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Abstract

Malaria transmission across sub-Saharan Africa is sensitive to rainfall and temperature.

Whilst different malaria modelling techniques and climate simulations have been used to

predict malaria transmission risk, most of these studies use coarse-resolution climate mod-

els. In these models convection, atmospheric vertical motion driven by instability gradients

and responsible for heavy rainfall, is parameterised. Over the past decade enhanced

computational capabilities have enabled the simulation of high-resolution continental-scale

climates with an explicit representation of convection. In this study we use two malaria mod-

els, the Liverpool Malaria Model (LMM) and Vector-Borne Disease Community Model of the

International Centre for Theoretical Physics (VECTRI), to investigate the effect of explicitly

representing convection on simulated malaria transmission. The concluded impact of explic-

itly representing convection on simulated malaria transmission depends on the chosen

malaria model and local climatic conditions. For instance, in the East African highlands,

cooler temperatures when explicitly representing convection decreases LMM-predicted

malaria transmission risk by approximately 55%, but has a negligible effect in VECTRI simu-

lations. Even though explicitly representing convection improves rainfall characteristics,

concluding that explicit convection improves simulated malaria transmission depends on

the chosen metric and malaria model. For example, whilst we conclude improvements of

45% and 23% in root mean squared differences of the annual-mean reproduction number

and entomological inoculation rate for VECTRI and the LMM respectively, bias-correcting

mean climate conditions minimises these improvements. The projected impact of anthropo-

genic climate change on malaria incidence is also sensitive to the chosen malaria model

and representation of convection. The LMM is relatively insensitive to future changes in pre-

cipitation intensity, whilst VECTRI predicts increased risk across the Sahel due to enhanced
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rainfall. We postulate that VECTRI’s enhanced sensitivity to precipitation changes com-

pared to the LMM is due to the inclusion of surface hydrology. Future research should con-

tinue assessing the effect of high-resolution climate modelling in impact-based forecasting.

1 Introduction

Malaria is an infectious disease which is transmitted by female mosquitoes of the Anopheles
species. Whilst initial symptoms are mild, if not treated malaria can lead to severe illness and

death [1]. In 2020 there were approximately 241 million malaria cases worldwide, with approx-

imately 95% of these cases occurring in Africa [2]. Even with substantial efforts to alleviate the

societal burden of malaria [3–6], the disease is still responsible for more than half a million

deaths across Africa every year, with approximately 80% of fatalities being children aged under

5 [2].

As climate conditions influence multiple components of an Anopheles mosquito’s life

cycle, malaria transmission is highly sensitive to local weather conditions [7–9]. Firstly, the lay-

ing of eggs at the beginning of a mosquito’s life cycle relies on open water bodies and substan-

tial precipitation accumulations [10, 11]. Under a dry environment a relatively small number

of eggs are laid, whilst excessive rainfall can wash away breeding sites altogether [12]. Mosquito

survival during other aquatic life cycle components, including the egg, larval and pupal stage,

also depends on precipitation totals [13–15]. For example, minimal precipitation after the lay-

ing of eggs can lead to overcrowding and poor water quality. Adult mosquitoes are less sensi-

tive to rainfall and more dependent on temperature and relative humidity [8, 16, 17]. Daily-

mean temperatures outside of 5 to 40˚C are fatal for adult Anopheles mosquitoes [14], whilst

the largest probabilities for Anopheles survival has been observed and modelled between 10

and 25˚C [8, 16, 18]. As well as climate conditions influencing stages of a mosquito’s life cycle,

the development of the malaria parasite within the mosquito itself, often referred to as the spo-

rogonic cycle, is also sensitive to temperature [16, 17, 19]. The majority of studies conclude

that the development of most Plasmodium malaria parasites ceases below temperatures

between 14.5 and 19˚C [20–22]. The multiple mechanisms with which weather conditions

affect malaria transmission leads to a non-linear relationship [9], making it non-trivial to pre-

dict the influence of weather conditions on malaria incidence. As well as climate-driven uncer-

tainties, non-climatic environmental factors such as water quality, food supply, predators and

variability amongst mosquito species, increase the complexity at predicting malaria transmis-

sion [23–26]. Additionally, social-economic factors impacting the administration of disease

control measures, including insecticide spraying, bed nets and treatment of cases, can vary the

severity and number of malaria infections [27–29].

Despite the numerous complexities involved in predicting malaria incidence, several

research groups have developed models for malaria transmission [8, 14, 28, 30, 31]. These

models have been used to predict malaria transmission at various timescales including sub-

seasonal and decadal [32–34]. Global and regional climate change risk assessments investigat-

ing the impact of a warmer climate on malaria transmission predict decreased prevalence

across the majority of Africa [35–38] due to higher temperatures restricting host seeking [39],

blood feeding [19] and mosquito development [14, 16]. Increased temperatures only increase

malaria transmission risk across highland regions of eastern and southern Africa [33, 37, 40,

41]. However, differences between malaria models, greenhouse gas emission scenarios, and

projected circulation changes lead to large uncertainties in future malaria risk estimates [33].

Whilst the largest uncertainties are associated with the different malaria impact models,
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differences between future atmospheric conditions projected by general circulation models

(GCMs) lead to significant uncertainties across regions with substantial changes in malaria

transmission, such as the East African (EA) highlands and northern Sahel [33]. Constraining

uncertainty originating from GCM outputs will support efforts to predict malaria transmission

in a warmer climate.

Currently, predictions of malaria transmission under present and future climates have only

been performed using relatively coarse-resolution regional or global climate models [30, 33,

35, 36, 42]. Such models require a parameterisation of convection, atmospheric vertical motion

driven by spatial temperature variations and responsible for intense rainfall, and are known to

poorly represent tropical precipitation characteristics including rainfall frequency and extreme

rainfall events [43, 44]. Finer-resolution convection-permitting simulations on the other hand,

better represent intense rainfall and dry spells [45–47], alongside related processes including

storm life cycle [48], the atmospheric water cycle [47, 49], and soil moisture-precipitation feed-

backs [50, 51]. Additionally, convection-permitting simulations project larger increases in

extreme rainfall [52–55], soil erosion [56], and humid heatwaves [57] across Africa under a

warmer climate. However, whilst previous studies, including several that evaluated model sim-

ulations used in this study, show that explicitly representing convection better resolves rainfall

frequency and intensity, such simulations have larger errors in 10-day precipitation accumula-

tions and near-surface temperatures [43, 46, 47]. Therefore, as malaria transmission has a

non-linear relationship with local weather conditions [9, 10, 21], it is unknown to what extent

using climate data from explicit convection simulations changes predictions of malaria trans-

mission. In this study we use two climate-sensitive dynamical malaria models, the Liverpool

Malaria Model (LMM) and Vector-Borne Disease Community Model of the International

Centre for Theoretical Physics (VECTRI), to investigate the effect of explicitly representing

convection on simulated malaria transmission. We also compare malaria model outputs

driven with observations and climate model data to consider the added-value of high-resolu-

tion convection-permitting simulations at supporting malaria predictions.

2 Methodology

2.1 Malaria transmission models

Two climate-sensitive dynamical malaria models, VECTRI [31] and LMM [15, 32], are used to

investigate the effect of explicitly representing convection on simulated malaria transmission.

Both models are driven by the same climate variables: daily-accumulated precipitation (mm

day−1); and daily-mean near-surface (2 m) air temperature (˚C). Whilst the LMM can only be

used to investigate the climate suitability for malaria transmission, VECTRI also considers the

impact of surface hydrology and population density.

We use a simplified version of the LMM [15, 32], which is a compartmental model of

malaria transmission that computes the basic reproduction ratio, R0. In epidemiology, R0

quantifies the potential of a disease to spread in a fully susceptible population [58]. When R0 is

greater than 1, the size of the infected population is predicted to grow and the disease epidemic

will persist. A full description of the simplified LMM can be found in supplementary section

S1.1 in S1 File.

VECTRI is an open-source weather-driven malaria model developed to better understand

the drivers of malaria transmission across Africa [31]. It is commonly used to produce

national-level malaria predictions across Africa [59–61]. VECTRI’s framework connects a bio-

logical model of mosquito and parasite life cycles to a secondary model which simulates disease

prevalence amongst humans. A description of VECTRI can be found in supplementary section

S1.2 in S1 File, whilst specific details on model formulation and parameter settings can be
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found in [31]. VECTRI outputs several different parameters including the human biting rate

and mosquito density. In this study we focus on analysing outputs of the entomological inocu-

lation rate (EIR; infectious bites person−1 day−1), which is defined as the product of the human

biting rate and sporozoite infection rate.

2.2 Observed malaria transmission

To validate our malaria simulations, we use estimates of newly diagnosed Plasmodium falcipa-
rum (Pf) cases from the Malaria Atlas Project (MAP) [62]. MAP is based on a Bayesian statisti-

cal model that estimates malaria incidence by amalgamating multiple data sources including:

malaria control interventions such as insecticide-treated bed nets and indoor residual spray-

ing; parasite incidence rates from over 27,000 population clusters and; environmental and

socio-demographic covariates [29, 63, 64]. Focusing on environmental predictors, MAP uti-

lises precipitation from WorldClim, which interpolates thousands of station observations [65],

as well as surface temperature, wetness and land cover from Terra and Aqua Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) satellite products [66]. Given that MAP output is

only derived using observations of environmental conditions rather than climate model data,

we cannot postulate that malaria model output driven by a certain climate model configura-

tion will have a stronger agreement with MAP data. As employed malaria model outputs are

different from each malaria model (R0 and EIR; section 2.1), we compare model diagnostics to

the MAP Pf rate in section 3.1.

2.3 Climate data

2.3.1 Observational and reanalysis data. In this study observations and reanalysis data

are used to compare simulated malaria transmission when driving malaria models with either

observations or climate model data. After comparing LMM experiments driven by different

observed rainfall and temperature datasets with MAP malaria incidence data, we concluded

that precipitation from the Climate Hazards group InfraRed Precipitation with Stations

(CHIRPS) dataset and near-surface temperatures from the European Centre for Medium-

Range Weather Forecasts (ECWMF) Reanalysis version 5 (ERA5) were the best (section S2 in

S1 File). We also use these two products to evaluate simulated atmospheric conditions in cli-

mate model experiments (section S3 in S1 File).

CHIRPS is avaliable on a 0.05˚ latitude/longitude grid and is derived using a combination

of satellite-derived infrared measurements and gauge-based rainfall totals [67]. Several studies

have illustrated that CHIRPS is one of the most reliable pan-African precipitation products

available [67–69]. Daily-means of near-surface temperatures on a 0.25˚ latitude/longitude grid

were computed using hourly ERA5 data. ERA5, which is computed using four-dimensional

variational data assimilation (4D-VAR) and cycle 41r2 of the Integrated Forecasting System

(IFS), provides a detailed continuous record of the global atmosphere, land and ocean waves

[70, 71]. Whilst the computation of ERA5 relies on parameterising environmental processes

including atmospheric convection, previous studies have shown small differences between

annual-mean temperatures from ERA5 and other gridded observational products [57, 72]. For

the rest of this study we use the term “observations” to refer to both CHIRPS rainfall and

ERA5 temperature datasets.

As well as using observed atmospheric data, the VECTRI malaria model requires human

population density data. For both historical and future VECTRI experiments, we use estimated

2020 population counts from the Gridded Population of the World (GPW) version 4 dataset

[73]. GPW is produced by the Socioeconomic Data and Applications Center (SEDAC) at the

National Aeronautics and Space Administration (NASA), and utilises spatially-explicit
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administrative boundary data and tabular population counts by local administrators [74]. All

the collated data is regridded onto an approximately 1 km latitude/longitude grid using an

areal-weighting method [75]. To be consistent with the resolution of climate simulation data

(section 2.3.2), all datasets have been remapped onto the same 0.25˚ horizontal grid using a

first-order conservative interpolation scheme [76].

2.3.2 Climate model data. In addition to driving malaria models with observations (sec-

tion 2.3.1), we perform a set of malaria transmission experiments using climate model outputs

from Met Office Unified Model (MetUM) pan-African (-45–40˚N, -25–57˚E) simulations.

The MetUM is a non-hydrostatic model with a semi-implicit, semi-Lagrangian dynamical

core. Full details of the model specifications and setup are provided by [54, 77].

We use four 10-year atmosphere-only UKMO simulations which either have a convection-

permitting model set-up with a horizontal resolution of approximately 4.5 km (CP4), or a

parameterised convection configuration with a grid spacing of approximately 25 km (R25).

For each configuration, a historical (subscript h) and future (subscript f) climate simulation

has been performed (Table 2). In this study R25 is treated as the “baseline” climate model,

whilst CP4 is used to investigate the impact of explicitly representing convection on malaria

transmission. For historical climate simulations, observed sea surface temperatures from [78]

are prescribed. Meanwhile for future climate, prescribed SSTs are the sum of analyses from

[78] over 1997–2007 and the climatological average SST change from 1975–2005 to 2085–2115

simulated by a Hadley Centre Global Environment Model version 2 Earth System model

(HadGEM2-ES) under a representative concentration pathway (RCP) of 8.5 (RCP8.5) [79]. To

ensure SST variability remains similar between the historical and future climate, monthly SST

changes were interpolated spatially and temporally before being added to the daily-varying

SST forcing data [78]. The difference in global-mean SST between the historical and future cli-

mate is just under 4˚C, whilst global mean air temperatures increase by 5.2˚C [80]. Focusing

on prescribed atmospheric composition, in historical simulations CO2 concentrations vary

annual and increase by approximately 17 ppm between 1997 and 2007. Meanwhile for future

climate simulations, GHG concentrations were taken from the RCP8.5 scenario for 2100.

Table 1 summarises the model set-up for each UKMO simulation. To enable a fair comparison

Table 1. Details of UKMO simulations whose outputs are used to drive the LMM and VECTRI.

Model configuration CP4 CP4 R25 R25

Model experiment CP4h CP4f R25h R25f

Simulation length (years) 10 10 10 10

Simulated time period 1997–2006 2097–2106 1997–2006 2097–2106

Simulation domain Pan-African Pan-African Pan-African Pan-African

Nesting model N512 MetUM GA7

simulation

N512 MetUM GA7 simulation N512 MetUM GA7

simulation

N512 MetUM GA7 simulation

Horizontal resolution

(km)

4.5 4.5 26.0 26.0

Time step (s) 100 100 600 600

Representation of

convection

Explicit Explicit Parameterized based on [81] Parameterized based on [81]

Number of vertical levels 80 80 63 63

Prescribed surface type Sandy soils Sandy soils Sandy soils Sandy soils

Prescribed SSTs High-resolution analyses

[78]

High-resolution analyses plus SST

change in RCP8.5 HadGEM2-ES

High-resolution analyses

[78]

High-resolution analyses plus SST

change in RCP8.5 HadGEM2-ES

Prescribed greenhouse gas

concentrations

Annual observed greenhouse

gas concentrations

RCP8.5 scenario for 2100 [79] Annual observed greenhouse

gas concentrations

RCP8.5 scenario for 2100 [79]

https://doi.org/10.1371/journal.pone.0297744.t001
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between malaria simulations driven with CP4 and R25 data, CP4 data is remapped onto the

same horizontal grid as R25 using a first-order conservative interpolation scheme [76]. In sup-

plementary section S3 in S1 File, we provide a brief assessment of temperature and precipita-

tion biases in historical MetUM simulations. In summary, and in agreement with previous

studies [43, 46, 47], whilst explicitly representing convection improves the simulated frequency

and intensity of daily precipitation accumulations, errors in near-surface temperatures and

10-day precipitation accumulations increase.

2.4 Malaria transmissions experiments

2.4.1 Investigating the sensitivity of simulated malaria transmission to the representa-

tion of convection. To compare differences in simulated malaria transmission when using

observations or climate model data, we perform three historical simulations for each malaria

model (Table 2). These simulations are either driven by observations (Oh), CP4 (Ch) or R25

(Rh) historical data, and enable us to understand the sensitivity of simulated malaria transmis-

sion to observed and model input data. For the rest of this study, “O”, “C” and “R” are short-

hand for observational, CP4 and R25 data respectively. For both VECTRI and the LMM, we

also perform a set of simulations using future climate model data (Cf and Rf). The use of future

climate model simulations enables us to investigate the effect of explicitly representing convec-

tion in both present and future climates. In particular, it enables us to assess whether explicitly

representing convection changes predictions of malaria transmission.

2.4.2 Determining whether temperature or precipitation is responsible for simulated

malaria transmission differences. To isolate the importance of differences in simulated tem-

perature and precipitation when changing the representation of convection, we perform simu-

lations with either temperature or precipitation sourced from CP4h, with the remaining

variable sourced from R25h (Table 2). We also perform sensitivity experiments with which we

only use precipitation or temperature from the future climate. Whilst we note that precipita-

tion and temperature are not independent of each other, sensitivity experiments enable an ini-

tial understanding of the key drivers responsible for differences in malaria predictions. The

labelling of all sensitivity experiments follows the same structure and includes the source of

precipitation (P) data followed by the driving temperature (T) data. For example, RPfRTh

denotes that precipitation and temperature data is sourced from future and historical R25

Table 2. Malaria transmission experiments.

Purpose Simulation name Precipitation input data Temperature input data

Malaria experiment using observations (LMM and VECTRI) Oh CHIRPS ERA5

Sensitivity to representation of convection (LMM and VECTRI) Ch CP4h CP4h

Rh R25h R25h

Cf CP4f CP4f

Rf R25f CP4f

Isolating the importance of simulated temperature and precipitation differences (LMM only) CPhRTh CP4h R25h

RPhCTh R25h CP4h

CPfCTh CP4f CP4h

RPfRTh R25f R25h

CPhCTf CP4h CP4f

RPhRTf R25h R25f

Removing the influence of mean atmospheric model biases (LMM only) ChBC CP4hBC CP4hBC

RhBC R25hBC R25hBC

https://doi.org/10.1371/journal.pone.0297744.t002
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experiments respectively. Due to limited computational resources, sensitivity experiments are

only performed using the LMM.

2.4.3 Understanding the importance of temperature and precipitation mean biases in

malaria transmission simulations. Given substantial errors in simulated precipitation and

temperature in both climate model configurations (section S3 in S1 File), we also perform

LMM experiments driven with bias-corrected, linearly-scaled simulation data. For tempera-

ture and precipitation data, we applied an additive and relative adjustment respectively [82–

84]. The use of linear-scaling only corrects time-mean biases, hence, variability errors still per-

sist. LMM experiments driven with bias-corrected CP4h and R25h data are labelled as ChBC

and RhBC respectively. All malaria simulations are summarised in Table 2.

3 Results

3.1 Evaluation of present-day malaria predictions

Before investigating the effect of explicit convection on predicted malaria transmission, we

first assess whether our malaria models (section 2.1) simulate realistic patterns of malaria inci-

dence by comparing historical malaria model simulations (Oh, Ch and Rh) with estimates of

malaria endemicity from MAP [62]. Fig 1a shows the estimated annual-mean incidence rate of

Pf, the most common malaria parasite to infect humans across Africa [85], between years 2000

to 2007. Unfortunately, we are unable to validate the use of VECTRI and LMM using the same

variables due to different model hypotheses, and consequently, different model diagnostics.

Even though the LMM is solely driven by climate variables and does not take into account

social-economic factors (section 2.1 and section S1 in S1 File), there is good agreement

between LMM-simulated malaria transmission and the MAP-estimated Pf incidence rate

(r = 0.45, Fig 1a and 1b). High Pf incidence and LMM-simulated R0 is seen across central parts

of Africa, the Guinea coast, and south-eastern countries such as Malawi and Mozambique.

However, substantial discrepancies in predicted malaria transmission occurs across the Guinea

coast. EIR model output from VECTRI on the other hand, has a better agreement with large

MAP-estimated Pf incidence rates across West Africa and the Guinea coast (Fig 1e). This sug-

gests that low malaria incidence across the Guinea coast in LMM experiments is associated

with a lack of socio-economic factors in the design of the LMM. Outputs from the LMM and

VECTRI driven with CP4 or R25 data (Fig 1c, 1d, 1f and 1g) also show a realistic distribution

of malaria transmission risk with respect to the MAP-estimated Pf incidence rate. All malaria

model experiments, regardless of the chosen driving data or malaria model, have significant

(p� 0.01) spatial correlations with Pf incidence data with correlation coefficients ranging

from 0.37 to 0.45. Given the good agreement between malaria model outputs and MAP-esti-

mated incidence rates, the effect of using explicit convection climate model data is investigated

further using both malaria models in the following subsection.

3.2 The sensitivity of simulated malaria transmission to the representation

of convection

To understand whether differences in the representation of convection affects the simulation

of malaria transmission, we analyse simulated transmission differences when driving the

LMM and VECTRI with observational, CP4h or R25h data. Comparing Ch and Rh LMM exper-

iments highlights a west-to-east dipole difference in predicted malaria risk (Fig 2a). Across

lowland regions in the west, including parts of the Guinea coast and Congolese rainforests,

malaria risk is higher in Ch, meanwhile across eastern highland regions, simulated malaria

transmission risk is smaller. Focusing on LMM differences between Ch and Rh compared to
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Oh (Fig 2b and 2c), it is evident that Ch has a stronger agreement with Oh than Rh. The RMSD

on the annual-mean number of days when R0 is greater than 1.0 is approximately 23% smaller

in Ch than in Rh. Rh overestimates the number of days when malaria transmission is increasing

across highland regions of East Africa, Angola and Zambia. It also underestimates malaria risk

across parts of central Africa and the Guinea coast. Differences between Ch and Rh LMM out-

puts highlight that the representation of convection can play a substantial role in the magni-

tude of simulated malaria transmission.

Sensitivity experiments which use either temperature or precipitation data from CP4h high-

light that temperature differences between the two MetUM configurations are mostly respon-

sible for differences in simulated malaria transmission by the LMM (Fig 2d and 2e). The

difference in simulated malaria risk when using CP4h temperatures is similar to the difference

when changing both atmospheric variables (Fig 2a and 2d). However, differences between

Fig 1. Annual-mean (2000–2007) of (a) Pf incidence rate (cases person−1 year−1) from MAP, (b-d) number of days when R0 is greater than 1.0 from

LMM experiments, and (e-g) predicted EIR (infectious bites person−1 day−1) from VECTRI simulations. We show outputs from LMM and VECTRI

driven by (b,e) observational, (c,f) CP4h and (d,g) R25h data. In panels (b) to (g) we document the spatial correlation coefficient between simulated

malaria model outputs and MAP data. To ensure that spatial correlations are not biased towards regions of low malaria incidence, we remove all grid

points where the MAP-derived Pf incidence rate is smaller than 0.1. We also removed grid points where the simulated annual-mean number of days

when R0 is greater than 1.0 is outside the range of 15.0 and 140.0, or where the simulated EIR is outside 0.3 and 2.0. To be consistent with the time span

of MAP data [62], we only analyse malaria model output which is driven with observations or climate model data from years 2000 to 2007. All spatial

correlations are statistically significant at a 99% confidence interval using a two-tailed Wald T-test. Land and country boundaries were added using

Natural Earth; free vector and raster map data available at naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0297744.g001
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simulated precipitation are responsible for increased malaria transmission across parts of the

Guinea coast and western regions of central Africa, and decreased transmission risk across the

westward side of the EA highlands (Fig 2e). To further understand how differences in tempera-

ture and precipitation influence simulated malaria risk, in Fig 3 we show differences in proba-

bility distributions on wet days (� 1 mm day−1) in four focus regions (rectangles in Fig 2a).

These four regions were chosen as they have different climatological conditions and the effect

of explicitly representing convection on simulated malaria transmission varies. Consistent

with section S3 in S1 File, there is a greater chance of cooler temperatures and higher precipita-

tion accumulations across all regions in CP4h (Fig 3). In the Congolese rainforest, Guinea

Fig 2. Differences in the simulated annual-mean number of days when R0 is greater than 1.0 between (a) Ch and Rh, (b) Ch and Oh, (c) Rh and Oh, (d)

RPhCTh and Rh, (e) CPhRTh and Rh, (f) ChBC and RhBC, (g) ChBC and Oh, and (h) RhBC and Oh, by the LMM. (i-k) Differences in the simulated

annual-mean EIR (infectious bites person−1 day−1) between (i) Ch and Rh, (j) Ch and Oh, (k) Rh and Oh, by VECTRI. In each panel, boxed values

document the root mean squared difference across land points south of 20˚N. In panel (a) coloured rectangles highlight regions of focus including: EA

highlands (black); Congolese rainforest (dark green); Guinea coast (dark blue); and South Sudan (purple). Land and country boundaries were added

using Natural Earth; free vector and raster map data available at naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0297744.g002
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coast and South Sudan, cooler temperatures (Fig 3d, 3g and 3j) increase the daily survival

probability of mosquitoes (not shown) and the number of days when R0 is greater than 1.0

(Fig 3f, 3i and 3l). Across the East Africa highlands on the other hand, cooler temperatures

increase the number of days below the sporogonic temperature threshold, which in the LMM

is set to 18˚C (S1 Table in S1 File), by 5% (Fig 3a). In the LMM, temperatures below the sporo-

gonic temperature threshold prohibit the development of the malaria parasite and substantially

reduces simulated malaria risk. Across East Africa, there is a 57% reduction in the number of

days when R0 is above 1.0 (Fig 3c). Although there is substantial differences in simulated pre-

cipitation characteristics between CP4h and R25h (section S3 in S1 File), we find that differ-

ences in simulated malaria transmission when using the LMM are mainly due to temperature

differences. Across the three lowland regions, cooler temperatures favour malaria transmis-

sion, whilst in highland areas, decreased temperatures reduce the likelihood of surpassing the

sporogonic temperature threshold which decreases malaria transmission risk.

Given substantial biases in simulated precipitation and temperature in CP4h and R25h (sec-

tion S3 in S1 File), we also performed LMM experiments which are driven with bias-corrected,

Fig 3. Differences in probability distributions of wet-day (� 1 mm) grid-point Ch and Rh simulation data in (a,d,g,j) daily-mean temperature (˚C), (b,e,

h,k) 10-day precipitation accumulation (mm), and (c,f,i,l) LMM-estimated R0 across (a-c) EA highlands, (d-f) Congolese rainforests, (g-i) Guinea coast

and (j-l) South Sudan. Regions are denoted in Fig 2a. In the first column we document the total difference in temperatures changes less than 18˚C,

whilst in the third column, we note the total change in days when R0 is greater than 1.0. Both 18˚C and an R0 value of 1.0 are denoted by grey vertical

lines.

https://doi.org/10.1371/journal.pone.0297744.g003
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linearly-scaled simulation data (section 2.4). Correcting the mean of simulated rainfall and

temperature data substantially reduces differences between LMM experiments (Fig 2i–2k). For

example, the RMSD between predicted malaria transmission when driving the LMM with

observations compared to CP4h and R25h data reduces by 41% and 59% respectively. This

indicates that differences between LMM outputs when driving with observations or climate

model data are mainly associated with climatological differences rather that variations in

atmospheric variability. Additional sensitivity experiments with bias-corrected data show that

differences between ChBC and RhBC (Fig 2f) are mostly attributable to precipitation differ-

ences, except for regions of the Guinea coast where temperature plays a more dominant role

(not shown). This suggests that differences in simulated precipitation variability between a

parameterised and convection-permitting model lead to larger changes in predicted malaria

transmission than differences in temperature variability.

Whilst LMM simulations illustrate that cooler wet-day temperatures in CP4h increase

malaria transmission across lowland regions of Africa, VECTRI outputs show a different

behaviour (Fig 2i–2k). Focusing on the difference between Ch and Rh, whilst LMM predictions

show higher malaria transmission across lowland regions in Ch, VECTRI predicts reduced

transmission (Fig 2i). We also see a much weaker west-to-east dipole in differences of malaria

transmission. We can infer that decreased malaria transmission in Ch relative to Rh is due to a

reduced number of simulated wet days (Fig 3b, 3e, 3h and 3k and S2f Fig) and that VECTRI is

less sensitive to near-surface air temperatures. The differences between simulated malaria

transmission between Ch and Rh when using the LMM and VECTRI highlights that the effect

of explicit convection on simulated malaria transmission is sensitive to the chosen mathemati-

cal disease model. For the LMM, a substantial sensitivity of malaria transmission to near-sur-

face air temperatures promotes increased malaria transmission across lowland regions, whilst

for VECTRI, differences in rainfall frequency lead to decreased transmission. It is noteworthy

that VECTRI includes a flushing effect on mosquito breeding sites, and this transmission

reduction is consistent with such parameterisation. Consistent with LMM simulations, Ch also

has a much stronger agreement with Oh compared to Rh. The RMSD between Ch and Oh is

approximately 50% smaller compared to the RMSD in Rh (Fig 2i and 2k).

3.3 The effect of explicit convection on predicted climate change-induced

malaria transmission changes

Given the effect of explicit convection on simulated historical malaria transmission, in this sec-

tion we investigate whether the representation of convection influences the predicted future

change in malaria risk. Fig 4a and 4b show the difference in the annual-mean number of days

when R0 is above 1.0 between future and historical LMM simulations. Across the majority of

central Africa, parts of the Guinea coast, and regions of south-east Africa, driving the LMM

with either climate model configuration predicts reduced malaria transmission under a

warmer climate. The largest reductions are observed across the Congolese rainforest with

decreases of up to 180 days. Comparing with Fig 1b to 1d, reductions of this magnitude indi-

cate that anthropogenic climate change will decrease the area of Africa where malaria is

endemic. However, across the EA highlands, the number of days when R0 is greater than 1.0 is

predicted to increase by up to 160 days in both CP4 and R25 configurations. Comparing the

difference in simulated malaria transmission changes between the two climate model configu-

rations (Fig 4c) shows that both CP4 and R25 predict a similar decrease in malaria transmis-

sion across western lowland regions. Across the EA highlands on the other hand, the

magnitude and spatial extent of the increased number of days when R0 is greater than 1.0 is

larger in CP4 compared to R25.
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To investigate the drivers of simulated changes in malaria transmission under a warmer cli-

mate, we perform LMM sensitivity experiments where only temperature (Fig 4d to 4f) or pre-

cipitation (Fig 4g to 4i) data is taken from future climate experiments (section 2.4). From these

sensitivity experiments we conclude that changes in LMM-simulated malaria transmission are

mainly associated with temperature changes for both CP4 and R25 configurations (Fig 4d and

4e). We also find that greater increases in malaria transmission across the EA highlands in

Fig 4. (a-i) Differences in the simulated annual-mean number of days when R0 is greater than 1.0 between future and historical LMM experiments. (a-

c) Differences when driving the LMM with temperatures and precipitation data from historical and future climates. (d-i) Differences when only using

future (d-f) temperature and (g-i) precipitation data. (j-l) Differences in the simulated annual-mean EIR (infectious bites person−1 day−1) by VECTRI.

Differences between future and historical experiments driven by CP4 and R25 data are shown in the first (a,d,g,j) and second (b,e,h,i) columns

respectively, whilst panels in the third (c,f,i,l) column show the difference in changes when using CP4 and R25 driving model data. In each panel, boxed

values document the root mean squared difference across land points south of 20˚N. Land and country boundaries were added using Natural Earth;

free vector and raster map data available at naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0297744.g004
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CP4 compared to R25 (Fig 4c) is mostly associated with warmer simulated temperatures (Fig

4f). Precipitation-driven changes in malaria transmission are relatively minimal for both con-

figurations (Fig 4g to 4i) with only a small increase of up to 80 days across the north-east of the

Congolese rainforest in R25. Fig 5 shows differences in probability distributions of daily-mean

temperatures, 10-day precipitation accumulations and daily LMM-estimated R0 values

between historical and future climates in CP4 and R25 across the EA highlands and Congolese

rainforest. Increased temperatures across lowland regions in both configurations (Fig 5d and

5j) decrease the probability of mosquito survival. Across the EA highlands on the other hand,

anthropogenic climate change increases the probability of daily temperatures exceeding the

sporogonic temperature threshold (18˚C; Fig 5a and 5g), which increases the number of days

when the malaria parasite is able to develop. As we find that the reduced number of days with

a daily-mean temperature below 18˚C across the EA highlands is approximately 5% larger in

CP4 compared to R25, we hypothesise that this leads to larger increases in malaria risk under a

warmer climate in CP4 compared to R25 (Fig 4c). Although both CP4 and R25 predict higher

mean precipitation under a warmer climate (Fig 3), precipitation-driven changes in malaria

transmission are relatively small (Fig 4g and 4h).

However, whilst LMM simulations suggest that anthropogonic climate change will reduce

malaria transmission across lowland regions of sub-Saharan Africa, VECTRI predicts

increased EIRs (Fig 4j and 4k). The larger sensitivity of malaria to precipitation in VECTRI

compared to the LMM, leads to larger increases in EIR associated with an intensification of

precipitation (Fig 5). Fig 4l shows larger increases in EIR across the Sahel in CP4 compared to

R25. This is consistent with findings by [86], who show that only CP4 predicts increased pre-

cipitation across the Sahel under anthropogenic climate change. Smaller changes in malaria

risk across the Congolese rainforest are associated with a stronger intensification of precipita-

tion in R25 compared to CP4 (Fig 5e and 5k). In summary, the predicted change in malaria

transmission under anthropogenic climate change is highly sensitive to the chosen malaria

model. For the LMM, for example, the sensitivity to changes in temperature is an artefact of

specific model parameterisations. Whilst we find differences in the predicted change in

malaria transmission when changing the representation of convection, larger uncertainties are

associated with specific malaria model parameterisations.

4 Discussion

In this study we investigate to what extent does using atmospheric data from explicit convec-

tion simulations affect predictions of malaria transmission risk in historical and future cli-

mates. To do so we compare malaria risk experiments driven with climate model data from

simulations with either an explicit or parameterised representation of convection. Even though

explicitly representing convection improves the frequency and intensity of daily rainfall events

[44, 45, 47], the non-linear relationship between local weather conditions and malaria trans-

mission [9, 10, 21] makes it non-trivial to predict changes in malaria transmission when using

explicit convection data. This is further complicated by larger errors in near-surface tempera-

tures and 10-day precipitation accumulations when explicitly representing convection (section

S3 in S1 File). The concluded impact of explicitly representing convection on simulated

malaria transmission is dependent on the chosen malaria model and local climatological con-

ditions. For example, explicitly representing convection increases estimates of transmission

risk by the LMM across lowlands in Central Africa, whilst VECTRI simulates a decreased

transmission risk. Differences in malaria transmission risk when explicitly representing con-

vection are associated with different parameterisations of thermal and hydrological sensitivi-

ties of malaria transmission. The parameterised thermal sensitivity of malaria transmission
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also leads to different behaviours across the East African highlands. In general, explicitly repre-

senting convection decreases near-surface temperatures due to higher cloud tops [77]. In the

LMM, which is particularly sensitive to near-surface temperatures compared to VECTRI,

decreased temperatures reduce the number of days above the sporogonic temperature thresh-

old [8, 15], thereby limiting malaria transmission risk. Differences in the effect of explicitly

representing convection on predicted malaria transmission risk reemphasises the uncertainty

amongst weather-driven health-impact models [33].

Given the improved representation of tropical rainfall variability when explicitly represent-

ing convection (S2 and S3 Figs) [44, 45, 47], we find that malaria models which parameterise a

high sensitivity of malaria transmission to rainfall, i.e. VECTRI [31], benefit from improve-

ments in precipitation. For example, the RMSD between predicted malaria transmission when

using observations and climate model data is approximately 45% smaller when using data

from explicit-convection simulations. The LMM on the other hand, a model where malaria

transmission is less sensitive to precipitation [8, 15, 32], only has a 23% improvement. Never-

theless, changes in simulated malaria transmission when using explicit convection model data

Fig 5. Differences in probability distributions of wet-day (� 1 mm) grid-point future and historical simulation data in (a,d,g,j) daily-mean temperature

(˚C), (b,e,h,k) 10-day precipitation accumulation (mm), and (c,f,i,l) LMM-estimated R0 across (a-c, g-i) EA highlands and (d-f, j-l) Congolese

rainforests. The first (a-f) and last (g-l) two rows show changes in CP4 and R25 experiments respectively. Regions are denoted in Fig 2a. In the first

column we document the total difference in temperatures changes less than 18˚C, whilst in the last column, we note the total change in days when R0 is

greater than 1.0. Both 18˚C and an R0 value of 1.0 are denoted by grey vertical lines.

https://doi.org/10.1371/journal.pone.0297744.g005
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for both malaria models highlights an opportunity to use convection-permitting simulations

to predict other rainfall-sensitive diseases such as dengue, cholera and typhoid [87–90].

Indeed, future work should assess whether using explicit convection model data changes the

conclusion that a warmer climate will increase the transmission of dengue and other arbovi-

ruses [91]. Due to significant precipitation errors in parameterised convection simulations [43,

44, 47], caution should be taken when solely relying on low-resolution parameterised-convec-

tion climate model data to produce health-relevant adaptation policies.

To explore the role of different atmospheric characteristics in changing simulations of

malaria transmission, we performed sensitivity experiments where only temperature or precip-

itation is changed. Although most studies emphasise improvements in simulated precipitation

when explicitly representing convection [47, 77, 92], we find that temperature differences are

predominantly responsible for disparities in simulated malaria transmission when using the

LMM. Across the majority of sub-Saharan Africa, near-surface temperatures are cooler when

explicitly representing convection due to higher cloud tops reducing surface shortwave radia-

tion and near-surface temperatures [77]. This cooling leads to spatial differences in the effect

of explicit convection on predicted malaria transmission due to the parameterised relationship

between temperature, mosquito survival, and the development of the malaria parasite [8, 15,

16]. Across lowland regions, reduced temperatures increase malaria transmission due to

higher mosquito survival rates, whilst in the highlands, decreased temperatures limit the num-

ber of days when the sporogonic temperature threshold is surpassed. The sensitivity of malaria

transmission to a specified temperature threshold, in our case 18˚C (S1 Table in S1 File), high-

lights that relatively small temperature perturbations introduced by variations in climate

model configuration can lead to substantial differences in climate-sensitive disease modelling.

Bias-correcting climate variables removes large differences in estimated malaria transmission

risk, indicating that disparities between simulated malaria transmission are predominantly

associated with mean climatic conditions. However, we have only tested the sensitivity of sim-

ulated malaria transmission to differences in temperature and precipitation using the LMM.

We hypothesise that the smaller sensitivity of malaria transmission to temperature in VECTRI

compared to the LMM will lead to a smaller temperature effect. Nevertheless, whilst the major-

ity of studies have evaluated precipitation characteristics in convection-permitting simulations

[43, 44, 45, 92], due to the use of climate model data in impact-based modelling studies [55–

57], future work should also evaluate the representation of other atmospheric variables.

In this study we have shown that differences in climate-dependent malaria model parame-

terisations result in different effects when using explicit-convection simulation data. In agree-

ment with [33, 37], disparities in climate-dependent malaria model parameterisations lead to

differences in the effect of anthropogenic climate change on simulated malaria transmission.

VECTRI, a malaria model highly sensitive to precipitation, predicts that the intensification of

rainfall driven by anthropogenic climate change [55, 86, 93] will increase malaria transmission

across the majority of sub-Saharan Africa, except for the northern fringe of the Sahel where a

moderate decreased risk is predicted. The LMM on the other hand, predicts reduced malaria

transmission across lowlands, due to higher temperatures and lower probabilities of mosquito

survival, and an increase across the East African highlands due to more conducive temperature

conditions enhancing the simulated sporogonic cycle. However, we have only investigated the

effect of explicit convection on predicted malaria transmission changes using one realisation

of a single GCM. Given the substantial uncertainty in predicted rainfall and temperatures

changes across Africa in large climate model ensembles [93, 94], and that future atmospheric

conditions will depend on sea surface temperature and vegetation changes [95, 96], our con-

clusions are sensitive to our chosen GCM configuration. Whilst we conclude for some metrics

that using climate data from simulations with an explicit representation of convection leads to
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a better agreement between malaria simulations driven with observations and climate data, it

should not be assumed that using convection-permitting model output will reduce model

spread in predicted disease transmission. As climate models evolve to higher-resolutions with

different atmospheric parameterisations, efforts should focus on understanding the impact

this has on impact-based modelling, reducing the uncertainty amongst impact-based predic-

tions, and assessing the sensitivity and mechanisms of impact disease modelling.

5 Conclusions

Malaria is one of the most deadly vector-borne diseases in the world and poses a significant

health burden across sub-Saharan Africa. Whilst the disease has been modelled by multiple

research groups, our understanding of how different driving climate model data affects simu-

lated malaria transmission remains limited. Over the past decade, increased computational

resources have enabled climate simulations to be performed at a resolution which does not

require the parameterisation of convective processes. In this study, we use two malaria models,

the LMM and VECTRI, to analyse the effect of explicitly representing convection on simulated

malaria transmission. Given the improved simulation of certain precipitation characteristics,

such as rainfall frequency, when explicitly representing convection, we hypothesised that

malaria simulations driven with climate model data from explicit-convection simulations will

better agree with observations.

The strength of the conclusion that malaria models driven with climate data from explicit-

convection simulations will have a stronger agreement with observations compared to using

parameterised convection model data is contingent upon the selected metric and malaria

model. As well as this, whilst most studies emphasise that explicitly representing convection

improves simulated rainfall characteristics, we find, through sensitivity experiments using the

LMM, that simulated malaria differences are mostly associated with temperature variations.

We conclude that this behaviour is dependent on the parameterised sensitivity between precip-

itation and malaria incidence. The different climate-sensitive parameterisations within a

malaria model also leads to disparities in the concluded effect of anthropogenic climate change

on malaria transmission. When using VECTRI, anthropogenic climate change is projected to

increase malaria transmission, regardless of the model configuration with which driving cli-

mate data is taken from. Whilst for the LMM, anthropogenic climate change decreases the

basic reproductive number across low-land regions. Differences between the LMM and VEC-

TRI highlights uncertainties introduced by different malaria models. Given the increased use

of climate model data to produce impact-based forecasts across multiple sectors, including dis-

ease transmission, a stringent, detailed and continued assessment of dynamical mechanisms

responsible for changes in disease risk is required.

Supporting information

S1 File. To support this article we have provided a supporting information document. The

supporting information consists of: detailed descriptions of utilised malaria models (section

S1); analysis supporting the choice of observational products (section S2); and simulated atmo-

spheric biases of historical explicit- and parameterised-convection climate integrations (sec-

tion S3). The document also contains supporting figures; captions of these are below.

(PDF)

S1 Fig. Annual-mean number of days when R0 is greater 1.0 from LMM experiments

driven with different observational products. First, second and third rows are driven with

ERA5, CHIRPS and ISIMIP precipitation respectively. Whilst first, second and third columns
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are driven with ERA5, BEST and ISIMIP temperature. In all panels boxed values note the spa-

tial correlation coefficient between the annual-mean number of days when R0 is greater 1.0

and MAP data (Fig 1a). To ensure that the spatial correlation is not biased towards regions of

low malaria incidence, we remove all grid points where the MAP-derived Pf incidence rate is

smaller than 0.1. We also removed grid points where the simulated annual-mean number of

days when R0 is greater than 1.0 is outside the range of 15.0 and 140.0. To be consistent with

the time span of available MAP data [62], we only compare malaria model output which is

driven with climate model data from years 2000 to 2007. All correlations are statistically signif-

icant at a 99% confidence interval. Land and country boundaries were added using Natural

Earth; free vector and raster map data available at naturalearthdata.com.

(TIF)

S2 Fig. Annual-mean differences in (a-c) 10-day precipitation accumulations (mm), (d-f) the

number of wet days (� 1 mm), (g-i) mean wet-day precipitation rate (mm), (j-l) daily-mean

near-surface air temperature (˚C), and (m-o) daily-mean wet-day near-surface air temperature

(˚C). Differences are shown between (first column) CP4h and observations, (second column)

R25h and observations, and (third column) CP4h and R25h. Values above each panel label,

document the root mean squared difference (RMSD) across land points south of 20˚N in each

panel. Land and country boundaries were added using Natural Earth; free vector and raster

map data available at naturalearthdata.com.

(TIF)

S3 Fig. Fractional contributions of (a) daily-accumulated precipitation rates (mm day−1) and

(b) daily-mean near-surface air temperatures (˚C) across all land points south of 20˚N in bins

of 2 mm day−1 and 1˚C for (orange) CP4h, (blue) R25h, and (grey) observations. In (a) a subset

panel zooms into the fractional contributions of daily-accumulated precipitation rates up to 10

mm day−1. A light grey rectangle in panel (a) denotes the area of focus.

(TIF)
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