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Peatlands typically exhibit significant spatial heterogeneity which can lead to 

large uncertainties when catchment scale greenhouse gas fluxes are extrapolated from 

chamber measurements (generally <1 m2). Here we examined the underlying 

environmental and vegetation characteristics which led to within-site variability in 

both CH4 and N2O emissions and the importance of such variability in up-scaling. We 

also consider within-site variation in the controls of temporal dynamics. Net annual 

emissions (and coefficients of variation) for CH4 and N2O were 1.06 kg ha-1 y-1 

(300%) and 0.02 kg ha-1 y-1 (410%), respectively. The riparian zone was a significant 

CH4 hotspot contributing ~12% of the total catchment emissions whilst covering only 

~0.5% of the catchment area. In contrast to many other studies we found smaller CH4 

emissions and greater uptake in chambers containing either sedges or rushes. We also 

found clear differences in the drivers of temporal CH4 dynamics across the site, e.g. 

water table was important only in chambers which did not contain aerenchymous 

plants. We suggest that depending on the heterogeneity of the site, flux models could 

be improved by incorporating a number of spatially distinct sub-models, rather than a 

single model parameterized using whole-catchment averages.  

Greenhouse Gases, Variability, Peatlands, Microtopography, Vegetation
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Northern peatlands are currently thought to act as net sinks of CO2 (Gorham, 

1991). However, due to the prevalence of waterlogged conditions, they represent a 

significant net source of CH4 (Bartlett and Harriss, 1993; Huttunen et al., 2003) and in 

some cases a net source of N2O (Regina et al., 1996; Huttunen et al., 2002). In order 

to calculate a realistic global warming potential for peatland systems, all three of the 

aforementioned gases need to be accurately quantified and upscaled. It is also 

becoming increasingly important to understand what drives variability in the 

sink/source strength of the various greenhouse gases (GHG), in order to predict the 

biospheric feedback of peatlands in response to changes in peatland management and 

global climate.  

The availability of micrometeorological techniques has greatly improved our 

understanding of the temporal variability in CO2 emissions, revealing significant 

patterns in annual and inter-annual emissions (Lafleur et al., 2003; Lund et al., 2007). 

Furthermore, the availability of near-continuous datasets has led to a much greater 

understanding of the drivers of CO2 emission and uptake, allowing emission 

predictions to be made under different climate change scenarios (Griffis and Rouse, 

2001). Similar micrometeorological techniques for the measurement of CH4 and N2O 

are not widely used, with most current flux estimates from peatlands based on a series 

of enclosed chamber measurements (e.g. MacDonald et al., 1998; Whalen and 

Reeburgh, 2000; Laine et al., 2007; Roulet et al., 2007). However, with many studies 

repeatedly reporting high variability in fluxes both within and between sites (Bartlett 

and Harriss, 1993; Bubier et al., 1993; Waddington and Roulet, 1996), the uncertainty 

associated with up-scaling chamber measurements to annual catchment budget 
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estimates is often extremely large. Furthermore, such high uncertainty leads to 

difficulties in identifying the primary drivers of temporal variability and hence 

predicting future emissions under different climate change scenarios or management 

regimes.    

The hummock/hollow microtopography typical of many peatlands can cause 

significant variation in soil environmental conditions at scales not picked up by single 

chamber measurements (Nungesser, 2003). The preferential colonisation of 

hummocks or hollows by distinct plant communities reinforces differences due to 

topography alone by influencing the quantity and quality of soil organic substrate, and 

altering the aerobic capacity of the peat by transporting O2 to the rhizosphere. Plants 

containing aerenchymous tissue can also provide a direct pathway for many GHGs to 

the atmosphere, bypassing the aerobic peat horizon, and greatly increasing soil-

atmosphere fluxes (Whiting and Chanton, 1996; Ström et al., 2003; Minkkinen and 

Laine, 2006). A clear understanding of the major sources of variation within a site is 

essential both during the set-up of a study, when choosing where to place individual 

chambers, and during the up-scaling process so that individual chamber fluxes can be 

correctly weighted in the final estimate. Knowledge of expected variability is also 

required when deciding how many chambers are needed to achieve a specific level of 

confidence in the results; however this statistically ideal number is often not met due 

to time constraints on both field sampling and analysis.  

Although both temperature and water table have repeatedly been shown to be 

strong drivers of temporal variability in surface CH4 and N2O fluxes, studies often 

disagree as to their relative importance (Daulat and Clymo, 1998; Hargreaves and 

Fowler, 1998; Updegraff et al., 2001). It is likely, given the degree of within-site 
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variability often observed, that the primary drivers of temporal variability are not 

consistent across typical peatland sites. By examining how these drivers vary spatially 

this study aims to improve our understanding of the underlying processes that control 

surface emissions, and aid the design of future chamber studies to achieve the best 

possible up-scaled emission estimates.   

2. Materials and Methods 

2.1. Site description 

Auchencorth Moss is a relatively flat, low lying, acid peatland, located 

approximately 17 km south of Edinburgh, Scotland (55º47’34 N; 3º14’35 W). The site 

is designated as a ‘supersite’ under the ‘European Monitoring and Evaluation 

Programme’ (EMEP) and a ‘level-3’ site under the ‘NitroEurope’ project. Total 

nitrogen and sulphur deposition rates at the site are16.5 kg N ha-1 y-1 and 6.9 kg S ha-1 

y-1, respectively (Smith, personal communication, 2008). The land-use is primarily 

low-intensity sheep grazing with an area of peat extraction at the western edge of the 

catchment. Histosols (peats) cover approximately 85% of the catchment with areas of 

Gleysol (9%), Humic Gleysol (3%) and Cambisol (3%) occurring at the catchment 

margins; peat depth ranges from <0.5 m to >5 m (Billett et al., 2004). Mean annual 

rainfall (1995-2006) at the site is 1016 mm (Coyle, unpublished data, 2008); 

maximum and minimum monthly mean temperatures (1971-2000) are 19ºC in July 

and 0.7ºC in January, respectively (www.metoffice.gov.uk). The vegetation consists 

of a patchy mix of grasses, sedges and soft rush covering a base layer of moss on a 

typical peatland hummock/hollow microtopography. The dominant vascular species 

include Deschampsia flexuosa, Molinia caerulea, Festuca ovina, Eriophorum 

 5



angustifolium, Eriophorum vaginatum, Juncus effusus, Juncus squarrosus and 

Calluna vulgaris; bryophytes are dominated by Sphagnum and Polytrichum species. 
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2.2. Experimental design 

The full study area was separated into 3 sites approximately 0.6 km apart to 

cover the full range of soil-plant conditions; site 1 was located in the west of the 

catchment where drainage was better and patches of Calluna vulgaris were present; 

site 2 was located roughly in the middle of the catchment with an even mix of 

hummocks dominated by grasses and sedges, hummocks dominated by J. effusus and 

hollows; site 3 was located in the riparian zone dominated by J. effusus. Site 3 is often 

referred to as the ‘riparian zone’ throughout the text. In total, measurements were 

made from 21 chambers; 9 within site 1, 9 within site 2, and 3 within site 3.  

The full study area was also separated into distinct 

microtopographic/vegetative classes: plots dominated by C. vulgaris (Calluna), 

hummocks dominated by sedges and grasses (Sedge/Hummock), hummocks 

dominated by J. effusus (Juncus/Hummock), and hollows dominated by mosses 

(Hollow). Within site 1, 3 chambers were positioned on each of Calluna, 

Sedge/Hummock, and Juncus/Hummock; within site 2, 3 chambers were positioned 

on each of Sedge/Hummock, Juncus/Hummock and Hollow; the 3 chambers within 

site 3 were all placed upon Juncus/Hummocks. 

Flux measurements were made on all 21 chambers monthly from April 2006 

until October 2007. An additional monthly measurement was made from each of the 9 

chambers within site 2 from August 2006 until October 2007, leading to a fortnightly 

sampling frequency on 9 of the total 21 chambers, thus providing a better resolution 
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for examining temporal variability. Alongside flux measurements, soil temperature, 

moisture, water table depth and soil respiration were recorded and samples of soil 

atmosphere and soil water collected. Soil samples were collected monthly, though not 

on the same day as flux measurements.  

2.3. Flux measurements 

Flux measurements were made using the static chamber method described in 

Livingston and Hutchinson (1995). Polypropylene chamber bases were inserted into 

the soil to a depth of approximately 5 cm; the chamber bases remained in situ for the 

duration of the study. Lids consisted of a flexible, transparent, dome of polyethylene 

affixed to a polypropylene flange which could be securely attached to the chamber 

base during measurements (Clayton et al., 1994; MacDonald et al., 1996). The total 

enclosed volume was approximately 30 litres for chambers containing J. effusus and 

approximately 17 litres for all other chambers. Enclosure time generally ranged 

between 1-2 hours. As fluxes tended to be low, and direct sunlight or high 

temperatures rarely a problem at the site, up to 2 hours were required to collect gas at 

a sufficiently high concentration for accurate analysis. No significant levelling off of 

emissions was observed in the chambers with the highest recorded fluxes. Ambient air 

samples were collected at time zero with a further two samples of chamber air 

collected at the mid-point and end of the enclosure period. Air samples were stored in 

tedlar bags for up to one week prior to analysis using an HP5890 Series II gas 

chromatograph (detection limits: CO2 < 199 μl l-1 (ppmv), CH4 < 1.26 μl l-1, N2O < 

0.2 μl l-1) with electron capture (ECD) and flame ionisation detectors (FID) for N2O 

and CH4, respectively. Fluxes were calculated as the observed rate of concentration 

change times the enclosure volume to ground surface area ratio.  
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Soil temperature and moisture (mean of three theta probe readings) were 

recorded adjacent to each chamber during flux measurements. Soil respiration 

measurements were also made adjacent to each flux chamber using a PP-systems 

SCR-1 respiration chamber attached to an EGM-4 infra-red gas analyser. The 

chamber was attached to a plastic collar inserted ~5 cm into the soil to achieve an 

airtight seal and allow repeated measurements to be made in the same place. Soil 

atmosphere wells were created by inserting Accurel© water tight, gas permeable 

tubing (Gut et al., 1998) into the soil from 10 to 40 cm depth adjacent to each 

individual chamber before the study began. Air samples were then drawn from the 

Accurel each time chamber measurements were made and analysed for CO2, CH4 and 

N2O; CO2 was measured on the same gas chromatograph as CH4 and N2O using the 

FID with attached methanizer. Water table depth was measured and water samples 

collected from dip wells consisting of perforated pipes (4 cm diameter) inserted 

adjacent to each chamber. Water samples were analysed for DOC and DIC on a 

Rosemount-Dohrmann DC-80 total organic carbon analyser (detection range 0.1 to 

4000 mg l-1), using ultraviolet oxidation and sparging with N2 to remove acidified 

inorganic carbon; NO3 and NH4 were analysed on a dual channel CHEMLAB 

continuous flow colorimetric analyser (detection range NH4-N: 0.25 to 3.0 mg l-1; 

NO3-N: 0.25 to 5.0 mg l-1).  

Soil was collected from approximately 5 to 30 cm depth using a soil auger; 3 

samples from within 0.5 m of each chamber were combined. A sub-sample of soil was 

analysed for pH and the remainder frozen within 24 hours of collection for later 

extraction with KCl and water for NO3, NH4 and DOC. Extracts were analysed 
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alongside the soil solution samples. Percent moss, grass, sedge and rush were visually 

estimated for each individual chamber at the end of the study period.  

In addition to the above manual measurements, continuous measurements of 

air temperature, soil temperature at 5, 10, 20 and 40 cm depth, air pressure (mb), 

photosynthetically active radiation (PAR, µmol m-2 s-1) and net radiation (W m-2), 

were measured in the catchment at the EMEP flux tower site (Coyle, unpublished 

data, 2008) and utilised in temporal regression models.  

2.5. Statistical analysis 

Monthly measurements of all 21 chambers (plus auxiliary data) were used in 

the analyses of spatial variability. The data was separated prior to analysis into 3 

periods: growing season 2006, winter period 2006-2007 and growing season 2007 

(Figure 1). The growing season was from April until October. Mean daily CH4 and 

N2O fluxes were calculated by integration over each season. The seasonal arithmetic 

mean was used to describe temperature, soil respiration, pH, water table depth, soil 

moisture and soil extractable NO3, NH4 and DOC. However, due to the skewed 

distribution of the data, the geometric mean was used to describe soil solution NO3, 

NH4, DOC and DIC, and soil atmosphere CO2, CH4 and N2O concentrations. Where 

mean values are quoted, ± refers to the standard error of the mean unless otherwise 

stated.  

As the CH4 fluxes from Juncus/Hummock chambers in the riparian zone (site 

3) were highly and significantly different from the Juncus/Hummock chambers in 

both site 1 and site 2 (F = 18.6, P < 0.01), they were separated into a distinct class 

(Riparian). Chamber types (Calluna, Hollow, Sedge/Hummock, Juncus/Hummock 

 9



205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

and Riparian) were then compared using ANOVA tests after transformation to fit the 

normal distribution. Quoted test results refer to Pillai’s test statistic (Townend, 2002) 

unless otherwise stated. Correlations were tested using Spearman’s rank correlation. 

A combination of best subsets and backward selection stepwise regression was used 

to model CH4 and N2O fluxes using the full list of auxiliary data. Log transformations 

were performed to normalise positively skewed data; an arcsine transformation was 

applied to soil moisture values. Variables with P > 0.05 were allowed to remain in the 

final model if their exclusion resulted in a significant rise in the full-model P-value.  

Fortnightly measurements of the 9 chambers within site 2 (plus auxiliary data) 

were used for the analysis of temporal variability. The data were separated, prior to 

analysis, by chamber type (Hollow, Sedge/Hummock, Juncus/Hummock). As before, 

best-fit models for both CH4 and N2O emissions were created using a combination of 

best-subsets and backward selection stepwise regression.  

3. Results 

Over the full study period the mean of the integrated CH4 fluxes within the 

groups Calluna, Hollow, Sedge/Hummock, Juncus/Hummock and Riparian were 8.12, 

20.61, 2.30, 4.73 and 586 µg m-2 h-1, respectively (Table 1). Mean N2O fluxes across 

the same groups were 1.52, -1.18, 2.02, -0.68 and 3.87 µg m-2 h-1, respectively (Table 

1). Overall group was not a significant factor explaining either CH4 or N2O flux 

variability, however significant differences between specific groups are considered in 

more detail below. 

3.1. Spatial variability 

Influence of microtopographic/vegetative group 
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The mean CH4 flux from all chambers was 89.8 µg m-2 h-1; the median, 

maximum and minimum were 0.72, 990 and -25.6 µg m-2 h-1, respectively. The 

coefficient of variation in integrated means across the 21 individual chambers was 

300%. However, the distribution of the CH4 flux data was heavily skewed towards 2 

chambers in the riparian zone with means an order of magnitude higher than the rest 

of the chambers. As well as containing the 2 highest integrated means, the 3 chambers 

situated within the riparian zone also contained the minimum integrated mean value. 

Excluding the 3 chambers in the riparian zone (site 3), the new mean, median, 

maximum and minimum were 7.13, -0.98, 69.2 and -12.7 µg m-2 h-1, respectively. 

However, by excluding the riparian zone chambers, the coefficient of variation was 

only reduced to 284%. The N2O fluxes were much smaller and more variable than the 

CH4 fluxes, and followed a more normal distribution. The mean, median, maximum 

and minimum N2O fluxes across all chambers were 0.99, -0.36, 9.91 and -4.25 µg m-2 

h-1, respectively. The coefficient of variation in integrated means was 410%.  
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Variables which showed significant (P < 0.05) or near-significant (P < 0.10) 

differences across microtopographic/vegetative groups included pH, water table 

depth, soil extractable NH4 and DOC, soil solution DOC, NO3 and NH4 and soil 

atmosphere CH4, CO2 and N2O concentrations (Table 1). The Riparian chambers in 

particular showed characteristics distinct from the other groups (Table 2), of which 

the greatest difference was in pH; the mean pH across Riparian chambers was 5.83 

compared to a mean of 4.18 for all other groups combined.  

Over the full study period, only the Riparian chambers, when compared to 

each alternative group separately, showed significantly different CH4 fluxes (P < 

0.01). CH4 fluxes from the riparian zone were consistently higher, with a mean more 
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than an order of magnitude greater than the other groups (Table 1). A similar pattern 

was observed in below ground CH4 concentrations, with concentrations increasing in 

the order Sedge/Hummock < Juncus/Hummock < Hollow < Calluna < Riparian 

(Table 1). When the full dataset was considered collectively, the Spearman’s rank 

correlation between emissions and below-ground concentrations was not significant at 

the 95% confidence limit (t = 2.54, P = 0.08). However, when separated by season the 

results were significant in all cases (growing season 2006: t = 3.29, P < 0.01; winter 

season: t = 2.20, P < 0.05; growing season 2007: t = 2.45, P < 0.05). During growing 

season 2006, only the Riparian group had a net CH4 emission; however, due to high 

within group variability the difference from the other groups was not statistically 

significant. Net uptake was greatest in the Juncus/Hummock group followed by the 

Sedge/Hummock, Hollow and finally the Calluna chambers (Figure 2a). During the 

winter season, both the Hollow and Riparian chambers were statistically similar, 

showing much greater fluxes than the other groups (Figure 2b). In contrast to growing 

season 2006, when all but the Riparian chambers displayed a net uptake, net 

emissions were measured from all chambers during growing season 2007; again 

Riparian fluxes were significantly higher than fluxes from the other chamber types.  

A series of ANOVA tests were carried out comparing the conditions in the 

Riparian group (site 3) with all other chambers combined into a single group (Table 

2). Apart from high CH4 concentrations and emissions, the riparian zone was 

characterized by high soil respiration, pH and soil solution DIC concentrations 

relative to the rest of the sites. With the exception of the Juncus/Hummock group, the 

Riparian soil also contained significantly less extractable DOC than the other chamber 

types (Table 1).  
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The N2O fluxes were more variable and approximately one order of magnitude 

lower than CH4 fluxes. No significant differences were observed between groups 

when the full dataset was used. Again, no significant group effect was evident during 

the 2006 growing season (Figure 3a), with standard error bars crossing the x-axis in 

all but the Hollow and Juncus/Hummock groups, which both showed net N2O uptake. 

During the winter season (Figure 3b) a net uptake was measured in the Hollow 

chambers, in contrast to the net emissions measured in both the Sedge/Hummock and 

Juncus/Hummock groups. All groups displayed a net emission during growing season 

2007 (Figure 3c) with emissions from the Riparian chambers significantly greater than 

any other group.  

Modelling spatial variability 

Using best subset multiple regression on the full dataset (n = 21), spatial 

variability in CH4 fluxes could be modelled with an r2 of 0.81 (P < 0.01) using the 

variables soil moisture and soil CH4 concentration. When separated by season, soil 

CH4 concentration was the major variable evident in all models (data not shown). 

However, the model was highly influenced by the chambers situated in the riparian 

zone and therefore not applicable to the rest of the catchment. Model fitting was 

repeated after excluding the 3 chambers in the riparian zone (Table 3). Over the full 

study period an r2 of 0.46 was achieved using the variables percent sedge cover, pH, 

water extractable DOC, soil solution DIC and soil moisture. The variability in CH4 

flux during growing season 2006 was well modelled (r2 = 0.80), with emissions 

increasing in response to a lower proportion of rushes, a decrease in the depth of the 

water table and concentration of soil NO3, and an increase in soil moisture, soil 

solution DOC and below-ground CH4 concentration (Table 3b). Variability in CH4 
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emissions during the winter season was modeled (r2 = 0.36, P = 0.05), with negative 

correlations between CH4 emission and soil respiration and soil solution DIC, and 

positive correlations with percent moss cover and below-ground CH4 concentration 

(Table 3c). Lastly, the best model for emissions during growing season 2007 (r2 = 

0.45, P = 0.02) included percent sedge cover (negative) and soil pH (positive) (Table 

3d). 
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Although water table position appeared only in the 2006 growing season 

model (Table 3b), the maximum CH4 emissions recorded on each sampling occasion 

often occurred where the water table was closest to the surface. Within all 21 

chambers 3 chambers repeatedly ranked in the top 3 CH4 emitters, the same 3 

chambers repeatedly ranked among the 3 highest water tables and 3 highest soil 

moisture contents. For example, one of the chambers within the riparian zone ranked 

within the top 3 CH4 emitters on 94% of sampling occasions, the same chamber 

ranked among the top 3 highest water tables on 89% of sampling occasions.  

Spatial variability in N2O emissions amongst all chambers over the full study 

period, was best modeled using only soil respiration (r2 = 0.28, P < 0.01). Excluding 

the riparian chambers from the analysis, soil respiration was no longer significant and 

the best model (r2 = 0.25, P = 0.05) was achieved by including a negative correlation 

with pH and a positive correlation with below-ground N2O concentration (Table 3a); 

however neither pH nor below-ground N2O concentration was individually significant 

at the 95% confidence limit. Other variables which appeared in the seasonal models 

included soil CO2 concentration (winter season: t = -3.66, P < 0.01) and soil solution 

DOC (growing season 2007: t = 2.27, P < 0.05). 

3.2. Temporal variability (Site 2) 
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Temporal variability in CH4 emissions from all 9 chambers at site 2 was best 

modeled (r2 = 0.55, P < 0.01) using the variables soil moisture and soil temperature at 

40 cm depth (Table 4a). The mean (± SE) Q10 across all 9 chambers was 4.16 ± 0.96. 

Having separated the chambers by group, both the Hollows (r2 = 0.68, P < 0.01) and 

Juncus/Hummocks (r2 = 0.41, P < 0.01) responded negatively to soil respiration 

(Table 4b and d). However, in the Hollow group water table depth and soil 

temperature were also important. The primary drivers of emissions in the 

Sedge/Hummock plots appeared to be soil moisture and again soil temperature (Table 

4c). Neither the Sedge/Hummock nor the Juncus/Hummock plots appeared to be 

affected by changes in water table depth.  

Temporal variability in N2O emissions across all plots (Table 4a) was poorly 

captured; the best achievable model gave r2= 0.18 (P < 0.05). Again both soil 

respiration, to which emissions were negatively correlated, and soil temperature at 40 

cm depth appeared as primary variables using both the full 9 chambers and the 

Juncus/Hummock group alone. The mean (± SE) Q10 across the 9 chambers was 7.12 

± 1.25. Variability in emissions was best captured in the Hollow chambers where 

water table depth and soil moisture, in addition to soil respiration, were significant 

factors (Table 4b); N2O emissions increased in response to near-surface water tables 

and increasing soil moisture contents. Soil moisture was again significant in the 

Sedge/Hummock plots (Table 4c). Although soil temperature alone was not 

significant, its exclusion from the model increased the overall model P-value above 

0.05 and was therefore included.  

4. Discussion 

4.1. Importance of emission hotspots and spatial variability to up-scaling 
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Using an unsupervised, ground-truthed, classification of a Quickbird satellite 

image taken in May 2006 (Dinsmore, data not shown, 2008), and assuming a riparian 

zone spanning approximately 3 m either side of the Black Burn stream, the percent 

cover within the catchment of Calluna, Hollow, Sedge/Hummock, Juncus/Hummock 

and Riparian zone were estimated as 10%, 29%, 29%, 28% and 0.6%, respectively. 

Weighting the above means accordingly, and assuming values are representative of 

the mean daily emission, the mean catchment fluxes of CH4 and N2O from April 2006 

until October 2007 were 291 and 5.12 µg m-2 d-1, or 1.06 and 0.019 kg ha-1 y-1, 

respectively. Ignoring the different groups and treating the chambers as replicates 

gave mean fluxes for CH4 and N2O of 2156 and 23.6 µg m-2 d-1, respectively, or 171 

and 12.1 µg m-2 d-1 if the riparian chambers were excluded. With the riparian 

chambers included, treating the chambers as replicates significantly overestimated 

CH4 emissions, whilst excluding them led to an underestimation of emissions. N2O 

emissions were overestimated with or without the riparian chambers included. Both 

CH4 and N2O fluxes calculated in this study are at the low end of literature values for 

peatland systems (Regina et al., 1996; MacDonald et al., 1997; Hargreaves and 

Fowler, 1998; Laine et al., 2007; McNamara et al., 2008). This is most likely due to 

the relatively shallow peat layer underlying the chambers limiting CH4 production and 

low nitrate availability restricting denitrification. 

The riparian zone alone contributed ~12% of the total catchment CH4 

emission, highlighting the importance of identifying and including emission hotspots 

in catchment budgets even if they cover only a small proportion of the overall area, a 

result also found by McNamara et al. (2008). Even after separating the chambers into 

groups to minimize spatial variability, the uncertainty within each group was still 

large. Furthermore, the exact weight given to each group in the final catchment 

 16



373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

calculation has significant uncertainties. By sequentially changing the percent cover 

estimates by plus or minus 10% and evenly distributing the difference among the 

remaining groups, the total catchment CH4 and N2O means varied by up to 36% and 

up to 38% respectively. Despite the large measured fluxes, due to the relatively small 

area of the riparian zone, a 10% error in its relative size altered the final catchment 

mean by the least amount (CH4 2.86%, N2O 0.97%). 

4.2. Controls on spatial variation  

Clear differences in CH4 emissions were observed both between the growing 

seasons and the winter season, and between the growing seasons in 2006 and 2007, 

respectively (Figure 2). The differences were less pronounced for N2O fluxes, 

primarily due to the very large variation seen across all chamber types within seasons 

(Figure 3). The most striking difference between groups was the consistently large 

CH4 emissions and below-ground CH4 concentrations measured in the riparian 

chambers. Although DOC, often quoted as the primary substrate for methanogenic 

bacteria (Segers, 1998), was low in the riparian zone (247 µg C g-1) compared to the 

rest of the catchment (386 µg C g-1), the pH was significantly higher (Riparian 5.83, 

Catchment 4.81), hence closer to the methanogenic optima of ~7 (Segers, 1998). 

Studies have repeatedly reported an increase in potential CH4 production in response 

to increased pH (Yavitt et al., 1987; Dunfield et al., 1993; Valentine et al., 1994). The 

depth of the water table at the riparian site was not significantly higher than the rest of 

the catchment due to extremely high variability among the 3 riparian chambers. 

However, in 2 of the 3 riparian chambers water table was repeatedly in the top 3 

highest. In particular, one of the chambers, which was also in the top 3 highest CH4 

emitters on 94% of sampling occasions, had the highest water table on 89% of 
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occasions. Even during the relatively dry summer of 2006 when catchment water 

tables were drawn down to an average of almost 50 cm below the soil surface, the 

water table at this chamber remained within 18 cm of the surface. 

Among the variables included in the CH4 flux spatial variation models (Table 

3) were pH, DOC, water table depth  and soil moisture. The correlation with water 

table depth has been well documented in previous studies (Moore and Dalva, 1993; 

Aerts and Ludwig, 1997; Hargreaves and Fowler, 1998; MacDonald et al., 1998; 

Dinsmore et al., in press). Soil moisture is strongly linked to water table depth and 

may act as an indication of not only current but also antecedent water levels. 

Therefore in some cases soil moisture represents a better indicator of CH4 emission 

than an instantaneous water table measurement. The effect of water table depth on 

CH4 emissions was only significant during growing season 2006, when it ranged from 

approximately 5 to 50 cm below the peat surface. Similarly Shannon and White 

(1994) found that water table was only important in one of 3 annual cycles, 

corresponding to the year with the greatest range of water table depths (15cm – 50 

cm). Soil respiration represents a measure of aerobic microbial activity and thus is 

likely to correlate strongly with rates of CH4 oxidation, hence the negative correlation 

with emissions during the winter season.  

During the growing seasons CH4 emissions were negatively correlated to the 

frequency of either rushes or sedges inside the chambers (Table 3b and d). Although 

contrary to much of the current literature which suggests the presence of aerenchyma 

containing vegetation (i.e. rushes and sedges) increases emissions (Shannon et al., 

1996; Yu et al., 1997; Greenup et al., 2000), a similar result to that observed here was 

found in an earlier study with mesocosms collected from Auchencorth Moss 
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(Dinsmore et al., in press). As well as providing a source of readily available organic 

substrate, plants containing aerenchymous tissue can provide a direct pathway for 

many greenhouse gases to the atmosphere, bypassing the aerobic surface horizon and 

therefore reducing the potential for oxidation (Bartlett and Harriss, 1993; Minkkinen 

and Laine, 2006). However, studies have also shown that aerenchyma can transport 

O2 into the rhizosphere and can significantly alter the redox state of the surrounding 

peat (Visser et al., 2000; Wiebner et al., 2002). Similarly, Arah and Stephen (1998) 

found that increasing root-mediated transport in a CH4 flux model led to a decrease in 

simulated CH4 emissions, due to the increase in oxidation outweighing the positive 

influence of increased CH4 transport.  

For emissions to increase via plant-mediated transport, roots must penetrate 

areas of high CH4 production, thought to occur ~15-20 cm below the water table 

(Daulat and Clymo, 1998; Kettunen et al., 1999), and bypass the surface oxidizing 

peat layer. As the water table was drawn down to almost 50 cm during much of the 

2006 growing season, and repeatedly to similar low levels during 2007, it is likely that 

no significant reservoir of CH4 was present in the shallow peat for plant roots to tap 

into. Roura-Carol and Freeman (1999) suggest that the radial loss of O2 from plant 

roots is likely to be dependent on photosynthetic activity. Rhizospheric oxidation is 

therefore likely to be minimal during the winter when plants are relatively inactive, 

and this may explain the lack of an aerenchymous vegetation variable in our winter 

season model (Table 3c). In the riparian zone where water table levels remained high 

throughout the growing season and high below-ground CH4 concentrations were 

evident, the effect of plant-mediated transport may outweigh rhizospheric oxidation. 

However, this could not be tested in this study as all our riparian chambers included J. 

effusus.  
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N2O emissions were negatively correlated (P < 0.1) with soil pH in both the 

full study period and the growing season 2006 models (Table 3a and b).The optimum 

pH from denitrifiers is often thought to be between approximately 6.5-8.0 (Knowles, 

1981; Šimek and Cooper, 2002), therefore any increase above the mean catchment pH 

of 4.18 should theoretically increase N2O production. However the partitioning of 

N2O and N2 is also influenced by pH with a higher proportion of N2O in more acid 

conditions (Šimek et al., 2002).  Soil pH was also strongly negatively correlated with 

both soil extractable NO3 (r = -0.61, P < 0.001) and soil extractable NH4 (r = -0.75, P 

< 0.01) concentrations over the same period. Therefore the reduction of N2O 

emissions at higher pH values could also have occurred as an indirect response to low 

soil nitrogen availability.   
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4.3. Drivers of temporal variation (site 2) 

Considering all 9 plots within site 2 where measurements were made 

fortnightly, the main drivers of temporal variability in CH4 emissions appeared to be 

soil moisture and soil temperature (Table 4a). The temporal response in CH4 

emissions to variations in temperature is consistent with previous studies (Frolking 

and Crill, 1994; Shannon and White, 1994; Laine et al., 2007) and the mean Q10 of 

4.16 is similar to values previously reported for a different Scottish peatland 

(MacDonald et al., 1998). Soil temperature was also an important driver of temporal 

N2O dynamics with a very high Q10 of 7.12, and an apparent switch from 

consumption to production at approximately 8ºC (data not shown). A very similar 

result was observed by Dinsmore et al. (in press) in mesocosms collected from 

Auchencorth Moss, where a switch from consumption to production was recorded 

between approximately 7.5 and 8.5ºC. However, as was also the case in Dinsmore et 
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al. (in press), N2O fluxes are low and variability high, so further work is required to 

assess the significance of this switch. 

Net CH4 flux is dependent on the balance between oxidation and production 

processes. As the temperature response in methanogens is generally greater than that 

of methanotrophs (Segers, 1998), the overall effect on net emissions is positive. 

Where temperature is a significant driver of variability, as in both Hollow and 

Sedge/Hummock chambers, it suggests that variability is due primarily to changes in 

methanogen activity rather than oxidation. However the primary correlate with net 

emissions in the Juncus/Hummock plots was soil respiration, itself likely to be an 

indicator of aerobic microbial activity, and as such linked to potential oxidation. The 

dominance of oxidation in controlling emission variability in the Juncus/Hummock 

plots may be due to potential methanogenesis being limited by lower substrate 

availability, possibly reflected in the lower concentrations of extractable DOC in the 

Juncus/Hummock chambers (Table 1). Hence the controls on temporal changes in 

CH4 emissions appear to be variable across the site. 

Although significant changes in water table depth (e.g. drainage or drain 

blocking) have repeatedly been shown to strongly influence CH4 emissions (Alm et 

al., 1999; Strack et al., 2004), a much weaker relationship is often observed with 

temporal water table variability in the field (Frolking and Crill, 1994; Shannon and 

White, 1994). In our study water table was a significant correlate only in the Hollow 

chambers, although soil moisture, which may provide a better measure of both current 

and antecedent soil water conditions, was also included in the Sedge/Hummock 

model. The presence of aerenchyma containing vegetation in the Sedge/Hummock 

and Juncus/Hummock chambers might have partially off-set any increase in CH4 
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emissions associated with a rise in water table by increasing oxidation in the 

rhizosphere. Again the drivers of temporal variability do not appear consistent across 

the site; hence differences between studies in the importance of water table as a driver 

of variability may be caused in part by differences in site-specific vegetation cover.  

4.4. Conclusions  

CH4 emissions varied considerably across the catchment, with the riparian 

zone representing a significant hotspot. High emissions also appeared to be linked to 

areas with consistently near-surface water tables. Contrary to many previous studies, 

the presence of either sedges or rushes containing aerenchymous tissue decreased net 

CH4 emissions during the 2 growing seasons. Upscaling the calculated fluxes using 

vegetation cover estimates from a satellite image, gave mean catchment CH4 and N2O 

emissions of 291 µg CH4 m-2 d-1 and 5.12 µg N2O m-2 d-1, although these values are 

extremely sensitive to error in the cover estimates. Hence it is important when 

planning future studies to identify the presence of significant emission hotspots, such 

as the riparian zone or areas with a consistently near-surface water table, prior to 

experimental set-up. 

The drivers of temporal variability were not consistent across the study site. 

The within-site differences in drivers found at Auchencorth Moss, possibly linked in 

this case to vegetation and substrate availability, may partially explain the 

discrepancies between previous studies. Depending on the heterogeneity of the site, 

creating a number of spatially distinct integrated models which are parameterized 

independently, may be more accurate than using a single model based on averaged 

catchment values.  
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 Table 1 Mean ± SE of data from full study period, separated by chamber type. P-
values from ANOVA’s testing for significant between group differences are indicated 
by asterisks where * and ** refer to P < 0.05 and P < 0.01, respectively; † indicates that 
the result was not significant but had P < 0.10. 

665 
666 
667 
668 

  Calluna Hollow Sedge/Hummock Juncus/Hummock Riparian 
      

CH4 (µg m-2 h-1) 8.12 ± 5.77 20.6 ± 24.3 2.30 ± 6.47 4.73 ± 6.52 586 ± 311 
N2O (µg m-2 h-1) 1.52 ± 3.34 -1.18 ± 1.49 2.02 ± 1.97 -0.68 ± 1.36 3.87 ± 1.35 
Soil respiration (g m-2 h-1) 0.29 ± 0.04 0.24 ± 0.01 0.28 ± 0.02 0.37 ± 0.11 0.45 ± 0.06 
      

Soil pH ** 3.74 ± 0.01 4.54 ± 0.09 4.03 ± 0.12 4.41 ± 0.07 5.83 ± 0.28 
Water table depth (cm) † -20.7 ± 0.89 -18.5 ± 2.65 -27.2 ± 2.25 -27.8 ± 2.88 -23.4 ± 8.1 
Soil moisture (m3 m-3) 0.85 ± 0.04 0.88 ± 0.02 0.85 ± 0.02 0.85 ± 0.02 0.88 ± 0.04 
      

Soil extractable NO3 (µg N g-1)  5.08 ± 0.90 3.14 ± 1.05 4.38 ± 0.91 3.61 ± 0.45 4.57 ± 2.41 
Soil extractable NH4 (µg N g-1) ** 42.9 ± 0.95  18.0 ± 3.31 21.7 ± 2.76 18.9 ± 0.73 24.8 ± 10.5 
Soil extractable DOC(µg C g-1) * 595 ± 56 301 ± 57 410 ± 59 239 ± 11 247 ± 154 
      

Soil solution NO3 (mg N l-1) † 0.17± 0.02 0.12 ± 0.02 0.12 ± 0.01 0.14 ± 0.01 0.15 ± 0.04 
Soil solution NH4 (mg N l-1) ** 0.58 ± 0.17 0.08 ± 0.01 0.23 ± 0.03 0.17 ± 0.03 0.14 ± 0.04 
Soil solution DOC (mg C l-1) * 33.0 ± 5.67 17.0 ± 0.92 23.8 ± 2.09 22.6 ± 2.84 17.3 ± 1.38 
Soil solution DIC (mg C l-1) 2.24 ± 0.20 2.59 ± 0.51 2.76 ± 0.28 2.70 ± 0.31 3.88 ± 1.06 
      

Soil CH4 concentration (μl l-1) ** 9.35 ± 5.27 5.52 ± 1.13 2.73 ± 0.29 3.13 ± 0.41 48.2 ± 31.7 
Soil CO2 concentration (μl l-1) * 4490 ± 894 3850 ± 802 2680 ± 411 3150 ± 535 2890 ± 538 
Soil N2O concentration (μl l-1) 0.35 ± 0.01 0.36 ± 0.02 0.44 ± 0.05 0.44 ± 0.03 0.37 ± 0.04 

669  

 31



Table 2 Results from ANOVA tests describing variables which make Riparian 

chambers distinct from all other groups combined. Arrows indicate whether variable 

is higher or lower in Riparian chambers.  

670 

671 

672 

Variable   F P-value 

CH4 flux ↑ 18.55 < 0.01 
Soil respiration ↑ 3.94 < 0.01 
pH ↑ 52 < 0.01 
Soil extracted DOC ↓ 3.51 0.08 
Soil solution DIC ↑ 5.33 0.03 
Soil CH4 concentration ↑ 13.30 < 0.01 
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Table 3 Results from best subset multiple regression model describing the spatial 

variation in CH4 and N2O fluxes with the riparian chambers excluded across a) the 

full dataset, b) growing season 2006, c) the winter season 2006-07 and d) growing 

season 2007. 

673 

674 

675 

676 

CH4 flux  N2O flux 
Variable t P   Variable t P 
       

a) Full study period       
       

(r2 = 0.46; P = 0.03)  (r2 = 0.25; P = 0.05) 
Intercept --- ---  Intercept --- --- 
Sedges (%) -1.37 0.10  pH -1.94 0.07 
pH 2.39 0.03  Soil N2O concentration 1.81 0.09 
Extractable DOC 2.22 0.05     
Soil solution DIC -2.50 0.03     
Soil moisture 1.92 0.08     
       

b) Growing season 2006       
       

(r2 = 0.80; P < 0.01)    (r2 = 0.14; P = 0.07)   
Intercept --- ---  Intercept --- --- 
Rushes (%) -4.04 < 0.01  pH -1.93 0.07 
Water table depth -2.52 0.03     

Soil moisture 6.04 < 0.01     
Extractable NO3 -3.54 < 0.01     
Soil solution DOC 2.65 0.02     
Soil CH4 concentration 2.48 0.03     
       

c) Winter season 2006-07       
       

(r2 = 0.36; P = 0.05)    (r2 = 0.44; P < 0.01)   
Intercept --- ---  Intercept --- --- 
Soil respiration -2.28 0.04  Soil CO2 concentration -3.66 < 0.01 
Soil solution DIC -2.65 0.02     

Soil CH4 concentration 2.70 0.02     

Mosses (%) 2.36 0.04     

       

d) Growing season 2007       
       

(r2 = 0.45; P = 0.02)    (r2 = 0.65; P < 0.01)   

Intercept --- ---  Intercept --- --- 
Sedges (%) -2.07 0.06  pH 2.58 0.02 
pH 2.07 0.02  Soil solution DOC 2.27 0.04 
    Soil N2O concentration 1.69 0.12 

 33



Table 4 Results from best subset multiple regression model describing the temporal 

variation in CH4 and N2O fluxes across a) all chambers within site 2 (n = 9), b) 

Hollow chambers within site 2 (n = 3), c) Sedge/Hummock chambers within site 2 (n 

= 3) and d) Juncus/Hummock chambers within site 2 (n = 3) 

677 

678 

679 

680 

CH4 flux  N2O flux 
Variable t P   Variable t P 
       
a) All chambers       
       
(r2 = 0.55; P < 0.01)    (r2 = 0.18; P = 0.03)   
Intercept --- ---  Intercept --- --- 
Soil moisture 5.85 < 0.01  Soil respiration -2.67 0.01 
Soil temperature (40 cm) 3.45 < 0.01  Soil temperature (40 cm) 1.76 0.09 
       
b) Hollow       
       
(r2 = 0.68; P < 0.01)    (r2 = 0.45; P < 0.01)   
Intercept --- ---  Intercept --- --- 
Soil respiration -2.09 0.05  Soil respiration -1.98 0.06 
Water table depth -6.13 < 0.01  Soil moisture 2.00 0.06 
Soil temperature (5 cm) 4.59 < 0.01  Water table depth -4.43 < 0.01 
       
c) Sedge/Hummock       
       
(r2 = 0.50; P < 0.01)    (r2 = 0.25; P = 0.01)   
Intercept --- ---  Intercept --- --- 
Soil moisture 5.13 < 0.01  Soil moisture 3.28 < 0.01 
Soil temperature (40 cm) 3.85 < 0.01  Soil temperature (40 cm) 1.55 0.13 
       
d) Juncus/Hummock       
       
(r2 = 0.41; P < 0.01)    (r2 = 0.16; P = 0.04)   
Intercept --- ---  Intercept --- --- 
Soil respiration -4.40 < 0.01  Soil respiration -2.24 0.03 
    Soil temperature (40 cm) 2.07 0.05 
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Figure Legends 681 

682 

683 

684 

685 

686 

687 

688 

689 

690 

691 

692 

693 

Figure 1 Time series of a) median CH4 and N2O fluxes from 9 chambers at site 2, b) 

water table depth and soil moisture and c) soil temperature and respiration over the 

study period. The dashed lines separate the study into growing season 2006, winter 

period 2006-07 and growing season 2007, respectively 

Figure 2 Mean integrated CH4 flux during a) growing season 2006, b) the winter 

period and c) growing season 2007, separated by microtopographic/vegetative group. 

Error bars represent the standard error of the mean. Common letters indicate 

statistically similar fluxes (P < 0.05) 

Figure 3 Mean integrated N2O flux during a) growing season 2006, b) winter period 

2006-07 and c) growing season 2007, separated by microtopographic/vegetative 

group. Error bars represent the standard error of the mean. Common letters indicate 

statistically similar fluxes (P < 0.10) 
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694 Figure 1 
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Figure 2 
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699 Figure 3 
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