nerc.ac.uk

Ecological networks – beyond food webs

Ings, Thomas C.; Montoya, Jose M.; Bascompte, Jordi; Blüthgen, Nico; Brown, Lee; Dormann, Carsten F.; Edwards, Francois; Figueroa, David; Jacob, Ute; Jones, J. Iwan; Lauridsen, Rasmus B.; Ledger, Mark E.; Lewis, Hannah M.; Olesen, Jens M.; van Veen, F.J. Frank; Warren, Phil H.; Woodward, Guy. 2009 Ecological networks – beyond food webs. Journal of Animal Ecology, 78 (1). 253-269. 10.1111/j.1365-2656.2008.01460.x

Full text not available from this repository.

Abstract/Summary

1. A fundamental goal of ecological network research is to understand how the complexity observed in nature can persist and how this affects ecosystem functioning. This is essential for us to be able to predict, and eventually mitigate, the consequences of increasing environmental perturbations such as habitat loss, climate change, and invasions of exotic species. 2. Ecological networks can be subdivided into three broad types: ‘traditional’ food webs, mutualistic networks and host–parasitoid networks. There is a recent trend towards cross-comparisons among network types and also to take a more mechanistic, as opposed to phenomenological, perspective. For example, analysis of network configurations, such as compartments, allows us to explore the role of co-evolution in structuring mutualistic networks and host–parasitoid networks, and of body size in food webs. 3. Research into ecological networks has recently undergone a renaissance, leading to the production of a new catalogue of evermore complete, taxonomically resolved, and quantitative data. Novel topological patterns have been unearthed and it is increasingly evident that it is the distribution of interaction strengths and the configuration of complexity, rather than just its magnitude, that governs network stability and structure. 4. Another significant advance is the growing recognition of the importance of individual traits and behaviour: interactions, after all, occur between individuals. The new generation of high-quality networks is now enabling us to move away from describing networks based on species-averaged data and to start exploring patterns based on individuals. Such refinements will enable us to address more general ecological questions relating to foraging theory and the recent metabolic theory of ecology. 5. We conclude by suggesting a number of ‘dead ends’ and ‘fruitful avenues’ for future research into ecological networks.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1111/j.1365-2656.2008.01460.x
Programmes: CEH Programmes pre-2009 publications > Water > WA02 Quantifying processes that link water quality and quantity, biota and physical environment > WA02.4 Biological interactions
CEH Sections: Acreman
ISSN: 0021-8790
Additional Keywords: mutualistic networks, host-parasitoid interactions, metabolic theory of ecology, ecological stoichiometry, foraging theory
NORA Subject Terms: Ecology and Environment
Date made live: 26 Mar 2009 13:16
URI: http://nora.nerc.ac.uk/id/eprint/5434

Actions (login required)

View Item View Item