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PREFACE

On 26 March 1976, a seminar was held at the Meteorological Office's
College at Shinfield Park, Reading, on 'Meteorological Office Services

' (Other than Forecasts) for Water Management'. During the course of
g

this meeting a lively discussion took place on the usefulneas of
rainfall data to the Water Authorities who have the major burden of
collecting it, and to the Meteorological Office who have their own
internal requirements, As a result of this discussion, Dr J C Rodda
and Mr S F White of the Department of the Environment raised with the
National Water Council the need for the Water Industry to make its
requirements for rainfall data known to the Meteorological Office.

As a result, the Water Data Unit proposed that an investigation should
be carried out to determine whether or not the existing raingauge
network satisfied user requirements, A specification for the
investigation was agreed in May 1976 between the Institute of Hydrology
and the Water Data Unit after the initial reaction of other interested
parties had been tested. Funding for the project was agreed upon in
July 1876; work began on 1 August 1976, The work described in Section
6 of the report was authorized in January 1977 and the report completed
in May 1977,

The study divided into two main parts. The first dealt with study
definition and with obtaining the views of the many rainfall data users
on the adequacy of the network for their purposes. This phase of the
project was handled by Mr M A Beran and was essentially completed in
December 1976. The project was taken over by Dr P E 0'Connell in
October 1976 who was responsible for the analytical content of the
report, Other major contributors were Dr D A Jones (statistician),
Dr R J Gurney (spatial analyst) and Mr R J Moore (hydrologist).
Computational and other assistance was provided by Mrs A E Sekulin,
Mr F A K Farquharson, Mr M W Venn, Miss H Dracos, Mrs J French,

Mrs P B Moore and Mrs H Brimacombe. ' '
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1, INTRODUCTION

1.1 General

A raingauge network may be regarded as an integral part of an information
system, the basic functions of which are the collection, processing and
dissemination of rainfall data. These three basic functions are under-
taken in response to the demands for various levels of information placed
on the system by users. In general, it will not be economically feasible
to design an information system such that the level of information required
by every user is made available, Ideally, the design should then provide
an equitable basis on which the costs and benefits associated with the
design of the sysiem could be allocated to the various users. In the
case of rainfall data, however, it is uwsually not possible to quantify
the benefits accruing to unsers from various levels of information and
more empirical procedures have to be adopted.

In designing a raingauge network, attention has traditionally been
confined to those aspects of the design and operation of the network
that are concerned with data collection. The network provides the
necegsary information to achieve a statistical description of the
rainfall process in time and space, On the basis of this description,
rainfall quantities not directly measurable by the network can be
estimated, and associated measures of error specified which will
primarily be a function of network density. In principle, then,

the network density required to meet stated error criteria can be
determined when these criteria can be specified explicitly by users.

The specification of error criteria by users is not, however, a straight-
forward procedure. Where rainfall data form the direct basis of some
decision, then the user can probably state an error criterion with
confidence, as he will hopefully be able to evaluate the consequences

of various degrees of error for the outcome of his decision., Methods

of network design which have as their basis an error criterion stated
explicitly fer an estimated rainfall guantity will be referred to as
direct methods in this report. Where rainfall represents but one input
to a complex decision-making proceas, a model of the process is ideally
required whereby the sensitiviiy of a decision and its outcome (measured
in economic or other terms) to the level of error in the rainfall input
could be evaluated. This is rarely practicable; by analysing the nature
of the decision, an attempt is made to infer empirically what a tolerable
error level is for the rainfall input. Sometimes, an error criterion

can be stated explieitly for a variable which can be related functionally -
or through a simulation process - to rainfall e.g. streamflow or soil
moisture deficit. For example, by using lumped and spatially distributed
models of the rainfall-runoff process, it should be possible to infer
what the required raingauge configuration and density is to achieve a
desired level of accuracy in modelling streamflow. Such an approach

will be referred to as an indirect method of network design in this
repoert,

The question of whether or not a network provides sufficiently accurate
estimates of rainfall quantities is, as already noted, ome which may be
addressed within a statistical framework. In this report, the term
'accuracy' will be used in association with a statistical estimate, and
is quite distinet from the issue of how close a measured rainfall
quantity is to true rainfall, This latter question is obviously an
important one as far as network design is concerned, in that it is




governed primarily by such factors as the type of gauge used to measure
rainfall and its siting. In this report, such aspects of network
design are considered as being of an 'operational' nature, and are not
considered; for a comprehensive review of the subject, the reader is
referred to Rodda (1971). However, in carrying out a statistical
analysis of the UK raingauge network in this report, account is taken
of the fact that measurement errors may exist in recorded rainfall
gquantities, Other closely related aspects of network design, such as
the processing and dissemination of rainfall data, are not considered.

The wain intention in Section 1 of this report is to outline some of
the basic physical and statistical properties of rainfall, and to
introduce the reader to some of the basic notions underlying network
design at an elementary level. This is followed in Section 2 by a
review of much of the vast literature that exists on raingauge network
design, In doing this, a representative selection of papers are
reviewed in detail, and the remainder are included in Appendix 4 as a
claggified bibliography. In Section 3, a review of user requirements
for rainfall data in the United Kingdom is presented. This
information was acquired by approaching many of those organisations
whose activities were thought to involve significant use of rainfall
data; a list of these organisations is presented in Appendix B. For
the purposes of network design, user requiremente are reduced to
stated error criteria for estimated rainfall gquantities; details of
the many and varied uses of rainfall in the United Kingdom are also
presented in Appendix B,

Sections 4, 5 and 6 contain most of the methodology whereby an
evaluation of the UK rdingauge network may be carried out. This was
accomplished by selecting two areas in the East and North of England,
and applying the techniques presented in Sections 4 and 5 in ‘these
areas. BSection 4 deals with the characterization of rainfall as a
spatial correlation process, while Section 5 shows how measures of

the accuracy of estimation of various rainfall quantities can be

derived therefrom., The subsidiary problem of the likely effect of
climatic change on network density has also been considered., The
procedures described in Sections 4 and 5 essentially represent direct
methods of network design, In Section 6, some rainfall-runoff modelling
is undertaken to illustrate how indirect methods of network design might
be applied. Section 7 then proceeds to carry out an evaluation of the
existing network for the areas considered, and suggests how modifica-
tions to the existing network could be achieved to meet existing demands
more efficiently. Some conclusions and suggestions for further work are
finally presented.

As far as possible, the consistent usage of symbols throughout the
report has been maintained. However, this was not possible in Section

6 without rendering the terminology inconsistent with that already well
established in the literature., Thus, the use of symbols in Section 6 is
internally consistent, but not necessarily so with other sections of the
report, In view of the large number of diagrams presented in the report,
these have not been presented at the relevant points in the text, but
have been placed colleectively at the end of each section.




1.2 The United Kingdom raingauge network

1.2.1 Storage gauges

The most extensive and dense raingauge network in the UK is of daily-
read storage raingauges., There are approximately 7000 of these gauges
conforming to a Meteorological Office standard of constructiion,
observation practice and site: of these 4500 are sited in England,

700 in Wales, 1500 in Scotland and 300 in Northern Ireland. In England
and Wales 3600 are owned by Water Authorities, 1400 by private observers
and 300 are at Meteorological Office climatological stations., Some
gauges have an extra large container and can be used for weekly or
monthly measurements, This is necessary in remote sites where a daily
visit is impractical; about one half of the 1500 Scottish stations are
ef this type.

The network has grown from very few gauges in 1860 to 3000 in 1900 and
7000 in 1977, mainly in response to specific needs, and its density is
very variable; Figure 1.1 shows the mean distance between raingauges
in mainland Britain and indicates clearly the influence of population
density (see Section 7.2.3). Areas of special interest in some river
headwaters used for water supply may also be identified as having a
higher raingauge density., There is much less variation in density in
Northern Ireland because the network is more recent, and has been more
systematically planned,

The Meteorological Office collects and scrutinizes all data from the
daily raingauge network. Doubtful values are sometimes checked with
the observer and corrected if necessary before the daia are archived.
The Meteorological Office also arranges for site inspections, ideally
biennially, although the growth of the network has far outstripped

the staff capacity for these reviews., Arrangements are pow being made
for observer authorities to undertake their own inspections.

G.J. Symons established the British Rainfall Organisation in 1861;
amual rainfall totals, and increasingly also monthly totals, have heen
published since. Daily and menthly totals for all stations which report
to the Meteorological Office have also been archived on magnetic tape
sinece 1961; these tapes, the "British Reinfall" tapes, have been used

in this study. The data have heen rigorously guality controlled, and
are available within two years of the end of the observation period.

Monthly data for selected stations with long records are also available
from the Meteorological Office on magnetic tape. Daily and monthly
forms which were prepared by the original observers when the "British
Rainfall™ volumes of the time were compiled are also stored in the
Meteorological Office archives, The data used in Section 4.3 were
obtained from this source.

1.2,2 Continuously recordiqg gaugas

The network of autographic¢ or continuously recording raingauges is
relatively sparse and there are no current standards for instrumentation
or observational practice. There are 1170 gauges in all, of which 830
are sited in England (60% are in the Midlands and South-East); 200 are
in Wales, 90 in Scotland and 50 in Northern Ireland. A map of their




locations has been published by the Water Data Unit (19?5): The
Meteorological Office operates about 100 of these, There is no plenned
system of quality control and archiving of the data from autographic
gauges as has been developed for the daily-read network,_although a
catalogue giving site details is available from the Institute of

Hydrology.

Organisations with research interests, such as the Institute of Hydrology
and Bristol University, maintain networks of autographic gauges and
digitise the results. The autographic gauges of the Meteorological
Office and most other orgenisations record on paper charts, but most
records have not been digitised and their data are thus net readily
available for computational purposes. Some digitised records are
available for North Surrey, and for the Cardington and Winchcombe
experiments, all from the Meteorological Office. Digitised radar data
are available for several areas, most notably for the Dee catchment.

1.3 A short physical deseription of the rainfall process

Precipitation occurs when large droplets of water are formed, so large
that they may not be held in suspension in the atmosphere. These large
droplets may be created either by coalescence or by accretion of

smaller droplets onto particles in the ice phase, There is some
controversy about the relative importance of each mechanism (see Mason,
1971}, but both require a high density of water droplets in the
atmosphere with a range of diameters, These droplets are produced by
adiabatically cooling a parcel of air below its dew point, usually as

a result of upward movement. Although the interaction of physical
processes which occur when precipitation is formed is complicated and
not fully understood, methods have been derived (e.g. Betts, 1971; Mason
and Jonas, 1974) for estimating the duration and spatial extent of

rising air parcels producing clouds; these authors show that the
characteristic duration of these rising air parcels is about 30 minutes,
and their mean diameter is about 1 km, Only under certain circumstances,
such as in cumulo-nimbus clouds or depressions, can the vertical movement
of an air parcel be prolonged sufficiently to allow precipitating droplets
to form.

Systems containing air parcels whose upward movement results in
precipitation may vary greatly in areal extent., They may be small scale,
as with cumulo-nimbus clouds, or large scale, as with depressions,
although in many cases a large-scale system may contain discrete smaller
ones, The rainfalls measured at two gites under the same system will be
more alike than falls recorded under different rainfall producing systems.
Heavy falls also fend to be associated with rapid vertical movement
within smaller systems ( cumul o-nimbus cIOUds) and lighter falls with

the slower vertical movement of larger systems (depressions).

Depressions cross the British Isles typically in about 10 hours, often
with little modification to their structure. It follows that rainfall
at widely separated places way be related. The measured falls may be
related even if the separation of the measurement points is larger than
the instantaneous diameter of the rain-producing system, if the measure-
ment sites are within the envelope within which a system has
precipitated during the course of its movement.




The study of rainfalls associated with any one rainfall producing system,
whether a cumulo-nimbus cloud or a depression, necessitates the use of
raingauges which accumulate rainfall over time intervals no greater than
the life of the system, Autographic and daily gauges show the patterns
produced by individual storms, but in the British Isles monthly gauges
almost always show the aggregate pattern from several storms.

Parcels of air, whether in isolated cells, squall lines, or depressions,
may be lifted vertically not only by convection but by topography, which
may cause a parcel of air to be lifted if it is being advected. This
effect usually intensifies already existing rain-producing cells, and
results in highland areas having greater rainfall than lowland areas.

The greater the change in altitude, the greater is the increase in
rainfall; the longer the time interval over which rainfall is accumulated,
the closer the relation between rainfall and topography.

Two storms separated in time by an interval longer than the time taken to
dissipate the kinetic energy of the first may give falls that may still

be related, because many of the features which produced the first storm
may also cause the second (e.g. sea surface temperature anomalies), and
because a storm may interact with its environment, thereby making a
subsequent storm more or less likely'(e.g. by modifying the relative
vorticity field or by cooling the ground through_precipitation). Further,
because individual storm systems occur within the global atmospheric
circulation, the time between independent events may be long. Smagorinsky
(1967) considered that the smallest time for independence between events
is at least three weeks:; nevertheless, for the purposes of this study,
measurements of rainfall events have been taken as independent if their
separation in time is greater than the kinetic energy dissipation time

of mid-latitude depressions, effectively about six days.

1.4 Statistical properties of raimnfall

1.4.1 Descriptive statistics

Table 1.1 gives means and standard deviations of daily, monthly and annual
precipitation totals for twelve stations in Northern and Eastern England;
the regions thus referred to are shown in Figure 1.2, Table 1.1 shows that
mean rainfall in Northern Bngland is higher than that in Eastern England
for almost all cases; the standard deviations are also higher, The greater
values are from sites at higher altitudes, as shown particularly by station
77790, which is at a considerably higher altitude than the other stations
shown, on the Pennines west of Wakefield.

Depressions travel from the west, and may be "rained out" before they reach
Eastern England. The North of England receives proportionately more rain
caused by depressions because it is nearer to the Atlantic Ocean than
Eastern England. Depressions are more common and give more rain in winter,
and so the North of England receives more rain in that season. In Baatern
England, however, convection from isolated cells is more common: here the
rainfall is greater in summer, when these cells cccur more frequently,
These seasonal effects are only slight, but are illustrated by two

gtations shown in Figure 1.3,



Table 1.1 Means and standard deviations of rainfall totals for daily,
monthly and annual wvalues, 1961-1974, Eastern and Northemrn
England {(mm)

Station Daily Daily Monthly Monthly Annual Apnual
Number mean 5.D. mean S.D. mean 5.0,

EASTERN ENGLAND

151238 1.356 2.74 50.0 22,9 600.0 89.9
156677 - 1.45 2,78 40.0 18.4 480.0 90.6
171992 1.62 3.19 53.8 24.2 645,6 112.7
175514 1,22 2,22 50.8 26.0 609.6 86,0
181126 1.50 2,98 18.0 25.8 576.0 80.1
191591 1,36 3.01 46.9 25.3 562.8 73.4

NORTHERN ENGLAND

17260 1.65 3.57 57.5 23.4 690.0 120.6
32189 1.55 3.11 51.8 26,5 621.6 96.6
37225 1.66 3.11 53.0 28.5 636.0 95.8
77790 3.16 6.23 106.1 40.6 1273.2 186.7
108956 1.85 3,27 71.0 36,1 852.0 131.6
127979 1.23 2,24 50.8 28,2 609.6 104,0

Footnote: Daily values were for days selected at
regular 20 day intervals throughout the period

Table 1.1 shows that the standard deviation of daily values is about twice
the mean; for monthly and annual values, however, the standard deviation is
less than the mean. This illustrates the fact that as the sampling interval
is decreased, so the increasing occurrence of zero values causes the
frequency distribution to become more skew. Thus about half daily rainfall
totals are zero, although this proportion varies with the area concerned;
the time series of hourly rainfall totals contains many mere zeroes,

Extreme skewness resulting from a high proportion of zeroes may preclude

the straightforward application of commonly used statistical methods,
although devices such as variate transforms may sometimes assist,

The skewness of sample rainfall distributions is illustrated in Figures
1.4 - 1.9, which give histograms of daily, monthly and annual totals of
rainfall at two stations, one each in Bastern and Northern England, Four
categories of daily rainfall are shown:

(i) Days selected at regular 20 day intervals throughout the
period.

(ii) Days selected when the mean daily rainfall at twelve stations
within each area was above 2 mm,



(iii) As for (ii), but with a threshold of 5 um.
(iv) As for (ii), but with a threshold of 10 mm,

For (ii), (iii) and (iv), no day was selected if a day within the
previous five days had also heen selected. This reduces the effect
of serial correlation.

Figures 1.4 - 1.7 show that skewness is large for all four daily
categories, but becomes smaller as the threshold for acceptance as
a "rain-day" is increased. Monthly rainfall totals are also
ositively skewed (Figure 1.8), but annual totals are less so
Figures 1.9)}.

The histograms of Figure 1.4 - 1.9 also point to some differences
between the rainfall regimes of Eastern and Northern England. The
astations shown have similar means for all sets of data, yet histograms
for the stations in Easiern England generally show evidence of higher
values, This is caused by the greater proportion of rain preduced by
isolated convection cells, which tend to give larger totals than the
rain from depressions predominant in Northern England.

1.4.2 Correlation properties of rainfall in time and space

A brief physical deseription of the rainfall process was given in Section
1.3, particularly in relation to rainfall-producing mechanisms within the
U.K, As raingauge network design requires a statistical approach in which
statistical models are used to describe the rainfall process in time and
space, some knowledge of the physical mechanisms producing rainfall can
assist in structuring such models, If rainfall is aggregated over longer
periods such as months or years, then a high degree of spatial 'relatedness’
will be much less. This will be particularly true of rainfall generated
by convective cells which have a limited spatial coverage. Again, for
shorter time intervals, rainfall at a point will, however, tend to be
related to rainfall during preceding intervals at the same point; ase

the intervals over which rainfall is aggregated increases, then this
'relatedness' in time will tend to disappear, there being no olvious
physical basis for its existemce, However, the presence of an annual
cycle in monthly values does mean that for example, December rainfall

in one year will be related to November rainfall; however, deviations

from the respective mean rainfalls for both months will, in general,

not be related,

There are two possible statistical approaches to describing the temporal
and spatial 'relatedness' characterizing the rainfall process. One
approach seeks to establish a deseription directly in the time-apace
domain, and has as its basis serial and spatial correlation. An
alternative approach is to seek a representation in the frequency
domain through spectral analysis; however, for the purposes of network
design, the former approach offers much more flexibility and results

can be more readily interpreted. Accordingly, a time-space correlation
approach will be adopted in this report. '

The next question to be considered is what suitable measures of rainfall
correlation in space and time can be adopted. Little choice exists
here, as the great proportion of statistiecal theory relies on the use

of the linear correlation coefficient. Consider two points in space




with measurements of rainfall at concurrent time points denoted as.Xt anq )
Y¢; then the population correlation coefficient between Xi and Y, is define

as
B{(X ~pgd (Y ~py) ) -
p(X,, Y,) = t X et eees (L21)
YI{E (X, -1y ) °E (Yt-uy)z}

where by and My are the means of Xy and Y, respectivgly; this is §omet?mes
referred to as the lag-zero cross correla%ion coefficient, and is invariably
employed when characterizing spatial correlaticon in rainfall. Similar
measures can also be defined between Xy and Y, ., 7 = 11, *2, ¥, ... In
practice, D(Xt, Yi) and similar measures will be estimated from the ava%léble
sets of observations on the processes X; and Y;. The correlation coefficient
can also be used to describe temporal correlation in either of the time
series X, and YXi; for the series Xt, the lag t auntocorrelation coefficient

is defined as

E{X, -u, X, _-u.}
_ t "X Tt-1 X
p(Xt,Xt_T) = eee. (1.2)
E(X,-1y)”

Given an area with rainfall measurements at a set of P gauges, it is
pessible to compute P(P+1)/2 different values of p (Xt, Y.); for moderate
areas within the U.K., P may well be in the order of 500-1000, so clearly
this is a rather unmanageable description, A mmch more viable approach

is to adopt one or more 'key' or 'central' statioms within the area, and
calculate estimates of D(Xt,Y i)’ i=1,2y...,P where X; denotes rainfall
at the key station, Y; ; deno%és the rainfall at station i and P is the
total number of stations considered, These point correlation values may
then be viewed as egtimates of the ordinates of a surface which is
theoretically smooth and continuous over two dimensional space, with the
correlation between the central station and any surrounding peint being
described in terms of the coordinates of the two points, This leads to
the concept of a spatial correlation function; in the case of rainfall,
for reasons discussed in Section 1.3, this correlation function will decay
with distance from the central station, the rate of decay depending upon
the time interval of the rainfall process., Assuming for the moment that
the true rainfall can be measured within the area, then the correlation
at zero distance from the central station would obviously be unity. If

it assumed further that the rate of decay of correlation with distance

is the same in all directions from the central station then the contours
of the spatial correlation funection will be circular as illustrated in
Figure 1.10(i), with the spacing between the contours defined by the rate
of decay of correlation with distance. Such a correlation function can

be deseribed completely by a one dimensional répresentation of correlation
with distance, i.e. all cross sections of the correlation surface are the
same (Figure 1.10(ii)).

However, in practice, it is usually found that spatial correlation functions
do not have the same decay rate in different directions; under such circum-
stances a correlation function is said to be anisotropic. Accordingly, a
two dimensional description of correlation as a function of distance and
direction is required. Anm illustration of an amisotropic correlation
function is given in Figure 1.11. :




It would obviously he convenient if one correlation function with one

set of parameters could be used t¢ deseribe an area; however as an area
gets larger and as the relief becomes more variable, this may not be
possible. If the parameters governing the decay rate and anisotrophy of
the correlation function are found to vary from one central station te
another, then the rainfall process is said to be spatially non-stationary
or non-homogeneous with respect to the spatial correlation siructure.
Various levels of non-stationarity can obtain within an area: for
example, (i) the mean (ii) the variance (iii) the parameters of the
correlation function may vary spatially, It may be necessary to invoke
one or more of these non-stationarity assumptions to provide an adequate
statistical deseription of the rainfall process; this will be particularly
true in hilly and mountainous areas. For a pair of central stations,
illustrations of correlation functions for rainfall proeesses which are
(a) isotropic and non-statioenary, (b) anisotropic and non-stationary are
given in Figures 1.12 and 1.13, respectively. Stationarity and isotropy
are discussed further in Sections 2 and 4.

In order to establish the form of the correlation function for an area and
estimate its parameters, estimates of the correlation between one or more
central stations and surrounding stations need to be derived from the
available data, and a correlation function fitted to the gample correlations.
Here, it is necessary to reconsider the assumption made earlier that the
correlation at zero distance is unity. Due to the fact that recorded
peint rainfall is subject to measurement error and is affected by local
microclimatic irregularities, estimated correlation functions may suggest
that the correlation at zero distance is less than unity. This point

will be discussed further in Section 4, where procedures for estimating
correlations and fitting correlation functioens to daily, monthly and
annual rainfall data from two areas in the U.K. are considered, and in
Section 5, where its implications for network design are considered.

al i Ay BN TEE e Yy S T W =

—F

1,4,3 Derivation of network accuracy

l| Invariably, the main demands placed on a raingauge ne twork are either for

- the provision of estimates of rainfall during a particular }nterva} at a
point or over an area. In the ahsence of a gauge at the po%nt ?f 1nt?rest,
it is c¢lear that some procedure must be astablished for.estlmaﬁ1ng rainfall

s at the ungauged point. It is convenient that rai:nfall is spatially
correlated, as this formsthe basis from which po19t gyd areal estlmatgs may
be obtained, The reliability of such estimates will in general QePen on

a8 distances from surrounding gauges, the level o? correlation obta%:;gg .
between rainfall at points separated by such dlstanc?s, fhe mag:ud e ose-d
measurement errors at the gauged points, and the estimation procedure used.

v j i i timate invelves an interpolation procedure
vation of a point estimate . ]
Eggrig;laaset of weizhts is applied to the r31n¥a}1 ath:hze:u:;ozzggiis.
i dures can be used for deriving 3
e ong & e adures i timal in the sense that the
- uch procedures only one will b? optime bhe i
i{ ' ::23% zariaﬁce of the egtimated quantity W111-be glnlmglt;toﬁgtimal
| possible linear egtimators., However, the derivation 0 P

i i i i ff

rious point and areal es
derived and discussed in Section 5.
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In order to illustrate the principles of interpolation a simple example
will be considered here, It is assumed that an estimate of rainfall is
required at a point which lies at the midpoint of a line of length 7
connecting two adjacent gauges with weasured rainfells X; and 12;

stationarity and isotropy are assumed over the distances considered. The

relative error variance or relative mean gquare error of an estimate may
be defined as =

£ = Ez cene (1.3)

with B, the error variance (m.s.e.) defined as -
E SE{(Q"'Y)Z} .-n-_(104)

where Y is the estimated value, Y iz theé true value and o? is the variance
of the rainfall process., Assuming for the moment that the measurement
error at the two gauged points is zero, then the weights to be applied
will be equal.

If the means at the two gauges are assumed known and equal to U, then
the most obvious interpolation procedure would be to estimate Y as

Y = u o+ bl(xl -y} + bz(lef uw) : | vees (1.5)

with b, = b, = 0.5. This corresponds, to simple linear interpolation and
the corresponding relative m.s.e, of Y may be shown to be

e = 3 3o - 20 o veen (1.6)

where p{l) and D(L) are the correlations betﬁien rainfall at distances
! and 1/2, respeciively. If, for example, p{=) = 0.90 and p(1) = 0.84

2
then £ = 0.12,

However, the application of weights of 0.5 is arbitrary; if it is required
to use weights which give minimum m.s.e. then these weights may be shown
to be '

o o p(%) 0.7)
o} = b} - Too®) | eeee (1.7

which for the exampie quoted gives bf = bg = 0.488, The resulting minimum
mean sgquare error is

Ty
€- . oy - 20°(3) L (1B

opt 1 + pili

which for the current example gives Lont = 0.1106, There is little
difference in this case betwegz linear and optimal estimators; this will
not always be the case, If.p(z) and 0(l) are reduced to 0.8 and 0.65

respectively, then the linear and optimal relative mean square errors and
0.225 and 0.2242, thus illustrating the sensitivity of interpolation
error to the level of spatial correlation.

If measurement error exists at the two gauges, and the relative variance

T this erroy, N =
?1.6 - (1.8{ become €

s is the same at both points, then equations
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1
£ = % + %—p(l) - 2 pC%)-+ 7 N eees (1.9)

A

: o (3}
* = * = 2 TR 1.10
bi = b} 1+n +p(l) ( )

z
: 20 (3)
Cpt = L TTER TR eene (1.11)

The quantity n may be estimated as (1 - 5(0)/6(0) where B(B) denotes the
estimated correlation at zero distance, as discusszsed in Section 1.4.2.
1¢ p(0) = 0.95, p(X) = 0.90 and p(Z) = 0,84, then £ = 0.146 and

Eopt = 0.144, which illustrates that measurement error decreases inter—
pofation accuracy. It should be noted here that p(-) and p(Z) refer to

the correlation function of 'true' rainfall and that p(O) relates to
measured rainfall, It may be shown that measurement error imposes a
theoretical limit on the accuracy which may be obtained from a given
number of gauges, no matter how close the gauges are to the interpolation
point, :

The purpose of the foregoing short discussion and example has been to
illusirate how spatial correlation can be used as a basis for interpolating
point rainfall; this is also true of areal rainfall estimation, Provided a
well defined analytical procedure is adopted, it is possible to derive
expressions giving accuracies for the estimated quantities. The application
of more general interpolation procedures under more general conditions is
considered in Section 5.

1.6 Summary

In this introduction, the general problem of raingaunge network design has
been considered, and the approach adopted in this report outlined. In a
brief review of the United Kingdom raingauge network, daily-read storage
gauges have been distinguished from recording or autographic gauges, Data
from the former are collected and transmitted to the Meteorological Office,
where they are guality controlled and computer archived., For the much
less sparse network of autographic gauges, no planned system of gquality
control and archiving exists,

Some physical properties of the rainfall process have been described with
particular reference to rainfall producing mechanisms in the U.K. This

"provides information relevant to the structuring of statistical models of

rainfall in time and space., Some bagic statistics of rainfall in the U.K,
have been considered through reference to some stations in the East and
North of England. The use of correlation to describe the statistical
structure of rainfall in time and space has then been considered in
outline, followed by a brief illustration of how measures of network
accuracy can be derived on the basis of spatial correlation.
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Figure 1.2. Areas of Eastern and Northern England used in this report
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Figure 1.7 Histograms of daily rainfall totals for two gauges in
Eastern England (151238) and Northern England (32189),
for days with area mean > 10 mm.
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of a circular (isotropic) spatial correlation function

Figure 1.11 A two dimensional representation of an isotropic spatial
- correlation function.
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2. RAINGAUGE NETWORK DESIGN : A LITERATURE REVIEW

2.1 Introduction

Many ways of designing rainfall networks have been described in the
literature. These have all required the postulation of some criterion
of performance, such as that the standard error of daily rainfall at any
point is leas than some given value; not all criteria or methods have
been objective, and many so-called objective methods have used subjectively-
chosen criteria., Some research workers, indeed, consider the involvement .
of subjective judgement to be necesgsary; thus, Kohler (1958), in a review

of network design criteria, stated that "studies directed towards determining l

cost—to-benefit ratio or error versus network density are somewhat academic”,
The difficulty of siting raingauges has been considered by some, including
Kohler, to be more serious than that of establishing the number to be .
deployed, '

Rodda (1969) summarises much of the work on metwork design. He reports a
useful distinction between three levels of network, used by the U.S. National
Water Data System. These levels can be adopted for classifying precipitation l

networks, although their original purpose was to classify surface water
networks. :

Level I networks are used to acquire information for national planning l
purposes, to give gross estimates of water resources, to provide surveillance
of major storms and to provide a national data bank.

Level II networks supplement level I networks in particular basins or
regimes, giving extra information for local planning.

Level III networks gather information for particular operational purposes
for local water management.

The networks designed for each level need not be the same; indeed, the
total network of raingauges in an area may contain components from all
three levels,

Methods of raingauge network design may be divided into direct and indirect
methods. Direct methods use some criterion calculated from observed rain-
fall totals such as the standard error of an estimate of areal mean rainfall;
indirect methods; on the other hand, use some criterion such as the accuracy
with which streamflow is predicted using a model, thus being dependent not
only on rainfall but also on a description of the rainfall-runoff process.
Some criteria that have been used for network design are considered in
Section 2.2; direet methods of network design are considered in Section 2.3,
and indirect methods in Section 2.4.

2.2 Some_criteria used for network design

Most methods of network design used in the UK have been based at least in
part on subjective criteria. The standard most widely used in the UK is
that recommended by Bleasdale (1965), and given in Table 2,1, This table
is based on the experience of Meteorological Office workers, particularly
those who compile "British Rainfall™, and represents the number of gauges
which they feel gives a satisfactory representation of the rainfall in a
given area, '
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Table 2.1 Minimum number of raingauges for monthly rainfall eatimates

Area (kmz) Nurber of monthly gauges
26 2 '
260 6
1300 12
2600 . 15
5200 20
7800 24

Clemesha-Smith et al (1937) recommended a standard for experimental and
upland catchments, as reproduced in Table 2.2, This standard recommends
a denser network than that given in Table 2,1, but Bleasdale considers
that this is commensurate with the greater accuracy needed in special
areas.

Table 2,2 Minimum number of raingauges needed in reservoired moorland
catchments

Area (km?) Number of daily gauges Number of monthly gauges Total

2 1 2 3

4 2 4 6
20 3 7 o 10
40 4 11 15
31 5 15 20
121 6 19 25
162 8 22 30

The criteria adopted in both cases are that the raingauge distributions
appear "reasonable" when plotted on a map. In effect, it is assumed

that rainfall is related to topography, so that when isopleths of rain-
fall are compared by eye with contours, the agreement is close. However,
it is not always certain that a simple relationship with altitude should
be adopted, and, further, there is no objective measure of whether the
agreement is reasonable. A similar approach is to compare isopleths drawn
using a dense raingauge network with those produced using a subset of
gauges. However, comparisons between maps are subjective; furthermore,
this method is highly dependent on the interpclation technigue used when
drawing the isopletha, particularly if the sampling demsity is low.

Most workers, including Clemesha-Smith et al (1937) and Bleasdale (1965)
recommend that precipitation should be sampled both spatially and
altitudinally. This approach has been followed in the design eof many
experimental networks, for instance those described by Clarke et al (1973).

Shaw (1965) considered that even this simple eriterion could not be
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adopted, because of the difficulty of siting gauges, particularly on
higher ground, and instead adopted a method where one raingauge was
sited in each 26 km2 in a 252 km2 area when an operational raingauge
network was designed in Devon,

Most network design-criteria have been evolved for networks to measure
monthly or annual precipitation totals: less work has been done for
shorter period totals, or for other precipitation statistics. This partly
reflects demand and partly the difficulties noted in Section 1 of treating
statistics of short period rainfalls., McCullagh (1975) described a method
which was used to design a network of telemetering raingauges in the Trent
valley. The method will be described in Section 2.3, but the criterion
adopted for acceptable accuracy was that the standard error of a daily
total at any point should be less than 4 mm, The number of gauges
recommended was 53, in a 10436 km2 area, or 1 per 197 km®. The siting

of these gauges was also discussed, several different sites and demsities
being examined in order to find the configuration that gave the lowest
standard error of an estimate of daily areal rainfall, subject also o

the criterion for point rainfall given above,

Radar has been considered by some workers as a method of reducing the
network of conventional raingauges. Harrold et al (1973) state that

radar is equivalent to between 1 and 4 gauges per 100 km“, depending on
the type of rainfall, for hourly rainfall rates. They use a mean absolute
error criterion for making this assessment, as discuesed in Harrold et al
(1974). The use of radar to measure rainfall is discussed more fully in
Section 3.4.

2,3 Direct methods of raingauge network analysis and design

2.3.1 Introduction

Many direct methods of network design comsider the precision of interpolated
rainfall estimates, and it iz convenient to divide interpolation methods intol
two categories, local and global. Consider the rainfall interpolated at

point A a distance dp from gauge B, and d¢ from gauge C. The value at A

is statistically dependent on the valunes at both B and C, and in the absence '
of other information may be taken as the weighted sum of the values at B and

at C. For local estimation the weights wy and wc applied to the values at
gauges B and C depend on the distance dp and dg, whereas for global l
estimation the weights wp and wg are independent of dg and dg. The division
into local and glebal methods is useful, even for techniques not based on
interpolation. '

2.3.2 Local fitting technigues
2.3.2.1 Outline '

Only a few raingauges are needed in an area if the rainfall totals recorded
at these raingauges are closely related; the converse is also true., Two
measures of the relation between rainfalls at two gauges are:

(i) Spatial correlation: This has been used by Gandin (1963),
amongst others, for assessing the relationships between pairs '
of gauges, If (X¢, Y¢) (+ =1, 2, ... N) are a set of
measurements of rainfall over the same interval of time (t)
at two stations, the usual estimates of the variances,
covariances and correlation are
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means at the two stations,

Ag discussed in Section 4.3, there are problems with using these estimates
of variances, covariances and correlation because the set of measurements
(Xt, Yf) are not independent over time, and because rainfall fotals for
short periods are not normally distributed (Section 1.3.1).

(ii) Spatial variogram: This has been used by Matheron (ro71),
amongst others; Gandin (1963) alao discusses the variogram,
calling it the structural function. It is estimated as

N

Yoo = 3w L (¥,X)?
XY N ittt

If the variances So and S% are equal, then this can be reduced fo the
estimate of the correlation given above. The usefulness of this statistic
will be illustrated later, but it may be considered asthe variance of the
increments of a spatial process.

An estimate of the unlmown value at a point can be found from values
observed at other points, This can hest be done by estimating the
gstatistical relationship between the unknown value and the observed

values, then weighting the observed values accordingly. The method of
doing this using spatial correlation will be described and then differences
when the variogram is important will be indicated.

The correlation between an unmeasured and a measured value may be estimated
using the correlations between the values at measured peints. It has
already been noted that correlation varies with distance, and it is then

a conceptually simple idea to estimate this relationship.

Plots of estimates of sample correlations against distance may be used
to suggest a relationship between correlation and distance. A function

is used to characterise thig relationship, with parameters estimated using
the sample correlations between measured points. Several functions have

been fitted, most having an exponential deecay with increasing distance,
Gandin (1963; 1970) fitted a circular correlation function that is
invariant with direction; for example, if p(d) is the correlation at a
fixed digtence ¢ and a, b are constant for each direction

o(d) = a+ (1-a) exp(-bd)
Rodriguez-Iturbe and Mejia (1973) used a modified Bessel function:

p(d) = bdK(bd)
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where b is again eonstant for each direction; this was beca?se W@ittle
(1954) could not asscciate an exponential correlation f?nctznn with any
simple physical mechanism, However, there was little difference between
the derived network deviations using either correlation functioen.

Given a satisfactory relationship between correlation and distance, the
value (Y) at an ungauged point may be estimated as a wei%hted sum of ‘the
values (Xl,....xﬁ) at neighbouring gauged points, If (Y) is a.llnear
estimator of (Y), and (Xi,....xﬁ are known for the same time interval,
then

Y = a+b )(1 + bz)(2 + b3x3+ ......+prp

where ay, bl, ...bp are known constants.

The accuracy of this gstimator Y is characterised by its mean square error,
mse(¥Y) = E {(Y-Y)2}

I+ is also often required that Y be an unbiased estimator, i.e.:
bias (¥) =E {(¥-N)} = 0

The valiues a, Py,....0b_ are found so that mse {Y) is a minimum, and that
the estimate Y 1s unbilsed. Details of the method for calculating the
weights is given in Section 5.2.1, which shows that, for estimation of

the mean square error, it is necessary either (i) to estimate long term
means or (ii) t0 agsume they are unknown but equal. Schlatter (1975)
considers that neither of the methods (i) and (ii) above is satisfactory,
and recommends a check on the estimate of mean square exror by omitiing
measurements from a few raingauges when estimating correlograms and weights;
values are then interpolated to the raingauge sites not used in the
analysis, and the estimated mean square error compared with the calculated
mean square error. However, Sharon (1972) wag doubiful whether a single
mean square error criterion could be unged to plan networks at the three

levels mentioned in Section 2.13 he even doubted the usefulness of a mean
sguare error criterion.

Gandin (1963) and others have assumed that the parameters of the correlation
function do not vary in space. However, twe types of variation may ocecur:
first, the parameters may be direction dependent; second, the parameters of
the function may vary from place to place. If the correlation may be
assumed to he stationary under itranslations then it is possible to fit

a direction-dependent function (Whittle, 1954; Schiatter, 1975). If the
parameters are not constant from place to place, then it may be possible

to allow for this variation if it is smooth and not discontinuous,

There are other assumptions of stationarity: namely, that variances are
equal for all stations, and that means are either equal and unknown, or
unequal but known, for all points. Matheron (1971) considers these
assumptions too strict, and instead recommends the use of the variogram
in a technique he terms Kriging (after D S Krige, a South African mining
engineer who first suggested the technique). In Kriging only the spatial
covariants of the process are assumed stationary; fitting a function to
the variogram and assigning weights to the measurement points is similar
to the correlation-based methods already described. Matheron (1971) uses
simple functions to fit te the variogram, often fitting by eye.
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All work based on these techniques has used a linear estimator of weights,
However, as shown by Matheron ?1975) non-linear estimators may be used,
and these should improve the accuracy of estimates.

2,3.2.2 Applications of logal fitting techniques

The use of local fitting techniques for metwork planmning has been
considerable. Three applications of the planning of precipitation
networks will be described here as examples,

Cislerova and Hutchinson (1974) applied optimal interpolation for the
redesign of the raingauge network of Zambia, using annual rainfall totals.
Standard errors of 10% and 15% were chosen to represent the upper limits
of accuracy of interpolation. The maximum admissible distances between
gauges were then calculated, using a simplified version of optimal inter-
polation that calculated the standard error of interpolation only at the
mid-point of a line segment midway between neighbouring stations. A mid-
point of a line segment iz assumed to bave the greatest standard error of
interpolation of any point between two gauges. .

Delhomme and Delfiner (1974) considered two separate data sets : ome
consisted of annual rainfall {totals, and the other of totals for thirteen
gtorm events in a catchment in Eastern Chad. For each data set, the
standard error of interpolation was found at each point on a fine grid

by Kriging. It was assumed that a new gauge would be sited at the
position %B) which had the largest standard error., The gain in precision
was estimated for each data set, by simulating the exercise of estimating
standard errors assuming an extra gauge was established at position (B).
The greatest standard error of interpolation was noted, and the gain
calculated by comparison with the initial estimates. The reduction in the
standard error of areal estimates was also found., No criteria of the
reduction in standard error necessary before it was decided to establish
a new gauge were stated in the paper,

A similar approach was adopted by McCullagh (1075) except that he did not
calculate the reduction in standard error given by the establishment ef a
new gauge. He used the map of standard errors of interpolation to decide
if a new gauge should be established. Using daily totals he adopted a
criterion that a point should have a minimum standard error of inter-
polation of 4 mm before a new gauge was established,

2.3.3 Global fitting techniques

2,3.3.1 Outline

Global fitting techniques are more diverse than local fitting techmiques
and do not use a common method; they are most nseful when the standard
error of estimate of areal rainfall is needed, as they give an identical
estimate of the standard error for all points, Most global fitting
techniques which have been used for raingauge network planpning have used
the correlation between precipitation records for two time periods to
estimate the standard error of areal rainfall totals. Some further
techniques have been based on spectral analysis. These two will be
described in turn, : :
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2.3.2 Correlation techniques: outline

These techniques are based on the work of Nicks (1965) and of Sutcliffe
(1966). Suteliffe (1966) estimated the increase in the standard error
of mean areal rainfall when a gauge was removed. He separated spatial
variations of annual rainfall into a persistent pattern, a systematic
error and a rendom error. ' .

Thus,

Xjg = Pip Mra+b) +egy
where x;, is the measured rainfall at time t (t = 1,....,N) at site
i(i = 1,....,P), P;i represents the persistent element of the true
rainfall, a and by are constants representing persistent errors, and
€it 1s a random error. A linear relationship is assumed between the
long-term true areal mean rainfall X*,, and the persistent element P;ge
The persistent errors b; and the relationships between long-term point
means and areal means are assumed to be independent hetween gauges,
The correlation coefficient r(Xil, xi2) then depends mainly on the error
terms €51, €jo, and it is possible to find the standard error of the
estimate (Xil, xi2)' This result may be used to assess the accuracy
of a network, and of a particular gauge, if records exist for two
independent time periods to allow the assessment of r(Xil, Xi2).

2.3.3.3 Correlation methods : examples

Herbst and Shaw (1969) used Sutcliffe's method to assess the network in
two catchments in South Devon, and three other catchments in scuthern
Britain, when estimating monthly areal rainfall., The results obtained
varied very widely, It was suggested that the densities esitimated using
the method varied because different types of rainfall occurred in different
catchments., A disadvantage of the method is that very long records for
several gauges are needed in order {o give stable estimates of long-term
areal rainfall for twoe independent time periods.

Nicks {1965) applied a Student's t~test to compare reduced and full
networks of gauges, using data from only one time period collected from
an instrumented network in Oklahoma (158 gauges in a 2900 km? area).

Daily totals of rain » 0.0l inches at any one gauge over a 3-year term
were used, giving a total of 411 days. Mean daily rainfall was calculated
for each day, using the full network, and several reduced networks. Areal
means for each reduced network were compared with those for the full
network using Student's t. Only one network, that with 5 gauges, showed
significant differences from the full network of 158 gauges; however, as
the areal mean values for the networks are not independent these results
should be treated with caution,

Stephenson's (1968) analysis, similar to Nicks (1965), used daily and
monthly total rainfalls in Somerset. The results for daily totals were
inconclusive, because of the extremely non-normal sample frequency
distributions. ZXor monthly data, he found that at least 30 gayges
were needed to assess mean areal monthly rainfall in a 5200 km~ area.
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2.3.3.4 Spectral methods

Eagleson (1967) suggests that a spectral representation of the spatial
rainfall pattern is useful, if it allows a clear identification of a
frequency above which there is very little power; this may then be taken
as the Nyquist frequency, thereby providing an upper bound for the

spacing of gauges. The grid spacing would be chosen as twice the Nyquist
frequency. However, sample spectra of rainfall do not exhibit any clear
cut-off, certainly for any time peried of integration greater than one
minute. Ord and Rees (1976) consider that spectra could be produced using
radar data, but this has not been done for network planning. As the
definition of a Nyquist frequency is rather arbitrary, this method appears
subjective if applied to network planning.

A gimilar appreoach was adopted by Hershfield {1966), using the spatial
correlogram rather than the spatial spectrum, He calculated a mean
correlogram for fifteen storm events in fifteen catchments., The mean
distance to the 0.9 correlation level was noted and used to give a gauge
spacing. This correlation level was arbitrarily chosen, and no account
was taken of aniscotropy in the correlogram, Variations in spacing were
noted for storm events with different return periods. '

2,4 Indirect methods of raingauge network analysis and design

2.4.1 Introduction

Indirect methods of network design seek to optimise some criterion such
as the error in prediction of streamflow or soil moisture deficit, or in
some other derived quantity required by the user. If direct methods of
network design are rejected, two approaches are possible : the first
requires the use of a model relating rainfall to runoff {(or some other
hydrological variable) whilst the second uses a cost-benefit analysis to
compare the costs of alternative networks with benefits aceruing from
their implementation. These will be considered in turn. Most network
design using indirect methods has used criteria based on streamflow
prediction; this is therefore given greater emphasis in this section,
although there is no reason why other user requirements cannot be
considered similarly.

2.4,2 Rainfall-runoff models

Distributed rainfall-runoff models offer the best hope of studying the
effects of spatial variations in precipitation on runoff, but most are
8till under development and have not been used extensively for network
design purpeses, Usually, lumped models have been used, where in effect
the number of gauges required to satisfy the model is that which gives a

stable estimate of areal rainfall. One example of each type will be
described.

Richards {1975) used a lumped model developed by Dickinson and Douglas
(1972) to study the effect of network reduction on goodness of fit and
streamflow prediction. Three catchments were used in modelling, with

areas of 197 kmZ, 1.5 kw2 and 19 lwZ, and model parameters were fitted
by least squares te three-hourly streamflows, Iwo catchments had only
one autographic raingauge each, while the third had three antographic

gauges. Areal mean rainfalls were then calculated for each three hour
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period, using Thiessen polygons., These areal mean rainfalls were
calculated for five gauge configurations in each of the three catchments,
For each network configuration, model parameters were estimated, together
with the coefficient of determination ?32) derived from ohserved and
fitted three-hour streamflows. Few differences were found in the values
of RZ for different configurations. This could be the result of
inadequacies of the model amd of the fact that the model was recalibrated
for each network configuration. Thug, the effects of modelling errors
and inadequate input definition on RZ would be difficult to separate.

The method of distributing the daily totals using only a few autographic
gauges may have reduced the effect of gauge configuration.

Bras and Rodriguez-Iturbe (1976) used a non-linear, spatially-distributed
model based on the kinematic wave approximation fo the St. Venant shallow
water flow equations, Hainfall was represented as a first-order Markov
process,. giving realisations {continuous both in time and space) that were
converted into point {totals over discrete time intervals. To estimate

the covariance struecture of the rainfall process, it was necesaary to
assume (i) that measurement errors at different points were independent,
(ii) that the process was stationary over time, and (iii} that measurement
errors and rainfall intensitier were independent. Estimates of the
covariance structure were made (for all points) using a Kalman filter
technique, from those points at which measurements were taken. The use

of a Kalman filter allows the mean square error of estimation to be
obtained, independently of the actual observations. In the prediction

of runoff, infiltration and evaporation is ignored, and so the only
uncertainty allowed in estimating the runmoff comes from the stochastic
nature of the rainfall.

The approach was tested on an idealised basin of 212 km2. A time
increment of one hour was used; a family of storms with a mean velocity
of 32 lm h™", a mean duration of 6 hours, and a mean maximum fall of

38 mm h~1 was modelled, The hourly rainfall intensities were assumed

to obey a single exponential correlation funetion. They conclude that
peak estimate mean square errors are reduced when gauges are located in
the upstream reaches of a catchment, but this increases the estimation
error of the rising stage of a storm hydrograph. Station location was
found to be more important than the number of stations, but it was found
also that the mean square error was considerably reduced when up to eight
(the maximum number) stations were added to the measurement network, It
was found that the falling limb of a storm hydrograph could be estimated
accurately using only a few gauges, but many more gauges were needed to
estimate the rising stage and peak discharge with concomitant accuracy.

There are some limitations in this method, The assumptions are very
restrictive, particularly in assuming no infiltration. This considerably
increases the estimate of mean square error. The results are dependent
both on the description of the spatial structure of the rainfall and on
the rainfall-runoff model, although the authors noted that perturbing the
parameters of the correlation function deseribing the rainfall process
had little effect on the results, These also refer only to one type of
storm, and would have to be generalised before any network design could be
impiemented. The numerical complexity of the method leads to high
computational costs, The guthors do not suggest an acceptable mean
square error of streamflow prediction, so this problem is unresolved;
nevertheless, the method offers some physical basis for network design,
and allows asgessment of the contribution from individual gauges to the
modelled streamflow.




31

2.4,3 Decision theory models

Models using decision theory relate the costs of a measurement network
to the benefits accruing from it. This is often performed by simulation;

‘usually the benefits from only one use are considered because of the

difficulty of assessing benefits from many of the uses of raingauge
networks. This approach illustrated by an example where flood warning
benefits have been assessed.

Grayman and Eagleson (1971) simulated relationships between the costs of
network provision and the benefits of flood warning. Beth radar and
raingauge systems were evaluated in several stages: first, a model was
designed to estimate the covariance structure of rainstorms; second,
various sampling schemes were tested, to find their effect on the sample
covariance structure; third, a distributed rainfall-runoff model was

used to convert the sample rainfall values to runoff hydrographs. Each
of these stages involved a simulation study, with many storms, measuring
systems and catchments, one combination of which was subject to an
economic analysis, using decision theory, Many assumptions and
gimplifications were made in this work, In particular, the assessments
of costs and benefits and the relationships between variables were
gimplified. In only one case study was a full economic analysis
performed, Other case studies relating raingauge networks to runoff

were similar to those of Bras and Rodriguez-Iturbe (1976: see also 2.4,2),
In the case study including an economic analysis, an area of 16637 km2 in
Pennsylvania was taken., Radar was shown to have only a very small
additional benefit compared with raingauges alone, and a network of one
gauge per 492 km2 was recommended.

A network design approach with its bagis in decision theory hag been
developed by Moss and Karlinger (1974) and Moss (1975). While the method
has been evolved primarily for streamflow network design, its significance
warrants mention here, Attention is focussed on a measure of the
information provided by a sireamflow network, "equivalent years of record"
(Bardison, 1969) and a methodology is evolved whereby a set of network
designs can be generated which satisfy accuracy criteria specified a
priori for various streamflow parameters. Sample statistics of streamflow
will inevitably differ from population statistics; consequently, incorrect
decisions about whether or not a network meets an accuracy requirement may
be made when sample statistics are used in lieu of population statistica.
The strength of the approach developed by Moss and Karlinger (1974) is that

-full account is taken of this uncertainty in generating feasible network

designs by utilizing Bayesian decision theory, If suitable economic cost-—
benefit relationships are available, an optimal design can finally he chogen,

2,5 Conclusions

The most flexible direct method of network planning is provided by a local
fitting technique, if the assumptions of the method can be met. Methods
using the correlogram to describe spatial variations are more closely based
on widely-used statistics than those using the variogram.

Indirect approaches bave been described through a few examples, all of
which are specific in that they relate only to one use of rainfall
information. No study has been made of the effect of model choice, or
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of using different assumptions when fitting the model, Potentially,
methods using decision theory could he generalised, but the difficulty
of relating rainfall to all its uses through models, and then assessing
the economic benefits of the predictions, is very great. Thus, indirect
approaches offer considerable promise for the design of special purpose
networks, but at present are too specific for use in designing a general
purpose network,
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3. USER REQUIREMENTS FOR RAINFALL DATA IN THE UNITED KINGDOM

3.1 Introduction

This chapter discussed user requirements for rainfall data. These were
established by asking various organisations to describe the role played
by rainfall data in their operations, Presenting this information in
Section 3.3 serves to demonstrate to data collectors the vast range of
tasks in which their data are employed, and alse helps to identify a core
of uses on which the adequacy of the existing network may be judged and
on which recommendations for revision of the network may be based.
Section 3.2 gives the method of describing accuracy requirements and
Section 3.3 describes briefly rainfall usage (a fuller description is
included in Appendix B, Section 3.4 discusses the pogsible future role
of radar in rainfall measurement; Section 3.5 summarises the requirements
which may be used to assess the exiating network.

3.2 Purpose of approaching data users

A sample of organisations from the water industry and other important

sectors was approached by the Institute of Hydrology and each visited
organisation was asked to specify its requirements in terms of a tolerable
error, either proportional (e.g. 10%) or absolute (e.g. 5 mm). A similar
cooperative enquiry was conducted by the Meteorclogical Office who
circularised their own branches, plus agro-meteoroclogical representatives and
urban hydrologists. By considering the consequences to the data user of a
more serious error the stated figure was assessed as thaft error required not
to be exceeded on either 68%, 95% or 98% of occasions corresponding to

either 1, 2 or 2.33 standard errors.

Users were also asked to specify whether they reguired point or areal
rainfall estimates and, if the latter, over what area; they were also
asked the time interval for the rainfall totals they needed (hour, day,
etc). These aspects, spatial and temporal resmolutions, were more easily
answered, usually being evident from the nature of the application.

With this information, and the methods presented in Sections 5 and 6, it
is possible to judge and, in some cases, test whether the existing network
meets the users' specification., It is also possible to design an optimal
network catering for any individual use. However, this is not the purpose
of this investigation; a national network as defined in Section 1 should
provide a sufficient density of raingauges to permit all major uszers to
interpolate rainfall values to sites or regions of interest.

Many of the organisations approached expressed views on the total system
of collection, quality control, archiving ané dissemination of rainfall
data. Views were expressed regarding instrumentation, regnlarity of
central reporting, raingauge location problems, time of reading (9 to 9
or midnight to midnight}, exira gauges to compensate for leost records

and rainfall quality as well as quantity. While all these subaidiary
qguestions are of paramount importance in the ultimate network design this
report takes the view that they relate more to the operation of the
network, and focusses attention on those error and resolution matters
that impinge directly on the network density problem,
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3.3 Urganisations approached

The following sections give a brief outline of the uses of rainfall data
by various sectors, Appendix B lists all the orgarisations who assisted
in aequiring the necessary information and also gives a much fuller
deseription of individual uwses and requirements.

3.3.1 Water industry

This industry is taken here to include all the Water Authorities in
England and Wales and corresponding organisations in Scotland and Northern
lreland as well as Central Government departments and research organiga-
tions that service the Authorities. The Water Industry has a special

place in that, not only is it a major data user, but it is also the main
data collecting agency, The data from many raingauges nominally in private
hands are initially collected by the Water Authorities before being
transmitted to the national archive.

Every Water Authority, representative Scottish Purification Boards and
Regional Councils, and the Northern Irelend Department of the Environment
were visited., Their uses may be for operational purpeses, using real-time
data for a specified point or catclment, or else for a plamning purpose
which demands either retrospective data or rainfall statisties.

The calendar month is the most common time interval for those operational
and planning tasks that require data as a time sequence. It is the
interval used in water balance studies of all kinds, e.g. resource
studies, ground-water recharge, gauging station checks, and modelling.
Monthly totals are required for areas corresponding to useful surface or
groundwater resource units, perhaps typically 100 km2 but sometimes as
small as 10 kmZ., A commonly quoted error criterion is * 10% which is not
to be exceeded on more than of occasions, i.e. corresponding to 2.33
standard errors. Totals over shorter time intervals, 5 days or
occasionally 1 day, are sometimes useful in 'fine tuning’ of operating
rules both in water resource and quality schemes. However, these are
more likely to relate to dry low flow periods., In some types of study
absolute accuracy of rainfall data is required and a network of ground
level gauges may be called for to calibrate the standard Mk II gauge in
almost universal use,

Flood analysis and warning, especially in urban areas, requires short
duration rainfall data obtained from gauges reporting or telemetering
their data to some control centre, DBecause their lecation is totally
determined by this specialised nge thesze gauges camnot be regarded as
part of the national network, although their location and spacing is an
impertant local problem,

For the analysis of past flood events it is necessary not only to know the
total volume of rain, for which the daily data normally suffice, but also
the timing and variatien of intensity with time within the storm. This
latter requirement calls for autographic raingauges at a sufficient density
to sample storm events. It is not thought to be practicable or necegsary
to space such raingauges in accordance with the known rapidly declining
correlation distance relationship (Rodda et al, 1976). This indicates that
a practically unattainable gauge spacing would be required to achieve an
interpolation accuracy of similar order to measurement accuracy. In any
case hydrological models, even those that permit a spatially varying input,
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introduce conziderable errors of their own in converting input to output,
80 network demands cannot be based on the time and space input capabilities

- of the model, only on the sensitivity of model output to various levels of

description of the rainfall input, This is the approach adopted in
Section 6.

A geparate approach might be to base the spacing of autographic raingauges
upon some such criterion as that, in rural areas, 50% of storm cells should
be sampled and, in urban areas, 95% should be sampled, This has not been
developed further in this report but would require data on the disiribution
of storm cell size, track speed and direction, Some such information has
recently become available in Shearman (1977).

Bainfall statistics are required for some planning purposes. The most
important statistic is the mean annual rainfall averaged over some standard
period, Ite importance is due to its central role in very many informal
decisions, TFor example, when obtaining a rapid asseasment of the rainfall
regime at a particular site it is very common simply to compare that site
with another of known performance on the same isohyet. Other common uses
for annual average rainfall are in standardising other more complex
statigtics such as quantiles of short duration rainfall or accumulated
deficits, and also in describing storm event ischyets using the isopercental
method, The assumpiion that more complex statistics can be standardised to
smooth results and aid mapping has had the effect of imposing the spatial
detail of annual average rainfall on the spatial pattern of the other
statistics, Because of sampling error in the derivation of the statistics,
especially those related to extremes of rainfall surplus and deficit, it

is not possible without very long records to test the hypothesis that
annual average rainfall is an adequate standardising factor., On the other

“band the maps so produced seem to serve the purposes of the users of the

gtatistics., Thus in this study it has been assumed that the network density
needed for rainfall statisties is the same as that for amnmual average
rainfall,

3.3.2 Civil engineering, consultancy, building and consiruction

Consulting engineers operating in the water field were found to have
generally similar rainfall data requirements to the Water Industry. However,
being outside the industry they do not have immediate access to the data

and are more dependent upon the national archive.

A brief survey of the construction engineers' requirements revealed that
apart from their considerable dependence on accurate weather forecasts
they had little continuing or systematic requirements for data. Large
sites have found it necessary to keep rainfall records to confirm such
matters as time lost due to rain. Indices of the suitability of site
conditions for plant operation or building activity could be constructed
using rainfall statistics, Generalised statistics on time lost due to
rain had been assembled and were in use for plamning work programmes.
Sites in different parts of the country have been compared by reference
to rainfall intensity statistics,

The choice of wall cladding and roof construction materials and such
factors as drain gully, soakaway and gutter sizes are assisted by the
availability of rainfall statistics. Special purpose indices have heen
developed by building researchers and have been mapped; these enable
average site conditions to be predicted and wall and roof materials to
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be chosen to provide adequate protection., Because this use of rainfall
data is as part of an index, and thus only partially related to the
necessary protection standards, a limited raingauge network suffices.
There is one specialised requirement for information on driving rain
which necessitates special purpose-designed gauges., Snow is an important
factor in roof design and although the raingauge network is used algo to
record ithe water equivalent of snow the data only partly satisfy the
requirements of roof and other design work, Thus proper consideration of
this large topic would need to include other methods of recording snow
depth and it has not been inclyded in this study.

3.3.3 Agriculiure

Agriculture is by far the largest industry with a direct interest in rain-
fall data. Although much of the use is informasl the secale of the more
quantitative use can be realised from the fact that up to 11000 trials

or experiments take place each year, many of them requiring parallel
climatic information. The rainfall interest is rooted in the eritical
role of rainfall in determining plant and animal growth and health,

The structure of the industry is such that operational decisions are made
about rainfall sensitive activities, such asg irrigation or assessing
digease risk, at a regional level by the Agricultural Development Advisory
Service Officers using a limited network of reporting stations. 1In Scotland
and Northern Ireland however, Colleges of Agricul ture undertake some of
these advisory roles., The required time interval for rainfall data is very
variable depending on the particular purpose, totals over one to three days
being common. Data is normally required for a single point, but, except
for experimental purposes, accuracy requirements are not high, Other
climatic variables such as evaporation are of course very important, thus
calling for a network of weather stations.

For planning purposes rainfall data are essential for deciding total
irrigation requirement and suitability of a range of agricultural practices
such as animal housing standards, and studying the year to year variations
in disease development and crop yield. The agricultural requirement for
rainfall data is not limited to lowland Britain: the needs of forestry,
liver fluke forecasting, and bracken burning all call for a coverage of
upland regions.,

In common with the water industry the agriculture sector is interested
in soil moisture deficit (SMD) both operationally and as statistical
information for planning.

3.3.4 Meteorology

The Meteorological Office currently processes the data from some 7,000
standard raingauges. Internally its interest in the data is for validating
forecasts and developing new forecasting models, producing SMD maps and
answering enquiries, In the future forecasting models will he based upon

a 25 km grid hopefully enabling a 6 hour rainfall forecast to be reported
and checked., An accuracy requirement of 0.5 mm {1 standard error) has been
quoted for this purpose when the rainfall forecast exceeds 10 mm. The
Enquiry Branch of the Meteorological Office answers a large variety of
enquiries including those covered in the following twe sections, An
accuracy requirement of 5 mm for daily rainfall both for point and areal
estimates has been quoted by the Enquiry Branch as being sufficient to

meet these enguiries, . - '
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Miscellaneous services provided by the Meteorological Office concerning
instruments and observational practice perform a very relevant function
to network operation but do not themselves place demands for data upon
the raingauge network,

Some meteorological and climatic research is carried out at other centres
and quite commonly calls for a dense network over randomly selected partis
of the country, The Institute of Hydrology, for example, has a copy of
the National Archive of daily rainfall data which it uses in a variety
of statistical studies. A recent one required a density of one gauge

per 30 km2,

3.3.5 Public utilities

Public utilities like the Central Electricity Generating Board and the
North of Scotland Hydro-Electric Board use rainfall data for demand
forecasting, pollution monitoring and identifying problems with generating
sets. Telecommnication is affected by intense rainfall and hoth
retrospective and real-time data are used for route plaming and monitoring
by the Post Office.

3.3.6 Law, insurance, health

‘The police in their capacity of providing emergency relief, traffic

management, and oceasionally in forensic work, also use rainfall data.

It is possible to insure against rainfall so statistics are required for
premium calculation and a nearby observer and gauge has to be available,
Rainfall is an important agent in depositing pollutants from the atmosphere.
Several organisations are involved in developing instrumentation for the
biological and chemical analyses of rainfall, and also the calculation of
mass balances, This latter aspect requires rainfall depth data but as yet,
because rainfall quality data is available over such a sparse network, this
is not a stringent requirement. It is foreseen that networks for the
measurement of rainfall quality and quantity will be needed adjacent to
major sources of polluting materials.

3.4 Use of radar

3.4.1 Introduction

The Central Water Planning Unit is at present working on a project to
evaluate the benefits of radar to Water Authorities (Water Resources
Board; Bussell, 1976)., Collaborators in this study include several Water
Authorities; the Water Research Centre, the Meteorological Office and the
Royal Signals and Radar Establishment, Radar has already been used as a

research tool in the study of cleud behaviour by the latter two organisations,

and by the Appleion Laboratory and some universities, It has also already
been applied to particular hydroloegical tasks both in the UK (the River Dee
Research Program) and in the USA, However, little has heen published about
its potential in providing general purpose data such as that provided by
the raingauge network for non-specialised users, i.e. a digital archive of
small-area rainfall depths. The potential of radar for this more general
application is reviewed here and is based upon discussions with all the
establishments mentioned ahove, and on the literature concerned with the
accuracy of rainfall estimated by radar. '



3.4.2 Current radar experience

The main impetus for guantitative rainfall measurement using radar has
arisen in flood warning where the accuracy requirement, although perhaps
more stringent than for the meteorological application referred to above,
has still not been high., This is because the methods for forecasting
streamflow use models with spatially lumped inputs and the models are
themselves a source of further uncertainty. On the other hand radar has
many benefits which it would be quite impracticable to reproduce using
telemetering raingauges. These include the blanket coverage of all
catchments - not just a few selected ones - and also the visual immediacy
of the information, which could possibly be used to give a forecast for a
useful time ahead. These advantages and others are well described in
various CWPU papers and papers by the 'Operations systems group' of the
Dee Weather Radar Project, which has also been concerned with comparative
costs of radar and conventional equipment., Problems associated with
operating and interpreting the radar data have heen described in an
extensive literature (e.g. Huff (1967), Wilsen (1970), Harrold et al (1974),
Brandes (1975), Hill et al (1977)).

The performance of radar relative to raingauges over an area has heen
tested using the Dee Weather Radar. The radar reflectivity, after
conversion to rain depth using a small number of calibrating raingauges,
was compared with the data from a dense network of up to 76 raingauges.
Because of radar's blanket coverage the problem of interpolation does net
arise, and thus it is necessary only to consider the comparative accuracy
of a radar estimate and an estimate based upon interpolating between
raingauges,

Differences between rainfall estimates derived from radar and raingauges
for various durations and areas have been derived as part of the Dee
research program. The results are quite impressive and indicate strongly
that radar has a use in a system dedicated to flood warning.

3.4.3 Further evaluation work

Tt is felt that because the Dee results (Collier, 1975) were obtained for
a specific purpose the following extra factors would need to be taken into
account before a fair comparisen with a general purpose network can bhe made,

a. The gpatial pattern of the radar reflectivity was used to aid
the interpolation of the isohyetal pattern of the 76 raingaunge
network and it is felt that this would pre-dispose towards a
close agreement, especially when considering smaller areas than
the catelments mostly considered in the Dee Research program,
Some more comparisons should be made using an independent method
of areal weighting,

b. Radar and raingauge comparisons were invariably carried out for
particular events. It is felt that the extension of the
comparisons to cover data for clock hours or calendar days and
months would be desirable. The existing comparison was made
largely over durations when rain was known to occur and, while
this is valuable, many network uses require a daily, monthly
or annual time scale, Indications from work in the USA (Wilson,
1975) are that a mean absolute error of between 5% and 10% only
may be possible for monthly data even for very large areas,
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¢. Although the radar reflectivity was calibrated on a point
comparison with a check gauge, conversion factors are currently
only worked out for specified catchments. If radar were to be
gubstituted for the raingauge network, factors for comverting
radar reflectivity to rain depth would have to be calculated
for every point, While it is not envisaged that a calibrating
raingauge would be needed for each element of the radar image
the present method of calibration would need revision in terms
of the density of calibrating gauges and the. frequency of
calibration.

d. The Dee study indicated that drift between the radar measuring
level and the ground surface due to wind was not an important
factor for the purposes investigated. However, further studies
will probably be necessary to improve performance down to small
areas, such as are appropriate in many urban hydrological and
agricultural applications.

e. Intuitively it might be thought that radar performance in flatter
terrain mighi be better than that over mountainous country such
as the Upper Dee; however, this is not necessarily so. The
treatment of areas not seen by the radar clearly has to be
considered as it will involve merging the data from radar and
other sources, Further experimental sites such as that at
Clee Hill will add to the vnderstanding of location criteria.

f. At present radar data are not readily available to general
purpose users and if it were to become so then the details
of how the information could bhe digitised, archived, and, moast
importantly, disseminated would have to be worked out. This
would have to include such considerations as a skeleton back-up
network of conventional raingauges to infill data during periods
when a radar installation is not working.

g. A more comparable measure of error than 'mean absolute error':

Y = % Z| (Obs - Est)/Obs| should be adopted. If the distribution

of differences is normal then about 40% of observation estimate
pairs would differ by more than one absolute error. The type
of error eriterion that users have in mind when an aceuracy
requirement such as ¥ 10% is quoted is that say not more than

1 in 20 or not more than 1 in 100 observations depart from a
standard, The following table gives equivalent error values
between the two schemes,

Table 3.1 Conversion of mean absolute error to standard error

Mean absolute Error expressed as probability of greater standardised

error (Y) difference (Obs - Est)/Obs
32% (1 s.e.) 5% (2 s.e.) 1% (2.6 s.e,)
5% 6. 3% 12.5% 16. 3%
10% 12.5% 25.1% 32. 6%
15% 18.8% 37.6% 48, 9%
20% 25,1% 50.1% - 65.2%
25% 31,3% : 62.7% 81.4%

30% 37.6% 75.2% 97.7%
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Footnote: This table assumes that the standardised differences are
normally distributed., Thus 1 mean absolute error is equivalent to

/57; = ,798 standard deviations., If for example a mean absolute
error {mae) of 10% is quoted then 32% of errors will exceed 12, 5%,
5% will exceed 25.1% and 1% will exceed 32,6%, This implies that if
a user accuracy requirement of * 16.3% is specified with the intention
that it should not be exceeded more than 1% of the time the corresponding
mae would need to be 5%, A reduction to 10% would require an mae of

less than 5%.

It is clear from a comparison of the quoted accuracy of radar estimates
with the stated requirements of users of rainfall data that radar as
pregently used and tested is capable of meeting some, but not all, of
their needs,

3.4.4 Conclusions

It is concluded from this review of radar capability that radar is a
useful tool for those purposes where the blanket coverage, immediate
availability and vieual display that it provides are important. Basin
management for purposes of river regulation and flood warning is perhaps
the best example of these but other important uses such as the analysis
of past floods both on rural and larger urban catchments, agricultural
advice on irrigation, spraying and cultivation, preparation of SMD maps,
many types of general enquiry, and telecommunication routing would all
stand to gain from the use of radar to augment the network.

On_the other hand pending the further research outlined in paragraphs
(a) to (g) above, radar measured rainfall is not at present a proven
substitute for standard gauges for those network purposes where there
is a more stringeni acouracy requirement, It is therefore proposed in
this report to note the potential of radar rainfall measurement hut
otherwise to consider the raingauge network only on the basis of the
performance of conventional rainfall measuring equipment.

3.6 Criteria for network design

3.5.1 Surmary of user requirements for sequential data

Following a review of operational and planning uses of rainfall data a
large varieiy of different requirements have been quoted. A set of
predominant requirements has been identified and these are to be used
in evaluating the present network and could be used for redesigning it.

The requiremenis are quoted in terms of area and time interval accuracy
of estimated rainfall, and an error criteriom expressed as percentage
of observations in which the stated error bounds should be met,
equivaleni to 1, 2 or 2,33 standard errors, Table 3.2 shows these for
the various uses.

In preparing Table 3.2 only the more critical users have been listed
and some users whose requirements are mirrored by other organisations
have not been mentioned separately. As already stated the frequency
with which the permitted error should not be exceeded has heen
subjectively assessed. The flood analysis use has also been
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subjectively assessed, The flood analysis use has also been subjectively
assessed in terms of frequency of measurement of storm cells. As has heen
explained in Section 3.3,1, this is because the actual manner in which the
data are interpolated is itself subjective and not readily amenable to
interpretation in the usual way without a considerable research effort.
Unfortunately time did not permit further work on storm cell statistics.

3.5.2 Summary of user requirements for rainfall statistics

Items marked * in Table 3.2 are for statistics of rainfall. One cannot

- equate the requirements for these statisties with those for ithe basic

element, for example 2 day rainfall, from which the statistics are
developed. In fact the true variabilify is not known - maps are drawn
based upon the existing network in the belief that thie is sufficiently
dense to represent its variability, In practice the annual average
rainfall map is very commonly used to inferpolate many rainfall statistics
and although, as explained in Section 3.3.1, it is difficult to test the
validity of this method, the resultant maps appear to be satisfactory.

It is recormended that the network density sufficient for point assessment
of annual average rainfall to * 25 um at 98% of sites should be considered
as sufficient alse for the intferpolation of such statistics., This is, of

course, contingent on there being a sufficient length of data at the sites
to calculate the point values of the statistics within tolerable limiis,
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4, SPATIAL CORRELATION ANALYSIS

4.1 Introduction

Essentially rainfall is measured at individual points : how good a re?ord
this provides of the actual precipitation at neighbouring ungauged points
ig determined by how closely related the rainfalls are at different points
in the area, One measure of this "relatedness™ is given by the spatial
correlation structure of the measured rainfalls., In this section the
applicatien of correlation analysis to two areas in the United Kingdom

is discuseed. Section 4,2 gives a brief description of the data used

in this analysis, The estimation and fitting of correlation functions

is discussed in Sections 4.3 and 4.4 while Sections 4.5 and 4.6 give a
description of some related work by the Meteorological Office.

4,2 Rainfall data
4.2.1 General

The type of rainfall information readily available was outlined briefly
in Section 1.2, Obviously, for an extensive data analysis, computer
compatible data are desirable; for U.K. rainfall these are provided by
the "British Rainfall" tapes and the MARAIN tapes produced by the
Meteorological Office.

The "British Rainfall™ tapes currently give daily and monthly totals of
rainfall for all daily and monthly gauges in the U.K. for the period
1961-1975, The data for recent years have been rigorously quality
controlled, both manually and by computer {Shearman, 1977). These tapes
provided the data for most of the work described in this report. The
MARAIN tapes give monthly rainfall totals for about 400 selected stations
in the U.K, These stations were selected for their reliability and their
length of record. However, according to Craddock (personal commumication),
the period which had a rainfall regime least like the present regime, and
for which reliable records are available, preceded the period covered by
the MARAIN tapes. Data were therefore extracted from the manuseript
records of the British Rainfall Organisation for the period 1875-1890.
Eastern England was selected, there being many gauges operating at that
time in that area. However, ithe British Rainfall Organisation archives
are only now being sorted, and so the data for only 38 stations were
accesgible, The data for these 38 stations were coded onto computer
cardg, and used in the analysis desecribed in Seotions 4.3 and 4.4,

4.2,2 Data extracted for present study

Bach "British Rainfall" tape contains one year's rainfall data for the
whole of the U.K. Thus to access the records for one station for the
period 1961-1975 involves leading 15 tapes.” While this is not in itself
difficult, the amount of information on each tape means that it is not
practicable to keep more than one or two complete years of data in
computer wain memory at any one time. Thus it is necessary to write
programmes not only to retrieve the data stored on tape but also to
select certain data of interest to be used in later analyses, Even

if data for one area only is selected, with, for example, 600 raingauges,
the size of the associated data files can guickly become very large
after fifteen years of information have been included.



44

Monthly totals and daily totals (in five categories as deseribed in
Section 1.4.1) were extracted from the British Rainfall tapes for two
areas, Eastern and Northern England {Figure 1.2). It was found that

for some years the monthly totals were not identical to the sum of the
daily totals because of differences in the quality control applied to
daily and monthly values., For this study monthly totals were calculated
by accumulating daily totals. There are many gauges with short records
only: in order to reduce the size of the data files, only those stations
which had more than 48 months of data during the period 196175 were
selected. Five categories of daily data were used., Daily rainfall values
are serially correlated and therefore the data must be selected to
satisfy the underlying assumptions of independence, since serial
correlation makes any spatial correlation analysis much more complex.
For four of the selected categories of daily rainfall, data were
extracted such that serial independence was guaranteed, while for the
fifth category serial dependence was accounted for, As clear from
Section 3, different users require different types of data : four of

the five categories were chosen to examine how some of these requirements
could be met. The categorization was achieved using twelve selected
stations within each area, If the mean rainfall for the twelve stations
in an area for each day was above a set threshold, then the records for
all stations in that area on that day were included, as long as no day
within the previous five days had also been included. This last proviso
was set to allow for the effect of serial correlation., The thresholds
chosen were over 2 mm mean rainfall, over 5 mm mean rainfall, and over
10 mm mean rainfall. A fourth category of data was chosen which allowed
for both wet and dry days : for this, every twentieth day in each year
wag selected starting with the 20th of January., The fifth category was
degigned to examine whether serial correlation among the daily values
might be used to improve the accuracy of interpolation procedures: to
this purpose, using a 5 mm threshold as in the second category ahove,
the data for each rain-day and the previous two days were extracted,

Annual totals were also compiled from monthly data. Those stations with
less than ten years of record were excluded, There were 374 stations in
all used in the analysis of Bastern Fngland annual totals, compared with
672 for daily and monthly analyses. 704 stations were used to provide
annual data for the North of England, compared with 1153 for daily and
monthly analyses.

4.3 The estimation of sample correlations

4.3.1 The principle of correlation estimation

If rainfall is measured at a number of points in an area, a natural way
of estimating the rainfall at an ungauged point is to take a weighted
average of the observed values. Similarly, a weighted average of the
observed rainfalls at a number of points would provide an estimate of

the average rainfall over the area. In order to calculate the accuracies
of such weighted averages it is necessary to know the covariances between
the amounts of rain recorded at different points: in general these will
be different for different pairs of points, Direct estimates of these
covariances are not available for all pairs of points since this would
require measurements of rainfall at every point in the area. It is
therefore to be hoped that the covariance structure has certain
simplifying features which might be used to obtain those covariances

not directly estimable. For instance it is reasonable to assume that
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the correlation (and covariance} function should be a continuous (smooth)
function over space. A further possibility might be that the correlation
ig a function only of the relative positions of the two points (e.g. the
distance between them) and not of their absolute spatial coordinates,
i.e. the process is spatially stationary.

A first step in investigating the covariance structure of rainfall is to
calculate the covariances between measurements at gauged points. As
deacribed in the previous section the data sets considered consisted of
672 stations in the area denoted as East England and 1153 in North England,
From these it would be possible to estimate + x 672 x 673 = 226,128 and

1 x 1153 x 1154 = 665,281 covariances between different pairs of stations
in each area - clearly unmanageable numbers. To overcome this it was
decided to estimate the covariance between a particular "central" station
and all other stations in the region: this was done for several such
central stations within each region to provide a reasonably representative
subset with which to investigate the correlation structure,

Given a set of measurements (Xt,Yt) (t+=1,...N) of rainfall over the same
interval (t) of time at two stations, the usual estimaids of the variaaces,
covariances and correlation are

1 N 1 N 2
2 . w32 2 . R
5 RNT tfl (Xt X) > 5 N-1 1:51 (Yt Y)
1 N 3 7
S TRT I %P 0D resg/8S) L (aa)
— 1 N -1 N
where X =% I X , Y= & Y are estimates of the means at the two
N £=1 t N =1 t

stations, Here it is assumed that the measurements at different time—points
are statistically independent: under such circumstances the sbove formulae
provide unbiased estimates of the variances and covariances of the
measurements no matter what their distribution is.

If a particular statistical distribution for the data can be assumed then
other, better, estimates can be formed. For imstance plotting the data
suggests that the square roots of the monthly total rainfalls have an
approximate joint normal distribution. The relations for the higher
moments of normal distributions then suggest, as estimates of the means,
variances and covariances of the monthly totals,

by = p2+oor iy = W5 +a ,
52 = 252(G2 ~ 5% = 902¢h2 ~p cere {4
oy = 20i{e] + 212y, Oy = 20503 + 203, (4.2)

X
GXY = 2612(012 + 2”1“2},
where ﬁl, ﬂz, Gf, Gé, 812 are estimates of the means, variances and

covariances of the square roots of the monthly totals. A trial run using
such estimates suggested that there was indeed glightly less scatter among
the estimates of correlations since the effect of the large values from
the upper tail of the distribution is reduced. However estimates found
via expressions (4.2) require consjderably more computation than the

simgle estimates in equations (4,1) and therefore were mot used in the
rest of the study. Moreover these estimates depend on a distributional




46

agssumption which has not been fully checked,

The central stations were chosen from amongst those that had a full set
of data for the fourteen years 1961-1974. However, for the majority of
stations in the data set there were periods of missing data. In these
cases the correlations were calculated using the estimators given in
egquation (4.1) with (xt*Yt) covering only the pairs of values for which
both Xy and Y, were recorded. This is not the only possible procedure
but it has the advantage of being simple: a disadvantage is that it can
result in inconsistent values of the correlation coefficient.

An alternative would be to use a maximum likelihood method which utilises
all the recorded rainfall data. This would require specific distributional
assumptions and the full version of this procedure has the following
unfortunate feature (unless special assumptions are made): if observations
cover N time periods at P stations, even if there is only one missing
value (P-1 stations with N observations and 1 station with N-l), then the
cstimate of the covariance between a station having missing data and any
other station eventually becomes more variable as the number of stations,
P, increases (Morrison, 1971; Moran, 1974). An attempt was made to use a
maximum likelihood procedure with a limit to the number of stations used
in calculating any one correlation; this was not pursued as the method
appeared to need a great deal more investigation than time allowed. In
using either the simple approach or the maximum likelihood method, it is
assumed that whether or not an item of data is missing is not related to
the rainfall magnitude actually occurring: if experiemce showed that this
were not the case, e.g. if migsing values tended to be days of high rain-
fall, then this fact could in principle be incorporated in a maximum
likelihood method.

The estimates used here are based on very few statistical assumptions;

if further assumptions c¢an be made then much hetter estimates of the
distributional parameters can be obtained. The validity of such
agsumptions merits careful prior investigation, as they may be at variance
with the basic physical properties of the process. The following sub-
sections report the results of applying the estimates described above to
various classifications of data,

The ¢ircle about each central station was divided into eight oc¢tants and
these were numbered consecutively as in Figure 4,1; this diagram also
shows the symbols used for plotting the corresponding correlations in
the diagrams that fellow,

x 312 o Figure 4.1: Symbols used for

A 1 pletting different orientations
from central stations,




47

4,3.2 Correlations between annual totals

For the data set consisting of total annual rainfalls the estimators
given in equation (4.1) were calculated uging only concurrent pairs of
obgervations, Figures 4.2 ~ 4.5 shows plots of correlation against
distance from 2 central stations in each of the two areas. The
correlations are plotted with different symbols depending on the
orientation of the line from the central station to the other station
as described above. Only the estimates of correlation based on 10 or
more pairs of observations are plotted. The curves drawn through the
points are explained later.

4.3.3 Correlations between monthly totals

The treatwent of the data consisting of monthly totals is now described.
1t might be of interest to assume a different mean, variance and
covariance structure for the rainfall for each different calendar month
of the year and on this assumption estimates for the means and covariances
for each month can be calculated using equations (4,1}, However these
estimates would be based on only 14 values from the years 1961-74 and
would therefore have a large sampling variation. A compromise procedure
is to treat the mean rainfalls for different months as seasonal and to
assume constant variances and covariances throughout the year. Estimates
of the variances and covariances are then obtained by averaging the
estimates for each month:

SZ(AVE) = i_f{si(JAN) + S3(FEB) + ... b,

Syy (AVE) = }—Z{SXY(JAN) + Sy (FEB) + ... 1}, veer (4.9)

and
r(AVE) . = Sy (AVE) /{S (AVE)S, (AVE) }

is the corresponding estimate of the correlation. If the variances and
covariances are not constant as assumed these egtimates gtill provide
reagonably representative values for the year as a whole, A technical
peint is that, whereas the rainfall totals in adjacent months may be
statistically dependent, the estimators given in equatiom (4.1) are
applicable to the data for separate months since, being twelve months
apart, they may reasonably be assumed independent, There has not been
time to investigate seasonality more fully, A difference in spatial
correlation structure over the year would result from differing
predominant rainfall regimes,

The estimates of correlation for the monthly data obtained in the above
fashion are plotted in Figures 4.6 - 4.9. Due to the large number of
points whieh would otherwise appear only the correlations corresponding
to stations in alternmate octants (Figure 4,1) are shown, The lines
fitted through the sample correlations are explained in Section 4.4.

In Figures 4.10 - 4,11 the corresponding correlation plots are given for

the data for stations in East Anglia for the 16 years 1875-1890, Comparison
with Figures 4.6 - 4,7 shows that there is no marked difference between the
correlation structures existing in 1875-1800 and more recent times,
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4.3.4 Correlations between daily totals

As indicated in Section 4.2, four different classifications of daily data
were analysed and the graphs illustrating the spatial correlation in these
sets of data are presented .in Figures 4,12 ~ 4.27. It may be noted that
the correlation between the rainfall at points decays faster with distance
for days classified as having an average rainfall of over 5 mm than for
days having average rainfall of over 2 mm, and faster still for days having
more than 10 mm average rainfall. This is presumably because high rainfall
is produced by relatively localised events.

The fifth set of data consisted of days on which an average rainfall of
over 5 mm occurred together with the previous two days data, no matter
vwhat rain fell on those days. This data set (which extended over 8 years)
was used to estimate the correlations between the rainfalls in the area on
different days. Figure 4.28 shows the correlation between the rainfall at
a central station on a 'rain-day' and the rainfalls at other stations on
the same day. In Figure 4.29 the correlation between the rainfall at a
central atation on a 'rain-day' and the rainfalls on the previous day at
other stations is shown: the corresponding plet for a two day time
difference is shown in Figure 4.30. The correlations between the rainfall
on the day before the 'rain-day' at the central station and the rainfalls
at other stations on the previous day are shown in Figure 4.31, The
appearance of Figure 4.31b in particular warrants some remark: there are

a number of large positive values among the sample correlations at
moderately large distances. It is feli that these may be caused by the
discrete component at zero of the distribution of rainfalls which is not
entirely removed by the threshold condition. The purpose of the analysis
of this set of data was to determine whether the rainfall recorded on
previous days could be used to improve the accuracy of interpolation
procedures, The results indicate that the extent of such improvement is
likely to be small although this conclusion may simply reflect the
transient nature of moderately heavy rainfall.

4.4 Fitting of correlation fupnetions

4.4.1 Choice of a correlation function

The purpose of fitting a function to the estimated correlations between
rainfalle at different stations is to give values not only for the
correlations between a central gtation and ungauged points but also
between pairs of ungauged points: to be able to do this some assumptions
are needed about the form of the correlation function o{x;y) =
p(xl,x2;y ,yz) which gives the correlation between the rainfalls at
points with Goordinates x = (xy, x,) and y = (yy,y,).

The plois of the correlations against distance from the central stations
suggest that a possible function that would represent the decay of
correlation at a distance 4 in a fixed direction is

old} = a+ (1~ a)exp (- ba) - eees  (4,9)

where a and b are constant for each direction. The plots also suggest
that the rate of decay parameter might be different for different
directions: accordingly the following direction-dependent function

is suggested. For two points with coordinates x = (xl’x2)’ y = (Yl'yg)!
and uj and uy given by

Ul = X =Yy V2 = X5 -y
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the correlation function is given by
. .
plx; y) = elu,uy) = at (l-ajexp [ bl rcpuy)? + cuf, ] L, (4.5)

where a, b, ¢y, ¢, are constants to be determined. This family of functions
represents surfacés which decay exponentially at different rates in different
directions but to the same level, Lines of equal correlation will appear

as concentric elipses. Restrictions on the constants are

a€l ;5 bx0 ; o320,
I+ may be noted that the function (4.3) has the property of stationarity
under translation, i.e. the correlation between two points depends on their

relative positions and not on their absolute coordinates: this allows the
correlation between ungauged points to be estimated.

4,4.2 Parameter estimation

A particular member of the family of functions (4.5) may be selected to
represent the spatial correlation decay from a central station in the
following way. Fisher's z-transformation (Kendall & Stuart, 1969, p.390),

1
2(x) = % log,(A25),

of the sample correlation r has the property that, if r is based on a
sample of n independent pairs of Normally distributed values, z(r) is
approximately Normally distributed with mean 1 log (1+p)/(1-p)}) (p bring
the true correlation) and variance (n-3)-1 it o isesmall and n moderately
large, While these asgumptions do not hold in this case it is still
reasonable to fit the parameters a,b,c;,cg of the correlation function
by minimising

. P
g(a,h,cl,cz) = .E (ni-k) (Ziﬂfi)z ' T caese (4.6)
where z; = %-loge (1+ri) (i=1, ... P)

l-ri

1 .

£, = % log, (C1P1) (i=1, ... P)
1-pi

pi_ = p(xli_x?!xzi-x;) (i = 1’ ‘e P)

and where r; is the sample correlation between the i'th station at
coordinates (xli,in) and the central station at coordinates (xY, xg)
based on n; pairs of values, P heing the number of stations considered,
The number k was taken as 3 for the daily and yearly totals and as 36
for the monthly totala, The objective function to be minimised is not
obtained rigorously from statistical assumptions: equation (4.6) can be
regarded simply as one way of giving higher weight to those correlations
based on more observed values. The usual statistics derived from such a
fitting operation, such as standard errors and correlations of estimates,
have no meaning in this case since, for example, the r; (i=l, ... P) are
dependent amongst themselves. It is clearly pessible to extend the above
procedure to use data from several central statioms but this has not been
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done; rather the correlation function is fitted separately.for each.central
station to give an indication of whether the same correlation function
applies to each area. :

The problem of minimising the function {4.6) is that of minimising a
weighted sum of squares : many mathematical subroutine llbrarle? cont§1n
procedures for handling such minimisations, It is therefore falrly simple
to fit correlation functions by the above method. The functions fitted at
the central staticons are shown in Pigures 4,2 - 4,27 together with the _
sample correlations: here a cross-section of the function is drawn for ?ach
of the octants for which correlations are plotted, the cross-section being
along the line through the middle of the octant concerned,

Consideration of Figures 4,2 - 4.27 suggests that, while the family of
functions used provides a good fit at some of the stations, there is
considerable room for improvement at others, Firstly, for the North of
England data set there is a marked effect associated with the Pennine
Range - in Figures 4.8a and 4.8b the correlations of the centrsl station
with stations in the 4th and 5th octants show a rapid drop and then a rise
with distance, Other central stations, on both sides of the Pennines, also
show a similar drop - this drop usually being just on the opposite side of
the range from the central stations. It is really only reasonable to
consider the function in equation (4.5) in a topographically homogeneous
region. The second deficiency of the fitted functions is at shert distances,
For example, Figure 4,7 suggests that a better fit might be obtained by a
function not necessarily approaching the value 1 at zero distances. Such
effects could be due to either or both of two causes:

(i) meteorological phenomena affecting only very small areas
compared to the distances hetween raingauges),

or {ii} inaccuracies in the measurements tsken at the raingauges.,

However, for other central stations in the same regicn (Figure 4,6) the
correlation plots do indicate a correlation approaching 1 at zero distances —
clearly this could be hecause some raingauges are more subject to measurement
errors than others, In any case there is a lack of stations very cloge
together to distinguish between a rapid drop and a discontinuity at the
origin of the correlation function, In Judging visually the fit of the
function to the correlations it should be remembered that the estimates

of correlations at different places are not independent and thus the points
plotted corresponding to neighbouring raingauges will tend to lie on the

same side of the true correlation.

In the Section 4.5 some similar work by the Meteorclogieal Office is
described, They have fitted circular correlation functions to a large
number of small regions contained within a larger area: the resulting
fitted functions can be used to investigate the spatial homogeneity of
the correlation structure. The results presented in Section 7.2.3
indicate that there are considerable differences locally in the rates
of decay of correlation over the area of Northern England investigated,

It is felt that the correlation functions fitted here provide a reasonable
description of the decay of correlation with digtance bearing in mind that
topographical features also have a large effect on the correlations. In
Section 5 the funmetions fitted are used to show how measures of the
accuracy of a raingauge network can be obtained when the correlations
between all points in an area were assumed known. In the next section a

short discussion is given of the plots of correlations in Figures 4.2-4,27,
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4.4,3 Discussion

The main emphasis of Sections 4 and 5 of this report is to show how the
accuracy of interpolated estimates of rainfall can be computed, and the
plots of sample correlations and the functions fitted to them are given
gimply to illustrate the application of the methods suggested, Nonetheless,
it is possible to make some comparisons among the plots of correlations
given in Figures 4,2 - 4,27,

It has already been noted that, for the different categories of daily data,
the correlation functions are such that the correlations of the "over 10 mm
rainfall" data decay fastest with distance and those for arbitrary days
decay slowest, Here "rate of decay” may be taken as equivalent to the
distance to an 0.9 correlation level on the fitted function. The
correlations for the monthly data decay more slowly than the correlations
between rainfall data for arbitrary days but the plots suggest that
correlations for the yearly totals decay at the same rate, or slightly
faster, than those for monthly totals.

The spatial correlation functions fitted are such that correlations may
decay at different rates in different directions from the central point
but must decay to the same level, These asymptotic values can best he
interpreted as giving the correlations for moderately large distances
{(distances of the same order as those in the plots): it is mot to be
expected that correlation would remain constant with distance indefinitely.
The asymptotic correlation levels for the different categories of data are
roughly at the same general level of about 0,5 - 0.7, For the data for
days of moderate and heavy rainfall the asymptotic correlation levels drop
to nearly zero. It could be argued that having different rates of decay
with different directions about a central station has the physical
interpretation of there being a prevailing wind direction over the area:
gauges within the path of the same storm components would receive roughly
the same rainfall,

Compared with the differences bhetween the correlation functions fitted

to stations within the same region there is little difference between the
fitted correlations for the two areas "Eastern" and "Northern" England.

The difference bhetween the function for the same region could be due either
to sampling errors - it has not been possible to test this statistically -
or to a real spatial variation in the correlation properties of rainfall.

4.5 Localised Analyses

The Meteorological Office (M.0.) has also undertaken an analysis of the
correlation structure of rainfall, For this work they have considered a
number of relatively small areas, each containing 30 or so raingauges, and
have estimated the correlations between all pairs of stations within each
area, '

When determining the interpolation accuracy available from a particular
network (see Section 5) the correlation between rainfalls at different
points needs to be known only for distances up to about 20 - 25 kms in
practice. Therefore the M.0. investigation proceceded as follows, using
daily rainfall data for the period 1969 to 1974 exiracted from the
Meteorological Office Rainfall archive, The period 1969-1974 was chosen
because previous data are less reliable and because the final quality
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control of the 1975 and 1976 data was not complete at the time of the exercige,
Firstly data for all stations situated within 25 km of a given point were
extracted and any gauges for which more than 365 days of data were missing
were removed from the analysis. Only "wet-days" were chosen, a wel—day being
one on which the mean rainfall over the 25 km radius area exceeded 2.0 nm.

To eliminate serial correlation problems two days were skipped after each
accepted wet-day before continuing the chronological search. The correlationsa
between the recorded rainfalls at every pair of stations were estimated and
these sample correlation coefficients were plotted against intergauge
distance. An example of such a plot is shown in Figure 4.32, This and many
other similar diagrams suggested that, for such short distances, a simple
atraight line could be used to represemt the correlation decay with distance.
The straight line shown in Figure 4,32 was obtained using the following
procedure. The Fisher z-transformations of each of the sample correlations
were first calculated and these transformed values were averaged over

discrete distance bands of width 3 lme., The averaged values were transformed
back to correlation coefficients using the inverse transformation and a
straight line was then fitted by least squares to the resulting points, taking
the averaged correlation at the mean distance of each band.

Clearly in adopting the above procedure it has been assumed that the correla-
tion function is spatially homogeneous and isotropic within the area under
consideration. The method allows for the existence of measurement errors by
not forcing the fitted correlation function to pass through 1 at zero distance.
Let P{0) be the intercept of the fitted function on the y-axig, then an
estimate of the average (measurement) noise index over the area is given by

A2 = (1 - p(0))/p(0) ceee {(427)

vhere the noise index is the ratio of the wvariance of measurement errora to
the variance of the true rainfall. (See also Sections 1.4.3 and 5.2.2). The
estimate of the correlation function of the underlying rainfall is then

M~

#@) = G- = ¥ @0 L ()

where p(d) is the estimate of the observed correlation function.

4,6 Eigenvector analysis

4.6.1 The method

Treatments of principal component or eigenvector analysis can be found in a
mumber of standard texts, such as that of Kendall and Stuart (1968, p285).
A spatial correlation analysis, which does not assume that noise indices at
different stations are the same, can be carried out using this technique.
Here a brief summary of the method is given,

The observed rainfall data at P gauges over N time periods is used to calculate
a P x P matrix of correlations of observations at the gauges: from this a set
of eigenvalues Ey, ... E, (El 2By 3 ... 03 Ep.; 0) and the corresponding
eigenvectors, ¥, Yo, «.., Y., are computed using a standard computer programme,
:hetiirs; and secon principgl components are v] and vy respectively, and so
orth., Here

i = (g viz e vy | cere (49
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The amount of the total original variance represented by any one eigenvector
is proportional to its associated eigenvalue and :

y Fa ] . LN ] 4.10
E1+E2+ L] Ep - P. . ( )

The ecigenvectors are the set of vectors which enable the largest part of

the original variance of the data to be represented in the most economical
manner: they have the preperties

P P

ot 3 =0 (A9 e ()

The original data matrix, X = {X;;}, where X;; is the observation at time i
recorded on gauge j, has the reprgsentation

P
o= I w.opi (=1, .P; j=1, ...N) (4.12)
le 1 ki “K)
where
P o '
Cij = z vik xkj (i = 1’ "o P; ,]' = 1, veen N)c cees (4.13)
k=1 :

By comparison with equation (4.12), the reconstruction ng) of_Xij using

the principal q eigenvectors is given by

(@) _ 3 . | = . i=
Iij = k_El Vi ckj (1 = 1, . P, J = 1, Y N)o Tann (4-14)

In this way the rainfall values can be reconstituted to include increasing
amounts of the original variance.

The total variance of the observed rainfall will be made up partly by the
underlying rainfall patterns and partly by random moise, this being assumed
spatially and temporally uncorrelated. Thus, if the eigenvectors representing
the underlying rainfall can be identified (i.e. the principal components of
variation), the remaining eigenvectors can be used to describe the noise.

The supposed underlying rainfall can be generated using equation (4.14)

and the associated correlation structure can be estimated in the usual
manner. '

A noise index for each individual gauge can be calculated from the variance
of the differences between the original data and the reconstituted data.
This would be particularly useful for identifying "singular" gauges, i.e.
those that differ widely from the general rainfall pattern, The mean value,
A%, of the noise index over the area being analysed can be estimated by

: g q '
) (P- x Ek)/kil E,.. cees  (4.15)
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4.6.2 An application

igenvector analysis described above has been applied to an area near
g::tga:pton using 18ystations, and daily data for 77 ‘wet’ dgys. The ‘wet’
days were selected from the 1976 data set using only those days when the
mean rainfall recorded by these gauges exceeded 2 mm., Figures 4.33 —.4.38
show the first 6 eigenvectors plotted at their associated gauge locations,
The percentages of the total original variance represented by each of the
first six eigenvectors were 74.3&, 10, 8%, 4.6%, 3.1%, 1.4%, 1.2%,

To illustrate the procedure of filtering neise from the original data, the
rainfall has been reconstituted using successively the first 3, 4, § ?nd 6
eigenvectors. These reconstituted data have been used to produce a simple
illustrative correlation pattern by correlating the data at each gauge with
one near the centre of the area (gange 159796 Ravensthorpe)) and plotting

the correlations on their respective gauge locations, The original
correlation pattern is shown in Figure 4.39 and the correlation patterns
obtained on reconstituting the data using the firat 3, 4, 5 and 6 eigenvectors
are shown in Pigures 4.40 - 4.43, It can be seen that the correlation pattern
of the reconstituted data approaches that of the original data as more
eigenveclors are included, The individual noise indices for the stations

are plotted in Figure 4.44; these were derived on the assumption that only
the first six eigenvectors represented the underlying rainfall pattern,

The difficult and not yet completely resolved problem is to identify the
significant eigenvectors. Methods used to date have been mainly subjective
involving manual contouring of the plotted eigenvector terms. If the
pattern of these terms is apparently coherent then the eigenvector is said
to be significant. Another method suggested involves plotting the legarithm
of the eigenvalue against the eigenvector number, The theory is thai thoge
eigenvectors representing noise will lie on a straight line and any
associated with true rainfall will deviate gsignificantly from this straight

line. In practice this test hae proved too insensitive for practical
application.

The method of principal components is based essentially on the representation
of the data by equation (4.12): whether there is a physical basis for such
a representation needs clarification. '

4,7 Summary

Using selected sets of annual, monthly and daily rainfall data in two areas
in Bastern and Northern England, spatial correlation analyses were carried
out. One approach invelved estimating sample correlations, and fitting
spatial correlation functions to these, for selected cemtral stations in
each area; in doing this, it was felt that there was not sufficient
statistical evidence of measurement error or noise in the observed rainfall
to warrant special recognition in the analysis. The second approach
adopted by the Meteorological Office consisted of a similar correlation
analysis based on correlations between all pairs of stations within small -
areag; this approach allows an assessment of stationarity over a large area
and assumes that measurement error might exist.

The use of the fitted correlation functions in estimating the accuracy with

which point interpolation and areal averaging may be carried out is :
illustrated in Section 5.
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Figure 4.3

Eastern England: yearly totals (1961-74).
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Figure 4.8a : Sample and fitted correlation functions .
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Figure 4.20b :

: days with rainfall over 5 mm.
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Figure 4.25a :
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Figure 4.28b : Sample correlation functions.

Eastern England: correlation between rainfalls at

stations on the same day (rainfall over 5 mm).
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Kgure 4.29a : Sample corrclation functions. Eastern England:
Correlation between rainfall {on day with rain over

5 mm) with previous day's total at other stations.
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Figure 4.20b : Sample correlation functions. Eastern England:
Correlation between rainfall {on day with rain
over 5 mm) with previous day's total at other stations.
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day and two days preceding a rainfall of over 5 mm.
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5, METHODOLOGY OF RAINGAUGE NETWOBK EVALUATION: DIRECT METHODS

5,1 Introduction

A review of user requirements (Section 3) for rainfall data in the UK has
shown that the main regquirements are for the provision of estimates of
rainfall during a particular interval either at a point or in the immediate
vicinity of a point or else over a moderately large area (0.5 to 104 Km2,
say). For these uses, measures of the adequacy of a particular metwork can
be obtained fairly directly; these are considered in Section 3.2 for point
interpolation and Section 5.3 for areal averaging.

5.2 Point Interpolation

5.2.1 General Case

Measurements of the rain falling during particular intervals are available
at a large number of points distributed over the country (approximately 1
every 35 km2 for daily totals). When a value for the rainfall at a
particalar point which is not coincident with, nor sufficiently near, a
gauged point is needed, an estimate of this rainfall may be conatructed
from the measurements taken at the existing neighbouring stations. The
accuracy of this procedure obviously depends on the estimator that is used.

Clearly such an interpolation may need to be performed in a wide variety of
circumstances — either when high powered computers are on hand or when such
sophistication is unavailable or unwarranted. To accommedate the latter
gituation, attention is concentrated on simple estimates: as a first step
only linear estimates are considered., If measurements (Xl,.... ) are
available at P gauges and an estimate of Y, the rainfall at a particular
point over the same time interval, is required then the linear estimates

Y of Y are of the form :

f = a + blxl + b2Xé F vaene pr? ' enne (5.1)

vhere a, by, ...b, have known values. The accuracy of guch an estimator
may be quantified by its mean square error (mae

mse(¥) = B{(¥-Y)2}

which measures how close the estimator is to the regquired value, A related
measure is the bias :

bias (Y) = B{(3-¥)}

and, although this is not necessary, it is often required that the estimator
be unbiased: .

bias (Y) = B{¥-Y} = o.
The estimators considered here will he unbiased.
Suppose that the long-term average rainfalls (for the interval being

congidered) are kmown to be u,,... at egch of the gauged sites and
uy at the ungauged site. Then estimators Y of the form

} = Uy + bl(xl—ul) + aae * bp(xﬁ—up) rees (5-2)
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are unbiased for any constants by, .... b, and it remains to choose these
constants. The mean square error of the estimator (5.2) is

mse ({W) = vyar (Y) - 2{b1cov(X1,Y) + ... bpcov()(P,Y)}
+ {blzvar(Xl) + Zblbzcov(xl,xz) e b 2var()Sj)}

In matrix notation this is

mse (Y) = oy - zgﬁgxy v Bleod e (503)

. ey o G o . )T
WereUYY ,gxy- xY,xY .'..XY r
i A P
Sxx = oy x
i77]
and where GXiY = cov(xi,Y), cxixj cov(Xi,Xj).

For any particular choice of constants equation (5.3) gives the mean square
error of the estimator upder the assumptions made. The vector h may be
chesen to minimise mse (Y) given by equation (5.3) and this leads to the
coefficients bH* of the optimal linear estimator

~ _ . ; . N ) -
Y* } ].lY + bl(xl ]Jl) + EEE bp(xp up) y s (5-4)
defined by
-1
R* = Q’H Q’XY aven (5.5)

The corresponding value of the minimum mean square error is

mse [?(*) = Oy ~ QXYT gm-l xy (5.6)

It is clear that to calculate the coefficients p* the covariances cov(xi,Y)
cov(X,,X.) (i,j = 1, ...P) must be known. If these covariances are known
only apploximately (i.e. estimated from data) then (5.5) may still be used:
the mean square error of such an estimator will then be larger than that
given by (5.6) but hopefully not by a large amount. The assumption that
values for the long-term means u,, cresel and uy are known exactly does
not hold in praectice, ™

One procedure is then to assume that the long-term average rainfall at

all places is constant - this may be & reasonable assumption over suitably
homogeneous regions. In this case, denoting U} = +es = Up = UY = By ‘the
estimator (5.2) becomes '

Wb () * e+ b Ohpei)

-~

Y

- cean (5.7)
- Ib;X; + u(l - by}

If 'ie known then the above considerations apply and (5.6) is the mean
aquare error of the optimal estimator.

If there is no information about .1 then the only estimators of the type
(5.7) that can be calculated are of the form

Y = Zbixi ) - aww (5.8)
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and for which

b +b2+.oo+b = 1. . vaeyw (5-9)

1 P

Under this condition equation (5.3) for the mean square error still holds
and the optimal estimator among this class can be found by minimising the
mse subject to the constraint %5.9). This gives (by, for example, the
method of Lagrange multipliers) the vector b¥** minimising the mean square
error : -

]3;;. = %)o(-lﬁ%xy + 81) veee  (5.10)

where ] denotes a vector of ones and

or of L
6 = -1 g /@ R B

The walue of the mean square ervor of the estimator
‘}*?* = Q**ng (5.11)

obtained using these coefficients is

A e T
me(Y**) = opw - By fxy Sy T @} fxx /@ B
_ Ceeie (5.12)

and clearly this is always larger than (5.6). Once again the covariances
between the sites need to be known in order to calculate E** by equation
(5.10); however, as before, reasonable estimators could he obtained by
nsing estimated values of the covariancés. It may be noted that using an
egtimator Y = Ib,X; with Zb; = 1 has the attractive property that if the
rainfalls at each of the gauged points are equal then this same value is
produced as the interpolated value: the more general estimator (5.7)
would produce a value shifted towards the long-term mean.

In the numerical work presented later itwo assumptions are made. These are
that the variances of the measured rainfalls at all the stations are the
same and that, effectively, the rainfall is measured without error. With
these assumptions the equations (5,3-5.5) can be rewritten in terms of

the correlation matrix BIX! the correlation vector r and the common
variance 9, Thus the mean square error of the estimator (5.2) is given
by

mse(’f)- = g%{1 - ZETX»XY + IET%O(R} v (5.13)

and the vector b* minimising this is

R* = B,)o-(l Xxy? | veer  (5.14)

the mininum value being

mse(Y*) = o2l - g;, I&,O_(l Txy! ceee  (5.15)

Similar formulae can be written for optimal estimators under the restriction
Zbi = 1. The correlations Byy, ryy are taken to be given by the spatially
atationary correlation funciions fitted in Section 4 to individual central
stations,

To summarise three interpolators may be distinguished. Firstly, that of
equation (5.2), '




s T

Y o= uptk R
may be used if the long term means are known. Here ? is an arbitrary vector
of coefficients. The second interpolater, equation 5.4),

- T ’
= * -
Y* T UY + R (;% H,)
chooses b = b* to minimise the interpolation mse. The third interpolator,
equation (5.11),

:}** = R**T¥

is applicable when the long-term means at points in the area are equal but
unknown and the coefficients b** are chosen to minimise the mean square

error subject to the condition g**T 1 = 1 which ensures that the interpolator
is unbiased, A further possibility would be to assume that estimates of
known variance of the means w, uy are available: then the mean square error
of an estimator of an analegous form to (5.2) can be calculated and a
minimisation of this would lead to an estimator optimal in this gituation,

5.2.2 Effect of measurement errors

If measurement errors exist then formulae (5.1)-(5.15) still apply with the
small change that the quantity to be estimated, Y, is the true rainfall at
the point rather than a quantity measured by a raingauge: the quantities
are the recorded measuremenis at particular sites, If the true rainfalls
at these aites are Yi(i = 1,....PY then a reasonable assumption is that

xl = Y]_ + Ei
where €, (i = 1, ...P) are uncorrelated amongst themselves and uncorrelated
with the true rainfalle Y, Yj(j =1, ...P). Then, in the notation of
expression (5.3), the covariances required in formlae {5.3-5,12) are given
by '

%Y = 9.y,
i i
oy x. = Oyy. Q 7 3),
1] 1]
4] = a. + O .
XlXJ YiYi £i%4

If the variances of rainfall and of measurement errors are constants
(ny, cEE respectively) and if

Ry = {corr(Yi,Yj)}
and
| ¥y = {corr(Yl,Y),»---, COTT(Yé,Y)}T

are arrays of correlations of the true rainfall at pairs of points, then the
formulae corresponding to equations (5.13)-(5.15) are, with n = UGE/GYY’

o~ _ ond T
mse (Y) = oy {l - 2h'ry + B Ry * nllh} cevs (5.16)
for the mean square error of an estimator ¥ of the true rainfall and

B = By * 7 Xy ceee (5.17)
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. .
for the coefficients of the optimal linear estimator Y* = ;4 + QT(E - u)
vwhich has mean square error L -
~ -1

mse(Y*) = D'Y.Y{]. - ’I‘:YT (EYY + n,{) £ Y}. - am (5.18)
Under these circumstances mse (Y*) 3 l-u « This means that if a fixed
number of gauges are to be used then " theére is a limit te the accuracy
with which rainfall can be interpolated no matter how close the gauges
are sited - essentially because, even at a gauged site, the rainfall is
only known t0 within the measurement error. If measurement errors do
exist it is possible to derive a better estimate of the rainfall at a
gauged point than the raingauge measurement at that aite.

This model incorporating "measurement errors" is covered by the theory
given in Section 5.2.1, the only distinction being that the estimator Y
is constructed to estimate the true rainfall at a point rather than the
value that would be obtained by measuring with a raingauge., Eguations
55.16}—(5.18) are equivalent to equations (37)-(39) given by Gandin
1970). The optimal coefficients b¥** under the restriction y**Tl =1
may also be obtained to cover the case when the mean rainfalls over the
area are assumed constant but unkmown,

5.2.3 _Some gimple cases

Equation %5.3; gives the accuracy of any particular linear estimator of
the form (5.2) while (5.6) and (5.12) give the minimum mse that can be
achieved with estimators based on particular assumptions abouit the means,
If optimal estimators are used the accuracy of interpolation to a fixed
point camnot be decreased by including exira gauged points in the set of
points on which the interpolation is to be based. This is because the
best estimator Y = bX; 4 ... + b + bP*le must do at least as
well as the best estimator ¥ = by + .+ bR, Within limits the
accuracy of interpolation increases as peints further away are included
in the interpolation scheme. Therefore the "accuracy of a network" as
defined by the mean square error of interpolation depends on

(i) the number of stations used in the interpolation formula,
(ii) the form of the interpolation estimator - possibly suboptimal,

(iii) the position of the point {to which interpolation is to he made,
relative to the gauged sites,

Clearly (i) may vary considerably depending on the availability of computer
resources: in the following, interpolation formulae based on measurements at
three stations are considered since such interpolations are fairly simple to
carry out, If only three stations are to be used there is a simple and
intuitively reasonable interpolation precedure which fits a plane through
the values observed at the three points and then uses the value given by
the plane as the estimated value at intemediate points. This is a linear
interpolator and is given hy

Y = Xy + DbyX, + bpXg

= {(Vp=q3) (af-w)) + (wp-a%) (vy-a])le

o
I

[
[s%]
I

= {(vg-a3) (a1-uy) + (ug—q3) (wy—qP)le
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by = {(u,~q}) (af-v;) + (vpma3) (wp-ad)le

e = {72(\11—-‘“1) + wz(vl—ul] + \12(’“1—'?1) }-1 ’
by + by + by = 1, ceer  (5.19)

and where.(ul,uz), (Il,x?), (wiﬂwz) are the cartesian coordinates ofitge
gauged points and (ql,qz are the coordinates of the interpolated point.
This will be called the simple linear interpolator, Beside this simple
interpolator, optimal interpolators ave also considered in the two situations
where long term average means are assumed known and where those are unknown
but assumed equal. Contours of interpolation accuracy for these three
estimators are given in Figures 5.1 - 5.3, Here it is assumed that the
means at the three stations are equal and that the variance of the measure-
ments is the same at all sites, The function contoured is the fraction, f,
of the corresponding standard deviation that remains as the root-mean-
square-error of interpelation error

f = {mse(?_)/ow}% (5.20_)

Thus o the first diagram a point on the 0,03 contour has an error of
interpolation of 0.05 times the astandard deviationm of the rainfall at
an individual point. The assumption made about the correlations between
points in this ares is that the correlations are a function of distance
only, namely

o{d) = 0.7 + 0.3 expi-0.012d}.

Thig function, which is used solely to compare properties of the three
estimators, is very similar to functions fitted in Eastern England to
correlations of monthly totals al different sites, The coordinates in
the figures are in kilemetres, Examination of the diagrams shows that,
inside the triangle formed by the three measurement sites, there is very
little difference in the performance of the three estimators but that

the simple linear estimator becomes markedly worse as the side of the
triangle is crossed moving away from the centre, The two optimal
estimators are always very close in performance, there bheing no visible
difference in the diagrams until well outside the triangle; the estimator
assuming the means known is always slightly better than that assuming the
means equal but unimown. Other correlation functions and other choices of
the positions of the 'gauged stations' lead to similar conclusions.

Xt ie of interest to consider the interaction of non-circular correlation
functions with the orientation of the triangle of stations, Figures 5.4 -
5.7 show the corresponding contour plots for four different orientations

of a moderately extreme triangle with the correlation function taken to

be that which was fitted to a station in Eastern England for monthly totals.
Here the contours are of interpolation error using an optimal estimator for
which the means are assumed equal but unknown. The maximum error of inter-
polation inside the triangle varies between 0,23 and 0,30 of the atandard
deviation of measurements at individual stations, which is about 27 mm for
monthly total rainfalls (mean monthly total 50 mm). Thus interpelation
from stations in this configuration would be with a worst root mean square
error of 6 to 8 millimetres. However the length of the triangle is over

30 kms ~ somewhat large for typical areas of the UK., The worst orientation
is when the length of the triangle lies in the direction of most rapidly
decreasing correlation,

1
i
|
i
|
|
1
|
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i
i
|
i
1
1
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The accuracy with which an interpolation can be made depends very much

on the distance of the inierpclation point from the gauged points and,

for a triangle of measured sites, the interpolation error is at its
largest at the 'cenire' of the triangle and on the sides of the triangle.
Since, in a real situation, there ia always the possibility of considering
measurements made at other neighbouring sites when attempting to interpolate
to a point near the edge of triangle, it is convenient to take as the
measure of accuracy of a trio of stations the interpolation error at the
'centre' of the triangle which will here be taken as the centroid or
'centre of gravity' of the triangle. This procedure avoids making a
search for the maximum or locally maxinum interpolation error - often

the maximum lies on a side of the triangle and there may be no local
maximum near the 'centre’.

One way to study the effect of different network densities on interpolation
error is to choose a particular shape of triangle - the triangle formed by
the hypothetical gauged points - and to consider this triangle at different
scales. Thus similar triangles of different sizes are considered and for
each of these and for several correlation functions the interpolation

error at the centre of the triangle ig found. The results of this
procedure are shown in Figures 5.9 ~ 5.22, Here two shapes of triangle
have been chosen, an equilateral triangle and a right-angled triangle,

and these are shown in Figure 5.8, The 'size' of the triangles is taken

to mean the length of the B-W side of the triangles and the configuration
of the right-angled triangle has been chosen so that the areas of two
triangles of equal ’size' are also equal. The orientation of the triangles
was a8 shown in Figure 5.8. Thus for example Figure 5.9 shows graphs of
the accuracy of the simple linear interpolator (as a fraction of the point
standard deviation) to the centre of an equilateral triangle against the
size of the triangle. The four lines correspond to the four correlation
functions fitted in Section 4 to the sample correlations for yearly totals
(2 stations in Eastern England and 2 in Northern Fngland).

The correlation functions fitted in Section 4 to the various categories of
data have been used to derive the accuracies of interpolation (Figures 5.9 -
5.22) corresponding to these categories, In discussing the plots of
correlation obtained in Section 4.4 it was noted that the rates of decay
of correlation with distance varied with the category of data: this is
reflected here in the graphs of accuracy obtained from the fitted
correlation functions. Thus, for example, interpolation can be performed
more accurately for yearly and monthly data than for data for arbitrary
days and the type of data for which interpolation is least accurate is
heavy rainfall. The graphs of accuracy obtained from the functions fitted
to correlations of monthly rainfall for the years 1961-1974 and for
1875-1880 are very similar, again corresponding to the similarity of the
fitted functions, '

The graphs for interpolation in equilateral and right-angled triangles are
also very similar for the same categories of data, the only exception being
those for yearly totals (Pigures 5.9 and 5.16), Here there is a large
spread between the lines corresponding to different stations for the right-
angled triangle but much less spread for the equilateral triangle, This
could be a result of the anisotropic correlation functions fitted: these
were further from circularity for the yearly data than for the other
categories but were based on fitting to far fewer points.
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5.2.4 anrlinéar Estimators

The following remarks apply also the areal averaging problems described

in Section 5.3. Throughout this section it is assumed that linear estimators
of point rainfall (and of areal average rainfall) are used, If all functions
of the measured rainfalls X; at a set of sites (i=1,+..P) are admitted as
pessible estimators of the required guantity, Y, then the best estimator, in
the sense of minimising the mean square error, is the conditional expectation.

Y(X)....X) = EY Xp,X%, e Xyl (5.21)

This is a linear function of X; ... when the joint distribution of

(¥,X;, ...X,) is multivariate normal but for most other distributions

E(Y fxl,... ) is non-linear. The estimators considered in the rest of

this section bave been linear estimators and therefore, since rainfall
distributions are known not o be mormal, it is to be expected that better
estimators can be found by allowing them to be non-linear in the observations.
The advantage of linear estimators is that their mean square error depends
only on the second-order moments (covariances) of the distributions and these
can be estimated fairly simply. In order to calculate the hest non-linear
estimator, the joint disfribution needs to be fully known: this would require
a great deal of investigation. The accuracy of the best non-linear estimator
ia given by the conditional variance,

mse (§) = var(Y |X1,....x$) seen (5.22)

and will in general depend on the observed values at the gauged sites. Thus
in eome rainfall situations it may be possible to interpclate more accurately
than in others. The measures of accuracy of the linear estimators apparently
do not depend on the observed values Xy, ... X, : this ie because the mean
square error is averaged over the distribution of observed values.

Linear estimators are used in this work because of their great simplicity
and beeause of the extremely large amount of work necessary to investigate
the distributional properties of rainfall. Nevertheless it is felt that,
eapecially in the case of daily total rainfalls and totals over shorter
periods; a great deal would be gained from the use of non-linear inter-
polators after detailed consideration of the joint distributions.

5.3 Areal Averapes

- Much of the discussion in section 5.2 for point interpolation helds alge
for the problem of areal averages. Once again only linear tstimators Y of
the areal average rainfall Y are considered

Y = a+bX + ... th X, ceen (5.28)

The mean square error of an unbiased estimate of this form is again given

by (5.3} where now, for example, cov(xi,Y) is the covariance of the rainfall
at site i with the average rainfall over the area under congsideration in the
same interval. If: Y(J,¥! represents the covariance between the rainfalls at

two points with coordinates M= (ul,uz), v o= (Yl,vz) then

cov(Xi,Y) - % IA ‘Y(Ei’g)d‘i -k e (5. 24)
var(Y) = 52 L7, Y(u,y) du-dy eeer  (5.25)
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where x; is the coordinate vector of the i'th station and A is the
physical area of the region under consideration and the integrals,
denoted Jfj, are two dimensional integrals over the region. The mean
square error of any linear estimate of areal average rainfall can then
be calculated from the covariance between rainfalls at pairs of points.
Here it is assumed that the raingauge measurements are made without
error,

Once again, it is possible to construct optimal estimators of the areal
average under the assumption that the long-term average rainfalls are
known at each point or under the assumption that these have a constant
but unknown value, In practice, for a P gauge estimator, either would
require the evaluation of a 4-dimensional integral, P 2-dimensional
integrals and the inversion of a P x P symmetric matrix in order to
calculate the coefficients of the linear eastimator, Further the accuracy
of an estimator clearly depends on several factors, namely the size of the
area and the number and positions of the ganges: it would be very difficult
to investigate fully the effect of all these factors and therefore very
gimple forms for both the raingauge network and the estimator to be used
have been aseumed,

The gauges are assumed to be sited on a square grid with a square area
allocated to each gauge. The area over which the average rainfall is
required is also assumed to be square and composed of an integral number
of these gauge-—sguares (Flgure 5. 23). The estimate used for the areal
average rainfall ie simply the average of the measurements at the gauges
within the area: for this very special arrangement of gauges this estimate
is also that which would be obtained by the method of Thiessen polygomns,.
For thie particular estimator

A P

Y =3 X, veee  (5.26)

i=1

the mean square error is, assuming that the long-term average rainfall at
ditferent sites is constant over the area,

P P P

mse (Y) = 7%1 {J PA iil T YN

"UJI—'

i= 1 J=1

Sy L, YauYay &y er (5.27)

The assumption of a square grid and square area of interest greatly reduces
the amount of numerical calculations needed to evaluate the integrals if
the further assumption that the covariance function is circular is made
(Bras & Rodriguez-Iturbe, 1976). Because, in some sense, all directions
are taken into account in the expression t5.27) for the error of areal
averaging, it was felt that there would be no great difference in the
results of using circular and non-circular correlation functions and,
because this allowed the calculation of the integrals, a c¢ircular
correlation, p(d) = =a + (1-a) exp (-bd)}, was nsed. The parameters

of this function were fitted in the manner deacribed in Section 4.

With the restrictions imposed above, the accuracy of the estimate of areal
average rainfall depends on
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(i) the size of the areca under censideration

and .
(ii) the distance between the rainguages,

Again the measure of accuracy is taken as the ratio of the root mean
square error of the estimator to the standard deviation of the rianfall
at a point.
3 ceerece.oe.(5.28

f = mse(Y’)oxx2 * ( )
This measure of accuracy is plotted in Figures 5.24-~5,27, Here it is
assumed that a fixed square area is under cosideration and the accuracy
is plotted for a number of different densities of rainguages: th? points
on this line are joined by straight lines for convenience only since
the requirement that the square area is made up of intergral numh?r of
guage-squares is satisfied only for particular spacings of the.gr1d.
In theory it would be possible to evaluate the accuracy of a linear
estimate of a real average rainfall for any area based on any particular
configuration of rainguages.However the evaluation of the necessary
intergrals impose a practical comstraint on what can be undertaken.
The simple situation considered here at least provides an indication of
the effect of changing the density ofrainguages and of considering
areas of different sizes. It can be seen from Figures 5.24-5.27, that as
the area over which the average rainfall is required increases, the mean

square error of the estimator decreases if the rainguage spacing remains
fixed.

5.4 Summary

Three ways of interpolating rainfall to an unguaged point have been
discussed,These interpolators are similar, being weighted linear - a
combinations of observed values at guaged points. The difference between
the interpolators lies in the way the coefficients in the linear
combination are chosen: for two of the interpolators the coefficients
are chosen to be the best possible according to the assumptions that can
be made ahout the long-ierm properties of rainfall at places within the
region. The coefficients of the third interpolator would usually be
chosen intuitively to give high weight to nearby observations.
Expressions for the accuracy of the interpolators have been given.

The different interpolators have been applied to the case of interpolation
from the three guaged methods of interpolation have been produced. These
show that, provided the point to which interpoation is made is within the
traingle formed by the three guages, there is little difference in
performance between the interpolators: theis is of course only true if

the assupmtions under which the interpolators are constructed actually
hold, Some brif consideration has also been given to the effect of the
triangle of guages if the correlation function about a point is
‘anisotropic. Taking as an example the simple linear interpolator, it

has been shown how the accuracy of interpolation obtainable from atriangle

of fixed shape is related to its size: graphs of this relationship have
been presented.
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In the discussion of the accuracy of estimates of areal average rainfall
a particular regular arrangement of the gauges within the area under
consideration was assumed for computational expediency. This allowed
the accaracy of a simple estimator to be related to the density of gauges
within the region and to the sige of the area for which the average
rainfall is required.
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Figure 5.1 : Contours of interpolation error from three sites to
neighbouring points using simple linear interpolation
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Flgure 5.2 : Contours of interpolation error from three sites to
neighbouring points using optimal interpolation assuming
that mean rainfalls are known.
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Figure 5.3 :
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Contours of interpolation error from three sites to
neighbouring points using optimal interpolation assuming
that mean rainfalls are constant but tnknown,

40



131

Figure 5.4 : Interpolation error for an anistropic correlation function :
-optimal interpolation with means equal but unknown. (orientation 1).
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Figure 5.5 : Interpolation error for an anisotropic correlation function:
optimal interpolation with means equal but unknown. (orientation 2)
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Figure 5.6 : Interpolation error for an anisotropic correlation function:
optimal interpolation with means equal but unknown. (orientation 3)
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Figure 5.7 :

Interpolation error for an anisotropic correlation function:
optimal interpolation with means equal but unknown. {orientation 4)
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Figure 5-8 : Hypqthetic&l arfangement 'of gauges in
_ equilateral and right-angled triangle.
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Figure 5.9 : Interpolation error to centre of equilateral triangle:
yearly totals, Eastern and Northern England.
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Figure 5.10 : Interpolation error to centre of equilateral triangle:
monthly totals, Eastern and Northern England.
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Figure 5.11 : Interpolation error to centre of equilatéral triangle:
monthly totals, Eastern England (1875-1890)
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Figure 5.12 : Interpolation error to centre of equilateral triangle:
daily totals, Eastern and Northern England.
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