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Summary1

Soil scientists require cost-effective methods to make accurate regional predictions of2

soil organic carbon (SOC) content. We assess the suitability of airborne radiometric3

data and digital elevation data as covariates to improve the precision of predictions of4

SOC from an intensive survey in Northern Ireland. Radiometric data (K band) and, to5

a lesser extent, altitude are shown to increase the precision of SOC predictions when6

they are included in linear mixed models of SOC variation. However the statistical7

distribution of SOC in Northern Ireland is bimodal and therefore unsuitable for geo-8

statistical analysis unless the two peaks can be accounted for by the fixed effects in9

the linear mixed models. The upper peak in the distribution is due to areas of peat10

soils. This problem may be partly countered if soil maps are used to classify areas of11

Northern Ireland according to their expected SOC content and then different models12

are fitted to each of these classes. Here we divide the soil in Northern Ireland into three13

classes, namely mineral, organo mineral and peat. This leads to a further increase in14

the precision of SOC predictions and the median square error is 2.2 %2. However a15

substantial number of our observations appear to be mis-classified and therefore the16

mean squared error in the predictions is larger (30.6 %2) since it is dominated by large17

errors due to mis-classification. Further improvement in SOC prediction may therefore18

be possible if better delineation between areas of large SOC (peat) and small SOC19

(non-peat) could be achieved.20
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Introduction21

Soil organic carbon (SOC) is one of the most important constituents of the soil im-22

parting structural stability, increased water holding capacity, acting as a source of23

nutrients, and as a store of terrestrial carbon. The quantity of organic carbon in the24

top 30 cm of the soil profile typically reflects the interplay of several factors including25

climate (annual rainfall and temperature), elevation, local topography and land use.26

Soil scientists require cost-effective methods to make accurate estimates of SOC con-27

tent, which could be used to estimate soil-related carbon-dioxide emissions under the28

UNFCCC (United Nations Framework Convention on Climate Change).29

Traditional, grid-based sampling, with laboratory measurement and univariate30

interpolation of SOC is subject to large estimation uncertainties at unsampled points.31

These can be significantly reduced if intensive, secondary covariates such as data from32

remote sensors are used for prediction by cokriging (McBratney & Webster, 1983),33

regression kriging (Odeh et al., 1995), or the use of linear mixed models (Lark et34

al., 2006). A variety of covariates have been shown to improve prediction of SOC.35

For example, terrain attributes and land use have been shown to be correlated with36

SOC at multiple scales (Mueller & Pierce, 2003), whilst hyperspectral airborne data37

(Selige et al., 2006), surface reflectance (Chen et al., 2000) and electrical conductivity38

(Simbahan et al., 2006) was shown to be correlated with SOC in arable soils over scales39

from a few to tens of kilometres. These secondary covariates are likely to be more or40

less applicable in various types of soil environment (e.g. vegetated and unvegetated),41

and at differing scales.42

Another potential covariate which can be used in both vegetated and unvege-43

tated environments are measurements of gamma radiation from the decay of natural44

radionuclides in the soil. This radiation can be measured using airborne sensors; the45

data correspond to the top 50 cm of a mineral-dominated soil, and depths of up to46

one metre in low density materials such as peat. Airborne radiometric survey has been47

used extensively in Australia for digital soil mapping (Cook et al., 1996). Typically48
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the data on emissions are processed to generate values from three spectral bands which49

correspond to the decay of potassium (K), thorium (Th) and uranium (U). In a recent50

study in Australia, Minasny et al. (2006) combined data on radiometric K, land use51

and terrain attributes to develop a depth-based function for estimation of SOC.52

There are two reasons why we might expect spatial correlation between gamma53

emissions from the soil and its SOC content in the wetter landscape of north-western54

Europe. First, the well-established spatial correlation between gamma-ray attenuation55

and soil moisture (Carroll, 1981) extends to SOC because the latter accumulates in56

soils which are wet or waterlogged for much of the year. Water reduces the intensity57

of gamma-rays significantly more than air; a 10% increase in soil water leads to a58

reduction in K gamma radiation by the same amount (Minty, 1979). Second, for soil59

with a wide range of SOC contents, the mineral content (and gamma emission) will be60

smaller where organic matter contents are larger for soils derived from the same parent61

material (with similar mineral composition). As the organic matter content rises, the62

mineral content declines in a simple, two-component composition. It may be possible63

to use these relationships to improve SOC estimation in organic rich soils such as those64

of the Arctic Tundra (Smith et al., 2004) or temperate latitudes such as Scotland and65

Wales (Scottish Executive, 2007), so this approach warrants further investigation.66

There have been relatively few regional-scale, airborne radiometric surveys of67

landscapes in which SOC contents represent significant terrestrial carbon stores – such68

surveys have been undertaken in Finland (Lilja & Nevalainen, 2005) and Sweden (Lun-69

den et al., 2001). One example is the recently-completed Tellus survey of Northern70

Ireland (13 550 km2), in which SOC measurements and airborne geophysical surveys71

(including the detection of gamma emitting radiation) were undertaken at around the72

same time. The aim of this paper is to determine to what extent airborne radiometric73

survey data and terrain attributes can be used as secondary covariates to improve esti-74

mates of SOC across the landscape of Northern Ireland. A second objective is to assess75

whether improvements in SOC estimation based on these covariates differs markedly76
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for the three major soil types across this landscape. Also we explore whether the77

inclusion of information on radiometric K means that the number of observations of78

SOC required for adequate predictions is reduced. We discuss the implications of our79

findings for improving the estimation of SOC in cognate landscapes and some potential80

limitations to the application of airborne radiometric survey for this purpose.81

Methods82

Study region and surveys83

The soils of Northern Ireland have been described by Cruickshank (1997) and comprise84

poorly-drained gley soils (54%), peats and rankers (24%) and freely drained soils (16%)85

– see Figure 1. In the soil surveys of Northern Ireland described by Cruickshank (1997)86

soil inspection pits were dug to between 80 and 90 cm. The larger proportion of gley87

soils by comparison to England, Wales and Scotland reflects the wetter environment88

of Northern Ireland, where average annual rainfall for the vast majority of the region89

is greater than 1 m, with a minimum of around 0.75 m. Large areas of the region90

are more than 100 m above sea level, with a maximum attitude around 850 m, whilst91

central and eastern areas have lower elevations (<40 m).92

The airborne geophysical survey of the whole of Northern Ireland was flown in93

the summers of 2005 and 2006. Radiometric data were collected with an Exploranium94

GR820 256 channel gamma spectrometer system comprising 32 litres of downward95

looking NaI(Tl) detectors and 8 litres of upward looking detectors. Data were collected96

every second (approximately 70 m flight line distance). The gamma radiation measured97

comes from a shallow surface layer of no more than about 30 cm in rock, although this98

will increase for low-density unconsolidated materials, perhaps to a maximum of a few99

metres in dry peat. The ground area or footprint, from which most of the contribution100

of gamma radiation comes, has the form of an ellipse elongated in the flight direction.101

For example, at 56 m altitude, 75% of the measured radiation will come from a width102

of about 150 m, extending to around 220 m along the flight line (Pitkin & Duval, 1980).103

Survey lines were spaced 200 m apart and orientated NNW or SSE (165 and 345 ◦), with104
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tie-lines 2000 m apart, and at right angles to the flight line directions, acquired only in105

the early part of the survey. The flying height was 56 m above ground in rural areas.106

Procedures for processing the airborne radiometric data were based on those described107

in AGSO and IAEA reference manuals (Grasty & Minty, 1995; IAEA, 1991). The108

processing included corrections for aircraft and cosmic background radiation, aircraft109

altitude and spectral interactions. The corrected count rates were used to estimate110

the concentration of the three radioelements across specific energy ranges (MeV): K111

(1.37–1.57), U (1.66–1.86), Th (2.41 – 2.81). The survey yielded ca. 1.2 million values112

for equivalent K(%) and Th (mg kg−1), U (mg kg−1) and man-made radionuclides,113

predominantly 137Cs, although we do not consider the latter in this paper.114

To assess whether temporal fluctuations in soil moisture status during the pe-115

riod of the airborne surveys was broadly representative of the long-term average, we116

extracted from the MIDAS database (UK Meteorological Office) monthly rainfall data117

(mm) throughout 2005 and 2006, along with average monthly rainfall between 1961118

and 1990 for meteorological stations across Northern Ireland.119

The soil geochemical survey was undertaken between July 2004 and March 2006.120

A sample of topsoil was collected from a site in every other square kilometre of the Irish121

National Grid, by simple random selection within each square, subject to the avoidance122

of roads, tracks, railways, urban areas and other seriously disturbed ground. There were123

6862 sample sites in total. At each site soil was taken with a hand auger from between124

depths of 5 and 20 cm from five holes at the corners and centre of a square with a side of125

length 20 m and combined to form a bulked sample. All samples of soil were air-dried126

in a dedicated temperature controlled oven at 30 ◦C for 2–3 days and disaggregated.127

From each a 50-g sub-sample was ground in an agate planetary ball mill. The total128

concentrations of 55 major and trace elements were determined in each sample by129

wavelength and energy dispersive XRFS (X-Ray Fluorescence Spectrometry), although130

we only consider K (%), Th (mg kg−1) and U (mg kg−1) in this study. Soil organic131

carbon was estimated in each sample using loss-on-ignition analysis by heating a sub-132
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sample 450 ◦C for eight hours and multiplying the mass difference by 0.58 (Broadbent,133

1953). The coefficient of variation for this method for 174 replicate analyses of a sample134

standard was 3.6%.135

The topographic data were a series of 50-m spaced observations for elevation136

(m) covering Northern Ireland (Ordnance Survey of Northern Irelands data) based137

on airborne, photogrammetric acquisition; 65% of the data are accurate to ± 1 metre.138

Simple linear interpolators are often used to create continuous Digital Elevation Models139

(DEMs; Moore et al., 1991) from stereo, aerial photo-derived point elevation data. We140

used inverse distance weighted (IDW) interpolation to form a DEM surface in ESRI141

ArcMapTM .142

We used the DEM to estimate Compound Topographic Index (CTI) in ArcInfo143

WorkStationTM which has been shown to be correlated with SOC content (Moore et al.,144

1993). We extracted values for elevation (m) and CTI for the soil sampling locations145

by point intersection.146

We used a spatial join procedure to associate each soil sampling observation with147

its nearest radiometric survey observation. The median distance between the sample148

sites and the corresponding radiometric measurement was 52 m, with an interquartile149

range of 47 m showing that the soil sampling locations fall entirely within the support of150

the airborne detector. We used digital versions of the (1:50,000) soil maps of Northern151

Ireland to form a three-fold classification of the soil sampling locations (see Figure 1):152

organic soils (SOC > 20 % and > 50 cm in thickness; peats), organo mineral soils153

(with an organic surface horizon overlying mineral subsoil; peaty podzols, rankers and154

humic-gleays) and mineral soils (no organic horizon and SOC< 10 %; brown-earths,155

podzols, gleys and rankers).156

Exploratory analysis157

The appropriateness of using the airborne measurements of K, Th and U as auxiliary158

information in a regional survey of SOC was initially explored by (i) comparing the159

summary statistics with those of the corresponding ground based variables (Table 1)160
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and (ii) by calculating the correlation coefficients between the airborne and ground161

based variables and the estimates of SOC based upon LOI analysis (Table 2). Sim-162

ilarly we also explored the correlation of SOC with the two terrain variables. These163

exploratory analyses were the basis for deciding on the variables to include in our164

models of SOC variation.165

We calculated total annual rainfall for a subset of 20 meteorological stations166

across Northern Ireland for both 2005 and 2006, the years in which the airborne surveys167

were flown. A comparison of these data with the long-term, average annual rainfall168

(1961-1990) indicated that they were of a similar magnitude. We also plotted monthly169

rainfall totals for observations from several meteorological stations during 2005 and170

2006 and compared these to the long-term monthly averages (1961-1990). There was no171

compelling evidence that rainfall throughout 2005 or 2006 was spatially or temporally172

anomalous and so we feel justified in assuming that the soil moisture regime over the173

period of the airborne survey was representative of its long-term variation.174

Spatial analysis: linear mixed models175

A prediction set of 3000 observations was randomly extracted from the SOC data set176

and the remaining observations were used as a validation set. We considered linear177

mixed models of the form178

z = Xβ + η, (1)

where X is an n × p design matrix containing values of p auxiliary variables or fixed179

effects, β is the length p vector containing the coefficients of the fixed effects and180

η ∼ N (0,V) is a vector of spatially correlated random residuals with a Gaussian181

distribution and covariance matrix V. We assume that the spatial correlation of η can182

be represented by an isotropic nested nugget and Matérn variogram model183

γ (h) = c0 + c1

{
1− 1

2ν−1
Γ (ν)

(
h

a

)ν

Kν

(
h

a

)}
for h > 0,

γ (h) = 0 for h = 0, (2)

where h is the lag distance separating observation pairs, ν is a smoothing parameter,184
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Kν a modified Bessel function of the second kind of order ν (Abramowitz & Stegun,185

1972) and Γ is the gamma function. Bessel and gamma functions may be calculated by186

many standard numerical packages such as IMSL (1994). The smoothness parameter187

gives the Matérn function greater flexibility for modelling the spatial covariance than188

more commonly-used models such as the exponential and spherical models (Webster189

& Oliver, 2007). For each fixed effects matrix we calculated β̂, the estimate of β, by190

ordinary least squares, subtracted Xβ̂ from the data and used the method of moments191

(Matheron, 1962) to fit the vector of variogram parameters α = (c0, c1, a, ν). Following192

Cressie (1985), when fitting the variogram model to the experimental variogram by least193

squares we applied weights194

wi =
N (hi)

γ̂ (hi)
2 , (3)

where N(hi) is the number of observation pairs within the bin centred on lag hi and195

γ̂(hi) is the experimental variogram for hi. Generally the REML estimator is recom-196

mended for fitting linear mixed models (Lark et al., 2006) because there is known to be197

some bias when the method of moments is applied. However for 3000 observations this198

bias will be very small and does not justify the prohibitive computation time required199

by REML.200

We fitted a number of linear mixed models with different fixed effects to the201

prediction data to compare (i) the effectiveness of including different auxiliary variables202

as fixed effects (ii) the effectiveness of fitting a single model for all soil types with the203

effectiveness of fitting different models for each of our three broad soil classes and (iii)204

how the precision of the different linear mixed models varies with the intensity of SOC205

observations. The variables to be included as fixed effects were selected according to206

the findings of our exploratory analyses.207

Each linear mixed model was fitted first to all the prediction data. The linear208

mixed models assume that the random effects are Gaussian and therefore we log trans-209

form the data if the skew is greater than 1 and this assumption is implausible (Webster210

& Oliver, 2007). We note that strictly we should test the skew once we have subtracted211
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the fixed effects from the data. However this could lead to the data being transformed212

for some but not all of the models so in order to make fair comparisons between the213

different models we decide whether to transform based upon the skew of the raw data.214

The entire prediction set had skew equal to 2.03. Therefore a log transform was ap-215

plied and the skew was reduced to 0.92. The empirical best linear unbiased predictor216

(E-BLUP) was used to predict SOC content at the validation sites (Lark et al., 2006).217

To calculate the mean prediction in the original units – and the mean squared error218

MSE between the predictions and observed SOC values at the validation sites – an219

unbiased inverse log transform (Cressie, 2004) was performed.220

The prediction and validation data were then divided into the three soil classes221

according to our three-fold classification and separate models were fitted to the predic-222

tion data from each class and the appropriate soil class model was used to predict SOC223

content at each validation location by the E-BLUP. The skew for the SOC in mineral224

soil was 3.94 which was reduced to 0.80 by applying a log transform. No transform was225

applied to data from the organo mineral and peat soil classes because they had skew226

of 0.86 and -0.53 respectively.227

The values of SOC are substantially larger on peat soils than mineral soils and228

sites at which the soil is mis-classified are likely to have large prediction errors which229

will dominate the MSE. We therefore also record the median square error (MdSE) and230

the MdSE based upon the back transform to the median prediction in the original231

units.232

This test was then repeated using random subsets of ns of the prediction data233

where ns = 100, 200, . . . 2900, to explore how the quality of the predictions at the234

validation sites varies with the number of SOC observations.235

Results236

Exploratory analysis237

The airborne radiometric estimates of K and Th were strongly correlated with their238

measurements in the soil survey (r=0.86 and 0.80 respectively; Table 2) which demon-239
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strates that the airborne survey is an effective method for estimating these elements.240

Airborne radiometric estimates of K exhibited a strong negative correlation with ground-241

based estimates of SOC (r= -0.51); this correlation was stronger than for Th, U and242

total counts. We therefore chose to include radiometric K as a fixed effect in a linear243

mixed model of SOC. Furthermore, plots of radiometric K against SOC (not shown)244

suggested that this relationship may be nonlinear and therefore the square of radio-245

metric K (K2) was also included as a fixed effect.246

We also explored the correlation of SOC with the two terrain parameters: altitude247

and compound topographic index (CTI). First we transformed the SOC data to a248

more Gaussian distribution by taking natural logarithms; the transformed variable249

had a skewness coefficient of 0.94. The correlation coefficients (r) between log SOC250

and altitude and CTI were, respectively: 0.6 and -0.03. Given the strong positive251

correlation between SOC and altitude we chose to include the latter as a fixed effect252

in the estimation of SOC.253

The histogram of the SOC observations across all soil types in Northern Ireland254

is shown in Figure 2a. The distribution of SOC is bimodal. The main peak occurs255

between 0 and 10 % and there is a secondary peak around 50 %, which corresponds to256

peat soils. Bimodal distributions are not suited to geostatistical analyses and therefore257

this histogram vindicates our decision to analyse mineral, organo mineral and peat258

soils separately. We expect that mineral soils will have SOC less than 20 % and peat259

soils will have SOC greater than 20 %; this is the threshold adopted in Northern260

Ireland. According to the (1:50,000) soil map of Northern Ireland, 5552 (81.0 %) of261

the observations are from mineral soils, 382 (5.6 %) are from organo mineral soils and262

915 (13.4 %) are from peat soils. Figures 2 b, c and d show the distribution of SOC263

for mineral, organo mineral and peat soils.264

The largest peak in the organo mineral soils is for SOC less than 10 % but there is265

a secondary peak greater than 50 %. Thus a substantial proportion of our observations266

appear to be misclassified by the soil map. This is likely to be because the soil map267
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is unsuitable for recognising very local variations in soil type. The soil classification is268

partially successful in separating the observations with large and small SOC and the269

secondary peak is not evident in the mineral soil distribution. However, some larger270

than expected SOC values remain in the mineral soil set (4 % of mineral soils have271

SOC greater than 20 %). The majority of peat soil observations have SOC greater272

than 40 % although 26 % of observations have SOC less than 20 %.273

Spatial analysis: linear mixed models274

The effectiveness of six different linear mixed models of SOC variation were compared.275

The fixed effects for these models were:276

Model 1 Constant (i. e. the mean),277

Model 2 Constant and altitude,278

Model 3 Constant and K,279

Model 4 Constant, K and K2,280

Model 5 Constant, altitude and K,281

Model 6 Constant, altitude, K and K2.282

Figures 3-6 show the variograms fitted to residuals of all soils, mineral soils, organo283

mineral soils and peat soils respectively. On the all soils variogram the sill variance is284

largest when the fixed effects consist of a constant (the overall mean). The sill variance285

is reduced when altitude is also included in the fixed effects and further reductions286

are achieved by including radiometric K. The smallest variances are seen for Model 6.287

A similar pattern is seen on the mineral soils variogram although the semi-variances288

are substantially smaller for each model than the all soils variograms. For the organo289

mineral and peat variograms the sill variances are again largest with constant fixed290

effects and a greater reduction in these variances is achieved by including radiometric291

K rather than altitude. There is some evidence of spatial correlation in the Model 1292

(constant mean) variograms on organo mineral and peat soils but the proportion of293

spatially correlated variation becomes smaller as other variables are added to the fixed294

effects. This indicates that the spatial correlation has been resolved by the inclusion295
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of other variables in the fixed effects.296

Figures 7-9 illustrate the different components of a single Model 6 linear mixed297

model fitted on all soils types. The log SOC observations are presented in Figure 7, the298

contributions from the fixed effects are presented in Figure 8 and the residuals between299

the observations and fixed effect contributions are presented in Figure 9. The fixed300

effects contain many of the large scale features of the observations such as large SOC301

values in the NE, SE, SW and a cluster slightly NW of centre. The residuals show302

less spatial structure, as would be expected from the almost all nugget variogram for303

Model 6 in Figure 3.304

The MSEs between the observations and predictions at the validation sites are305

shown in Table 3 and the MdSEs in Table 4. We indicate the number of soil classes into306

which the prediction set is divided for fitting of the linear mixed model. The first two307

rows of each table show the errors upon predicting SOC over the entire validation set.308

In the remaining six rows the validation set is divided according to the soil classification309

and the errors for each classification are shown.310

As variables are added to the fixed effects the MSEs and MdSEs generally decrease311

in the same pattern as the semi-variances in Figures 3-6 with the largest decreases312

occurring when radiometric K is added to the fixed effects. This illustrates that SOC313

is correlated with altitude but more effective information comes from radiometric K.314

The MSEs and MdSEs are smaller when separate models are fitted to each soil315

class than when the soil classes are combined. For example the smallest MSE for316

the model fitted to the entire prediction set is 41.08 %2 whereas the smallest MSE317

when three separate models are fitted is 30.38 %2. The greatest improvement for three318

models over one model is seen for peat, particularly when the fixed effects include319

radiometric K. The MSEs for mineral soils when three models are fitted are slightly320

larger than those from a single model. We suspect that this is an artefact due to321

the large squared differences between predictions and observations which have been322

mis-classified as mineral. To illustrate this Table 5 contains the MSEs for mineral323
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soils when only observations with SOC less than 20 % are included in the validation324

set. Removing the observations from mineral soils which we assume are mis-classified325

reduces the MSEs, and the MSEs for three models are now substantially less than those326

for one model. The MdSEs are consistently smaller than the MSEs further illustrating327

that the MSEs are dominated by classification errors.328

Figure 9 compares root MSEs for SOC from Model 6 (the model which generally329

had the smallest MSE), Model 2 (the model with the smallest MSE of those models330

which did not include radiometric K as a fixed effect) and Model 1 (the model with no331

auxiliary information) against n. In each of these plots, separate models are fitted for332

each soil class. The results are combined to give the MSE across Northern Ireland in (a)333

and plots (b), (c) and (d) show the absolute differences over mineral, organo mineral334

and peat soils respectively. In each plot a substantial improvement upon including335

radiometric K in the fixed effects is evident. We also note that the precision of our336

predictions decreases very slowly as n decreases.337

Discussion338

The distribution of SOC will be bimodal over any study region which contains both339

organic and mineral soils. Thus if we wish to map SOC over such a region we must340

address the problem of applying geostatistics to bimodal distributions. By dividing the341

study region into three soil classes based on a (1:50,000) soil map of Northern Ireland342

we substantially improved the precision of SOC predictions across Northern Ireland.343

However a proportion of soils appeared to be mis-classified. The errors at these sites344

dominate the MSEs which are much larger than the corresponding MdSEs which are345

more robust to a proportion of large errors due to mis-classification. Therefore further346

improvements in regional predictions should be based upon improving our ability to347

differentiate peat and non peat soils. Some mis-classification may be inevitable because348

it is not practical to create soil maps which resolve very small scale deposits of organic349

or mineral soil. This classification may be significantly improved by using airborne350

hyperspectral data (McMorrow et al., 2004) or satellite data (e.g. ASTER or Landsat).351
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Even without such improvements, the approach we describe could be applied to the352

data from the Tellus survey in combination with data on soil bulk density to improve353

current estimates of carbon pools across Northern Ireland, in which peat soils are354

estimated to account for more than 50% of the total (Cruickshank et al., 1998).355

Further work is required to elucidate the factors influencing the airborne esti-356

mates of radiometric K and its spatial correlation with SOC for each of the three soil357

types. The two dominant factors which influence this are: i) the variation in mineral-K358

content; this decreases with increasing quantities of soil organic matter, and ii) increas-359

ing soil-moisture resulting in greater attenuation of the gamma signal from the soil.360

This would require contemporaneous measurements of soil moisture content which we361

do not have from the original survey.362

There are likely to be limitations to the widespread application of airborne radio-363

metric data as a covariate for mapping SOC. First, it relies upon a spatial correlation364

between SOC and long-term (i.e. annual) soil moisture content which is only likely365

to occur in certain combinations of climate, topography and land use where SOC has366

accumulated above some minimum threshold. The soils of northern Europe include sig-367

nificant areas with soils common to those in northern Ireland, particularly the Gleysols368

and Histosols of northern Scandanavia, the Baltic States and Russia. Further work is369

required to establish the utility of airborne radiometric data as a covariate for map-370

ping SOC, particularly for the large area of Podzols across northern Europe (European371

Soil Bureau Netowrk, 2005). Second, patterns of antecedent rainfall conditions and the372

quantity of precipitation during the airborne survey may cause unusually large temporal373

and spatial variations in soil moisture contents across the study area. This may reduce374

the degree of spatial correlation between SOC and the gamma radiation which is due to375

greater attenuation of the latter where the ground is wetter and where carbon accumu-376

lates. To address this potential limitation, it may be possible to ensure surveys are not377

flown when significantly atypical soil moisture conditions occur, based on antecedent378

rainfall data and medium-term precipitation forecasts. In addition, laboratory-based379
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soil column experiments, in which in-situ measurements of gamma radiation are made380

under controlled soil moisture conditions for soils with range of SOC contents, could be381

used to calibrate the relationship between airborne radiometric data and SOC based382

on antecendent rainfall data. Finally, where the soil parent material contains very little383

K (0.5 %), such as quartzite, the accuracy of airborne radiometric estimation of soil-K384

may be insufficient. However, 90 % of European soils contain more than 0.83 % K (or385

1 % K2O; Salminen, 2005) suggesting that for the vast majority of soils, accuracy near386

the limit of detection is unlikely to be problematic.387

One of the main applications of SOC maps is the estimation of carbon stocks.388

Where soil carbon is concentrated in the upper horizons, radiometry may be partic-389

ularly useful as a covariate as it measures gamma radiation from the upper 35 cm of390

the solum. However, in deep organic-rich soils or areas of Arctic tundra where SOC391

may be transported to depth by cryoturbation (Ping et al., 1997), the utility of gamma392

radiometry will be diminished because no information is provided for the deeper parts393

of the soil profile.394

Conclusions395

Our results show that the precision of regional predictions of SOC across Northern396

Ireland are substantially improved by including auxiliary information on radiometric397

K from airborne surveys as fixed effects in a linear mixed model of SOC variation. To398

a lesser extent the precision is also improved by including altitude in the linear mixed399

model. We have also seen that the number of observations of SOC may be substantially400

reduced with little cost in terms of the precision of the predictions. However the401

MSEs between predictions and observations are still large even when radiometric K402

and altitude are included in the linear mixed model. This is because SOC in Northern403

Ireland has a bimodal distribution which is not suited to geostatistical analyses. After404

separating the soil into three main classes (mineral, organo mineral and organic), the405

MSEs are substantially reduced. However, large independent validation errors occur406

at certain mis-classified sites where, for example, the soil map shows a mineral soil but407
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its SOC content indicates it is organic. Improvements in our ability to differentiate408

between mineral and organic-rich soils are required to make better predicitions of the409

SOC at the regional scale.410
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Table 1 Summary statistics for the soil and the nearest radiometric survey location

(n=6862). Units are % for K and soil organic carbon (SOC), mg kg−1 for Th and U.

By SS we denote the soil geochemical survey data, and by Rad the radiometric data.

Element K Th U
Dataset SS-K Rad-K SS-Th Rad-Th SS-U Rad-U SS-SOC

Mean 1.38 0.91 5.04 3.44 2.48 0.79 13.57

Median 1.47 0.89 5.00 3.19 2.30 0.68 7.49

Variance 0.52 0.38 8.10 7.96 8.10 0.64 212

Standard deviation 0.72 0.61 3.00 2.82 2.85 0.80 14.6

Skewness 0.07 0.50 2.48 2.52 29.2 2.82 1.99

Loge skewness 0.94
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Table 2 Correlation matrix for K, Th, U and soil organic carbon (SOC) for the soil

survey (SS) data and the nearest neighbouring radiometric data (Rad).

Dataset and element

SS-K SS-Th SS-U SS-SOC Rad-K Rad-Th Rad-U

SS-K 1

SS-Th 0.75 1

SS-U 0.18 0.45 1

SS-SOC -0.63 -0.45 -0.03 1

Rad-K 0.86 0.71 0.25 -0.51 1

Rad-Th 0.67 0.80 0.39 -0.36 0.79 1

Rad-U 0.51 0.66 0.36 -0.29 0.60 0.70 1
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Table 3 MSEs for SOC predictions from Models 1-6 (M1- M6) at all validation sites
and at validation sites classified as mineral, organo mineral (O M) and peat soils. Units
are %2.

Soils Soil classesa M1 M2 M3 M4 M5 M6
All 1 119.42 116.67 60.18 41.08 67.69 49.37

3 78.70 73.14 36.92 30.60 34.24 30.38

Mineral 1 34.45 30.11 17.74 14.95 17.89 15.44
3 26.34 24.95 20.97 19.57 19.79 18.85

O M 1 215.24 319.65 107.04 93.01 139.65 108.08
3 238.53 216.96 127.05 102.98 112.88 110.74

Peat 1 523.05 485.37 262.17 156.18 298.53 202.27
3 286.82 265.99 83.69 58.82 77.79 58.04

a The number of soil classes into which the prediction set is divided when fitting the
linear mixed model.
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Table 4 MdSDs for SOC predictions from Models 1-6 (M1-M6) at all validation sites
and at validation sites classified as mineral, organo mineral (O M) and peat soils. Units
are %2.

Soils Soil classesa M1 M2 M3 M4 M5 M6
All 1 4.77 4.69 3.37 2.99 3.41 3.01

3 3.22 3.03 2.45 2.20 2.38 2.26

Mineral 1 2.79 2.84 1.96 1.91 2.01 1.97
3 1.94 1.83 1.65 1.53 1.51 1.51

O M 1 51.00 40.13 22.83 22.85 21.07 18.71
3 102.37 93.12 49.17 37.81 39.57 45.14

Peat 1 406.92 282.18 169.17 101.81 130.21 99.70
3 192.38 190.50 27.70 12.07 26.33 10.06

a The number of soil classes into which the prediction set is divided when fitting the
linear mixed model.
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Table 5 MSEs for SOC predictions from Models 1-6 (M1- M6) on validation sites
classified as mineral soils when observations greater than 20 % are removed from the
validation set. Units are %2.

Soils Soil classesa M1 M2 M3 M4 M5 M6
Mineral 1 21.85 15.73 10.60 8.94 8.81 8.00

3 6.93 6.71 5.87 5.83 5.69 5.76

a The number of soil classes into which the prediction set is divided when fitting the
linear mixed model.
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