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ABSTRACT 

Current UK guidance for the design of sustainable drainage systems recommends that 

infiltration devices, such as soakaways, permeable pavements and infiltration basins, 

should be able to operate during periods of extreme groundwater level. Furthermore, 

higher groundwater levels have recently been shown to cause a reduction in the 

empirical soil infiltration coefficient, as used in the design of infiltration devices. 

However, there is currently no simple method available to estimate the required 

reduction in the design infiltration coefficient to account for an extreme groundwater 

level. This paper uses exploratory numerical sub-surface saturated-unsaturated 

hydrological modelling to quantify the effect of groundwater level on the infiltration 

coefficient for six typical soil types. The fixed resolution finite element simulations 

are also benchmarked against a solution employing adaptive mesh refinement. The 

modelling results are distilled into charts and a simple equation to allow the 

calculation of adjustment factors, with which to reduce the design infiltration 

coefficient to account for a higher design groundwater level. Varying soil type 

sensitivity is highlighted. These factors could also be used to correct for soakage tests 

made during periods of lower groundwater level. Threshold depths to groundwater, 

below which no adjustment is required, are identified for each soil type. 

 

NOTATION 

50pa  wetted internal surface area (sides and base) of soakage test pit at 50% of 

effective depth (m2) 

h pore water pressure head (m) 

k infiltration coefficient adjustment factor (-) 

K hydraulic conductivity (m/s) 
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Ksat saturated hydraulic conductivity (m/s) 

l Mualem pore-connectivity parameter (-) 

bcn  Brooks and Corey pore-size distribution parameter (-) 

vgn  van Genuchten pore-size distribution parameter (-) 

vgm  van Genuchten – Mualem curve fitting parameter (-) 

q soakage test empirical soil infiltration coefficient (m/hr) 

2575−pt  time for soakage test pit water level to fall from 75% to 25% effective 

depth (hr) 

0100−pt  time for soakage test pit water level to fall from 100% to 0% effective 

depth (hr) 

r relative soil infiltration coefficient (%) 

S a source term (s-1) 

2575−pV  volume of soakage test pit between 75% and 25% of effective depth (m3) 

0100−pV  volume of soakage test pit between 100% and 0% of effective depth (m3) 

z elevation (m) 

bcα  Brooks and Corey empirical parameter, inverse of air entry pressure head 

(m-1) 

vgα  van Genuchten curve fitting parameter (m-1) 

θ  volumetric water content (m3/m3) 

sθ  saturated volumetric water content (m3/m3) 

rθ  residual volumetric water content (m3/m3) 
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1. INTRODUCTION 

Current UK guidance 1 for the design of sustainable drainage systems (SuDS) 

recommends that infiltration devices, such as soakaways, permeable pavements and 

infiltration basins, should be able to operate during periods of extreme groundwater 

level (defined as ‘up to 1 per cent annual probability’). A key variable used to design 

such devices 1-3 is the empirical soil infiltration coefficient, q, as determined using a 

field soakage test procedure (see Appendix). Recent modelling has identified that, 

above a threshold depth, groundwater level exerts a significant control on the 

infiltration coefficient and, providing the soakage test is conducted in accordance with 

best practice guidance 1-3 (i.e. using three successive drain downs, allowing the 

infiltration coefficient to approach a minimum value), seasonal antecedent soil 

moisture is much less important.4 It was also inferred that seasonal variation in the 

infiltration coefficient measured using a series of soakage tests at the same site in 

Nottingham, UK (indicating a winter minimum and a summer maximum),5 was most 

likely caused by changing groundwater levels.4 This is supported by field 

observations of infiltration rates in Nevada, USA, which were found to have a 

significant positive correlation with depth to groundwater.6 Furthermore, analysis of 

monitored soakaway and groundwater levels given for a site in Aberdeen, UK, 7 

indicates that the average infiltration rate during initial soakaway half-emptying can 

decrease significantly for higher groundwater levels. Localised groundwater rise 

(mounding) has also been recognised as a major cause of infiltration basin failure 8-10 

and prolonged emptying times 11. 

 

Given the control that groundwater level exerts on the soil infiltration coefficient, and 

the recommendation in current SuDS design guidance to account for an extreme 
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groundwater level, it is surprising that, to the best of the author’s knowledge, there is 

no simple method available to quantify such effects. Therefore, the aim of this paper 

is to provide simple adjustment factors for typical soils, which give a first indication 

of the necessary reduction in the design infiltration coefficient to account for a higher 

design groundwater level. As field test derived results would be constrained by natural 

groundwater variability, this initial study will employ exploratory numerical 

modelling. The procedures outlined by Blake 4 will be followed to simulate soakage 

tests in a range of soil types indicated as suitable for infiltration drainage.1 The model 

domain will be expanded to include greater depths to groundwater to allow thresholds 

to be identified for each soil type. The modelling results will be distilled into design 

charts and a simple equation. The adjustment factors can also be used to compensate 

for soakage testing carried out during periods of lower groundwater levels (e.g. 

droughts or summer). 

 

2. THEORY AND MODEL SELECTION 

As before,4 the soakage testing will be modelled using the FEFLOW® 5.2 

(DHI-WASY GmbH, Berlin, Germany 12-14) physically based distributed finite 

element (FE) code, solving the ‘mixed’ version of the Richards equation for saturated-

unsaturated incompressible fluid flows in an incompressible media: 

( )( ) SzhK
t

++∇∇=
∂
∂θ

 [1] 

where θ  is volumetric water content (m3/m3), t is time (s), K is the hydraulic 

conductivity tensor (m/s), h is pore water pressure head (m), z is elevation (m) and S 

is a source term (s-1). 
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To balance computational speed, numerical convergence and mass conservation, the 

following FEFLOW options 14, 15 were selected. Transient simulations: Galerkin-

based 3-node triangular FE method, lumped mass matrices, analytic derivative for the 

capacity term, central weighting for the influence coefficient, Newton iteration 

scheme, preconditioned Lanczos BiCGSTABP iterative solver, adaptive time stepping 

strategy using a forward Euler / backward Euler time integration, a maximum of 12 

iterations per time step and 1E-3 maximum error norm. Hydrodynamic steady state 

simulations: identical, except for: h-based Richards equation, Picard iteration scheme, 

preconditioned conjugate gradient iterative solver and 1E-6 maximum error norm. 

Hysteresis, air entrapment and macropore flow have been excluded and the sub-

surface materials are assumed isotropic and homogeneous. 

 

3. MODEL GEOMETRY, DISCRETISATION AND PARAMETERISATION 

Fig. 1 shows the model geometry and discretisation. The section is rotated about the 

z-axis, giving a three dimensional axisymmetric problem that can be modelled in two 

dimensions. Compared to the previous modelling,4 the test pit extent now reflects 

soakage test practice more accurately. The invert level of the proposed input pipe(s) is 

0.75 m below the surface (I, in Fig. 1). This accounts for the Building Regulations 16 

minimum cover thickness for pipes laid in fields (0.6 m) and an assumed 150 mm 

pipe diameter. The test pit base remains at 2.00 m below the surface, a typical 

soakaway depth.2 Then, given a typical water bowser capacity of 500 gallons 

(2.273 m3), the pit radius is specified as 0.75 m. This gives an effective test pit 

volume (i.e. below the invert level) of 2.209 m3, which meets the 2 m3 minimum for 

drained areas over 100 m2 from CIRIA C697.1 The lower domain boundary has been 

extended further away from the test pit to allow groundwater levels up to 8 m below 
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the pit base to be simulated. To avoid boundary effects propagating back to the area of 

interest, the right hand boundary was again located a reasonable distance from the test 

pit. The FE mesh contains about 40,000 elements, with increased resolution near the 

test pit and the surface. The element side length varies from 6 to 12 cm. 

 

Current guidance 1 highlights eight soil textural types which are good infiltration 

media. Of these, Gravel and Chalk have been excluded from the current modelling 

because: (i.) flows in chalk require a dual-permeability model, e.g. Mathias et al.17; 

and (ii.) Richards equation is unlikely to be valid for infiltration into gravels due to 

both turbulent flow 18 (caused by large pore sizes and a high hydraulic gradient) and 

unstable flow phenomena.19 The six remaining soil types (Loam, Loamy Sand, Silt 

Loam, Sand, Sandy Clay Loam and Sandy Loam) have been selected for modelling. 

For each of these soil types, Carsel and Parrish 20 have documented mean 

hydrological parameter values as used in the van Genuchten 21 - Mualem 22 (VG-M) 

representation of the soil constitutive functions ( )hθ  and ( )hK . This data will be used 

as a basis to parameterise the soil types in the current study. Recent research has 

however identified shortcomings in the original van Genuchten ( )hθ  function,23 

specifically when the pore-size distribution parameter, vgn , is less than 2.0 24 (as is the 

case for many of the soil types summarised by Carsel and Parrish). To avoid this 

problem, the current study uses the Brooks and Corey 25 - Mualem 22 (BC-M) 

formulation of the constitutive functions and the vgn  values have been converted to 

their BC-M equivalents (bcn ) using known relationships.26 It is assumed that the pore-

connectivity parameter, l, equals 0.5 (Mualem’s average value). Table 1 lists the 

parameters used. In addition, for each modelled soil type an equivalent ISO 

14688-1:2002 soil classification 27 is given, so that the study findings can be more 
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easily related to site investigation reports. These have been defined according to the 

centroid of the sub-region covered by each soil type on the US Department of 

Agriculture soil texture classification triangle 28 (as used to classify the soil types 

summarised by Carsel and Parrish). 

 

As previously,4 when initial conditions are being generated the test pit volume is 

specified as soil, then during the soakage test simulations it is re-specified as ‘air’ 29 

(or a ‘highly permeable auxiliary material’ 30). The ‘air’ is parameterised using the 

VG-M constitutive functions, along with the suggestion 21 that the curve fitting 

parameter, vgm , should equal 11 −− vgn  (see Table 1 for values). Accounting for water 

initially held above the test pit fill level, the water retained under tension in the 

unsaturated ‘air’ when the test pit is empty is less than 5% of the water added to the 

pit. 

 

4. SOAKAGE TEST MODELLING 

For each soil type, nine groundwater levels were modelled (0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 

5.0, 6.0 and 8.0 m below the test pit base; C1 to C9 in Fig. 1), giving a matrix of 54 

soakage test scenarios to simulate. Seasonal antecedent unsaturated zone soil moisture 

has little effect on the measured infiltration coefficient, providing that best practice of 

using three successive drain downs for the soakage test is followed 4 (see Appendix). 

However, simulating infiltration into an initially wetter soil will be less 

computationally demanding. Therefore, a hydrodynamic steady state 31 procedure 4, 32, 

33 has been used to generate initial conditions representing winter soil moisture for 

each soil type and groundwater level scenario. As before, a flux equivalent to the 

average effective ‘winter’ rainfall for southern England 34 (1.89E-3 m/d, assuming 
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0.5 mm/day evaporation) has been applied into the domain along the surface boundary 

(AB in Fig. 1). A specified hydrostatic head condition has been applied to the right 

boundary below the groundwater level (i.e. CD). All other boundaries are zero flux. 

Using an arbitrary starting point (hydrostatic with respect to the boundary 

groundwater level), a transient simulation is then run for 5000 days using adaptive 

time-stepping. This is sufficient time for the hydrodynamic steady state conditions to 

be generated (as indicated when the net boundary flux reaches zero). 

 

For each scenario, having generated the hydrodynamic steady state initial conditions, 

the soakage test procedure (see Appendix) is then simulated using transient 

simulations: All boundaries are set to zero flux, apart from the right boundary (CD in 

Fig. 1) which, with respect to the initial groundwater level, has a specified hydrostatic 

head condition. The test pit excavation is simulated by re-specifying the relevant soil 

volume as ‘air’ (see Fig. 1). The hydraulic head for the ‘air’ elements is then changed 

to 11.25 m to represent the pit being instantaneously filled with water to the proposed 

pipe invert level. A transient simulation is then run so that the pit can drain to empty 

(simulation length: 1 day for Loamy Sand and Sand, 3 days for Sandy Loam and 7 

days for Loam, Silt Loam and Sandy Clay Loam). Recorded output times were 

specified at 0 minutes and, as appropriate, at six equal increments between each of 10-

60 minutes, 80-180 minutes, 210-360 minutes, 7-12 hours, 14-24 hours, 28-48 hours, 

56-96 hours and 4.5-7 days inclusive. The hydraulic head at point P (Fig. 1) was 

recorded at each numerical time step as this represents the water surface elevation in 

the test pit (since the water in the pit remains hydrostatic). Having completed the first 

drain down, the test pit water surface decline over time was examined to identify the 

first recorded output time after the pit had emptied. The pressure head distribution at 
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this output time is then used as the initial conditions for the next refill and drain down 

cycle. This is repeated once more, giving three successive drain downs. The 

simulations took a total of 315 hours on an Intel Core 2 Duo 3 GHz PC. The mean 

mass balance error was 0.02%, the maximum was 0.1%. 

 

Recent research by Vogel and Ippisch 35 has identified an upper spatial discretisation 

limit for an unbiased solution of Richards equation. Using their method, the critical 

discretisation scales for the current soils are estimated to be: 0.4 cm (Sand), 0.6 cm 

(Loamy Sand), 1.2 cm (Sandy Loam), 3 cm (Loam and Sandy Clay Loam) and 6 cm 

(Silt Loam). These are for the worst case condition of the lowest antecedent 

groundwater level (which generates the largest hydraulic gradient between the water 

in the test pit and the underlying soil). Apart from the Silt Loam, the critical 

discretisation scales are significantly smaller than the fixed resolution element side 

length (6 cm) in the test pit region, indicating that the current solution might be 

inaccurate. To investigate this, a typical fixed resolution simulation (first drain down 

for the Loamy Sand with an antecedent groundwater level 3.0 m below the pit base) 

was benchmarked against an adaptive mesh refinement (AMR) FEFLOW simulation14 

(with identical settings, except for h-based Richards equation, Picard iteration scheme, 

preconditioned conjugate gradient iterative solver and 1E-2 adaptive mesh error using 

Onate-Bugeda a posteriori error estimator). The AMR simulation used up to 250,000 

elements. The infiltration coefficient was calculated for each simulation using the data 

recorded at point P and Equation 3 (Appendix). The infiltration coefficient for the 

fixed mesh resolution simulation was less than 0.07% larger than that for the AMR 

simulation, indicating that the current 40,000 element fixed resolution mesh is 

unlikely to be significantly less accurate than AMR for the scenarios modelled. 
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Computational limitations mean that AMR is currently impractical for simulating 

large scenario matrices (the trial simulation took four times longer, and generated an 

output file an order of magnitude larger, than the fixed resolution simulation). 

 

5. RESULTS 

Since plots of the soil pore water pressure head development over time in response to 

the infiltrating water from the draining soakage test pit, and plots of the test pit water 

level decline over time, are similar to those published previously,4 they are not 

replicated here. For each idealised soil and groundwater level scenario, the minimum 

infiltration coefficient (from the three drain downs) has been calculated using the 

recorded pit water level decrease over time and the methodology given in the 

Appendix. ‘Full depth’ infiltration coefficients have also been calculated using the 

alternative methodology also given in the Appendix. The results for the Loamy Sand 

are slightly different to the previous modelling 4 as the soakage test pit volume has 

been reduced in the current application. For each soil type, the infiltration coefficient 

for each groundwater level has been expressed as a percentage of the maximum 

infiltration coefficient for that soil type (i.e. that occurring when the groundwater 

level is below the threshold depth, e.g. at 8.00 m below the pit base). Figures 2 and 3 

show changes in these relative infiltration coefficients, r, with groundwater level for 

each soil type, including an indication of the threshold depth, below which the 

infiltration coefficient is insensitive to groundwater level. There is slight variation in 

the relative infiltration coefficient about the 100% value (at different depths). This is 

due to the varying time elapsed between when the pit empties and the next available 

output time (which is subsequently used as initial conditions for the next drain down). 
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6. DISCUSSION 

Figures 2 and 3 can be used to calculate an adjustment factor, k, to reduce the 

infiltration coefficient, if necessary, to account for a higher design groundwater level: 

original

design

r

r
k =  [2] 

where originalr  is the relative infiltration coefficient for the original groundwater level 

(at the time of the soakage test) and designr  is the relative infiltration coefficient for the 

design groundwater level. For example, for a Sand soil and the original infiltration 

coefficient equation (Fig. 2), if the original groundwater level was 2.00 m below the 

pit base ( %5.97=originalr ) and the design groundwater level is 1.00 m 

( %5.77=designr ), the adjustment factor is 0.79 (which is then multiplied against the 

calculated infiltration coefficient). Importantly, if the design extreme groundwater 

level remains below the threshold depth, no adjustment is required (i.e. 1=k ). The 

adjustment factor should be applied in addition to any factor of safety used to reduce 

the infiltration coefficient to account for a performance reduction over time 1 (e.g. due 

to clogging). Figures 2 and 3 highlight the importance of reducing the field-measured 

infiltration coefficient to account for a higher design groundwater level, particularly if 

the extreme groundwater level is expected to rise to within two meters or less of the 

infiltration device base, or if the soil type is silt rather than sand. In general, as 

groundwater rises to within a metre of an infiltration device (the minimum depth to 

groundwater suggested in current guidance 1), the infiltration coefficient will have 

decreased to about two thirds of its maximum value. Soakage test data cited by Pratt,5 

indicated that the infiltration coefficient at a particular location varied by a factor of 

three between a winter minimum and a summer maximum. Although the concomitant 
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antecedent groundwater level was not measured, this study indicates that the winter 

groundwater level was likely to have been within 0.5 m of the test pit base. 

 

7. CONCLUSIONS 

Numerical modelling has been used to provide adjustment factors for a range of 

typical soils, which give a first indication of the necessary reduction in the design 

infiltration coefficient to account for a higher design groundwater level. Of practical 

importance is that soil-specific threshold depths have been identified, meaning that 

the design infiltration coefficient will not need to be adjusted unless the extreme 

groundwater level exceeds the relevant threshold. Future work should consider: (i.) 

conducting a series of soakage tests at a location known to experience large variations 

in groundwater level, in order to compare the new infiltration coefficient adjustment 

factors and thresholds against field measurements, potentially validating the 

methodology for use in practice; (ii.) extending the modelling analysis to gravel and 

chalk infiltration media; and (iii.) assessing the effect of soil heterogeneity and 

anisotropy. 

 

8. ACKNOWLEDGEMENTS 

The work presented in this paper has been developed under Water Cycle Management 

for New Developments (WaND) and the project support from EPSRC and industrial 

collaborators acknowledged. NERC provided additional support. I would also like to 

thank the two anonymous reviewers for their constructive comments. 

 

APPENDIX 

Soakage Test Procedure (after BRE Digest 365 2 and CIRIA Report C697 1) 
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(i.) Excavate a test pit, with vertical sides, to the same depth as the proposed 

infiltration device. The minimum pit volume should be 0.5 m3 for drained areas up to 

100 m2, 2 m3 for areas over 100 m2. 

(ii.) Rapidly fill the pit with water to the maximum effective depth (i.e. the invert 

level of the proposed input pipe(s)). 

(iii.) Allow the pit to drain, recording the water level fall over time. 

(iv.) Repeat the filling/emptying cycle twice more, ideally on the same day. 

(v.) For each set of drain down data, calculate the soil infiltration coefficient using: 

257550

2575

−

−

×
=

pp

p

ta

V
q  [3] 

where 2575−pV  is the volume of the pit between 75% and 25% of the effective depth, 

50pa  is the wetted internal surface area (sides and base) of the pit at 50% of the 

effective depth and 2575−pt  is the time for the water level to fall from 75% to 25% of 

the effective pit depth. 

(vi.) The smallest value of q from the three repetitions should be used for design. 

 

An alternative ‘full depth’ infiltration coefficient equation has also been suggested 4: 

010050

0100

−

−

×
=

pp

p

ta

V
q  [4] 

where 0100−pV  is the volume of the pit between 100% and 0% of the effective depth 

and 0100−pt  is the time for the water level to fall from 100% to 0% of the effective 

depth. Unlike Equation 3, this equation is not biased towards the initial, more rapid, 

infiltration rate, although its use may present practical difficulties.4 
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CAPTIONS 

 

Fig. 1. Radial section of modelled domain showing geometry, finite element mesh and 

material distribution. The section is rotated about the z-axis. Gravity is in the negative 

z-direction. 

 

Fig. 2. Chart for calculation of infiltration coefficient adjustment factor to account for 

design groundwater level for different soil types (applicable to original infiltration 

coefficient equation, see Equation 3; ISO 14688-1:2002 soil classifications given in 

parentheses) 

 

Fig. 3. Chart for calculation of infiltration coefficient adjustment factor to account for 

design groundwater level for different soil types (applicable to ‘full depth’ infiltration 

coefficient equation, see Equation 4; ISO 14688-1:2002 soil classifications given in 

parentheses) 

 

Table 1. Hydrological parameters (ISO 14688-1:2002 soil classifications given in 

parentheses) 
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TABLES 

 

Table 1. 

Material 

Loam 
Loamy 
Sand 

Silt Loam Sand 
Sandy 
Clay 
Loam 

Sandy 
Loam 

Parameter 

(very silty 
clayey 
SAND) 

(silty 
slightly 
clayey 
SAND) 

(very 
sandy 
clayey 
SILT) 

(slightly 
silty 

slightly 
clayey 
SAND) 

(very 
clayey 
silty 

SAND) 

(silty 
clayey 
SAND) 

‘Air’ 

Ksat (m/s) 2.889E-6 4.053E-5 1.250E-6 8.250E-5 3.639E-6 1.228E-5 1 

sθ  (m3/m3) 0.43 0.41 0.45 0.43 0.39 0.41 1 

rθ  (m3/m3) 0.078 0.057 0.067 0.045 0.100 0.065 1E-6 

bcn  (-) 0.56 1.28 0.41 1.68 0.48 0.89 - 

bcα  (m-1) 3.6 12.4 2.0 14.5 5.9 7.5 - 

vgn  (-) - - - - - - 2 

vgα  (m-1) - - - - - - 20 
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