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Effect of water table on greenhouse gas 
emissions from peatland mesocosms 
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Peatland landscapes typically exhibit large variations in greenhouse gas (GHG) emissions due to 
microtopographic and vegetation heterogeneity. As many peatland budgets are extrapolated from 
small-scale chamber measurements it is important to both quantify and understand the processes 
underlying this spatial variability. Here we carried out a mesocosm study which allowed a 
comparison to be made between different microtopographic features and vegetation communities, 
in response to conditions of both static and changing water table. Three mesocosm types 
(hummocks + Juncus effusus, hummocks + Eriophorum vaginatum, and hollows dominated by 
moss) were subjected to 2 water table treatments (0-5 cm and 30-35 cm depth). Measurements 
were made of soil-atmosphere GHG exchange, GHG concentration within the peat profile and soil 
water solute concentrations. After 14 weeks the high water table group was drained and the low 
water table group flooded. Measurement intensity was then increased to examine the immediate 
response to change in water table position.  

Mean CO2, CH4 and N2O exchange across all chambers was 39.8 µg m-2 s-1, 54.7 µg m-2 h-1 and -
2.9 µg m-2 h-1, respectively. Hence the GHG budget was dominated in this case by CO2 exchange. 
CO2 and N2O emissions were highest in the low water table treatment group; CH4 emissions were 
highest in the saturated mesocosms. We observed a strong interaction between mesocosm type and 
water table for CH4 emissions. In contrast to many previous studies, we found that the presence of 
aerenchyma-containing vegetation reduced CH4 emissions. A significant pulse in both CH4 and 
N2O emissions occurred within 1-2 days of switching the water table treatments. This pulsing 
could potentially lead to significant underestimation of landscape annual GHG budgets when 
widely spaced chamber measurements are upscaled.  

Greenhouse gases; Water table; Vegetation; Microtopography; Peatland; 
Mesocosm; 

1 

mailto:kjdi@ceh.ac.uk


2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Introduction: 

Northern peatlands are estimated to contain 455 Gt of carbon (Gorham 1991), 

representing approximately a third of the estimated total global soil carbon pool. 

They are considered to be net sinks of CO2 and net sources of CH4 (Bartlett and 

Harriss 1993; Gorham 1991; Huttunen et al. 2003), though annual and inter-annual 

variation can be extremely high. Peatlands also represent an important source of 

dissolved organic carbon to drainage waters (Urban et al. 1989; Billett et al. 2004; 

Dawson et al. 2004). As soluble nitrogen is often limited, soil-atmosphere fluxes 

of N2O tend to be small, although with a global warming potential of 298 (IPCC 

2007) they can still contribute significantly to the total GHG budget. Some of the 

primary consequences of climate change, including increased temperatures, 

increased drought and increased frequency and intensity of rainfall events, are 

likely to directly influence peatland ecosystems. This in addition to management 

practices such as peatland drainage, means that it is becoming increasingly 

important to accurately predict the biospheric feedbacks of peatlands to climate.  

The main controls on soil carbon and nitrogen cycling in peatlands are a) 

temperature, as it controls the rate of microbial activity; b) water table depth as it 

determines the depth of the oxic/anoxic boundary and redox level within the soil; 

and c) plant community composition and structure which influences the quantity 

and quality of organic substrate available, and can alter the aerobic capacity of the 

peat by transporting O2 to the rhizosphere (Bartlett and Harriss 1993; Dise et al. 

1993; Ström et al. 2003; Whiting and Chanton 1996; Yavitt et al. 1997). In the 

same way that certain plant species have the ability to transport O2 from the 

atmosphere to the rhizosphere, they can provide a direct pathway for many GHGs 

to the atmosphere, bypassing the aerobic peat horizon (Bartlett and Harriss 1993; 

Minkkinen and Laine 2006). Such plant mediated transport has been demonstrated 

to account for >80% of CH4 emissions from rice paddies (Butterbach-Bahl et al. 

1997; Yu et al. 1997).  

The microtopographic pattern of elevated hummocks, wetter hollows and 

submerged pools, typical of many peatlands, can cause significant variation in soil 

environmental conditions (Nungesser 2003). Such differences are further 

reinforced by the colonisation of distinct plant communities. As a result GHG 
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production, emission and consumption within peatlands can vary considerably at 

scales <1 m2. Problems arise when gas exchange measurements, made using 

chambers of usually <0.5 m2, require up-scaling to catchment level. 

The influence of water table depth on CO2 and CH4 soil-atmosphere exchange has 

been studied repeatedly using flask experiments on disturbed peat (Blodau and 

Moore 2003a; Öquist and Sundh 1998), measurements on relatively undisturbed 

peat cores (Aerts and Ludwig 1997; Moore and Dalva 1993), and field studies 

(Hargreaves and Fowler 1998; MacDonald et al. 1998). Only a small number of 

controlled experiments have been carried out with the vegetation structure intact 

(Blodau et al. 2004; Blodau and Moore 2003a). Fewer still have compared 

different vegetation/microtopography types (though examples include: Updegraff 

et al. 2001), despite studies showing that the influence of vegetation is species-

specific (Butterbach-Bahl et al. 1997; Ström et al. 2005). Such comparisons are 

important as the relative coverage of each community type may be altered 

following ecological succession resulting from long-term environmental change 

(Strack et al. 2006; Weltzin et al. 2003). The general consensus from these studies 

is that lowering the water table increases C mineralization and decreases CH4 

emissions. Studies into the effects of water table depth on peatland N2O emissions 

include those by Aerts and Ludwig (1997) and Regina et al. (1999); they conclude 

that lowering the water table depth leads to a net increase in N2O emissions.  

The aims of this study are: a) to compare the greenhouse gas budget (with 

emphasis on CH4 and N2O) and temperature response of peatland mesocosms 

under high and low water table conditions; b) to quantify the immediate CH4 and 

N2O exchange response to a sudden changes in water table depth; and c) to assess 

the influence of vegetation/microtopography on these responses.  

Materials and Methods: 

Site Description 

Cores were collected from Auchencorth peatland (55º47’34N; 3º14’35W), 

approximately 17 km south west of Edinburgh (Scotland). Mean annual 

precipitation at the site (1995-2006) is 1016 mm (Coyle, unpublished data, 2008) 
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with maximum and minimum monthly mean temperatures (1971-2000) of 19 ºC 

in July and 0.7 ºC in January respectively (www.metoffice.gov.uk). 

The catchment is a 335 ha grass dominated, lowland ombrotrophic peatland with 

an elevation range of 249 to 300 m (Billett et al. 2004). The land-use is primarily 

low intensity sheep grazing, though overgrown ditches are evidence of past 

drainage. The vegetation is a patchy mix of coarse grasses and soft rush covering 

a Sphagnum base layer. Calluna vulgaris is present in the south-west of the 

catchment where drainage is better. The microtopography consists of a series of 

hummocks and hollows. Hummocks are typically small (~40 cm diameter, ~30 

cm height) and dominated by either a mix of Deschamsia flexuosa and 

Eriophorum vaginatum, or Juncus effusus. Hollows refer to the areas between 

hummocks and are dominated by mosses (Sphagnum papillosa and Polytrichum 

commune) and a thinner layer of grasses; hollows often become submerged after 

periods of intense or sustained rainfall. Water table at the site generally fluctuates 

between the peat surface and ~20 cm depth, although during dry periods it is often 

drawn down to >35 cm (Coyle, unpublished data, 2008). The mean water 

extractable DOC is 312 ± 15.9 (SE) µg C g-1 dry soil and KCL extractable NO3
- 

and NH4
+ are 4.45 ± 0.48 (SE) and 21.8 ± 1.85 (SE) µg N g-1 dry soil, respectively 

(Dinsmore, unpublished data, 2008). Total N and S deposition at the site are 16.5 

kg N ha-1 a-1 and 6.9 kg S ha-1 a-1 respectively (Smith, personal communication, 

2008).  

To minimise variation in factors other than microtopography, the cores were all 

collected within an area of approximately 10 m2. Peat depth at the sample site was 

approximately 0.5 m, overlaying a mineral subsoil. Peat core pH ranged from 3.8-

4.3, typical of the catchment as a whole which ranges from 3.6-4.6 (Dinsmore, 

unpublished data). Mean bulk density was 0.12 g cm-3.  

Experimental Design 

Three distinct peatland topographic/vegetation features were identified as 

comprising the majority of the field heterogeneity; hollows, hummocks dominated 

by the rush Juncus effusus, and hummocks dominated by a mixture of grass and 

sedge. Eight cores were collected from each ecotope in December 2006; 24 cores 

in total. A 30 cm diameter, 50 cm long, stainless-steel, cylindrical corer was used 
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to cut into the peat. The core was then dug out, cut to size and immediately 

transferred to near-parallel sided buckets (30 cm diameter, 41 cm height) with as 

little disturbance to the soil as possible. The following terminology will be used 

henceforth in reference to the 3 different mesocosm types: hummock + J. effusus 

(Juncus/Hummock), hummock + grass and sedge (Sedge/Hummock), hollow 

(Hollow). 

Dip wells, consisting of perforated pipes inserted into the soil and sealed at the top 

with rubber bungs, were placed into each mesocosm. Deep and shallow soil 

atmosphere wells were created by inserting water tight, gas permeable tubing 

(Accurel©
, Gut et al. 1998) horizontally into the mesocosms at depths of 10 cm 

and 30 cm below the soil surface. The Accurel© was sealed to gas tight tubing 

(using Plasti Dip©) which was then extended to the mesocosm surface for sample 

collection (Fig. 1); the surface sampling port was closed to the atmosphere using a 

3-way tap. Mesocosms were individually placed within larger buckets and the 

space between filled with polystyrene chips to insulate and mimic field conditions 

(Fig. 1). Each mesocosm was assigned to either a high or low water table group, 

leading to a repeated measures factorial design. The mesocosms were arranged 

using a randomised block design into 6 rows of 4 under a rain shelter, located 

outside the Centre for Ecology and Hydrology Edinburgh, approximately 10 km 

from the Auchencorth Moss field site. Mesocosms were allowed to acclimatise in-

situ for 4 weeks before measurements began. 

Static water table treatment 

From core collection until the end of May 2007, water table depth was held 

constant by daily inspection and manually refilling with rain water collected on-

site. The mean ion concentrations in rainwater (mmol m-2 week-1), measured from 

June to October 2006, were as follows: Sodium 0.56; Ammonium 0.26; Potassium 

0.05; Calcium 0.37; Magnesium 0.13; Chloride 0.85; Nitrate 0.36; Sulphate 0.34 

(Cape et al., pre-publication, 2008). Water table depth in the high and low water 

table groups was held at 0-5 cm and 30-35 cm below the soil surface, respectively. 

Weekly measurements of CH4 and N2O were made using static chambers. A clear 

plastic lid was sealed to each mesocosm and air samples collected at time zero, 

after 20 minutes and after 40 minutes. Soil air samples were collected weekly 

from the gas permeable tubing, and water samples collected fortnightly from the 
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dip wells. Soil temperature at ~5 cm was measured at the same time as flux 

measurements and soil atmosphere sampling. Total mesocosm net ecosystem 

exchange (NEE) was measured using a static chamber connected to a PP-Systems 

EGM-4 infrared gas analyser, which measures CO2 concentrations every 4 

seconds. Measurements were made under 4 different light conditions produced 

using full sunlight, 1 shade cloth, 2 shade cloths and a black out cloth and 

combined to produce light response curves. Photosynthetically active radiation 

(PAR) and temperature were measured inside the NEE chamber alongside CO2 

concentration. Photosynthesis was calculated as total NEE minus the combined 

plant and soil respiration (NEE under dark conditions).  

Rewetting/Draining 

At the end of May 2007 (after approximately 14 weeks of measurements), the 

water table treatments were reversed. Drainage of the saturated mesocosms was 

achieved using a siphon placed in the dip well; re-wetting of the drier mesocosms 

was carried out by periodic watering over a 2 day period. Thereafter, CH4 and 

N2O fluxes were measured and solute samples collected daily for one week and 

then every 2 days for a second week. 

Analytical methods 

Both chamber and soil atmosphere samples were analysed using a HP5890 Series 

II gas chromatograph (detection limits: CO2 < 199 ppmv, CH4 < 1.26 ppmv, N2O 

< 0.2 ppmv). Water samples were analysed for DOC and DIC on a Rosemount-

Dohrmann DC-80 total organic carbon analyser (detection range 0.1 to 4000 

ppmv), using ultraviolet oxidation and sparging with N2 to remove acidified 

inorganic carbon. NO3
- and NH4

+ were analysed on a dual channel CHEMLAB 

continuous flow colorimetric analyser (detection range NH4
+-N: 0.25 to 3.0 ppmv; 

NO3
-N: 0.25 to 5.0 ppmv). 

Statistical Analysis 

Repeated measures MANOVA was used when testing the significance of 

mesocosm type and water table treatment on measured variables; an interaction 

term was also included in the model specification. ANOVA was used when 

considering mesocosm respiration, photosynthesis and NEE, with temperature as 
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a covariate where appropriate. Quoted test results refer to Pillai’s test statistic 

(Townend 2002) unless stated otherwise. Normality was assessed using the 

Kolmogorov-Smirnov test (Townend 2002) and datasets adjusted, where 

appropriate, using log transformations. Temperature responses were tested using 

regression; trend lines are compared using multiple regression with temperature, 

group identifier (e.g. water table treatment 1 or 2 referring to high and low 

respectively), and temperature*group as independent variables. Depending on the 

normality of the data, correlations were carried out using either Pearson’s product-

moment or Spearman’s rank correlation (Townend 2002). Where mean values are 

quoted, the ± value that follows refers to the standard error of the mean unless 

otherwise stated. Analyses were carried out in ‘Minitab15’. 

Results: 

Comparison of mesocosm types/peatland features 

The observed differences in species composition (Fig. 2) within the mesocosms 

was shown to be highly statistically significant using MANOVA (F = 6.36, p < 

0.01). All 3 mesocosm types had an average coverage of more than 60% moss. 

The ‘Sedge/Hummock’ group was dominated by grass and moss, and also 

contained a significant amount of the sedge E. vaginatum. The ‘Hollow’ group 

was dominated primarily by mosses and the ‘Juncus/Hummock’ group, whilst still 

being dominated by moss and grass, also contained an average of 40% J. effusus 

coverage. Small but significant differences were apparent in soil pH across 

mesocosm types; ‘Juncus/Hummock’ 4.2 ± 0.1 (SD), ‘Sedge/Hummock’ 3.9 ± 0.1 

(SD), ‘Hollow’ 4.0 ± 0.1 (SD).  

Static water table treatment 

Uptake/Emissions 

Mean combined plant and soil respiration across replicates during the static water 

table portion of the study ranged from 92 to 167 µg CO2 m-2 s-1 (Table 1). 

Respiration was highest in the ‘Sedge/Hummock’ group. In both the 

‘Sedge/Hummock’ and ‘Hollow’ mesocosms, respiration was higher in the low 

water table group; no difference was observed in the ‘Juncus/Hummock’ group. 
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Although the observed patterns were not statistically significant, this was 

expected due to the low level of replication. Light response curves were used to 

predict photosynthesis at a PAR of 210 µmol m-2 s-1, the mean PAR at the 

Auchencorth field site over the measurement period (Coyle, unpublished data). 

Photosynthesis (Table 1) was highest in the ‘Juncus/Hummock’ mesocosms, 

followed by the ‘Sedge/Hummock’ and finally the ‘Hollow’ mesocosms (F = 

5.25, p < 0.05). The effect of water table depth on photosynthesis was 

insignificant (F = 3.68, p < 0.10); however, lower water tables indicated a 44%, 

36% and 21% decrease in photosynthesis in the ‘Juncus/Hummock’, 

‘Sedge/Hummock’ and ‘Hollow’ mesocosms, respectively. The resulting NEE 

calculated from the respiration and photosynthesis data showed no significant 

effect of either mesocosm type or water table position. However, in general the 

lower water table treatment increased the flux of CO2 to the atmosphere (Table 1). 

The ‘Juncus/Hummock’ mesocosms in the high water table treatment were the 

only group to show a net CO2 uptake.  

Mean CH4 fluxes from individual chambers over the 14 week period of static 

water table treatment ranged from -30.7 to 358 µg CH4 m-2 h-1; mean N2O fluxes 

over the same period ranged from -17.3 to 12.5 µg N2O m-2 h-1. Averages across 

chamber types and water table levels for both CH4 and N2O are presented in Table 

1. Variation in mean CH4 flux was high within all groups, and neither water table 

level nor mesocosm type alone had a significant effect on CH4 efflux; the effect of 

water table was almost significant (F = 3.41, p < 0.10). However, there was a 

significant interaction effect (F = 1.65, p < 0.05). Only in the high water table 

group did mesocosm type have a significant effect on CH4 flux (Hollow > 

Sedge/Hummock > Juncus/Hummock). A highly significant increasing trend in 

mean CH4 flux (r2 = 0.59, p < 0.01) was observed in the ‘Sedge/Hummock’ time 

series plot (Fig. 3). When the experiment began mean CH4 emissions from the 

‘Sedge/Hummock’ mesocosms were similar in magnitude to the 

‘Juncus/Hummock’ mesocosms; however, from early April onwards the 

‘Sedge/Hummock’ mesocosms were more similar to the ‘Hollow’ mesocosms. 

Mean CH4 flux in all groups was positive, representing a net emission; however, 

uptake was measured at least once throughout the experiment in all but 2 of the 

mesocosms.  
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There was a net uptake of N2O in 21 of the 24 mesocosms over the 14 week 

period reflected in a net uptake across all chamber types irrespective of water 

table (Table 1); however, variation was extremely high. No significant effect of 

either water table depth or mesocosm type on N2O flux was observed using 

Pillai’s MANOVA test. However, using the Lawley-Hotelling (Townend 2002) 

MANOVA post-hoc, the interaction effect was statistically significant (F = 1.72, p 

< 0.05); again mesocosm type was only important in the high water table 

treatment.  

Below ground concentrations 

Mean CO2 concentrations in the deep and shallow soil atmosphere wells were 764 

± 52 and 680 ± 25 ppmv respectively; mean CH4 concentrations 127 ± 52 and 111 

± 37 ppmv and mean N2O concentrations 0.38 ± 0.01 and 0.37 ± 0.01 ppmv 

(Table 2). Strong positive correlations were found between the deep and shallow 

well concentrations for CO2 (r = 0.90, p < 0.01) and N2O (r = 0.93, p<0.01). 

However, no correlation was observed between CH4 concentrations in the deep 

and shallow wells (r = -0.10, p = 0.80). Variability in the measured CH4 

concentrations was large, ranging from below the detection limit to 5755 ppmv, 

suggesting the presence of pockets of high CH4 concentrations within the peat 

profile. No water table or mesocosm type effects were observed for CO2 or N2O 

concentrations (Table 2). Although not statistically significant, CH4 

concentrations appeared to be higher in the high water table treatment. The 

highest concentrations were observed in the ‘Sedge/Hummock’ mesocosms, 

where the water table effect was also most pronounced, followed by the 

‘Hollows’, and lastly the ‘Juncus/Hummock’ group, where no visible difference 

was apparent between high and low water table. 

Soil solution DOC concentrations ranged from 8.0-124 mg l-1 with a mean of 43 ± 

2.1 mg l-1. Concentrations of DIC, NO3
- and NH4

+ covered a much smaller range 

with mean values of 3.61 ± 0.26, 0.03 ± 0.01 and 1.16 ± 0.09 mg l-1 respectively. 

No consistent patterns were observed across mesocosm type or water table 

treatment in soil water solute concentrations.   
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Temperature sensitivity 

Both high and low water table groups showed a highly significant CH4 response 

(p < 0.01) to natural variations in soil temperature (Fig. 4a) during the static water 

table period. In the high water table group CH4 emissions increased with 

increasing temperature (r2 = 0.50); in the low water table group increasing 

temperature led to a decrease in emissions (r2 = 0.26). The slopes of the 2 

different trend lines were significantly different (t = -4.51, p < 0.001), with a 

much stronger response to temperature in the high water table group. The N2O 

flux responded positively to increased soil temperature (r2 = 0.28) with no 

significant difference in the trend lines between water table treatments (Fig. 4b). 

The N2O flux showed a switch from uptake to emissions between approximately 

7.5 and 8.5ºC.  

The temperature response of CH4 in the high water table treatment group, 

separated by mesocosm type is shown in Fig. 5. The trend lines for the 

‘Sedge/Hummock’ (r2 = 0.62, p < 0.01) and ‘Hollow’ (r2 = 0.43, p < 0.05) 

mesocosms were offset (i.e. the ‘Hollow’ mesocosms had higher CH4 emissions) 

though the slope of the lines (i.e. the response to increasing temperature) were 

similar. The slope of the ‘Juncus/Hummock’ trend line was negligible and not 

significant at p < 0.05. Mesocosm type had no significant effect on CH4 response 

in the low water table treatment group. As variability around all trend lines was 

great and as measurements were only made over a very limited temperature range, 

it would be misleading to present Q10 values for the data.  

Response to draining/rewetting 

After the initial 14 week static water table treatment, the water table levels in the 2 

treatments were switched. Over a 2 day period the high water table group was 

drained to a new water table depth of 30-35 cm, and the low water table group 

was wetted up until water table depth reached 0-5 cm. 

A significant and immediate pulse, raising the CH4 flux rate to over 160 µg m-2 h-1 

above what it was prior to rewetting, was observed in both the ‘Hollow’ and the 

‘Sedge/Hummock’ mesocosms; a similar, though slightly lower pulse was 

observed a day later in the ‘Juncus/Hummock’ mesocosms (Fig. 6a). The CH4 

flux returned to a rate similar to its pre-change mean before rising more slowly 

10 
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again after approximately 8-10 days. The rate of increase in the latter stage of the 

response was greatest in the ‘Sedge/Hummock’ mesocosms, followed by the 

‘Hollow’ mesocosms; very little increase was observed in the ‘Juncus/Hummock’ 

mesocosms. To test the significance of differences between mesocosm types, the 

post-change period was split into 3 separate time intervals; days 0-5, 5-10 and 10-

15. Each section was analyzed independently using a repeated measures 

MANOVA test. The test confirmed the statistical significance of the differences in 

mesocosm types between days 10-15 after rewetting (F = 4.00, p < 0.01).   

A pulse of CH4, similar to that caused by rewetting was also seen in response to 

drainage (Fig. 6c). However, the magnitude of this pulse was approximately 700 

µg m-2 h-1 above the pre-change mean in both the ‘Sedge/Hummock’ and the 

‘Hollow’ mesocosms, and more than 200 µg m-2 h-1 above the pre-change mean in 

the ‘Juncus/Hummock’ mesocosms; in all cases significantly higher than after 

rewetting. After ~8 days the fluxes appeared to level off at approximately -10, -70 

and -120 µg m-2 h-1 below the pre-change mean in the ‘Juncus/Hummock’, 

‘Sedge/Hummock’ and ‘Hollow’ mesocosms, respectively. The effect of 

mesocosm type on response to drainage was only significant between days 5-10 

(F = 2.95, p < 0.05) 

In both the rewetting and the draining treatments, peaks in the N2O response 

occurred after 2 days (Fig. 6b and d). The pulse effect occurred only in the 

‘Hollow’ mesocosms after rewetting, and in both the ‘Hollow’ and 

‘Juncus/Hummock’ mesocosms after draining. After the initial pulse, all 

mesocosms, both in the rewetting and drainage treatments followed a very similar 

pattern in terms of N2O response. This response showed no correlation with 

temperature. 

Solute concentrations were also collected and analysed for DOC, DIC, NH4
+ and 

NO3
- during both the rewetting and draining experiments. However, no significant 

response to draining/rewetting was observed. 
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Comparison between mesocosms and field conditions 

Mean NEE across the different water table treatments and mesocosm types ranged 

from -65 to 123 µg CO2 m-2 s-1 (Table 1). During the same study period, mean 

NEE measured at the Auchencorth Moss field site using eddy covariance was -8.4 

µg CO2 m-2 s-1 (Coyle, unpublished data). Despite the low replication, different 

conditions, and different measurement technique, the field site NEE is still within 

the range measured here. Mean CH4 and N2O fluxes ranged from 0.19 to 191 µg 

CH4 m-2 h-1 and from -3.4 to -0.55 µg N2O m-2 h-1 (Table 1). Fortnightly field 

measurements over comparable vegetation types during the same period gave a 

mean CH4 and N2O flux of 9.9 ± 4.1 µg CH4 m-2 h-1 and -3.3 ± 1.5 µg N2O m-2 h-1 

(Dinsmore, unpublished data); again the field mean is within the range measured 

in this study. Mean mesocosm DOC and NH4
+ concentrations were approximately 

double the mean concentrations measured in the field. The higher DOC and NH4
+ 

concentrations in the mesocosms may indicate an increase in mineralization 

caused by the death of plant roots cut during mesocosm collection; this may also 

explain why our mesocosms had a net CO2 emission whilst field measurements 

over the same period showed a net uptake. DIC and NO3
- concentrations were 

similar between field and mesocosms. In response to a number of GHGs and 

solutes, our mesocosms therefore appear to represent field conditions relatively 

well. 

Effect of water table depth and mesocosm type 

Although not statistically significant our results demonstrated that under lower 

water table conditions respiration increased and photosynthesis decreased. This is 

consistent with similar studies (e.g. Blodau et al. 2004; Moore and Roulet 1993), 

as water table controls the depth of the oxic peat layer, and hence the volume of 

peat where aerobic decomposition can occur (Moore and Dalva 1993; Silvola et 

al. 1996). However, the relationship between water table depth and respiration is 

not linear throughout the profile with several authors reporting a breakdown in the 

relationship below ~30 cm (e.g. Silvola 1996; Lafleur et al. 2005). Blodau et al. 

(2004) demonstrated a drop in photosynthesis of 24% and 42% in two different 

Canadian peatlands, associated with a 30 cm drop in water level; similarly, in this 
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study we measured a drop of between 21-44% with a similar water level change. 

In mesocosms dominated by J. effusus and E. vaginatum, Ström et al. (2005) 

measured mean respiration rates of 78 µg m-2 s-1 and 121 µg m-2 s-1 respectively, 

similar to the 100 µg m-2 s-1 and 123 µg m-2 s-1 for J. effusus and E. vaginatum in 

this study. The response of ecosystems to water table manipulations has 

previously been shown to be dominated primarily by processes associated with 

respiration rather than photosynthesis (Funk et al. 1994). As such, in both this 

study and others (for example Blodau and Moore 2003a; Chimner and Cooper 

2003; Moore and Dalva 1993), the net effect of lowered water tables is an increase 

in CO2 flux to the atmosphere. However, despite the agreement with similar 

studies, these results should not be directly extrapolated to predict the ecosystem 

response to longer-term water table draw-down. Laiho (2006) highlights the 

importance of differentiating between ‘wet’ and ‘dry’ sites. If deeper soil layers 

are continuously exposed to aerobic decomposition, the carbon at depth becomes 

highly recalcitrant. The associated decrease in decomposition potential is likely to 

negate the effect of an increased aerobic zone. Several other studies have also 

argued that in ‘dry’ peats, large relative changes in respiration at depth have little 

effect on surface fluxes due to the low contribution of deeper peat to total 

respiration (Blodau et al. 2007; Knorr et al. 2007; Lafleur et al. 2005). As the 

natural water table regime at Auchencorth often exposes deeper layers to aerobic 

conditions it is unsurprising that the relationship found here was small and not 

statistically significant.  

In accordance with previous studies (Aerts and Ludwig 1997; Moore and Dalva 

1993), we measured higher CH4 emissions in our high water table treatment. In 

the high water table group, the effect of mesocosm type on CH4 emissions was 

highly significant. Based on both current literature and our photosynthesis data 

(Table 1), we expected the order ‘Juncus/Hummock’ > ‘Sedge/Hummock’ > 

‘Hollow’ due to the potential for plant-mediated transport and substrate release 

(Greenup et al. 2000; Shannon et al. 1996; Yu et al. 1997). In this study we found 

the opposite to be true. Emissions were lower in the ‘Juncus/Hummock’ and the 

‘Sedge/Hummock’ mesocosms, both of which contained a large proportion of 

aerenchyma containing plants (J. effusus, D. flexuosa and E. vaginatum). 
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As well as providing a transport route for CH4, aerenchyma also transports O2 into 

the rhizosphere and can significantly alter the redox state of saturated peat, 

resulting in decreased methanogenesis and increased oxidation (Visser et al. 2000; 

Wiebner et al. 2002). Lombardi et al. (1997) measured CH4 oxidation potentials 

of 44-318 mg m-2 d-1 in the rhizosphere of common aerenchymous wetland 

species. The amount of radial oxygen loss through the plant roots is likely to be 

dependent on photosynthetic activity (Roura-Carol and Freeman 1999). In the low 

water table treatment group, due to the limited depth of our mesocosms, only a 

very shallow anoxic layer for methanogenesis is likely to have existed. The 

absence of a significant CH4 reservoir for plant roots to tap into may have 

restricted the potential for plant-mediated transport. Although the majority of 

studies have found a positive effect of vascular plants on CH4 emissions, a few 

have reported results similar to this study, where emission inhibition by 

rhizospheric oxidation appears to be greater than the increase in emissions via 

plant-mediated transport and enhanced substrate release (Grünfeld and Brix 1999; 

Kutzbach et al. 2004). Similarly Arah and Stephen (1998) found that increasing 

the root-mediated transport potential in a CH4 flux model resulted in decreased net 

emissions due to the increase in oxidation outweighing increased CH4 transport.  

The increase in CH4 emissions from the ‘Sedge/Hummock’ mesocosms 

throughout the study period (Fig. 3) may indicate a seasonal shift in the balance of 

positive and negative effects of vascular plants on CH4 emissions. The conduit 

potential of aerenchyma containing plants is likely to increase seasonally due to 

the relationship between root biomass and stem cross-sectional area (Arenovski 

and Howes 1992; Waddington et al. 1996). The production of deep roots reaching 

the anoxic peat layer (Wein 1973), or increased substrate release early in the 

growing season (Saarnio et al. 2004), may also cause seasonal changes in plant-

related emissions. The earlier initiation of E. vaginatum growth than Juncus 

effusus (Wein 1973) may explain why a similar increasing trend is not observed in 

the ‘Juncus/Hummock’ mesocosms. Longer-term measurements are needed to test 

this hypothesis. 

The pattern of below ground CH4 concentrations (‘Sedge/Hummock’ > ‘Hollow’) 

was opposite to that seen in surface emissions (‘Hollow’ > ‘Sedge/Hummock’). 

This suggests that although more CH4 is produced in the ‘Sedge/Hummock’ 
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mesocosms, there is a barrier preventing soil-atmosphere transfer. This could be 

either oxidation in the rhizosphere (assuming soil atmosphere wells did not 

sample the rhizosphere), or a physical barrier such as the thick layer of hummock 

biomass preventing diffusion across the soil-atmosphere boundary. As bubble 

formation does not occur until partial pressures of >0.21 atm (Fechner-Levy and 

Hemond 1996), this is unlikely to be important in our mesocosms. The extremely 

high variability in soil-atmosphere CH4 concentrations and the lack of correlation 

between shallow and deep wells may indicate spatial heterogeneity in rates of 

production and oxidation within the soil profile caused by plant roots. High 

concentrations in the Sedge/Hummock mesocosms may also be due to substrate 

availability. E. vaginatum has previously been shown to release much higher 

quantities of acetate, a substrate of major importance to CH4 production, than J. 

effusus (Ström et al. 2005). 

Relatively few conclusions can be drawn from the pattern of N2O fluxes and 

concentrations due to the very high temporal variability. Low NO3
- concentrations 

in soil water may indicate low nitrification rates. An increased rate of nitrification 

has been observed after water-table drawdown in several studies (Neill 1995; 

Regina et al. 1996). Similarly in this study, although not significant, 

concentrations of NO3
- were higher in the low water table treatment in both 

‘Sedge/Hummock’ and ‘Hollow’ mesocosms. Alternatively, the low NO3
- pool 

may be a consequence of high turnover rates. N2O consumption from complete 

denitrification may be the dominant process controlling N2O fluxes to and from 

this system.   

Temperature response 

The clear difference in the temperature response of CH4 emissions between the 

high and low water table groups (Fig. 4) was likely a result of different processes 

contributing to the net flux. In anoxic (high water table) conditions the dominant 

process was methanogenesis which increases emissions as microbial activity 

increases in response to increasing temperature. This is in agreement with 

previous studies which show a stronger temperature response in methanogenesis 

than methanotrophy (Dunfield et al. 1993). In oxic (low water table) conditions 

methanotrophy as well as methanogenesis contributed to the net flux, dampening 

the overall response. The responses of both the ‘Hollow’ and the 
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‘Sedge/Hummock’ mesocosms were similar, suggesting a common dominant 

process (methanogenesis). The ‘Juncus/Hummock’ however, more closely 

resembled the response of the low water table group, indicating that 

methanotrophy was also important. This supports the assertion that rhizospheric 

oxidation was important in the ‘Juncus/Hummock’ mesocosms. The temperature 

responses here appeared to be linear compared to the exponential responses 

observed in other studies (Dise et al. 1993; MacDonald et al. 1998).  However, 

this may simply be a consequence of the limited range of temperatures our 

mesocosms were exposed to. 

We found a positive linear response of N2O emissions to temperature with a 

switch from consumption to production between approximately 7.5 and 8.5ºC. 

This suggests that N2O producing processes are more responsive to temperature 

than N2O consumption processes. Water table position had no effect on the 

magnitude of the N2O temperature response. Further work is required to assess the 

validity of the observed switch from consumption to production as N2O fluxes in 

this study are low and variability high. 

Pulsing effect 

After switching water table positions, both drainage and rewetting produced 

evidence of a significant pulse in CH4 and N2O emissions within 1 or 2 days. This 

pulse may be the direct result of the physical disturbance (water table shift) 

causing a release of CH4 and N2O from below ground reservoirs. Episodic pulsing 

after water table drawdown was seen by both Moore et al. (1990) and Shurpali et 

al. (1993) and was attributed to degassing due to reduced hydrostatic pressure. 

Alternatively, pulses may be a biological response to increased substrate 

availability from enhanced biomass recycling or redox-induced chemical 

breakdown (Blodau and Moore 2003b). Similar pulses in mineralization rates 

have been observed in response to water level fluctuations (Aerts and Ludwig 

1997). After the initial pulse, the CH4 response to drainage occurred faster than 

the response to rewetting. This is consistent with previous studies (Whalen and 

Reeburgh 2000). N2O fluxes were similar across all mesocosm types and water 

table positions.  
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From continuous water table measurements made at the Auchencorth Moss 

peatland in 2007 (Coyle, unpublished data), a rise in water table by more than 20 

cm in less than 48 hours occurred 9 times in 8 months. Assuming emissions in 

both CH4 and N2O peak each time this occurs and the peak lasts approximately 24 

hours, fortnightly field measurements may fail to capture these peaks. The results 

from the mesocosm study suggest that CH4 pulsing after rewetting could 

potentially contribute an additional 16% to the average annual flux. Using the 

same assumptions, net N2O flux could switch from a net sink of 0.008 to a net 

source of 0.02 µg m-2 h-1 (Dinsmore et al., unpublished data, 2008). Although this 

is only a rough calculation and the assumptions are large, it illustrates the 

potential importance of these emission pulses after a sudden rise in field water 

table levels. No such calculation was carried out on the pulses observed after 

drainage as it is extremely unlikely that a water table drop of this magnitude 

would occur over only 2 days in the field. Further work is required to assess the 

actual implications of this pulsing under natural field conditions.   

Using the 100 year global warming potentials published by the IPCC (2007), the 

GHG fluxes in CO2 equivalents for each group of mesocosms was calculated 

(Table 3). In this system, CO2 fluxes dominate the budget entirely. CH4 fluxes are 

an order of magnitude smaller than in many studies (e.g. Dowrick et al. 2006; 

Hargreaves and Fowler 1998; Minkkinen et al. 2002; Minkkinen and Laine 2006; 

Roulet et al. 2007), though studies such as MacDonald et al (1998) found similar 

values in Scottish blanket peats. Fluxes of CO2-equivalents from N2O are in the 

same order of magnitude as CO2-equivalents from CH4. Lowering the water table 

by 30 cm greatly increased the net flux of CO2-equivalents to the atmosphere, 

which was dominated by NEE. Of the different mesocosm types, only the J. 

effusus dominated hummocks show a net uptake of CO2-equivalents. Hence it is 

important to accurately account for the relative proportions of each community 

type when up-scaling chamber measurements made in the field.   

Conclusions:  

Our results agree with previous studies on the flux responses to low water table 

conditions. We have also demonstrated the strong interaction between water table 
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depth and vegetation. The effect of vegetation within the mesocosms was counter 

to what we had originally hypothesised based on the available literature. What 

determines the ratio between flux enhancing and flux inhibiting mechanisms in 

plant communities is still largely unclear and may be related to both site-specific 

and species-specific variables, which may change seasonally with plant growth 

stage. Despite the uncertainty in the mechanisms involved, it is clear that species 

composition has a dramatic effect on ecosystem functioning, and as such it is 

important that community type is considered when up-scaling chamber 

measurements. It also highlights the need to include some form of vegetation 

succession in models used to predict long-term effects of landscape management 

and environmental change on GHG budgets.  

We observed a pulse in both CH4 and N2O emissions occurring between 1-2 days 

after manually changing the depth of the water table by ± 30 cm. Though further 

work is required to quantify the importance of this pulse under field conditions, it 

can be concluded that low frequency chamber measurements may significantly 

underestimate mean annual emissions.  
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Fig. 1 Illustration of mesocosm design. Note diagram is not to scale 

Fig. 2 Vegetation composition within different mesocosm types. Error bars represent standard 
deviations. Rush refers only to J. effusus and sedge to Eriophorum vaginatum. The grass was 
predominantly Deschamsia flexuosa; Agrostis stolonifera, Anthoxanthum odoratum, Festuca 
ovina, and Molinia caerulea are also present in some mesocosms. The dominant mosses are 
Sphagnum papillosa and Polytrichum commune. The herb species present were Potentilla erecta 
and Galium saxatile 

Fig. 3 Time series of mean CH4 emissions in high water table group during static water table 
treatment 

Fig. 4 (a) CH4 and (b) N2O flux response to temperature in high and low water table treatment 
groups 

Fig. 5 CH4 flux response to temperature in high water table treatment separated by mesocosm type 

Fig. 6 Change in flux relative to mean prior to water table switch; a) and b) illustrate response to 
rewetting, c) and d) illustrate response to draining. Positive values represent an increase from pre-
change mean; negative values indicate a decrease in flux rate from the pre-change mean 
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Tables 
Table 1 Mean (± SE) fluxes of CO2, CH4 and N2O separated by water table depth and 
mesocosm type. Values of CO2 are based on 2 sampling occasions; values for CH4 and N2O 
represent weekly fluxes the full 14 week static water table treatment. Note different units for 
CO2. 

 Juncus/Hummock  Sedge/Hummock  Hollow 
 High Low  High Low  High Low 

         
CO2 (µg m-2 s-1)         
Respiration 101± 12 102 ± 7.6  124 ± 10 167 ± 26  92 ± 7.1 105 ± 5.8 
Photosynthesis* 165 ± 75 92 ± 25  69 ± 24 44 ± 10  45 ± 13 36 ± 3.8 
NEE -65 ± 53 9.1 ± 11  55 ± 22 123 ± 19  58 ± 12 70 ± 3.8 
         
CH4 (µg m-2 h-1) 11 ± 5.2 0.19 ± 5.2  117 ± 28 3.2 ± 3.4  191 ± 27 5.8 ± 4.9 
         
N2O (µg m-2 h-1) -3.2 ± 2.2 -0.82 ± 2.1  -3.4 ± 2.1 -1.8 ± 1.7  -0.55 ± 1.5 -0.85 ± 2.0 
7 
8 

 

* Photosynthesis based on PAR = 210 µmol m-2 s-1 
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Table 2 Mean (± SE) concentrations of CO2, CH4 and N2O in soil atmosphere wells during 
static water table treatment. Units are ppmv 

 Juncus/Hummock  Sedge/Hummock  Hollow 
 High Low  High Low  High Low 

         
CO2          
Shallow 694 ± 88 722 ± 63  711 ± 71 687 ± 80  574 ± 63 695 ± 74 
Deep 739 ± 89 924 ± 203  726 ± 105 756 ± 102  801 ± 160 639 ± 60 
         
CH4          
Shallow 19 ± 8.2 7.1 ± 2.6  484 ± 173 88 ± 77  39 ± 14 29 ± 13 
Deep 19 ± 4.1 28 ± 8.2  222 ± 148 42 ± 24  433 ± 148 17 ± 9.3 
         
N2O          
Shallow 0.39 ± 0.02 0.42 ± 0.03  0.37 ± 0.02 0.38 ± 0.01  0.31 ± 0.01 0.37 ± 0.01 
Deep 0.44 ± 0.04 0.41 ± 0.04  0.37 ± 0.01 0.38 ± 0.01  0.31 ± 0.01 0.39 ± 0.01 

 4 
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Table 3 GHG fluxes from mesocosms using 100 yr global warming potentials of 298 for N2O 
and 25 for CH4 (IPCC 2007). Flux units are mg CO2-eq m-2 d-1 ± SE; positive and negative 
values represent emissions and uptake respectively 

 Water table CO2 CH4 N2O Net CO2-eq 
      

High -5592 ± 3264 6.7 ± 5.5 -23 ± 29 -5608 Juncus/Hummock Low 792 ± 936 6.2 ± 5.8 -6.0 ± 27 792 
      

High 4776 ± 1656 70 ± 30 -25 ± 26 4822 Sedge/Hummock Low 10608 ± 1176 1.9 ± 3.6 -13 ± 22 10597 
      

High 4008 ± 912 115 ± 29 -4.1 ± 19 4119 Hollow Low 6024 ± 288 3.4 ± 5.3 -6.0 ± 25 6021 
5 
6 
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