of 1-day rainfall growth
curves (Fig. 3.5) bears some resemblance to that of the FSR flood peak
growth curves (Fig. 3.13). This would seem to support the view that climate
(rather than catchment) characteristics are the dominant influence on flood
growth factors. This may contradict recent attempts to move from flood
growth curves based on geographical regions to flood growth curves classified
by catchment characteristics (e.g. Wiltshire, 1986a, 1986c; Acreman and
Sinclair, 1986).

The significance of inter-regional differences in rainfall growth can be
illustrated by a simple example. The curves in Fig. 3.5 indicate that a 1-day
rainfall equal to twice the mean annual maximum value (RBAR) has return
periods of 30 years in the West Country, 52 years in the North East, and
170 years in the North West.
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4. Regional maximum rainfall at a network of
sites

4.1 INTRODUCIION

Chapters 2 and 3 have considered general aspects of point rainfall extremes
and the derivation of typical growth curves for 11 geographical regions. In
this chapter we begin the analysis of the maximum rainfall expected at one or
more of a network of sites. For the purpose of analysis, the networks
correspond to gauged sites; however, in application, the network can be any
group of sites for which a collective assessment of rainfall risk is desired.

Imagine a network of eight raingauges, all with the same period of record.
The maximum 1-day rainfall recorded at any of the eight can be taken, for
each year, to form an annual maximum series of the "maximum of 8". The
rainfall values are standardized by the site mean, RBAR, before the largest is
picked, to give each gauge an equal chance of providing the maximum.

Once the annual maximum series has been constructed, the statistical
techniques of Chapter 3 can be applied to fit a "regional maximum of 8"
rainfall growth curve. How such "regional maximum" curves compare with the
"typical" curves of Section 3.5 is introduced below and explored more fully in
Chapter 5.

It is difficult to devise a terminology that encapsulates the general meaning of
these rainfall growth curves without being clumsy. The typical curve is an
average standardized point rainfall growth curve for a given duration and
geographical region. The regional maximum curve is a standardized rainfall
growth curve associated with the maximum rainfall experienced at a network of
N sites, for a given duration and located within a given geographical region.
The terminology "regional maximum" is used to emphasise that the maximum
is over space rather than time; some readers may prefer to think of it as the
"network maximum". However, as will become obvious, it is of interest to
consider generalized networks of sites within a given geographical region and it
was for this reason that the terminology "regional maximum" was finally
adopted.

4.2 FACTORS INFLUENCING THE REGIONAL MAXIMUM

4.2.1 Introduction

The regional maximum curve for N sites (N>l) will generally lie above the
typical curve. The exception to this is when the sites are so closely grouped
that there is perfect correlation between the annual maxima of the individual
gauges.
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The position of the regional maximum curve in relation to the typical curve is
influenced by the number and dispositon of sites and by the rainfall
characteristics of the region. Although other classifications are possible, the
report indexes these influences by the number of sites, N, and the area
spanned, AREA.

4.2.2 Number of sites

For a given area, the magnitude of the regional maximum will depend on the
number or gauges, N, from which it is drawn. For example, 16 gauges
distributed in an area of 10,000 km2 are more likely to pick up a large
isolated thunderstorm than would four gauges in the same area The
"regional maximum of 16" curve will therefore lie above the "regional
maximum of 4" for a given area

The effect of N does, however, have bounds. For N=1 the regional maximum
curve should coincide with the typical curve. For very high values of N, the
regional maximum curve might be expected to approach an upper limit, as the
area becomes saturated with gauges. Clearly the density of gauging, beyond
which the addition of further gauges does not reveal appreciably higher
regional maximum rainfalls, would be dependent on the duration considered: a
greater density being needed for short duration rainfalls. This scenario of
behaviour as N increases would correspond to rainfall intensities being spatially
smooth, which arguably is not true on a microclimatic scale.

4.23 Area spanned

The position of the regional maximum curve relative to the typical curve is
influenced by the degree of correlation between the individual gauge annual
maxima This correlation is highly variable for different gauge pairs but shows
a characteristic dependence on intergauge distance. Figures 4.1NE and NW
show the relationship for 1-day annual maxima in the North East and North
West regions. The persistence of significant correlations to greater distances in
the North East implies that there is more spatial dependence in extreme
rainfalls than in the North West.

While correlation is a useful index of interdependence between rainfall maxima
at two sites, it can less readily represent that between rainfall maxima at a
general group of N sites. It is the physical closeness of sites, relative to the
typical dimension of storms, that leads to interdependence and it appears
reasonable to index this by the area spanned by the N sites. A particular
definition for "area spanned" is developed in Section 4.4.

In general, if there are two networks, each with N gauges that spanning the
larger area will have a higher regional maximum. This is because the wider
spaced gauges will tend to have maxima that are less well correlated. Thus,
in any given year, there is a greater chance that one or other of the
gauges will receive an extreme rainfall and the regional maxima will
therefore all tend to be relatively large and to plot above the individual
gauge maxima (represented by the typical curve).
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Whether there is an upper limit to the effect that area has on the regional
maximum of N gauges is, however, unclear. As the area spanned becomes
larger, the distance between gauges might reach a level where there is effective
independence between the individual gauge maxima. Any further increase in
area would then be expected to have no effect on the position of the regional
maximum curve.

At the opposite extreme, the approach to a lower bound will reflect the
physical extent of storms. A reduction in area will lower the position of the
regional maximum curve to the stage where it is little higher than the typical
curve. For very small areas there will be near perfect correlation between the
maxima and the regional maximum curve will coincide with the typical curve.

4.2.4 Duiration

Discussion of rainfall durations other than 1 day is deferred until Chapter 7.
It is shown there, for example, that the typical growth curves for 2-day
rainfalls are less steep (and somewhat less variable) than the 1-day growth
curves of Fig. 3.5. However, it is relevant to note here that the degree of
spatial dependence in rainfall extremes (and therefore the nearness of the
regional maximum curve to the typical curve) is expected to be more marked
for long durations and less marked for short durations.

4.3 LEVELS OF FACORS USED IN THE ANALYSIS

The factors influencing the regional maximum were investigated region by
region, on an experimental basis.

Experiments were carried out for several levels of each factor. Values taken
for N were 2, 4, 8, 16 . ...... the cut-off depending on the number of gauges
in the region (see Table 8.1). The influence of area was considered by
classifying experimental results according to the area spanned, AREA km 2.
Generally three bands were studied with the long-term data set:

1,000 < AREA 4 3,000

3,000 < AREA 4 10,000

10,000 < AREA 4 30,000

Use of the much denser short-term network (Chapter 6) enabled additional
AREA and N levels to be considered.

Subsequent to detailed analyses of regional maximum 1-day rainfalls, durations
of 2, 4 and 8 days are investigated in Chapter 7.
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44 DEFINMTION OF AREA SPANNED BY N GAUGES

Figure 4.2 illustrates four ways in which eight gauges could be picked from
the 33 gauges in the North East region. Clearly the grouping in Fig. 4.2a
spans a much larger area than that of Fig. 4.2c. But can this be quantified?
Is the area represented by the regional maximum the minimum area
encompassing the eight sites, or is it somewhat larger?

The area required depends only on the position of the eight selected gauges.
Thus methods such as Thiessen polygons - which would allocate areal weights
to each of the 33 gauges in the region - are inappropriate.

Because very many experiments are involved, a simple method was adopted for
calculating the area spanned:

AREA - 2.5 d (4.1)

where d is the mean distance between pairs of gauges. The coefficient of 2.5
was set by considering theoretical cases of gauges arranged in square and
hexagonal patterns. The formula was then shown to give reasonable results
when used to represent the area spanned by real networks of gauges. For
example, the formula yields an estimate of 21,100 km2 for the area spanned
by the 33 long-term gauges in the North East region, only a little greater than
the 18,000 km2 regional area obtained by planimeter.

The formula can be applied to any network of sites: all that is required are
the grid references. As a check on the reasonableness of the areas calculated,
it is convenient to plot a circle of equal area, centred at the centroid of the
N sites. From Figure 4.2 it is seen that the areas assigned to the example
networks are generally reasonable. However, where one or more site is
isolated from the main group, as in Fig. 4.2d, the area assessed is necessarily
a compromise; it would be very much less but for gauge number 1525 in the
north.

45 METHODS OF SAMPLING REGIONAL MAMM

45.1 Introduction

Section 4.1 discussed a hypothetical example of analysing the regional maximum
rainfalls from a particular network of eight gauges, all with the same period of
record. Such an analysis would be straightforward. However, the requirement
is to study networks of 2, 4, 8, 16, ... sites and for the analyses to be
representative of a particular rainfal region. Given that there are 75 long-
term gauges in the Eastern region, it would dearly be impractical to consider
all possible combinations of 2, 4, 8, 16, 32 and 64 gauges: there are too
many.
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A further difficulty is that the periods of record of the gauges do not in
general coincide. The start and end years differ and, inevitably, some gauges
have years for which the annual maximum value is missing (see Section 2.2).
If, for example, it were specified that all gauges in a 16 gauge network had
to have valid annual maxima for each year analysed, there would be few such
networks that could offer a substantial period of record to the analysis of
regional maxima.

For the above reasons it was necessary to adopt a more flexible approach to
sampling regional maxima. In fact two distinct methods were adopted: a
fixed network method and a random network method. It should be borne in
nind that the end-product sought is a "regional maximum of N" growth curve
which can be associated with a given sized area and which can be considered
representative of the rainfall region under study. It is assumed in the
explanations that follow that rainfalls for each gauge have been standardized
by the RBAR value for that site.

4.5.2 The fixed network method

In this case, a network of N gauges is selected at random from the total
numbers of gauges in the region. Once selected, the network is held fixed
and regional maxima formed for those years for which all N gauges have valid
annual maxima. The area associated with the network is calculated by
Equation 4.1 and a GEV distribution fitted to the regional maximum series.

The procedure is repeated for different combinations of N gauges within the
region, each yielding a different regional maximum curve and a different
associated area. The results are then grouped in area bands (according to the
scheme set down in Section 4.3) and an average curve formed for each area
band. In practice, the averaging is done by averaging the probability weighted
moments from each experiment (avoiding the need to construct individual
curves), before calculating the GEV parameters in the usual way (Equations
3.13-3.16).

4.53 The random network method

An obvious drawback of the fixed network method is that the regional
maximum can only be formed for years with valid annual maxima at each of
the N gauges. The random network method is more flexible in that a
different set of N gauges is selected for each year of record. If not all
the gauges have a valid annual maximum, a further random set of N
gauges is selected. Similarly, if the area spanned by the network is outside
the band being investigated, a reselection is made.

A particular advantage of the random network method is that regional maxima
can be derived for the whole period 1915-1981. Because of the random
nature of the method, it is desirable to carry out a number of repetitions and
to average the results. In practice, the probability weighted moments were
averaged over 50 repetitions.
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45.4 Comparison of methods

The chief differences between the methods are that:

(i) The fixed network method gives more information about the
variability within a region and is more practical when investigating
small dense networks. (This is because the problem of selecting a
set of gauges that spans the required area band does not have to
be tackled separately for each year of record.)

(ii) The random network method is able to make use of longer records;
if one of the N gauges does not have a value for the year in
question, another set of gauges is selected instead. Moreover, the
random network method averages results over the region rather more
economically than the fixed network method.

Results using the random network method follow, while the fixed network
method is considered briefly in Section 4.8 and, for the short-term data set, in
Chapter 6.

4.6 DISTRIBUTION FOR REGIONAL MAXIMA

The GEV distribution was adopted in Chapter 3 to describe the typical growth
curves for each region. It therefore comes as little surprise that the
distribution adopted for the regional maximum was also GEV.

It can be shown that the maxima of N independent variables, each drawn
from a GEV with parameters ut, at and kt, will follow a GEV distribution
with parameters:

u = ut + at (1 - N t)/kt (4.2)

a = atNkt (4.3)

k = kt (4.4)

where the subscript t denotes "typical". A proof is given in Appendix 4. In
the case where there is total dependence between N variables, the regional
maximum curve coincides with the typical curve.

The distribution of the maximum of N is, however, unknown where there is
partial dependence between sites. It is assumed to be GEV with parameters
ur ar and kr where the subscript r denotes "regional maximum". Given
that:

kr =k t (4.5)

applies in the independent and wholly dependent cases, the further assumption
was made that this relationship applied in the case of partial dependence
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also.

Some limited tests of these assumptions were made, partly using synthetic data
and - in the case of the curvature constraint - through direct comparisons of
constrained and unconstrained fits. No obvious deficiencies were noted.

The remainder of this chapter is devoted to discussion of the regional
maximum curves obtained in the various experiments, beginning with those of
the random network method.

4.7 ILLUSTRATIVE RESULIS - RANDOM NETWORK
METHOD

Following the procedure described in Section 4.5, the random network method
was applied to determine the regional maximum of N gauges in a given area
band and region. Figure 4.3NEa illustrates results obtained for N-4, for the
area range 10,000-30,000 km2, for the North East. The data points relate to
50 repetitions of the random network method, The corresponding data points
for N=16 are shown in Fig. 4.3NEb.

The curves shown on Figs. 4.3a and b are the GEV distributions fitted to
the two sets of data (They have k=-0.111 corresponding to the curvature of
the typical curve for the North East region, Table 3.2.) The curve for the
regional maximum of 16 gauges is significantly higher than that for the
maximum of four gauges, There is, however, some overlap between the two
sets of data points, particularly at higher return periods. This arises because
the maximum of four will occasionally include the highest ranking values from
those of the 33 gauges in the North East. However, the maximum of 16 will
do so more often.

Figure 4.4NE shows a wider selection of regional maximum curves for the
North East. The solid lines denote results for the area band 10,000-30,000
km2. It is seen that the number of gauges (N) has a near logarithmic effect
on the regional maximum curve: that for N=4 is as far below the N=16 curve
as it is above the N=1 (typical) curve.

The broken lines in Fig. 4.4 refer to results for the area band 3,000-10,000
kmn. It is not possible to discern much from these other than that the
sensitivity to N is much stronger than the sensitivity to AREA.

From Fig. 4.4NE it is seen, for example, that a 100-year 1-day point rainfall
at a typical site in the North East will occur at one (or more) of a 16-site
network (spanning 10,000-30,000 km 2) with a return period of about 11
years.

The corresponding curves for the North West region are illustrated in
Fig. 4.4NW. These again show the expected logarithmic effect of N, with the
effect of AREA a little more marked than for the North East. A 100-year
1-day point rainfall at a typical site in the North West will occur at one (or
more) of a 16-site network (spanning 10,000-30,000 km'2 ) with a return period
of about 7 years.
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It is instructive to examine the variability of the regional maximum data and
this is conveniently represented by the coefficients of variation of the mean,
CV and skew. From Table 4.1a it is seen that the mean, CV and skew of
the regional maxima of N sites are less variable than those of the typical
data In general the variability decreases as N increases. This is to be
expected since the process of selecting the highest of N similar sized values
has a stabilizing effect.

Table 4.1b shows the corresponding statistics for a lower area band
(3,000-10,000 km2 ). The available network of long-term stations in the North
East is insufficiently dense to permit analysis of the maximum of 16 sites
within this area band. The experiment for N=8 is rather unsatisfactory
because the regional maximum analysis leans heavily on the more southerly
gauges.

However, the general pattern of results in Table 4.1 confirms that the regional
maximum curves are well defined for most of the experiments and that the
influence of N is more marked than that of AREA.

4.8 ILLUSTRATIVE RESUL'IS - FIXED NETWORK
METTHOD

As discussed in Section 4.5, the fixed network method may be appropriate for
investigation of the relatively dense networks available for the short-term data
(Chapter 6). However, it is applied here to the regional maximum of four
gauges for comparative purposes.

Table 4.2NEa summarizes the results for the North East region. The
procedure of Subsection 4.5.2 was followed, selecting sets of four gauges at
random, calculating areas spanned and assigning them to the appropriate
AREA bands. However, where the common period of valid record fell short
of 20 years, the set was rejected.

The regional maximum analysis for 1,000-3,000 kmn is unreliable, being based
on a single set of four gauges. This partly reflects that there are few such
networks but is primarily a function of the random selection procedure
adopted. Only a very small proportion of all the combinations of selecting
four gauges (from the 33 in the North East) will span an area less than
3,000 km 2.

The results for the higher area bands are substantially in agreement with those
obtained by the random network method (Table 4.2NEb). Corresponding results
for the North West region (Table 4.2NW) also indicate that the two sampling
methods lead to broadly similar regional maximum curves. The comparisons
are illustrated in Figs 4.5 for the AREA band 3,000-10,000 km2.
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Table 4.1 Statistcs of regional maximum 1-day rainfalls in North
East - rndom network aperiments (long-term data set)

a) AREA 10,000-30,000 km2

No. of RBAR CV skew
sites mean cv mean cv mean cv
N (mm)

it 33.6 0.079 0.348 0.14 1.48 0.47

2 38.7 0.028 0.312 0.12 1.31 0.38

4 43.8 0.023 0.312 0.11 1.40 0.38

8 48.6 0.020 0.308 0.08 1.59 0.22

16 53.4 0.016 0.304 0.06 1.51 0.17

b) AREA 3,000-10,000 km2

No. of RBAR CV skew
sites mean cv mean cv mean cv
N (mm)

it 33.6 0.079 0.348 0.14 1.48 0.47

2 38.4 0.031 0.335 0.12 1.53 0.36

4 42.8 0.021 0.315 0.10 1.55 0.33

8* 47.6 0.023 0.326 0.11 1.82 0.20

t N=1 experiments provide an estimate of the typical curve

This experiment based on 15 repetitions only. Remaining
experiments based on 50 repetitions.
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Table 4.2NE GEV parameters for regional maimum of four gauges
- North East

a) Fixed network method

AREA band No. of sets Average GEV parameters
of 4 gauges record length ur ar kr

(000 km') (years)

1 - 3 1 34 1.025 0.321 -0.111
3 - 10 158 40 1.071 0.279 -0.111

10 - 30 575 41 1.102 0.279 -0.111
30 - 100 266 42 1.123 0.281 -0.111

1000

b) Random network method

AREA band Average GEV parameters 
record length ur ar kr

(000 km2) (years)

3 - 10 67 1.084 0.273 -0.111
10 - 30 67 1.109 0.280 -0.111

* kr constrained to typical curve value, kt
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Table 4.2NW GEV parametm for regional maximum of four gauges
- North West

a) Fixed network method

AREA band No. of sets Average GEV parameters
of 4 gauges record length ur ar kr

(000 km2) (years)

1 - 3 15 41 1.082 0.225 -0.015
3 - 10 179 40 1.109 0.221 -0.015

10 - 30 437 37 1.130 0.224 -0.015
30 - 100 257 35 1.133 0.214 -0.015

888

b) Random network method

AREA band Average GEV parameters
record length ur ar kr

(000 km2) (years)

3 - 10 67 1.109 0.214 -0.015
10 - 30 67 1.139 0.229 -0.015

* kr constrained to typical curve value, kt
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4.9 SUMMARY

This chapter has introduced the concept of the "regional maximum" growth
curve and discussed the factors expected to influence the position of the
curve. Methods have been described for forming the regional maximum data
for N sites, spanning an area within a given AREA band.

Illustrative results have been presented for regional maximum 1-day rainfalls in
the North East and North West regions. These indicate that the influence of
N is stronger than that of AREA but that both factors act in the expected
direction.

For a given sized area, the growth curve for the regional maximum of 16
gauges is greater than that of four gauges by about the same amount that the
regional maxomum of four gauges exceeds the typical point growth curve. For
a given number of gauges, a network spanning a larger area generally has a
higher regional maximum, reflecting the greater independence between rainfalls
at higher inter-site distances. However, for the regions, area sizes and N
values so far considered, the effect of AREA is much weaker than that of N.
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5. Comparison of regional maximum and
typical growth curves

5.1 INTRODUCIION

The primary objective of the study is to assess the degree of spatial
dependence in rainfalls, so that this can be taken into account in collective
risk assessments for design flood exceedances at critical sites such as major
impounding reservoirs. Some generalization is required so that these
assessments can be made for networks of ungauged sites rather than just for
networks of raingauges. The task of generalizing what might be loosely called
a "spatial probability model" of extreme rainfalls is taken up in Chapter 8.

As a stepping stone it is helpful to explore ways in which the regional
maximum and typical growth curves can be compared and this is done here
for the particular case of 1-day rainfalls. Some visual comparisons have
already been made, as for example in Figs. 4.4. Comparisons could also be
made directly in terms of the five parameters: ut, at, k, ur and ar referred
to in Section 8.2. However, with very many experiments to assess it is
attractive to consider the use of a summary index by which the regional
maximum curves can be related to their typical curve counterparts.

Two such indices are considered: the epicentrage coefficient (Section 5.2) and
the equivalent number of independent gauges (Section 5.3). Some difficulties
arise and, in Section 5.4, a wider perspective is sought through use of
Buishand's dependence function method.

5.2 EPICENTRAGE COEFFICIENT, E

5.2.1 Previous work

Galea et al (1983) indexed the relationship between the regional maximum and
typical curves by their ratio, E, at a given return period, T, or Gumbel
reduced variate, y, i.e.

E = Xr/Xt (5.1)

where the subscripts r and t denote regional maximum and typical. This is the
so called "epicentrage coefficient", illustrated in Fig 5.1.

Their study considered rainfall data from the 104 km2 Orgeval experimental
catchment, sited some 50 km east of Paris. Rainfall depths for durations
ranging from 2 to 24 hours were analysed using data from 21 recording
raingauges. The areas examined corresponded to hydrometric subcatchments of
7, 25, 46 and 104 km 2. Statistical distributions fitted to the regional maximum
and typical point data were 3-parameter Galton and Goodritch distributions.
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The close grouping of the gauges and their generally similar rainfall
characteristics meant that it was unnecessary for Galea et al to standardize
rainfall values prior to derivation of typical or regional maximum curves.

Only a relatively short period of record was available (approximately 7 years)
and the epicentrage coefficient was therefore calculated for return periods of
0.1, 0.2, 0.5, 1, 2, 5 and 10 years. An empirical model was fitted to the
family of results obtained for different return periods (T years), areas
(AREA km'), numbers of gauges (N) and rainfall durations (h hours)
yielding:

E = 1 + W AREA + 1 )) to. 03 + 0.026 In T + 0.32e-h/20
ARAN+ 1

(5.2)

The model has the expected behaviour that the epicentrage coefficient (E)
increases with area spanned (AREA) for a given gauge density (N/AREA),
increases with number of gauges (N) for a given area (AREA), and decreases
with rainfall duration (h).

The increase of epicentrage with return period implied by Equation 5.2 is
slightly surprising. The unbounded growth of E with T is inconsistent with the
concept of an upper limit to point rainfall (Section 3.8), which requires E to
decrease asymptotically to unity. Of course, the period of record used to
derive Equation 5.2 was relatively short and Galea et al suggest that the
model be used only up to a return period of about 20 years.

5.2.2 Analysis for GEV-based method

The approach taken in the present study was to evaluate the epicentrage
coefficient from the parameters of the GEV distributions fitted to the regional
maximum and typical data:

Ur + ar (1 - e-kY)/k

Ut + at(l - e-kY)/k

Here y is the Gumbel reduced variate and the subscripts r and t denote
regional maximum and typical parameters respectively. It will be recalled that
the curvature parameter, k, has been constrained to be the same for both the
regional maximum and typical growth curves (Section 4.6).

Figure 5.2NE shows the variation of E with return period for regional
maximum experiments carried out on the North East long-term data set (see
Section 4.7). It is seen that the epicentrage coefficient decreases with increasing
return period and that the effect of N is approximately logarithmic, the N=8
curve being intermediate to the N=4 and N=16 curves.

Differentiation of Equation 53 yields the result that E decreases (with
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increasing y) if:

ar/at < Ur/Ut (5.4)

This is the case for all the North East experiments on the long-term data set
(and for all but three of those on the short-term data set), and for most of
those for other regions. However, in the West Country, E increases with y
for some of the long-term experiments, three of which are illustrated in Fig.
5.2WC. The decrease (or increase) of E with y might be taken as representing
a trend to increased (or decreased) spatial dependence at higher return period.
However, there is no particular basis for such an interpretation and, in Section
5.3, we will meet an altemative measure of spatial dependence which appears
to be much better founded.

For the case k<4, it follows from Equation 53 that E-->ar/at as T-. These
are the asymptotes shown on Figs. 5.2. If a =at we have E-1, consistent with
the notion of an upper limit to point rainfall. However, it is evident from
Figs. 5.2 that, with the exception of the North West, E shows little sign of
approaching unity.

5.23 Appraisal

Comparison of, for example, Figs. 5.2E and NW indicates a marked
difference in epicentrage between the two regions. However, when it is
recalled that the 1-day typical growth curves for the Eastern and North West
regions are, respectively, strongly EV2 (k=-0.180) and generally EV1 (k=-0.015),
it is realised that this accounts for much of the difference between Figs. 5.2E
and NW. In short, the epicentrage coefficient does not provide a very helpful
measure of spatial dependence per se.

The epicentrage method was therefore discarded.

53 EQUIVALENT NUER OF INDEPENDENT GAUGES,
Ne

531 General method

An alternative approach to indexing the position of the regional maximum
curve relative to the typical curve is to examine their horizontal separation,
indexing this by an equivalent number of independent gauges, Ne (Fig. 5.3).

Consider the series of annual maxima for N gauges from a homogeneous
region, so that these are identically distributed as Ft(x). Ft(x) is, of course,
the distribution function of the typical growth curve. Thus:

Ft(x) - pr(X1lx) - pr(X2 sx) - ... - pr(XNSx) (5.5)

If there is spatial independence, Le. if the annual maxima at the N gauges are
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entirely independent, the distribution of the regional maximum of the N
gauges is given simply by:

Fr(X) = pr(max(Xl,X 2 ,...,XN).x) = [Ft(x)]N (5.6)

If, on the other hand, there is complete dependence (i.e. perfect correlation
between the individual gauge annual maxima), the distribution function for the
regional maximum would be:

Fr(X) = Ft(x) (5.7)

In practice there will be partial dependence and the degree of dependence
may be different at different quantiles, x. This is recognized by defining an
equivalent number of independent gauges, Ne(x), such that:

Fr(X) - [Ft(x)]Ne(x) (5.8)

Thus:

Ne(X) = In Fr(X)/ln Ft(x) (5.9)

and

In Ne(x) = In(-ln Fr(x)) - In(-ln Ft(x)) (5.10)

Thus it is seen that In Ne(x) is simply the horizontal separation of the
regional maximum and typical growth curves on the Gumbel scale, i.e.:

In Ne(x) = Yt - Yr (5.11)

On the assumption that the degree of spatial independence cannot be less
than total dependence (Ne=l) nor greater than complete independence (Ne=N),
we expect or require:

1 % Ne(x) N (5.12)

for all x.

53.2 Analysis for GEV-based method

In the present study the regional maximum and typical growth curves are
represented by GEV distributions, i.e.:

Fr (x) - exp [- (1-kr(x-ur)/ar) 1/kr] (5.13)

and

Ft(x) = exp[-(1-kt(x-ut)/at) ] (5.14)
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with the additional constraint that:

kr - kt - k (4.5)

Combination of Equations 5.11 and 3.2 yields:

I (in(l-k(x~ur)/ar) - ln(l-k(x-ut)/at))/k if k0O

(x-ut)/at - (X-ur)/ar if k-O

(5.15)

533 Example results

Figure 5.4NE shows the variation of Ne with x for the regional maximum
experiments in North East England previously referred to in Figs. 4.4NE and
5.2NE. It is seen that, for these experiments, the variation is fairly minor for
the N=2 and N=4 cases. However, for networks with more members (e.g.
N=16), the equivalent number of independent gauges increases more markedly,
indicating that the degree of spatial dependence decreases at rarer quantiles. In
all, 80% of experiments show N to increase with x; the trait is most marked
in the North West region (97& of experiments) and weakest in the West
Country (51% of experiments).

Figure 5.5NE relates to the same set of experiments but shows the variation
of Ne in terms of the typical curve reduced variate, yt. The variation is
more pronounced for some regions than others. Figure 5.6a shows a
compilation of results for networks of 16 gauges spanning a nominal area of
about 20,000 km2. Vbile the degree of spatial dependence is broadly similar
at low return periods, the North West and Southern regions exhibit a
relatively rapid trend to independence, with N. exceeding N at a return period
of about 300 years in the North West region.

53.4 Beyond independence?

Violation of the constraint NeSN was found to be a particular problem for
four and two-gauge networks. It is seen from Fig. 5.6b that the constraint is
violated at a return period of only 14 years for two gauges spanning 20,000
km 2 in the Eastern region.

Does such behaviour represent a real tendency for negative spatial dependence
in extreme events or might it be symptomatic of limitations in the GEV-based
method adopted in the study? To shed light on this problem, reference was
made to a related method of assessing spatial dependence which avoids an
explicit distributional assumption.

80



5.4 BUISHAND'S DEPENDENCE FUNCllON

5.4.1 Estimation method

Buishand (1984) uses the theory of bivariate extremes to explore the
dependence between rainfall maxima at pairs of sites (Subsection 1.3.3). His
dependence function q(x) corresponds to the equivalent number of independent
gauges, Nejx), used in this report. For the bivariate case (i.e. N=2) Buishand
estimates Ft(x) and Fr(x) by counting non-exceedances and joint
non-exceedances in the annual maximum series. Thus:

Ft(x) = (n 1 (x) + n 2 (x))/(2n) (5.16)

and

Fr(X) = njoint(x)/n (5.17)

where n is the number of years in the common period of record, n1 is the
number of annual maxima at gauge 1 for which X1Sx, n2 is the corresponding
number for gauge 2, and n mont is the number of years for which both X,
and X2 are less than x. ine calculations are repeated for different quantiles,
x, and the dependence function constructed using:

Ne(X) = InFrr(x)/ln Ft(x) (5.18)

5.4.2 Application to regions

Buishand (1984) explains that, even when very long records are available, the
estimates of Ne(x) for different quantiles tend to be rather erratic for single
gauge pairs. The method used is therefore to combine many gauge pairs in a
single regional analysis. (This has the added blessing that the resultant
assessment of spatial dependence should be generally representative of gauge
pairs in a region.) In the regional analysis, the gauge annual maximum rainfalls
are first standardized by dividing by their mean value, RBAR. (The precise
procedure used in the present study was, for each gauge pair considered, to
estimate the RBARs from their common period of record.)

Lengthy computation is required to apply the method to explore the spatial
dependence between annual maximum rainfalls in the various regions. For a
network of N gauges there are of course N(N-1)/2 combinations of gauge
pairs. In estimating Ft(x) and Fr(x) by Equations 5.16 and 17 it was found
expedient to pool together counts from combinations of about 250 gauge pairs.
(This was practical for all regions except the Lake District, which only has 16
gauges in the long-term data set.) In many regions there were sufficient gauge
combinations to consider several classes of about 250 gauge pairs. The degree
of dependence is expected to be related to the intergauge distance, d, and the
classes were accordingly based on intervals of d.

For example, for the North East region there are 33 gauges and 528
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combinations of gauge pairs in the long-term data set; these are grouped into
two classes of 264 members. The resultant dependence functions are shown in
Fig. 5.7NE. Each line relates to a separate distance class, the number
attached being the geometric mean of the intergauge distances in kilometres.
As expected, the degree of dependence is seen to decrease with intergauge
distance. Also, for the North East region, there is confirmation that
dependence is markedly stronger for lesser events than for more extreme
events.

The nature of the estimation method is such that values of the dependence
function at low and high quantiles can be strongly influenced by exceptionally
low or high annual maxima in the gauge records. Although the plots have
been screened to exclude estimates based on relatively few data, the left hand
end of the Fig. 5.7 plots are still somewhat erratic.

5.43 A check on the method

The performance of the algorithm used to produce the dependence function
plots was tested using the annual maximum 1-day rainfalls for the Eastern
region. For each gauge in the long-term data set, the n years with valid
annual maxima were first noted. These n annual maxima were then shuffled
using a standard randomizing algorithm (subroutine GO5EHF from the NAG
library) and assigned back to the years for which valid annual maxima were
available. By applying this device sequentially to each gauge, the entire set of
annual maximum 1-day rainfalls for the Eastern region was randomized,
thereby removing any spatial dependence in the data

The shuffled data were then subject to the same implementation of Buishand's
method, resulting in the dependence function plots of Fig. 5.8. It is seen that
the values of Ne lie very close to 2.0, confirming that the method correctly
identifies independent data in this fashion. It is also confirmed that the
dependence function is relatively poorly defined at low return period as
intimated at the end of Subsection 5.4.2.

5A.4 Discussion of results

From Figs. 5.7 some tendency is seen for Ne(x) to increase with x, indicating
that larger events are spatially less dependent. However, the tendency is
stronger in some regions (e.g. Southern, Central and North East England)
than others (e.g. N. Ireland, Eastern England, the West Country and
Scotland); in the case of South West England, the mid-range trend is towards
more dependence at higher quantiles.

The larger numbers of gauges in the Eastern and Southern networks make it
practical to consider the variation of Ne(x) with intergauge distance in some
detail for these regions. The dependence functions for the Southern region
(Fig. 5.7) appear to be particularly orderly. It is seen, for example, that
effective independence is achieved at an intergauge distance of about 125 km
for the mean annual event (i.e. x=1) and at about 40 km for an event equal
to twice RBAR (i.e. x=2) - if Ne(x)l. 9 is taken as a criterion of effective
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independence. In contrast, the degree of dependence for the Eastern region
is less influenced by quantile, with effective independence reached at
distances of about 100 kin, for lesser and extreme events alike.

For practical purposes it is appropriate to consider the variation of Ne with
the typical curve return period (see Fig. 53). Using the estimate of FtCx)
derived by Equation 5.16, the dependence functions are recast in Figs. 5.9 as
plots of Ne against yt. In most regions it is seen that there is little
dependence at intergauge distances of more than 100 km, irrespective of return
period. However, in the North East and Southern regions (Figs. 5.9NE and S),
dependence at low return periods persists to greater distances. Figure 5.10
shows a compDiation of dependence functions for several regions for a nominal
intergauge distance of about 45 km. The difference between regions is not all
that great and, in each case, there is a marked trend from strong dependence
at low return periods to only slight dependence at high return periods

Because of the large number of gauges, the influence of intergauge distance
on dependence is particularly well defined for the Eastern and Southern
regions. A notable feature of Figs. 5.9E and S is that the degree of
dependence is much stronger at intergauge distances below about 30 km. (This
is also evident in Fig. 5.9CE, the Central region being the only other for
which there were sufficient long-term gauges to define a 250 combination
grouping with a mean intergauge distance of less than 30 km.) It is suggested
that in these regions a large proportion of extreme rainfall events are
associated with convective storms, for which a typical cell diameter of, say, 15
km seems reasonable. This provides a possible explanation for the pronounced
greater dependence seen at short intergauge distances. It is interesting that
the difference is every bit as marked at high return period as at low,
suggesting that extreme convective cells are of broadly similar spatial extent.
Although based on fewer gauge combinations, exploratory analyses for other
regions did not reveal this feature, possibly reflecting that convective storms
form a smaller proportion of 1-day maximum rainfalls in wetter regions. (The
seasonality of 1-day rainfall maxima is considered briefly in Chapter 9.)

5.45 Implications for GEV-based method

Application of Buishand's method to investigate spatial dependence was limited
in the present study to the N=2 case, i.e. pairwise dependence. The results
presented in Figs. 5.7 and 9 can be compared with those derived by the
GEV-based method by converting the nominal intergauge distance, d, to a
nominal spanning area, AREA, using Equation 4.1.

Such a comparison is made in Fig. 5.11 for 2-gauge networks spanning
AREA: 10,000-30,000 km2 in the Eastern and Southern regions. It is seen
for the Eastern region that the GEV-based method underestimates the degree
of dependence at all return periods, albeit slightly. In contrast, for the
Southem region, the GEV-based method overestimates the dependence at low
return period and underestimates it at high return period, greatly
overestimating the trend.
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5.4.6 Conclusions

There are perhaps three main conclusions from the Buishand analysis. Firstly,
the analysis confirms that intergauge distance has a marked influence on the
degree of dependence.

Secondly, while the degree of pairwise dependence generally increases slightly
with return period, this is not the case in all regions. Caution is urged
against drawing the conclusion that spatial dependence in the extreme case is
invariably less. The above analysis provides only limited support for such a
conclusion and, because it considers only pairwise dependence (i.e. N=2), may
be atypical of spatial dependence in more extensive networks. It is probably
feasible to extend Buishand's method . to examine dependence in 4-, 8- and
16-gauge networks, but this was not done in the present study.

Thirdly, the Buishand analysis reveals no tendency for the dependence function
"to go beyond independence", i.e. for Ne to exceed N. (Such behaviour
would be consistent with there being negative correlation between gauge annual
maxima. This might imply that the occurrence of an extreme event at one
gauge somehow reduced the likelihood of an extreme event at a nearby gauge
in that year: an intriguing concept but not one that seems very plausible.)

The above analysis provides an answer to the question raised in Section 5.3. It
is concluded that violations of the constraint Ne4N are probably symptomatic
of weaknesses in the GEV-based method adopted rather than indicative of a
real tendency for negative dependence in extreme events. This is discussed
further in Section 8.3, where implications are made for the construction of a
general model to relate regional maximum and typical point rainfalls.
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6. Extension to denser networks: the short-
term data set

6.1 INTRODUCTHON

Previous chapters have concentrated on the 401 gauges in the long-term data
set, with an average record length of 56 years. These long records provide
the best available basis for deductions about the variation of dependence with
return period. However, the experiments carried out in Chapter 4 are limited
to particular network sizes and densities. It is therefore helpful to extend the
regional maximum analysis by reference to additional gauge records.

The short-term data set comprises 2138 gauges with an average record length
of 19.9 years. drawn from the Institute's comprehensive archive of daily
raingauge data for the period 1961-1981. The gauge positions are shown in
Fig. 6.1, and Table 6.1 summarizes their regional distribution. Although the
network in Scotland has ten times more gauges than the long-term network, it
is still the sparsest region with 4.7 gauges/1000 km'. The Southern region
remains the densest (22.5 gauges/1000 km'); the short-term network in the
North West is also impressive (17.4 gauges/1000 kin') with very much higher
densities in its south-east quarter.

6.2 BASIC STATISTICS OF 1-DAY MAMaMA

Maps of RBAR and CV were drawn up for short-term gauges but are not
presented. They are in broad agreement with Figs. 2.4 and 2.5 but show
more intersite variability, as is to be expected from smaller sample sizes. The
CV map revealed some localized areas of high values which could be
attributed to known extreme events in the 1961-1981 period.

Table 6.2 compares the typical RBAR, CV and skew values for the short-term
and long-term data sets. With the exception of South West England and
N. Ireland, there is generally good correspondence in terms of mean CV
values for 1-day annual maximum rainfalls, on which the regionalization of
Section 2.5 was largely based. Differences in the mean skews are rather
greater, the general tendency being to lower values than for the long-term
data set; the West Country shows the biggest reduction, with the regional
skew down from 3.61 to 2.26. The South West, North West and Lake
District show rather higher skews for the short-term data set.

Correlations between gauge location, altitude and SAAR and their 1-day
rainfall statistics in the short-term data set are given in Table 63. These can
be compared with correlations for the long-term data set (Tables 2.1 and 3.5)
although there is little to report.
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Table 6.1' Short-term gauge networks (by region)

Region Approx. Number gauge Mean record length in
regional of density 1961-1981 analysis

area gauges period
(1000 km2) (per 1000 km2) (years) (%)

North East 18.0 165 9.2 19.8 94
Eastern 32.5 350 10.8 20.1 96
Southern 18.0 405 22.5 20.4 97
West Country 8.0 120 15.0 19.9 95
South West 7.5 90 12.0 19.6 93
Wales 23.0 156 6.8 20.2 96
Central 10.0 158 15.8 20.1 96
North West 14.0 243 17.4 19.6 93
Lake District 6.0 40 6.7 20.4 97
Scotland 69.5 329 4.7 19.1 91
N. Ireland 13.0 82 6.3 19.8 94

Table 6.2 ypical mean, CV and skew of 1-day miima

Region RBAR CV g
(mm)

shortterm longterm shortterm longterm shortterm longterm

North East 35.1 33.6 .352 .350 1.78 1.73
Eastern 35.0 32.6 .400 .395 1.90 2.55
Southern 37.0 35.2 .319 .321 1.62 2.04
West Country 41.6 40.2 .411 .418 2.26 3.61
South West 47.2 46.9 .353 .316 2.45 2.14
Wales 45.9 48.4 .302 .292 133 1.55
Central 34.5 33.3 .330 .337 1.31 1.36
North West 43.7 38.5 .286 .273 1.59 1.38
Lake District 51.4 50.6 .266 .262 1.33 1.19
Scotland 40.7 40.7 .297 .319 1.27 1.97
N. Ireland 39.4 36.7 .366 .332 1.63 2.43
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Table 6.3 Correlation table for short-term data set; I-day annual
maximum rainfalls

(a) England & Wales (1727 values)

easting 1.00
northing - 0.04 1.00
SAAR -0.61 0.09 1.00
altitude - 0.39 0.26 0.66 1.00
RBAR - 0.47 - 0.02 0.90 0.59 1.00
CV 0.15 -0.14 - 0.32 - 0.23 -0.11 1.00
skew - 0.06 - 0.12 - 0.06 - 0.04 0.02 0.68 1.00
GEV u -0.14 0.14 0.33 0.22 0.12 -0.97 -0.67 1.00
para- a 0.25 0.03 - 0.34 - 0.22 - 0.18 0.29 - 0.38 -0.27 1.00
meters k 0.02 0.15 0.13 0.08 0.03 - 0.73 - 0.89 0.80 0.32 1.00

east north SAAR alt. RBAR CV skew u a k

(b) Scotland & N. Irelarid (412 values)

easting 1.00
northing 0.32 1.00
SAAR - 0.32 0.01 1.00
altitude 0.20 - 0.01 0.21 1.00
RBAR - 0.17 0.02 0.85 0.28 1.00
CV -0.12 -0.14 - 0.33 0.07 -0.10 1.00
skew - 0.19 - 0.15 0.07 0.08 0.12 0.54 1.00
GEV 0.15 0.16 0.25 -0.11 0.04 - 0.97 -0.59 1.00
para- a 0.13 0.04 - 0.48 - 0.04 - 0.28 0.51 - 0.35 -0.40 1.00
meters k 0.21 0.18 - 0.07 -0.15 -0.15 - 0.64 -0.89 0.76 0.27 1.00

east north SAAR alt. RBAR CV skew u a k

(c) UK (2138 values)

easting 1.00
northing - 0.45 1.00
SAAR - 0.61 0.29 1.00
altitude - 0.27 0.19 055 1.00
RBAR - 0.37 0.04 0.86 0.53 1.00
CV 0.16 - 0.18 - 0.34 - 0.19 - 0.11 1.00
skew - 0.01 - 0.15 - 0.06 - 0.02 0.03 0.67 1.00
GEV - 0.15 0.18 0.33 0.17 0.11 -0.97 - 0.66 1.00
para- a 0.19 0.00 - 036 - 0.18 - 0.21 0.33 - 037 -0.29 1.00
meters k - 0.02 0.17 0.12 0.04 0.00 - 0.72 - 0.89 0.80 0.30 1.00

east north SAAR alt. RBAR CV skew u a k
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Referring back to Section 2.7, it is interesting to note for England & Wales
that, although the correlation of RBAR with SAAR in the short-term data
set is weaker, that of RBAR with altitude is stronger. A possible
interpretation is that the poorer relationship between RBAR and SAAR for
the short-term data set (compare Figs. 2.11b and c) may be attributable more
to poor estimates of SAAR than to poor estimates of RBAR.

63 TYPICAL GROWTH CURVES

Following the decision in Section 4.6 to constrain the k parameter of the
regional maximum GEV growth curves to that of the relevant typical growth
curve, it seemed natural to constrain the k parameter in the short-term
analysis also. (It is the parameter most sensitive to record length, and is
likely to be unduly influenced by any outliers in what is a relatively short
period of record.) However, both constrained and unconstrained typical growth
curves were derived to investigate possible bias introduced by this assumption.

Figure 6.2NE shows typical growth curves derived from the short-term data set
for North East England. It is seen that the effect of constraining the k
parameter (to its value in the long-term analysis) is slight, the curves being
coincident within the range of the data. The difference is rather greater for
some regions such as the North West (Fig. 6.2NW) but was judged acceptable.
Table 6.4 summarizes the typical growth curves fitted to the short-term data
set.

Table 6.4 ]-day typical growth curves: short-term data set

Region GEV parameters

constrained unconstrained*
Ut at k k

North East 0.830 0.243 -0.111 -0.105
Eastern 0.804 0.248 -0.180 -0.175
Southern 0.847 0.230 -0.083 -0.075
West Country 0.805 0.230 '-0.218 -0.239
South West 0.837 0.218 -0.148 -0.216
Wales 0.852 0.226 -0.073 -0.035
Central 0.839 0.247 -0.072 -0;064
North West 0.867 0.225 -0.015 -0.071
Lake District 0.877 0.216 0.008 0.039
Scotland 0.849 0.210 -0.124 -0.043
N. Ireland 0.821 0.244 -0.137 -0.151

* for comparative purposes (see text)
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6.4 REGIONAL MAXIU ANALYSIS

6.4.1 Introduction of subregions

Experiments were made both with the fixed network method (Subsection 4.5.2)
and with the random network method (Subsection 4.5.3). Both methods
require means of selecting a random network of N gauges that span a certain
target area

If gauges are chosen at random in a 15,000 km 2 region it is obvious that the
procedure will struggle to find, for example, a 16-gauge network spanning an
area between 1,000 and 3,000 km 2. It is not that such networks do not exist
but simply that 16-gauge networks selected at random are likely to span a
much larger area. The difficulty was overcome by defining subregions, their
size depending on the AREA range of interest. (For example, for AREA:
1,000-3,000 km2, subregions of about 1,800 km2 were set up.) Some gauges
were allowed to appear in more than one subregion but wholesale overlapping
was not permitted. Appendix 5 describes the method used to form
subregions. Table 6.5 indicates the numbers of subregions used in the North
East and North West experiments.

Table 6.5 Number of subregions used

AREA band North East North West
(kn 2 )

100 - 300 14 28
300 - 1,000 18 17

1,000 - 3,000 11 3
3,000 - 10,000 3 1

10, 000 - 30,000 1 1

As an example, Fig. 6.3 shows the subregions for AREA: 1,000-3,000 km 2 in
the North East. In this case it is seen that the subregions collectively
represent the region quite well. However, for higher density experiments
(e.g. 32-gauge networks of AREA: 1,000-3,000 km2), only the two most
southwesterly subregions can be used and, inevitably, the analysis is less
representative of the whole region.

In applying the fixed network method (Subsection 4.5.2) to the short-term data
set, the subregions were used simply to assist in finding networks spanning an
AREA in the required range. When using the random network method
(Subsection 45.3), the additional step was introduced of selecting a subregion
at random in each year.
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6.4.2 Discussion of results

The fixed network and random network methods were again found to give
broadly similar results. The random network method was subsequently adopted
for all analyses because of its ability to tolerate missing values in the annual
maximum data, as discussed in Subsection 4.5.3.

The regional maximum growth curves were again taken to be GEV
distributions, fitted by probability-weighted moments. The particular experiments
undertaken are summarized in Table 8.1b and explored in that chapter.
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7. Longer durations

7.1 INTRODUCTION

Earlier chapters have concentrated on analyses of 1-day maximum rainfalls. It
was suggested in Section 4.2 that the degree of spatial dependence in extreme
rainfalls may be influenced by duration, with the expectation that regional
maxima will show less spatial dependence for shorter durations (reflecting
greater dominance of localized convective storms) and more dependence for
longer durations (reflecting greater association with widespread depressional/
frontal rainfall events).

Within the scope of this project it has not been possible to analyse rainfall
accumulations for subdaily durations. (To investigate regional maxima for
subdaily durations would require lengthy records from a network of recording
raingauges. The Institute holds a copy of the Dee dense raingauge data set
but the period of record of just over three years is rather limited.) However,
it is relatively straightforward to extend the earlier analyses to durations of 2,
4 and 8 days, and this is now reported.

Whether the trend of spatial dependence with duration can be extrapolated
satisfactorily to subdaily durations is discussed in Section 8.6.

7.2 PRELIMINARIES

Annual maximum 2-day rainfalls were extracted using the procedure outlined in
Section 2.2 and discussed more fully in Appendix 2. The corresponding 4-day
and 8-day maximum rainfalls were subject to less stringent checks regarding
missing data; the recorded maximum was accepted as the true annual
maximum if originating from at least 9 months' valid data, and rejected
otherwise.

The mean, CV and skew of D-day annual maximum rainfalls are summarized
in Table 7.1. As expected, both the CV and skew decrease at higher
durations.

7.3 TYPICAL GROWTH CURVES

Table 7.2 gives the GEV parameters of the typical growth curves for the 11
regions. The characteristic EV2 behaviour (i.e. k<O) of 1-day maximum
rainfalls in most regions is less pronounced at 2 days and many of the typical
growth curves are mildly EV3 (i.e. k>O) for 8-day maximum rainfalls.

Inspection of the 2, 4 and 8-day growth curves (Figs. 7.1b-d) reveals some
differences from the regional pattern seen in the 1-day growth curves
(Fig. 7.1a). A particular feature is that, at longer durations, the North East
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Table 7.1 Typical mean, CV and skew of 1, 2 and 4-day maxima:
long-term data set

Region RBAR (mm) CV 

1-day 2-day 4-day 1-day 2-day 4-day 1-day 2-day 4-day

North East 33.6 43.0 .350 342 1.73 1.75

Eastern 32.6 40.4 .395 .348 Z55 2.48

Southern 35.2 45.1 .321 .288 Z04 2.25

West Country 40.2 51.2 .418 343 3.61 2.98
South West 46.9 61.2 .316 .269 Z14 1.56
Wales 48.4 64.8 .292 .269 1.55 1.52

Central 33.3 41.9 52.3 .337 .320 .280 1.36 1.40 1.18

North West 38.5 51.3 .273 .270 1.38 1.30
Lake District 50.6 67.3 .262 .245 1.19 1.21
Scotland 40.7 54.4 .319 .293 1.97 1.83

N. Ireland 36.7 48.5 332 .299 243 1.93

Table 72 GEV parameters for typical growth curves: PWM method
applied to long-term data set.

Region Duration, D u a k
(days)

North East 1 0.835 0.236 -0.111
2 0.839 0.230 -0.114
4 0.850 0.218 -0.102
8 0.865 0.213 -0.056
25 0.894 0.203 0.060

Eastern 1 0.817 0.231 -0.180
2 0.840 0.210 -0.159
4 0.856 0.199 -0.130
8 0.874 0.194 -0.067

Southern 1 0.852 0.222 -0.083
2 0.870 0.201 -0.065
4 0.884 0.191 -0.028
8 0.894 0.193 0.027

West Country 1 0.816 0.217 -0.218
2 0.845 0.200 -0.168
4 0.880 0.184 -0.070
8 0.897 0.191 0.037

continued....
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Table 72 continued

Region Duration, D u a k
(days)

South West 1 0.852 0.198 -0.148
2 0.873 0.192 -0.081
4 0.900 0.186 0.043
8 0.904 0.184 0.059

Wales 1 0.864 0.208 -0.073
2 0.875 0.196 -0.058
4 0.895 0.180 -0.004
8 0.900 0.178 0.017

Central 1 0.840 0.244 -0.072
2 0.848 0.228 -0.085
4 0.868 0.213 -0.041
8- _ _

North West 1 0.875 0.211 -0.015
2 0.874 0.206 -0.031
4 0.892 0.191 0.012
8 0.897 0.189 0.035
25 0.910 0.186 0.103

Lake District 1 0.882 0.208 0.008
2 0.886 0.192 -0.017
4 0.903 0.172 0.014
8 0.899 0.176 0.004

Scotland 1 0.852 0.207 -0.124
2 0.866 0.205 -0.073
4 0.878 0.190 -0.058
8 0.894 0.186 0.010

N. Ireland 1 0.847 0.209 -0.137
2 0.864 0.203 -0.087
4 0.879 0.186 -0.068
8 0.910 0.169 0.043

joins Eastern as a high skew region whereas, for 4 and 8-day durations, the
West Country becomes more moderate. In contrast, the Lake District, North
West and Wales remain (relatively) low skew regions at all durations. The
Central region is intermediate to the Wales and Eastern regions at all
durations. A possible interpretation is that long-duration heavy rainfalls are
generally associated with southwesterlies, to which the Eastern and North East
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regions are most immune.

The relatively high skew of the 2, 4 and 8-day maximum rainfalls in the

North East have particular implications for flood growth curves on large,

slowly responding catchments in that region. Archer (1981) concluded that

drier lowland catchments in north east England tend to have steeper growth
curves than wet upland catchments. He suggested that this might be

influenced by channel morphology and the occurrence of overbank (i.e. flood
plain) storage. However, an alternative interpretation from Figs. 7.1 is that the
flood peak growth curve may simply be reflecting properties of the relevant
rainfall growth curve. The Pennine catchments for which Archer noted less
steep growth curves are, of course, in the North West region, as defined in
Section 2.5.

Although the position of the dividing line between the North East and North

West regions is inevitably somewhat arbitrary - it was delineated in Section 2.5
chiefly by reference to the CV of 1-day maximum rainfalls for the long-term

data set - it is interesting to note that the difference between their typical

growth curves is marked at all durations. This is also true of the Southern

and Eastern regions, supporting the view that the regional partitions represent
real differences in heavy rainfall regime.

The relative positions of the South West and Wales rainfall growth curves are

rather hit and miss at higher durations. Concern was expressed in Section 2.5
that these regions were of doubtful homogeneity and the further analysis here
does not dispel this.

In view of the considerable range of rainfall regimes in Scotland it is perhaps
not surprising that the typical growth curves are fairly moderate at all
durations; the region was not tested for homogeneity in Section 2.5 but would
presumably have failed. The typical growth curves for N. Ireland are similar
to those for Scotland with the exception of the strangely shallow 8-day curve.

Figs. 7.2 present 1, 2, 4 and 8-day typical growth curves region by region.
Here the curves are all standardized by the 1-day RBAR so that a direct

indication is given of the relative magnitude of the T-year falls for different
durations. Much could, no doubt, be read into these graphs. However,

comment here is restricted to noting that, for many regions (e.g. Fig. 7.2WA),
the 8-day curve plots rather higher than logarithmic extrapolation of the 1, 2

and 4-day plots would suggest. Finally, Fig. 7.2WC provides a timely warning
of the limitations of using a simple parametric form for the growth curves; it

is clearly nonsense for the growth curves of different durations to intersect
(when plotted to a common standardization). This could possibly have been

avoided by seeking internally consistent families of growth curves for
different durations.

However, the present study is concerned in the main only with the relative
position of typical and regional maximum growth curves. In this respect it is
believed that the spatial dependence model derived in the next chapter is not
unduly sensitive to any deficiencies in the typical growth curves (but see
Section 8.6).
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7.4 REGIONAL MAXIMUM ANALYSIS

The regional maximum analyses for 1-day rainfalls - described in Chapters 4
and 6, and summarized in Table 8.1 - were repeated for durations of 2 and 4
days. For the North East and North West regions, analyses were also carried
out at 8-day duration. The results of the regional maximum analyses are
exploited in Chapter 8.

W;iiLiFS: ~~~~~~~~~~~~/ ft. 
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Fig. Z71 Inter-regional comparison of typical growth curves fitted to
standardized D-day annual maxmum rainfaUs, long-term
data set.
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8. Building a general model for spatial
dependence

8.1 SUMMARY OF REGIONAL MAMMUM EXPERIMENTS

As reported in Chapters 4, 6 and 7, regional maximum analyses were carried
out for a wide range of experiments, utilizing both the long-term and
short-term data sets. The range of 1-day experiments is summarized by region
in Table 8.1, which indicates the maximum number of gauges (N) considered
in each AREA band. In general, the same experiments were undertaken for
2 and 4-day maximum rainfalls, and, in the case of the North East and North
West regions, for 8-day rainfalls also.

As evident in Table 8.1, fewer experiments were possible in regions with few
gauges or sparse networks. Experiments were deemed feasible if:

p N < 0.5 PAVAIL NAVAIL (8.1)

where p is the network density (i.e. N/AREA). NAVAIL is the number of
gauges, and PAVAIL the average gauge density, for the data set being used
(see Table 2.4 for the long-term data set and Table 6.1 for the short-term).

The multiplier 0.5 was chosen so that regional maximum experiments which
had struggled to find gauge networks of the required size and density were
excluded; an indicator of difficulty was where the random network method
(Subsection 4.5.3) had failed to find a suitable network for one or more years
in the period being analysed. (The thinking behind Condition 8.1 is that an
experiment demanding a gauge density higher than PAVAIL can be tolerated
if the number of gauges required is well below NAYAHL. This reflects the
fact that the distribution of gauges within each region is somewhat patchy,
there being inevitable pockets of higher than average density. See Figs. 2.1
and 6.1.)

8.2 INITIAL APPROACH: WORKING IN TERMS OF GEV
PARAMETERS

8.2.1 Introduction

Generalizing a model to relate the regional maximum and typical growth
curves lies at the heart of the study and much time was spent in attempting
to find a satisfactory method. Dissatisfaction with the epicentrage method
(Section 5.2), and initial distrust of the equivalent number of independent
gauges method (Section 53), led to a search for a model in terms of the
GEV parameters of the regional maximum growth curve.
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Table &I Summary of regional maimum eqeimren~t

(a) Maximum value of N: long-term data set

Region AREA band (km2)
1,000- 3,000- 10,000- 30,000-
3,000 10,000 30,000 100,000

North East 8 16
Eastern 16 32
Southern 8 32
West Country 4 8
South West 4 16
Wales 4 16
Central 4 16
North West 8 16
Lake District 4 8
Scotland
N. Ireland 8 8

(b) Maximum value of N: short-term data set

Region AREA band (km2)
100- 300- 1,000- 3,000- 10,000-
300 1,000 3,000 10,000 30,000

North East 8 16 32 64 64
Eastern 8 16 32 64 128
Southern 8 32 64 64 128
West Country 8 16 32 64
South West 8 16 16 64
Wales 8 16 16 32 64
Central 8 16 32 64
North West 16 32 32 64 128
Lake District 4 8 8 16
Scotland 8 16 32 64 64
N. Ireiand 4 8 16 32 32
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8.2.2 Models for Ur and ar

Through scatterplots, correlation tables and regression, relationships were sought
to estimate ur and ar in terms of ut, at, k, N and AREA, primarily for
1-day rainfall maxima. Many possible transformations were considered, some of
them inspired by the form of relationships known to apply to the maximum of
N independent gauges (Equations 4.2 to 4.4). However, most success was
achieved with essentially empirical models of the form:

Ur - Ut = b InN I nAREA (8.2)

ar - at = c InN InAREA (8.3)

where the parameters b and c were fitted by regression. (Suppression of the
intercept terms in the linear regressions was generally justified by their low
statistical significance.) The regression models were fitted to the 1-day (regional
maximum) results for regions in England & Wales.

The parameter b was found to range from 0.017 (in the South West and
North West) to 0.019 (in Southern and Central England) and 0.021 in Eastern
England. The regressions explained between 96.5 and 99.5% of the variation in
ur-Ut.

The parameter c was found to range from 0.0015 (in the Lake District) and
0.0022-0.0025 (in the South West, Wales and North West) to 0.0039-0.0045 (in
the Southern, West Country and Eastern regions). The regressions explained
82 to 92.5% of the variation in ar-at for most regions but only 41 to 58%
for the Lake District, South West England and Wales.

Given the common form of Equation 8.2 and 3, it is possible to consider a
model for ar in terms of ur, ut and at, One approach yielded:

(ar-at)/at = C (Ur-ut)/Ut (8.4)

with C ranging from about 0.6 (in Wales, Central and North East England)
and 0.65 (in the North West, Lake District and South West regions) to 0.8
(in Eastern and Southern England) and 1.0 (in the West Country).

Further relationships were considered in the search for an improvement over
the generalization provided by Equations 8.2 and 3, but with little success.

83 CRMTICAL REVIEW

83.1 Context

Two factors emerged which led to a change of approach. Firstly, it became
clear (as described in Section 5.4) that the tendency for negative dependence
at high return periods could be attributed to lirmitations in the GEV-based
method rather than to an inherent phenomenon. Secondly, it was realized that
the primary objective of the study did not explicitly require generalization of
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the regional maximum growth curve. This can be explained by looking at the
mechanics of a collective risk assessment for a network of sites.

83.2 Collective risk assessment

The annual risk of one or more design exceedances at a network of sites in
a homogeneous region is given by:

r = 1 - Fr(T) (8.5)

where Fr is the distribution of the regional maximum values and T is the
design return period on the typical curve scale. Introducing the concept of an
equivalent number of independent sites (Section 5.3) we obtain:

r - 1 - [Ft(T) Ne(T) (8.6)

The typical growth curve, Ft, is reasonably well defined by the regional data
(Chapter 3). Thus, all that is required is a model for Ne. Note that it is
not necessary to estimate the regional maximum growth curve explicitly; nor
does the risk assessment require estimation of RBAR, either for the individual
sites or for their regional maximum series.

It will be recalled from Fig. 5.3 that In Ne is the horizontal separation of the
regional maximum and typical curves on the Gumbel reduced variate scale, and
that we expect Ne to satisfy the constraint:

1 S Ne C N

Thus, having explored alternative approaches, it was concluded that modelling
the equivalent number of independent sites, Ne, was the most appropriate
route to representing spatial dependence.

833 Further examination of Ne behaviour implied by GEV-based
method

Continuing the discussion of Subsection 5.4.5, it was noted that violations of
the constraint Ne,<N were primarily a feature of certain 2 and 4-gauge
experiments. The nine worst violations ("worst" in the sense that they occurred
at a relatively low return period on the typical curve scale) were 2-gauge
networks. These are summarized in Table 8.2. Leaving N=2 experiments
aside, Table 8.3 lists the six instances for which Ne4N was violated at a
return period of 50 years or less.

Given that the Buishand analysis (Section 5.4) specifically examined, and
rejected, the possibility of negative dependence in bivariate annual maximum
data, it is concluded that the violations are symptomatic of limitations in the
GEV-based method when applied to 2 and 4-gauge networks.

Some further examples of the variation of N. with return period are shown in
Figs. 8.1 and 2. Results for 2-gauge networks in North East England (Figs.
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Table &2 Regional maximum expeninets for which Ne exceeds N at
10-year retumrn period

Region Duration AREA N Return period
at which Ne=N

(days) (kmz) (years)

Long-term data set

Eastern 2 58,528 2 7.3
Wales 1 18,454 2 7.1
North West 2 18,336 2 8.9
Lake District 2 6,125 2 6.2
Lake District 4 6,136 2 6.8

Short-term data set

North West 1 5,994 2 7.2
North West 2 1,831 2 9.3
North West 2 17,299 2 9.1
N. Ireland 4 196 2 9.2

Table &3 Regional maximum ~experiments (excluding N=2 cases) for
which Ne exceeds N at 50-year retumrn period

Region Duration AREA N Return period
at which Ne=N

(days) (km2) (years)

Long-term data set

Eastern 4 48,766 4 28.7
North West 1 19,938 4 20.3

Short-term data set

North West 2 1,911 4 46.8
North West 4 1,942 4 37.7
North West 4 17,603 4 33.1
N. Ireland 4 181 4 34.4
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8.1a and b) indicate good agreement between the long-term and short-term
analyses for AREA=18,000 km2 but poor agreement for AREA=6,000 km 2.
The short-term results demonstrate a systematic AREA effect at low return
periods but the trend with return period is rather hit and miss. Results for
16-gauge networks in Southem England are illustrated in Figs. 8.2a and b.

83.4 '[te trend with return period

While the Buishand analyses of Section 6.4 indicate a trend to greater
independence in extreme events in some regions, this was not the case in all
regions. That analysis was limited to 2-gauge networks and 1-day rainfalls
drawn from the long-term data set. In contrast, a relatively wide range of
experiments was made using the GEV-based method (Table 8.1). Many of
these experiments (72% in all) indicate a trend to greater independence in
extreme events but the pattern is sometimes unconvincing (e.g. Figs. 8.1 and
2).

83.5 Compromises

In seeking a general model of spatial dependence there is a dilemma. If
particular experimental results are heeded very closely, resulting in a host of
regional submodels, there will be very significant inter-regional differences when
the models are extrapolated for application at the high return periods that are
relevant to reservoir flood risk assessment. On the other hand, if a broad
approach is adopted, sweeping aside those results that do not conform to a
single self-consistent model, application of the method to risk assessment at
lower return periods will be unnecessarily coarse. Clearly it is a question of
balance. In the event it was decided to retain a regional approach but to
suppress any variation in dependence with return period.

83.6 Discussion

To have followed the trend to independence seen in some experiments in
some regions, and the trend to dependence seen in others, would have
presented an erratic picture of "ultimate" events. Statistical analysis of the
available data is too blunt a tool to determine whether the upper limit event
is an extreme cloudburst (low spatial dependence) or a "Noah" (high spatial
dependence). Intuitively one might expect the former for short durations and
the latter for long ones; however, it is seen later that, for the relatively long
durations considered here, the influence of duration on our measure of spatial
dependence (Ne) is relatively weak. That in Eastem England, for example, as
much spatial independence is seen in 8-day rainfalls as 1-day rainfalls is at
first sight surprising. One interpretation would be that most extreme 8-day
falls in Eastern England stem from chance recurrence of localized convective
cells.

Rather than suppressing the variation of N. with return period, an altemative
approach to extrapolating results to high return period would have been to

117



dispense with regions. Having obtained a national representation of the typical
variation of N. with return period (pooling together similar experiments from
all regions), this could have been imposed on all regions before resuming a
regional analysis. The possibility has some appeal but was not pursued.

8.4 A SIMPLE MODEL FOR Ne

8.4.1 Theory:

By ignoring the variation of Ne with return period, the representation of
spatial dependence reduces to fitting a one-parameter model to relate the
position of the regional maximum curve to the typical curve. The one
parameter is, of course, Ne.

As reported in Section 4.6 (and proved in Appendix 4) the maximum of Ne
independent GEV distributions - where Ne is some constant - is a GEV with
parameters:

Ur = Ut + at(1 - Ne kt)/kt (8.8)

ar = at Ne kt (8.9)

and
(8.10)

kr = kt

Eliminating Ne, and setting kr=kt=k, we have:

Ur + ar/k - ut + at/k (8.11)

This condition states that the lower (or upper) bound of the regional
maximum of Ne independent sites coincides with that of the typical growth
curve, i.e.:

Ur + ar/k = ut + at/k = Xbound (8.12)

8.4.2 Fitting Ne by the mean

Since only one parameter is to be fitted, only the first probability-weighted
moment, %0, is required. This is simply the arithmetc mean of the annual
maxima

For a GEV with parameters u, a and k, the theoretical (i.e. population) mean
is:

80 = u + ati - r(1+k))/k (8.13)
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Applying estimates derived from the regional maximum and typical data, we
have:

or = Ur + a{ (1 - r(1+k)}/k (8.14)
0 r r

ot - ut + at{1 - r(l+k))/k (8.15)

Hence, applying Equation 8.12 and eliminating the r(l+k) term, we obtain:

ar/at = (Bo -Xbound)/(oto -Xbound) (8.16)

Finally, from Equation 8.9 we reach the result:

Ne = ((B Xbound) / ( o
t _Xbound) (8.17)

Estimation of Ne using Equation 8.17 presents few practical problems. By
standardization we have to=l1, and Bo is simply the arithmetic mean of the
(regional maximum) annual maximum values.

8.4.3 link with epicentrage

It is interesting to note the link between Ne and the epicentrage coefficient,
E, implied in this simple model. With epicentrage as defined in Fig. 5.1, we
have:

Ne = [(E -Xbound)/(1-xbound ) ]l/k (8.18)

However, defining an epicentrage (ER) relative to the lower (or upper) bound,
Xbound, we obtain the linkage:

Ne = ER1/k. (8.19)

8.4.4 Example

Figure 8.3 demonstrates how fitting the model by the mean (Subsection 8.4.2)
performs for two regional maximum experiments in North East England. The
calculations are summarized as follows:

North East, 1-day, long-term, AREA=10,000-30,000 km2

ut=0.835, at=0.236, k=-0.111 Xbound=-. 29

Max of 4 gauges: Br=1.31 Ne=((131+1.29)/(1.0+1.29)) 9.°1=3.1

Max of 16 gauges: 1or=1.59 Ne=((1.59+1.29)/(1.0+1.29)) 9' 1=7.9

The broken line in Fig. 8.3 corresponds to the simple model; the curve has
been sketched a distance InN e to the left of the typical curve. The fit
provided can be compared with that illustrated in Fig. 43 for the GEV-based
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method.

8.4.5 Illustrative results

Ne values obtained by fitting by the mean (Subsection 8.4.2) are detailed in
Table 8.4. For example, Table 8.4NE indicates the equivalent number of
independent sites derived from 1-day and 4-day regional maximum experiments
in the North East region. It is seen that the long-term data set exhibits
rather less spatial dependence than the short-term data set (compare roman
and italicized values). From Table 8.4NW it is confirmed that the degree of
spatial dependence in 1 and 4-day rainfalls is consistently less in the North
West than in the North East.

Table &4NE Experimental values of Ne obtained by Subsection &4.2
method- North East region

(a) 1-day rainfalls

AREA band Number of gauges, N
(km2) 2 4 8 16 32 64

100- 300 1.30 1.57 2.13
300- 1,000 1.47 2.01 2.72 4.33

1,000- 3,000 1.50 1.98 3.05 4.09 5.37
3,000-10,000 1.67/1.73 2.41/2.77 3.75/4.49 5.03 6.88 9.78

10,000-30,000 1.76/1.79 2.77/3.08 4.23/4.98 64117.88 9.31 13.23

(b) 4-day rainfalls

AREA band Number of gauges, N
(km, ) 2 4 8 16 32 64

100- 300 1.32 1.52 1.89
300- 1,000 1.46 1.88 2.39 3.69

1,000- 3,000 1.45 2.08 2.76 3.44 4.21
3,000-10,000 1.60/1.61 2272.46 3.16/4.00 4.25 5.13 7.80

10,000-30,000 1.66/1.69 2.60/2.81 3.82/432 5.39/6.80 7.11 9.91

NB Values In italics refer to analysis of the long-term data
set
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Table &4NW Epement values of Ne obtained by Subsection
&4.2 method' North West region

(a) 1-day rainfalls

AREA band Number of gauges, N
(kmz) 2 4 8 16 32

300- 1,000 1.63 2.24
1,000- 3,000 1.64 243
3,000-10,000 1.84/1.87 271 4.63 7.55 12.18

10,000-30,000 3.58/3.09 6.05/5.11 11.43/8.16 13.55

(b) 4-day rainfalls

AREA band Number of gauges, N
(kmin2) 2 4 8 16 32

300- 1,000 1.45 200
1,000- 3,000 1.52 256 3.36
3,000-10,000 1.64 247 3.79 5.85 8.70

10,000-30,000 1.87/1.79 3.07/2.90 5.18/4.33 &54/6.92 9.75

NB Values in italics refer to analysis of the long-term data
set
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8.4.6 Implications for risk assessment

In the above model the degree of spatial dependence is indexed by Ne, with
the value determined at the mean annual event. The return period of the
mean annual event in the GEV distribution varies between about 2.2 and 2.8
years for the range of k met in this study (0.06 down to -0.22). By fixing Ne
according to the spatial dependence seen at about the 2.5-year event, there are
implications for application of the model to assess risks at much higher return
periods.

The balance of the evidence available suggests that spatial dependence reduces
at higher return period in a majority of cases. It is therefore recognized that
the modelled values of Ne may be too low (when applied at high return
period) and may tend to underestimate the collective risk of a design
exceedance. However, at present the practitioner is only able to make risk
assessments based on the assumption of total independence, which will of
course lead to gross overestimation of the risk. Given this background the
procedure developed here should be seen as providing a very considerable
advance in collective risk assessment for reservoir storm hazard rather than a
perfect answer. A corollary is that the method can be expected to provide
relatively accurate collective risk assessments at lesser return periods, which are
of interest in other areas of application (Section 10.4).

8.5 GENERALIZING THE MODEL

85.1 Introduction

The fitting method illustrated in Subsection 8.4.4 was used to derive values of
Ne for each of the 297 experiments summarized in Table 8.1, replicated at
durations of 1, 2 and 4 days (and also at 8 days for the North East and
North West experiments). Regression analyses were then undertaken to derive
regional models relating Ne to N, AREA and duration (D).

85.2 Choice of variables and weightings

Experience gained through use of the GEV-based method suggested that
logarithmic transformations were appropriate for all variables and that mixed
terms such as InN InAREA should also be considered. The MINITAB package
was used to derive regression equations for InNe, with and without weighting.
Where applied, the weightings distinguished those estimates of Ne originating
from the long-term (given a weight of 1.0) and those originating from the
short-term data set (given a weight of 031). The latter weight was
determined as the ratio of the mean length of record in the short-term data
set (17.5 years) to that in the long-term data set (56.4 years).
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8.5.3 Estimation equations for Ne

Subsequently it was determined to be more appropriate to build a model for
the ratio InNeAnN. From Fig. 5.3 it can be seen that this provides a neat
index of the degree of spatial independence in maximum rainfall, the index
ranging between 0 (total dependence) and 1 (total independence).

The regression analyses are summarized in Tables 8.5 and 8.6. Those
incorporating weighting are preferred.

85.4 Discussion

In most regions the 3-variable model provides a small but perceptible
improvement over the simpler 2-variable model. However, in three regions the
additional variable, InD, enters the equation with a non-negative coefficient.
This indication of greater independence in longer duration rainfall events is
almost certainly spurious. Accordingly, the simpler 2-variable models are
recommended for use in these regions.

The latter decision is justified by looking again at the typical growth curves
for 1, 2, 4 and 8-day durations (Chapter 7). Only in two regions do the
semi-standardized typical growth curves for different durations intersect at a
return period of 1,000 years or less; these are the West Country and South
West regions (e.g. Fig. 7.2WC). Thus there is the suspicion that the
2-variable model may simply be compensating for inconsistencies in the typical
growth curves.

The recommended estimation equations for Ne are summarized in Table 10.2.
The weighted regressions are preferred in that they give emphasis to the
experiments based on the long-term data set, albeit of a token amount.

8.6 THIE EFFECT OF DURATION

As discussed above, inclusion of the duration term leads to only a modest
improvement in modelling the equivalent number of independent sites, New
From the present study of 1, 2, 4 and 8-day rainfalls, it is concluded that
spatial dependence is not greatly influenced by duration but that there is a
slight trend to higher dependence at longer durations and, by implication,
lower dependence at shorter durations. Perhaps the principal conclusion is
that the duration effect is relatively weak, at least for durations of 1 day or
more.
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Table &5 2-variable estimation equations for InNe/lnN

InNe/lnN = a + b DnAREA + c InN

Number 4 WEIGHTED -· UNWEIGHTED
of

Region experiments a b c a b c see r 2

North East 99 0.041 0.079 -0.055 0.060 0.076 -0.054 0.045 88.1
Eastern 100 0.0 0.091 -0.050 0.0 0.088 -0.047 0.046 91.6
Southern 106 0.0 0.093 0.031 0.071 0.082 -0.028 0.052 83.9
West Country 69 0.0 0.101 -0.085 0.0 0.095 -0.072 0.056 84.2
South West 69 0.0 0.095 -0.058 0.0 0.089 0.047 0.076 62.5
Wales 84 0.073 0.085 -0.053 0.114 0.078 -0.046 0.045 88.3
Central 72 0.0 0.090 -0.048 0.0 0.088 -0.043 0.037 90.6
North West 109 0.0 0.092 -0.042 0.060 0.084 -0.041 0.051 87.5
Lake District 51 0.0 0.107 -0.076 0.0 0.105 -0.069 0.042 88.6
Scotland' 72 0.168 0.073 -0.056 0.041 88.1
N. Ireland 68 0.0 0.086 -0.059 0.0 0.082 -0.053 0.071 62.0

UK 899 0.065 0.084 -0.050 0.079 0.080 -0.046 0.068 75.7

' Short-term data set only

Table &6 3-variable estimation equations for InNe/lnN

InNe/inN - a + b InAREA + c InN + d RnD

4- WEIGHTED - UNWEIGHTED

Region a b c d a b c d see r

North East 0.055 0.082 -0.058 -0.040 0.076 0.077 -0.056 -0.035 0.038 91.4
Eastern* 0.0 0.091 -0.050 -0.012 0.0 0.089 -0.047 -0.009 0.046 91.7
Southern 0.067 0.089 -0.032 -0.036 0.090 0.082 -0.028 -0.027 0.050 85.3
West Country"* 0.0 0.098 -0.085 0.033 0.0 0.092 -0.073 0.042 0.050 87.2
South West" 0.0 0.092 -0.058 0.040 0.0 0.084 -0.047 0.059 0.068 70.3
Wales 0.097 0.085 -0.052 -0.035 0.137 0.078 -0.046 -0.033 0.042 90.3
Central 0.0 0.093 -0.048 -0.037 0.0 0.091 -0.043 -0.033 0.032 93.2
North West 0.069 0.091 -0.048 -0.055 0.084 0.087 -0.043 -0.052 0.038 92.9
Lake District 0.0 0.109 -0.076 -0.021 0.0 0.108 -0.069 -0.027 0.040 90.1
Scotland' 0.188 0.073 -0.056 -0.029 0.038 90.1
N. Ireland" 0.0 0.086 -0.059 0.005 0.0 0.080 4054 0.024 0.071 63.4

UK 0.081 0.085 -0.051 -0.027 0.090 0.080 -0046 -0.018 0.067 76.2

' Short-term data set only
' Use of 3variable equation not recommended for this region
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9. Seasonal influences

9.1 IhTRODUClON

Although peripheral to the main study, a brief exploration of seasonal rainfall
maxima was undertaken and is reported here.

9.2 SEASONALITY OF 1-DAY ANNUAL MAXIMUM
RAINFALLS

Figure 9.1 illustrates the monthly distribution of annual maximum 1-day
rainfalls in the long-term data set, for regions in England & Wales. The
seasonal effect is most marked for the North Eastern, Eastern and Central
regions (which experience more than one-third of their annual maxima in July
and August) and least marked in the South West, Wales, North West and
Lake District. The mean date of occurrence of annual maxima ranges from
mid-August (in the North East, Eastern and Central regions) to early October
(in Wales and the Lake District) and late October (in the South West).

The strong seasonality of 1-day rainfalls in the North East, Eastern and
Central regions is thought to reflect a greater proneness to convective storms
and a reduced incidence of depressional rainfall, these regions being relatively
sheltered from the dominant southwesterly rain-bearing systems.

The Flood Studies Report (Volume II, Section 3.4) considers Summer and
Winter seasons defined as May-October and November-April. It is seen from
Fig. 9.1 that this is a reasonable division into 6-month periods which are
more or less prone respectively to heavy 1-day falls. Clearly the distinction is
more important in the North East, Eastern and Central regions than
elsewhere.

Table 9.1 presents the relative frequency of Summer and Winter occurrences,
classified by quantile. Of particular interest is the fact that, in all regions,
Summer events become more dominant at higher quantile.

93 TYPICAL GROWTH CURVES FOR 1-DAY SEASONAL
MAMMA

Summer and Winter 1-day maxima were abstracted for gauges in the long-term
data set, for regions in England & Wales. (An observed maximum was
accepted if records for the 6-month period were at least three-quarters
complete.)

T'ypical growth curves based on the GEV distribution were fitted to the
seasonal data For comparative purposes, the data were standardized by the
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all-year mean (i.e. the 1-day RBAR) rather than by seasonal means. Examples
of the resultant growth curves are given in Figs. 9.2 which illustrate the
dominance of the Summer events in determining the all-year growth curve,
particularly at high return period. As expected, this is more pronounced for
the North East than the North West.

Table 9.1 Standardized annual maximum 1-day rainfalls (long-term
data set): relative frequency (%) of Summer (S) and
Winter (W) ocauences, clasified by quanthe.

Region x<0.5 0.5<x<1.0 1.0<x<1.5 x>1.5

S W S W S W S W

North East 0.7 0.2 41.3 17.5 25.3 6.8 7.7 0.5
Eastern 0.5 0.6 41.8 19.2 23.2 5.8 8.5 0.5
Southern 0.3 0.3 34.0 23.7 27.0 8.2 5.9 0.5
West Country 0.4 0.1 37.9 25.3 20.1 7.7 7.4 1.1
South West 0.0 0.1 28.5 32.4 17.7 15.6 4.7 1.0
Wales 0.1 0.2 32.9 25.9 21.7 13.4 3.9 1.9
Central 0.4 0.3 38.9 19.4 25.6 7.8 7.2 0.5
North West 0.1 0.1 34.1 22.9 23.4 14.6 3.9 0.9
Lake District 0.1 0.0 31.8 24.7 25.4 13.4 3.9 0.7

England & Wales 0.3 0.3 36.7 22.4 23.9 9.2 6.4 0.7

9.4 SPATLAL DEPENDENCE

A brief examination of possible seasonal differences in spatial dependence was
made by deriving regional growth curves based on the GEV. Here the
analysis reverted to standardizing the series of Summer and Winter 1-day
maxima by their respective mean values. The regional maximum results were
interpreted in terms of the equivalent number of independent sites, Ne.

A general tendency was noted towards greater spatial dependence in the
Winter season. This accords with the intuitive view that Winter maximum
rainfalls are more often associated with widespread frontal rainfall than
localized convective storms. However, the effect was generally only moderate.
For example, for N=8, AREA: 10,000-30,000 km 2 experiments, Winter values
of Ne for an "average" region were only about 0.5 lower than the all-year
value of 4.5. The South West region was something of an exception in that
most of its regional maximum experiments pointed to greater spatial
dependence in the Summer season.

The results obtained, albeit exploratory, appear to indicate that seasonal effects
on spatial dependence are generally fairly minor when compared to the large
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seasonal differences in point rainfall frequency. This does not fully concur
with Buishand's finding that the bivariate dependence of 1-day winter maxima
in the Netherlands is much stronger than for all-year maxima (Buishand,
1984).
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Fig. 9.1 Relative frequency (month by month) of annual maximum
1-day rainfalls, long-tenm data set
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10. Applications

10.1 INTRODUCTION

A general procedure is set out in Section 10.2 to evaluate the risk of a
T-year point rainfall being experienced at one of a given network of sites in a
region. Application of the procedure to networks of reservoirs in South Wales
and the Trent & Mersey area is illustrated in Section 10.3, and Section 10.4
refers to other fields of potential application. The procedure is not without
limitations and Secton 10.5 discusses the extent to which the spatial
dependence of point 1-day rainfall extremes is likely to be indicative of
extreme flood inflows.

The spatial dependence model developed in Chapter 8 can also be used to
interpret certain classical techniques. For example, Section 10.6 uses the
model to simulate the evolution of "envelope curves" for extreme point
rainfalls. A potentially important applicaton (Section 10.7) is to examine what
the model says about the validity of the "station-year" method for
extrapolating regional flood growth curves to extreme return periods. This has
implications for gauge network design for the development of regional flood
(or rainfall) growth curves.

10.2 THIE RISK ASSESSMENT PROCEDURE

The collective risk of a T-year event occurring at one of a given network of
N sites is estimated as follows.

STEP 1: Identify the N sites and their grid references (X1,Y1) in km units.

STEP 2: Calculate the mean intersite distance in km, d, from:

_ 1 (10.)2

N(= -1) YE Y <N - X j2 + (Yi-Y ) (10.1)

STEP 3: Estimate the area "spanned" by the sites, using the empirical
formula:

AREA= 2.5d 2 . (10.2)

If the network is highly irregular, check that this provides a
reasonable reference area by plotting a circle of radius

' (AREA/n); centred at the centroid of the N sites.

STEP 4: Estimate the duration, H hours, of heavy rainfall to which the
individual sites are generally sensitive. Because of the nature of
the daily rainfall data used to calibrate the spatial dependence
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model, it is necessary to convert this duration into units of
rain-days. A precise value for this parameter is not crucial to
the collective risk assessment and an appropriate value of D can
be taken from Table 10.1.

STEP 5: Evaluate the equivalent number of independent sites, N¢, from the
spatial dependence model:

InN e = InN(a+bInAREA + clnN + dInD) (10.3)

where a, b, c and d are regional parameters defined by Table 10.2
and Fig. 2.7d.

Table 10.1

Storm duration, H, to which Duration, D, to be used
sites deemed sensitive in model

(hours) (days)

H where H<15 H/18.0
15- 22 1.0
22 - 33 1.5
33- 53 2.0
H where H>53 H/24.0

Table 10.2 Regional parameters for use in Equation 10.3

Region a b c d

North East 0.055 0.082 -0.058 -0.040
Eastern 0.0 0.091 -0.050 0.0
Southern 0.067 0.089 -0.032 -0.036
West Country 0.0 0.101 -0.085 0.0
South West 0.0 0.095 -0.058 0.0
Wales 0.097 0.085 -0.052 -0.035
Central 0.0 0.093 -0.048 -0.037
North West 0.069 0.091 -0.048 -0.055
Lake District 0.0 0.109 -0.076 -0.021
Scotland 0.188 0.073 -0.056 -0.029
N Ireland 0.0 0.086 -0.059 0.0

UK 0.081 0.085 -0.051 -0.027
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STEP 6: The required collective risk of an exceedance of the T-year event
at one of the sites is obtained from:

r = 1 -(1M WNe (10.4)

103 EXAMPLES

103.1 Impounding reservoirs in the Upper Taff

Locations of 22 major impounding reservoirs in the headwaters of the Taff
river basin are shown in Fig. 10.1. These are taken from the Register of
Reservoirs compiled by the Welsh Office in 1984. An assessment is required
of the likelihood of experiencing a 10,000-year flood at one or other of these
reservoirs.

STEP 1: N = 22. The sensitive sites are defined by the grid references of
the catchment centroids.*

STEP 2: The mean intersite distance, d, from Equation 10.1 is 9.98 km.

STEP 3: Applying the empirical formula (Equation 10.2):

AREA = 2.5 (9.98)2 = 249 km2.

Evaluating the centroid of the 22 sites and constructing- a circle of
equal area, it is confirmed that the formula provides a reasonable
estimate of the area spanned by the network.

STEP 4: A typical design storm duration for these reservoirs is estimated to
be 9 hours. From Table 10.1 this converts to a D value of 0.5
days.

STEP 5: Noting from Fig. 10.1 that the network is in the Wales region, the
spatial dependence model (Equation 10.3) is applied - using
parameter values from Table 10.2 - to obtain:

InNe = 1n22 (0.097 + 0.085 1n249 - 0.052 1n22 - 0.035 1n0.5)
= 0.430 1n22

*When the network comprises many sites, the collecdve risk assewment is relatively
insensitive to the derailed layout. In this example it would have sufficed to reprsent thelocation of each reservoired carchment by the grid reference of its dam rather than
evaluating the catchment centroid. The resultant estimate of qie area spanned by the 22
sites would have been reduced from 249 km to 222 km , leading to only a small
change in the collective risk asessment
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Thus N = 22 0.430 = 3.77. It is therefore estimated that for the

purpose of the collective risk assessment the 22 sites are
equivalent to only 3.77 independent sites.

STEP 6: From Equation 10.4 it is estimated that the collective annual risk
of exceedance of a 10,000-year event is:

r = 1 - (1 - V10000)377
= 1 - 0.99993.77
= I - 0.99962

- 0.00038 or 1 in 2630 years.

10.3.2 Canal-feed reservoirs in the Southem Pennines

A second example of the collective risk assessment procedure is provided by

considering the network of ten canal-feed reservoirs in the Trent & Mersey

area, constructed in the mid-19th century. The reservoirs span an area of
about 2600 kM2 (Fig. 10.2).

The network straddles the boundary between the Central and North West

regions. Applying the Central region parameters (Table 10.2), and taking D=0.5

days we obtain an estimate of Ne=4.4, whereas use of the North West region

parameters yields NJ=5.2. Adopting an average value of 4.8, the annual

collective risk of one or more exceedances of a 1,000-year event is evaluated
as:

r = 1 - (1 - 1/1000)4.3

= 0.0048 or 1 in 208 years.

The likelihood, I, of such an occurrence within a 140-year period can be

calculated from:

Il = 1 - (1 - 0.0048)14°

= 0.49.

Thus there is an even chance that at least one of the ten dams has

experienced a 1,000-year event within its 140-year history. Of course this is

only a statistical estimate; whether any of these particular dams has

experienced a 1,000-year event was not researched.

1033 Major impounding reservoirs in the U.K

The regionalization of the spatial dependence model evident in Table 10.2 is

not so strong as to preclude application of the collective risk assessment

procedure at national scale. Suppose that there are 1,000 major impounding

reservoirs in the UK for which occurrence of a 10,000-year flood would

provide a severe test of spillway facilities. What is the annual collective risk of
such an occurrence?

An assessment of the risk can be obtained by applying the average UK spatial
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dependence model whose parameters are riven at the foot of Table 10.2.
Assuming an area spanned of 250,000 km and a duration of 0.5 days (as
before), we obtain:

InNc = lnlOOO (0.081 + 0.085 1n250000 - 0.051 InlOOO - 0.027 lnO.5)
InN, = 0.804 InlOOO

Thus Nc = 1000° 5°4 = 258

Hence: r = 1 - (1 - I/10000)258
= 0.0255 or 1 in 39 years.

It is not expected that this is a very reliable estimate of the collective risk of
such an event. The estimate is based on extrapolation of the spatial
dependence model to a much larger region than those used in its calibration.
It is likely that 250,000 km2 (which corresponds to the land area of Great
Britain) is too large a spanning area, given that many of the reservoirs are
clustered. However, it would seem reasonable to conclude that the annual
collective risk of exceedance of the 10,000-year event at one or more of the
1,000 most significant impounding reservoirs in the UK is of the order of 1
in 40 rather than the 1 in 10 risk indicated by simple application of
the risk equation: r = I - (1 - lMTN.

1OA OTHER FIELDS OF APPLICATION

Collective risk assessments may be relevant in other rainfall or flood related
problems. For example, certain communication systems, such as microwave
transmission, may be disabled by heavy rainfall. By taking account of spatial
dependence, it is possible to estimate the collective annual risk of one or
more failures in the network. In the case of a linear network, this would
correspond to the "railway line" problem examined in Section 1.3 (Fricke et
al., 1983). Another problem involving spatial dependence is the checking of
storm sewer overflow design in a given sewerage catchment. Is it possible to
verify from collective records of incidents that the nominal point design is
being met? A difficulty is that an analysis technique based on annual maxima
is ill-suited to examining very frequent events. (The annual collective risk of
one or more storm sewer overflow incidents in a conurbation will be very
close to certainty.) A possible solution is discussed in Section 10.9.

105 LIMITAIONS

105.1 Introduction

The primary objective of the project was to assess the risk of a design flood
exceedance occurring at one of a network of reservoirs. While the above
procedure is capable of producing risk assessments for reservoired sites, there
are a number of limitations in the analysis which warrant comment.
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10.5.2 Dependence for short-duration rainfalls

The analysis relates only to 1, 2, 4 and 8-day rainfall statistics. Since many
reservoirs are sensitive to relatively short-duration storms, is it possible to
interpret the results for shorter rainfall durations?

One approach is to attempt some empirical extrapolation from the 1 and
2-day results. Recent reseach using 15-minute rainfall data for the River Dee
catchment suggests that statistics for 1-day rainfalls (i.e. derived by analysis of
09.00 to 09.00 accumulations) may approximate true statistics for 16-hour
rainfalls (if these were analysed at 15-minute interval or less). With such
assumptions it might be possible to extrapolate the results of the present
analysis to shorter durations.

As was reported in Section 8.6, the effect of duration on spatial dependence
was found to be relatively insignificant in comparison to the stronger influences
of number of sites (N) and AREA. Overall, a slight tendency to reduced
dependence at short durations was noted and this outcome is in accordance
with intuitive expectations. (Most short-duration rainfall extremes arise from
highly localized storms.) While the risk assessment method recommended here
indicates a duration effect in most regions it may yet underestimate the
collective risk for sites sensitive to very short-duration rainfalls (for example,
storm sewer overflows). However, the risk assessments nevertheless represent a
major advance on those currently available to the engineer.

There would appear to be scope for further research on the spatial
dependence of short-duration rainfalls. Clearly there are severe limitations to
such an analysis in terms of the availability of densely packed recording
raingauge data However, considerable opportunity is presented in the Greater
London area where extensive records from many autographic raingauges (some
35 with at least ten years of record) were digitized as part of the PEPR
project. This and other sources of short-duration rainfall data are discussed
by Folland & Colgate (1978).

10.53 Is spatial dependence in rainfalls indicative of spatial
dependence m floods?

It was not practical within the current study to investigate the spatial
dependence of floods directly; the spatial density and length of records
available are, of course, very much less than for daily rainfall. The
assumption is made in applying the Section 10.2 procedure to reservoir risk
assessment (or, for example, to storm sewer systems) that spatial dependence
in rainfalls is indicative of spatial dependence in floods, in a statistical
context.

There are several factors that suggest either a trend to greater or less
dependence. Firstly, the initial catchment/system condition (e.g. low antecedent
rainfall, high soil moisture deficit, snow lying, frozen ground, reservoir drawn
down, storm tanks empty) is likely to be strongly spatially dependent Secondly,
meteorological factors concurrent with heavy rainfall, such as temperature rise
and wind speed - which, through snowmelt or wave set-up, may contribute to
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flooding - are also likely to be strongly spatially dependent.

On the other hand, topographic, soil and land-use characteristics of catchments
- which influence the temporal and volumetric response to heavy rainfall - may
differ widely from catchment to catchment, suggesting reduced spatial
dependence in floods. In application to networks of impounding reservoirs
(or, indeed, storm sewer systems), there would, however, appear to be less
scope for catchment influences, such catchments/systems often being of an ilk.

When considering the very high return periods relevant to reservoir flood
design, it would seem on balance that the spatial dependence in floods can be
expected to be at least as great as in rainfalls.

As students of catastrophes will be aware, a combination of factors, often
highly site-specific, may ameliorate or aggravate the consequence of design
exceedances. Our statistical analysis (whether of floods or of rainfalls) can, of
course, say nothing of this.

10.6 ENVELOPE CURVES

One approach to the design against extremes is to construct envelope curves
of observed phenomena, of which the "normal maximum" flood is a well
known example. Perhaps the thinking behind the use of envelope curves in
engineering design is that one can be criticized for failing to design for an
event that has actually been observed but excused for failing to design for an
event of unprecedented magnitude. But the approach is essentially unscientific
since it avoids any use of statistics to put extreme events in the context of
record length, ignores the natural differences (in the potential for extremes)
between different sites and regions, and is heavily influenced by the particular
extremes that have been recorded. As additional periods of record become
available, the envelope curve of recorded maxima inevitably rises.

The spatial dependence model can be used to examine the expected
development of rainfall depth-duration envelope curves. Using the model for
Ne, and the relevant typical growth curves, we can generate synthetic regional
maximum 1, 2, 4 and 8-day rainfalls for gauge networks of differing densities
and record lengths. Figure 10.3 shows the evolution of an envelope curve over
a 160-year period for a hypothetical 50-gauge network spanning 5,000 km2 in
the West Country. It is seen that the curve rises in a rather erratic manner,
as particular new records are set. Starting the random number generator at a
different place would, of course, produce a different pattern. By averaging
results for 100 realizations, the expected development of an envelope method
based on such a network is charted in Fig. 10.4 and is seen to be regular.
But in practice we only have the one sample.

The essential weakness of the envelope curve approach is that it treats the
maximum historic value as all-important and the remainder as all-unimportant.
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10.7 SPATlAL DEPENDENCE AND THE "STATION-YEAR"
METHOD

10.7.1 Background

One of the more controversial aspects of regional flood hydrology is the use
of the "station-year" method to extrapolate regional flood growth curves to
return periods well beyond the record length of the component stations. The
details of the method will not be repeated here, but the essential feature is
the assumption of spatial independence, so that the largest observation of n
annual maxima at each of N stations can be treated (when records from
stations are "pooled") as the largest in a sample size of

M - N n (10.5)

where M is referred to as the number of station-years.

10.7.2 'The FSR regional flood growth curves

The station-year method was developed and applied extensively for the
derivation of regional flood growth curves in the Flood Studies Report
(NERC, 1975). To avoid excessive assumptions of spatial independence, gauging
stations in a given region were arranged in groups (with typically four or five
groups per region), with near neighbours assigned to different groups. This
has been interpreted by some in the past as only a token allowance for.
spatial dependence. (See, for example, discussions in the proceedings of the
"Flood Studies Report - five years on" conference, e.g Folland et al., 1981.)
Using the model of spatial dependence summarized in Section 10.2, it is
possible to evaluate the station-year method further, albeit somewhat
informally.

Subsection 1.2.6.3 of the Flood Studies Report illustrates the derivation of a
regional flood growth curve for FSR region 5, in Eastem England. Annual
maximum data were drawn from 47 gauging stations (average length of record:
11.3 years) in a region of area 23,100 km2, comprising hydrometric areas
29-35. Taking this to be an appropriate spanning AREA, the equivalent
number of independent stations can be estimated from the spatial dependence
model for Eastern England (which encompasses FSR region 5). Using the
relevant parameters from Table 10.2, Ne is estimated to be about 17. The
FSR procedure arranged the 47 stations in five groups (three of 9 stations
and two of 10), each spanning most of the region. It is therefore suggested
that the 9 or 10 stations could be considered reasonably independent (9 or 10
being less than 17) for the purpose of deriving a regional growth curve.

For FSR region 10 in north west England, the regional flood growth curve
was derived from annual maximum data for 32 gauging stations (average
record length: 15.7 years) in an area of 14,000 km2. The equivalent number
of independent stations is about 15, using the Table 10.2 parameters for the
North West rainfall region. As the FSR procedure arranged the stations in
groups of only 6 or 7, each spanning much of the region, it is again
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suggested that these 6 or 7 stations can be considered reasonably independent
for the stated purpose.

10.73 "Years" versus "stations"

The spatial dependence model could no doubt be used (or abused) in other
ways, for example to speculate on an appropriate plotting position for the
largest observation in a pooled analysis of closely grouped stations. However,
one simple application is to judge the relative merit of number of stations (N)
and years of record (n).

Intuition insists that a few long records are more informative than many short
ones. The spatial dependence model provides a framework to quantify this, by
defining:

Me - Ne n (10.6)

as an effective number of independent station-years. Of course, this assumes
that the N stations operate concurrently; in practice, the effective number of
station-years will be somewhat greater. This could be allowed for by
computing:

Me = X Ne, i (10.7)

where Ne,i is the value calculated for the station network operating in year i.
Using the spatial dependence model of Section 10.2, it is readily confirmed
that (say) doubling the "years" increases Me much more than doubling the
"stations" would; this is because Ne rises proportionately less quickly than N.

The method could also be applied to judge the relative merit of various daily
raingauge network configurations in defining regional rainfall growth curves.

10.8 CLUSTERING OF DESIGN EXCEEDANCES IN
PARTICULAR YEARS: A COROLLARY OF SPATIAL
DEPENDENCE

10.8.1 The risk of clustered exceedances

The study has shown that the risk of a design exceedance occurring at one or
more of a network of sites is generally considerably less than that obtained if
spatial dependence between sites is neglected. An important corollary is that
the risk of clustered exceedances (i.e. exceedances at two or more sites in the
same year) is correspondingly greater than in the independent case.

Consider rainfall at N sites in a homogeneous region, such that the annual
maximum rainfalls are consistent with a single typical growth curve with
distribution F(x). In a long run of m years we expect mN(I-F(x))
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exceedances, irrespective of whether there is spatial dependence between sites.

10.8.2 An index of dustering

If the N sites are independent, we expect m(1-F(x)N) years with one or more
exceedances. If, however, there is spatial dependence, we expect only

N
m(1-F(x) e) years with one or more exceedances. Thus the average number
of exceedances, in years with exceedances, is given by:

mN(1-F(x)) N(1-F(x)) (10.8)

ind -m(l-F(x)N) 1-F(x) N

in the independent case, and:

mN(1-F(x)) N(1-F(x)) (109)

m(1-F(x)Ne) 1-F(x)Ne

in the partially dependent case.

The ratio X/Xind provides an index to the amount of clustering (i.e.
exceedances at two or more sites in the same year) brought about by spatial
dependence:

CINDEX 1 - F- N (10.10)

1 - F(x) e

A consequence of our assumption that Ne is a constant satisfying 1lNesN is
that:

N
CINDEX - - from below, as x-. (10.11)

N e

Thus the ratio N/Ne represents an upper limit to the expected clustering of
exceedance induced by spatial dependence.

10.83 Example

The clustering phenomenon is illustrated for the network of 22 major
impounding reservoirs considered in Section 103. Applying Equation 10.10
with F(x)=0.9999 (i.e. a 10,000-year event on the typical curve scale), we
obtain:
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1-0.999922
CINDEX = = 5.83

1-0,. 99993.77

For a non-exceedance probability so close to unity, Equation 10.11 provides an
excellent approximation. Thus, while the risk of a design exceedance occurring
at one or more of the sites is about six times less (than for independence),
this is offset by a corresponding expected multiplicity in exceedances.

10.8.4 Implications for the perception of reservoir flood risk

The implications for reservoir risk management are severe. The absence of
serious design exceedances can be attributed to chance, and to spatial
dependence in rainfall, rather than to any innate conservatism in design. When
a design exceedance does occur at one of a compact network of reservoirs, it
is likely that it will be experienced at neighbouring reservoirs also.

The risk of multiple catastrophe arising from extreme rainfall can, perhaps, be
communicated by analogy with another spatially dependent hazard to reservoirs,
that of earthquake. In contrast, failures arising directly from structural
deficiencies in dams are likely to be single-valley catastrophes only.

10.9 APPLICATION TO DETERMINE OPERATIONAL
STANDARD OF SEWER WORK

The spatial dependence model can be applied in a different fashion to
determine the typical (i.e. single site) design standard underlying a given
pattern of overflow incidents in a storm sewer network.

Suppose that a total of INCIDS incidents are reported in a period of n years
for a sewer network with N overflow sites. In some storms, incidents will
occur at several sites in the network. Thus the count (INCIDS) of incidents
will be greater than the count (STORMS) of discrete storms giving rise to
overflow incidents.

Given a sufficiently long period of record, an estimate of the typical
operational standard of the network can be obtained from:

n N
T -- INCIDS (10.12)

INCIDS

where T is the typical return period of incidents at single sites within the
network. Such assessments are likely to be required in the aftermath of
widespread flooding incidents from a particularly severe storm; moreover, it is
unlikely that a long-term record of overflow incidents will be available for the
current state of the network In such circumstances the value of INCIDS will
be dominated by the large number of incidents recorded in the recent event
and application of Equation 10.12 will almost certainly lead to underestimation.
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An alternative assessment of the typical operatonal standard is given by:

n No
(10.13)

STORMS

Here, Ne is the equivalent number of independent sites obtained using Steps 1
to 5 of the collective risk assessment procedure (Section 10.2). The
assessment is not unduly sensitive to the choice of storm duration and a value
of D=0.05 days is suggested for sewer network applications.

Of course, if overflows are known to be much less frequent at some sites
than others, an assessment of the operational standard of the overall network
may be inappropriate. However, an assessment can instead be obtained for a
selected subset of overflow sites that share common characteristics, eg. those
which affect residential property. A technique which may be helpful in certain
circumstances is to compare the frequency of incidents at a problem site with
the typical frequency of incidents at other sites in the network. The latter will
be assessed more realistically by Equation 10.13 than using the simpler
approach of Equation 10.12
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11. Executive summary and Conclusions

This report is the outcome of a 3-year investigation of "Regional flood and
storm hazard over reservoired catchments" funded by the Department of the
Environment's reservoir safety committee (contract no. PECD7/7/135). The
primary objective was to develop a method for assessing the risk of an
extreme storm event being experienced at one of a network of critical sites,
such as reservoirs.

Collective risk assessments must take account of the spatial dependence in
extreme rainfalls if gross overestimates are to be avoided. Following innovative
analyses of the relationship between "typical poifnt" and "regional maximum"
rainfalls, a procedure was developed to estimate an "equivalent number of
independent sites", N.' which is shown to be strongly influenced by the
number and density of sites, and to a lesser extent by the region, rainfall
duration, season and return period.

The resultant model for Ne enables collective risk assessments to be made for
any network of interest. An example applied to 22 impounding reservoirs,
spanning 249 km2 , demonstrates that spatial dependence is highly relevant
where reservoirs are closely grouped. The risk of a design exceedance occurring
at one or more of these sites is shown to be about a sixth of that calculated
on the assumption of independence.

Attention is drawn to an important corollary of spatial dependence: when an
extreme event does occur, it is likely to affect several sites. This phenomenon
of "clustered exceedances" has serious implications for the perception of
reservoir flood risk at subregional, regional and national levels. It exposes the
presumption of those who argue that UK reservoir flood standards are
unnecessarily high, purely on the basis that there have been no recent major
design exceedances.

Spatial dependence of rainfalls also has implications for lesser design problems,
such as storm sewer systems and certain communication networks vulnerable to
disruption by heavy rainfall. Application of the model for Ne to flow gauging
station networks supports the way in which the "station-year" method was used
in the Flood Studies Report (FSR) to extrapolate regional flood growth
curves.

An important by-product of the study has been the revelation of significant
regional variations in heavy rainfall frequency that are not fully represented in
the FSR rainfall model. This was overcome by a geographical subdivision of
the UK into 11 rainfall regions. Although the homogeneity of some regions
is suspect and the precise boundaries are inevitably somewhat arbitrary, the
regionalization permits a more detailed representation of heavy rainfall
frequency. The inter-regional differences in rainfall growth are in some cases
very marked and suggest an origin for some of the inter-regional differences
seen in flood growth curves.

It is recommended that the regionalization of heavy rainfall frequency should
be studied further, to improve the accuracy and consistency of rainfall
estimates used in engineering design. With regard to the particular objective
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of collective risk assessment, further research could consider the spatial
dependence seen in short-duraton rainfalls, possibly using the extensive
digitized records available for the Greater London area.
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Appendix 1 Schedule to DoE Contract no.
PECD7/7/135

REGIONAL FLOOD AND STORM HAZARD OVER
RESERVOIRED CATCHMENTS

Agreed programme of research

Objective: To develop procedures for evaluating the regional risk of a given
point rainfall or river flood return period.

Programme of work to be carried out by the Contractor:

1. To compare statistics of point rainfall maxima with corresponding statistics
of regional maxima.

2. From the analysis in 1 above develop and calibrate a spatial probability
model for rainfall.

3. Extend the spatial probability model to river flow.

4. Reporting:

(i) Progress reports for consideration by the steering group will be
required in mid-summer 1986 and 1987.

(ii) A Final Report is required by 30 June 1988.
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Appendix 2 Estimation of missing values

I NtRODUCITlON

Various methods are available for estimating data at a given site if the data
are missing or the site ungauged. The method adopted was that used at the
Met. Office (Shearman, 1975) in their quality control of daily rainfall data.
This averages data from up to six neighbouring gauges (from a set of eight
held on file) using inverse distance weighting.

SELECTION OF NEIGHBOURING GAUGES

From a data set of gauges with at least five years of record, the eight gauges
nearest to the subject gauge were found.

In this procedure, the gauges must be no more than 25 km away and chosen
such that no more than two gauges lie in the same octant. This condition
helps to achieve a balanced representation of rainfall about the subject site.

METHOD OF lNTERPOLATION

The value for the missing day's observation was estimated by

A E xi/d ?
x = -

Y lid ?

where di is the distance from the ith gauge to the subject gauge and x is
the daily rainfall standardized by SAAR for the ith gauge (i.e. depth/SAARJ.

This method of estimation has the drawback that x will always come out
within the range of the individual standardized values. Thus, a genuine
maximum or minimum at the subject site will not be well estimated. However,
the method has the advantage of being computationally simple and quick.

SPECIAL CASES

a) If the nearest gauge was less than 05 km away only this was used for
estimation.

b) For dates prior to 1961 in the longterm dataset, checking was done
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manually. These records had only a few years with data missing, and
generally no near neighbours.

c) Generally there were at least four out of the eight gauges in operation
for days being estimated; cases with only one or two gauges were noted.

d) In some cases where none of the eight nearby gauges had records for
the year being considered, the maximum was assumed unknown.
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Appendix 3 Definition of rainfall regions

"NORTH EAST"

Trent below Colwick excluding Devon; Yorkshire WA excluding Don above
Rother, Dearne above Barns!ey, Calder and Aire above their confluence,
Wharfe above Flint Mill, Nidd above Hunsingore, Ure above Westwick, Swale
above Kirby Fleetham; Northumbrian WA excluding Tees above Piercebridge,
Gaunless above Evenwood, Wear and Bedburn above their confluence, Derwent
above Eddys Bridge, Tyne above Bywell, Coquet above Harbottle.

"EASTERN"

Anglian WA excluding Hydrometric Area 29; Great Stour and lower reaches
of Medway; Thames above Goring; Warwickshire Avon; Soar and Wreake
(above their confluence); Devon (to confluence with Trent).

"SOUiTHERN"

Thames WA excluding Thames above Goring; Hydrometric Area 43 (Dorset
Avon); Southern WA excluding Great Stour and lower reaches of Medway
(below Teise confluence).

"WEST COUNTRY"

Wessex WA excluding Hydrometric Area 43 (Dorset Avon); Axe, Otter and
Exe to Exeter.

"SOUTH WEST"

South West WA excluding Axe, Otter and Exe to Exeter.

Welsh WA; Upper reaches of Severn and Teme.

"ENTRAL"

Severn excluding Warwickshire Avon, and upper reaches of Severn and Teme;
Trent above Colwick, excluding Soar and Wreake (above their confluence),
Dove and Churnet (above their confluence), Derwent (above Amber);
Hydrometric Area 68 (Weaver).
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"NORTH WESI"

North West WA excluding Hydrometric Areas 68, 73 to 77 and Lune above
confluence with Greta; upper reaches of Coquet, Tyne, Derwent, Bedburn,
Wear, Gauniess, Tees, Swale, Ure, Nidd, Wharfe, Aire, Calder, Dearne and
Don; upper reaches of Dove, Churnet, and Derwent.

"LAKE DISTRICT'

Hydrometric Areas 73 to 76 and part of 77 in North West WA; Lune above
confluence with Greta.

"SCOTLAND"

"N. IREIAND"
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Appendix 4 Distribution of the maximum of N
independent GEVs

GEV has F(x) = exp ( (1 - - (x_u))
a

- InF = I1 - k (x-u)] k

If X1,.,XN are independent and identically distributed with distribution
function F, let G be the distribution function of max(X 1,...,XN). Then

G(x) = Prob (max(X1,...XN) d x)

= Prob (X1 d x and X2 x ... and XN ~ x)

= Prob (X 1 % x). Prob (X2 ( x) ...... Prob (X N, x)

= {F(x)}N

- In G(x) = -N In F(x)

N 1 -k (xu)) 1I/k

N= Nk Nkk (x)u)] 
a

1 (1-Nk) N kk ( x) 1

a

= 1 - Nkk (x - u + (1-Nk) _ ))l/k
a Nkk

-- = 1- ( k (X-UN))IlkaN

where aN= -- aN k

Nk

a(1-N k) a
UN=U - = u + (1-Nk)-N lk k

where for k = 0, aN = aN ° = a

UN = u + (1- e k tn N)k-0 = u + a In N
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Appendix 5 Formation of subregions

In order to be able to calculate regional maxima for small areas, subregions
were introduced.

The subregions were set up to be the size of the area required for the
regional maximum curves, i.e. if the area range was 1,000-3,000 km 2, subregions
were set up which were about 1,800 km2 in size.

To find the subregions, a grid of 10 or 20 km2 was laid over the region.
For each grid point the distances were found to all the gauges in the region
and ranked.

The gauges were then included, in order of nearness, until the required area
size was reached. The number of gauges was then checked and, if less than
five, the subregion was ignored.

For subregions having five or more gauges, the centroid of the group was
calculated and it was checked whether this was nearer to one of the other
grid points. If this was the case the subregion was ignored; otherwise the
gauges were stored on file, along with their centroid.

This procedure was repeated for all grid points in the region. This led to
some overlap of subregions in some areas, and, partially to overcome this,
subregions were checked for nearness.

Assuming that the area around the centroid can be represented as a circle
then the subregions had to be a critical distance apart defined by

dcrit ~FAREA/n

which is the radius of the circle.

The pairwise distances between subregion centroids were calculated and the
two closest tested against dcrit. If they were closer, then one was rejected at
random and the next two closest compared. This procedure was repeated
until all the subregions had centroids at least dcrit apart.

This final set of subregions was then used in the analysis of the short-term
data set.
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