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A B S T R A C T   

Deep learning has advanced the content analysis of digital data, unlocking opportunities for detecting, mapping, 
and monitoring invasive species. Here, we tested the ability of open source classification and object detection 
models (i.e., convolutional neural networks: CNNs) to identify and map the invasive plant Cortaderia selloana 
(pampas grass) in mainland Portugal. CNNs were trained over citizen science images and then applied to social 
media content (from Flickr, Twitter, Instagram, and Facebook), allowing to classify or detect the species in over 
77% of situations. Images where the species was identified were mapped, using their georeferenced coordinates 
and time stamp, showing previously unreported occurrences of C. selloana, and a tendency for the species 
expansion from 2019 to 2021. Our study shows great potential from deep learning, citizen science and social 
media data for the detection, mapping, and monitoring of invasive plants, and, by extension, for supporting 
follow-up management options.   

1. Introduction 

Assessing the state of ecosystems and their drivers of change over 
time and space is paramount for supporting informed decisions in 
environmental management (Karr et al., 2008; Vos et al., 2000; Yoccoz 
et al., 2001). Monitoring the state of ecosystems has become a common 
practice to assess ecosystem integrity and health (Karr et al., 2008), 
nevertheless, for more effective environmental management it is also 
essential to monitor the ecological drivers of ecosystem change (Rapport 
and Hildén, 2013). Among the major drivers of ecosystem change are 
invasive alien species (IPBES, 2019), i.e., species that are introduced to 
new geographic areas, becoming self-sustaining, spreading, and leading 

to major impacts on the environment or society (Iannone III et al., 2020; 
Richardson et al., 2011). 

Monitoring invasive alien species can be a costly and time- 
consuming activity, specifically when performed systematically by ex-
perts on the field (i.e., in situ surveys; Johnson et al., 2020). As com-
plementary or even alternative approaches, monitoring invasive alien 
species from volunteer-based initiatives (e.g., community or citizen 
science; Vendetti et al., 2018; Eritja et al., 2019; Price-Jones et al., 
2022), Earth Observations (e.g., using UAVs or satellite; Bradley, 2014; 
Pettorelli et al., 2014; Reddy et al., 2021), and other remote sensors (e. 
g., camera traps, geolocation devices) has gained an increased popu-
larity to boost data collection and quality in regards to invasive alien 
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species (e.g. Rassati et al., 2016, Dash et al., 2019; and see discussion on 
Juanes, 2018). 

Digital data from social media platforms (e.g., Flickr, Twitter) is also 
becoming a promising source for species observations and occurrences 
(Edwards et al., 2021; Toivonen et al., 2019), including on invasive alien 
species (Allain, 2019; Blood, 2016). Social media data encompass im-
ages created and shared by people online that can contain large and 
useful information about the natural environment (Di Minin et al., 
2015). Such data content often includes georeferenced meta-data and 
specific time stamps (Gliozzo et al., 2016), being useful, for instance, in 
mapping animal and plant species distributions across large study areas 
(ElQadi et al., 2017; Jeawak et al., 2018). 

The last decade has also seen enormous technological advances in 
our ability to identify, access, and analyse online digital data (Farley 
et al., 2018; Hampton et al., 2013; Runting et al., 2020). The use of 
artificial intelligence, and specifically of machine learning and deep 
learning algorithms, such as Convolutional Neural Networks (CNNs), 
have led to significant progress in environmental monitoring from on-
line digital images, including, for instance, the recognition and sur-
veillance of plant diseases (e.g., Abade et al., 2021), the classification of 
land cover (ElQadi et al., 2020; Xu et al., 2017) or the detection and 
classification of animals in camera traps (Tan et al., 2022), requiring a 
low degree of human supervision (Lusch et al., 2018). 

Despite the opportunities of online digital data (e.g., Allain, 2019; 
Daume, 2016) and artificial intelligence (e.g., Bonin-Font et al., 2021; 
Elias, 2023; Lake et al., 2022) for environmental monitoring, their 
combined application in the field of invasive alien species is still in its 
infancy. In this study, we aim to contribute to advance this field by 
testing the ability of using pre-trained and open source deep learning 
models to support the monitoring of invasive alien plants on social 
media images. Using Cortaderia selloana (Schult. & Schult.f.) Asch. & 
Graebn (pampas grass) as a test species in mainland Portugal, we spe-
cifically set out to understand the extent to which the combination of 
deep learning and social media information can be used in: (i) the 
identification and detection of invasive alien plant species in online 
digital images; and (ii) the detection and mapping of previously unre-
ported locations of invasive alien plants. The results of our exploratory 
approached are discussed in the context of monitoring efforts on 
C. selloana, and more broadly the lessons learned that inform conser-
vation action and management for invasive alien plant species. 

2. Methods 

2.1. Test species - Cortaderia selloana 

Cortaderia selloana, originally from South America, has been intro-
duced worldwide, mainly as ornamental in lawns and gardens (Başnou, 
2009; Montserrat, 2009). It shows characteristic plumes which are often 
used for aesthetic purposes and displayed on social media platforms. In 
many Mediterranean and temperate locations of Europe, Africa, 
Australia, New Zealand, and North America, C. selloana is widespread 
and considered an invasive alien (Başnou, 2009; Bellgard et al., 2010; 
Starr et al., 2003). In Europe, C. selloana is widespread in France, Italy, 
Spain, United Kingdom, and Portugal, with predictions showing a po-
tential increasing expansion, driven by climate change and urbanization 
(Brunel et al., 2010; Pardo-Primoy and Fagúndez, 2019; Tarabon et al., 
2018). Being an opportunistic species, C. selloana occupies disturbed 
habitats, and is often found in urban and industrial areas or along road 
and railways (Domènech and Vilà, 2007; Pardo-Primoy and Fagúndez, 
2019; Pausas et al., 2006). 

C. selloana has many negative impacts on native biodiversity (e.g., 
changes soil nutrient properties and community structure; creates bar-
riers to the movement of fauna, uses the resources available to other 
species.; Domènech et al., 2006), economies (e.g., forestry production 
systems; Gadgil et al., 1992) and human health and well-being (e.g., 
allergies and respiratory diseases, Rodríguez et al., 2021). Indeed, it 

achieves the highest impact score across scales (using Generic Impact 
Scoring System - GISS) when compared with other alien grasses (Nkuna 
et al., 2018). 

In Portugal, the species has been listed in the Decree law No. 92/ 
2019 (national regulation of invasive alien species; Environment Min-
istry, 2019), meaning that a legal scheme for the control, custody, 
introduction into nature and repopulation is established. Nonetheless, 
management actions aiming to eradicate, or more reasonably, to control 
and contain its spread are extremely costly and can have low effec-
tiveness, because the species can withstand harsh climatic conditions, 
has a deep root system and an outstanding seed dispersal capacity 
(Gosling et al., 2000; LIFE STOP Cortaderia, 2020; Popay et al., 2003; 
Suárez et al., 2022). Monitoring the spread of C. selloana species is 
therefore a pressing need for the early detection of new occurrence lo-
cations in an attempt to prevent widespread invasion and establishment. 

2.2. Methodological framework 

This study was conducted by a multidisciplinary team with expertise 
in both ecology/botany and computational sciences. Our automated 
image analysis approach followed four main steps presented in Fig. 1. In 
Step 1, we collected the online digital images from citizen science and 
social media platforms (see Section 2.3. Data collection). In Step 2, our 
imagery dataset (3274 images) was manually annotated and labelled 
based on whether it contained or not the species of interest (see Section 
2.4. Data labelling). In Step 3 we applied different deep learning clas-
sification and object detection models (i.e., to identify and detect the 
presence of the species Cortaderia selloana in each image; see Section 2.5. 
Model implementation). Finally, in Step 4, we used the georeferenced 
information and time span of each image where the C. selloana was 
identified by the models, to map the potential occurrence of the species 
over time (see Section 2.6. Spatialization and mapping). 

2.3. Data collection 

Our data collection involved two different imagery datasets. The first 
dataset was used to train the CNNs, while the second dataset was used to 
test the transferability and generalization of the model. For the first 
dataset (train dataset hereafter), we compiled 2273 images displaying 
Cortaderia selloana and taken in Portugal until December 2022. Images 
were compiled from the citizen science platforms Invasoras.pt (https 
://invasoras.pt/; 1926 images) and iNaturalist (https://www.inatural 
ist.org/; 347 images). From the set of 2273 images, only those con-
taining the species inflorescences (pampas) were retained, resulting in a 
total of 1323 images. The 1323 images were manually verified, and low 
resolution, blurred a,nd/or irrelevant (e.g., paintings and drawings) 
images were removed, resulting in a final set of 1237 images. A similar 
number (1237) of outdoor images without C. selloana (including images 
of streets, landscapes, wide-open shots of nature, close-up shots of ani-
mals and/or plants, among others) was additionally collected from 
Flickr, resulting in 2474 images for subsequent analysis. 

The second dataset (transferability dataset hereafter), consisted of 
publicly available images taken in Portugal from four social media 
platforms: Facebook (https://www.facebook.com/), Flickr (http 
s://www.flickr.com/), Instagram (https://www.instagram.com/) and 
Twitter (https://twitter.com/). Image collection was done in March 
2023 by searching for common names of C. selloana in Portuguese (e.g., 
“Erva das pampas”, “Capim das pampas”), thereby avoiding collecting 
images outside of Portugal, as well as the scientific name of the species 
(i.e., “Cortaderia selloana”). To ensure time and resource efficiency in 
transferability and generalization analyses, we collected a sample of 
images from each social media platform (a random set of 100 per plat-
form, resulting in a total of 400 images; see Table A.1). We also collected 
the same number (400) of outdoor images without the C. selloana from 
Flickr, a social media platform with a vast number of outdoor photo-
graphs taken and uploaded by the public, with possibility of 
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downloading public information automatically, therefore maximizing 
time and resource efforts. The final size of the transferability set was 800 
images. 

Image collection for Facebook, Instagram, and Twitter was con-
ducted manually. For Invasoras.pt. and Flickr, we used a Python 3.8.13 
(https://docs.python.org/3.8/reference/) script based on URL scraping 
(for Invasoras.pt). Also, for Flickr we use its Application Programming 
Interface (API) to automate the search and scraping of images. Infor-
mation on the geolocation (at city level) and time span of each image 
was also gathered, manually (for instance, by checking the location 
tagged by the users) or automatically, whenever publicly available 
(resulting in 144 geotagged images). Data collection methods were 
minimized to extract only absolutely necessary data from publicly 
available posts and avoiding the collection of potentially sensitive, pri-
vate, and personal information, thus respecting the user’s privacy and 
the platform’s terms of use (Di Minin et al., 2021). 

2.4. Data labelling 

We considered two different types of CNNs: classification and object- 
detection based. For the classification CNNs, each image was manually 
checked to verify the presence or absence of the species, using a binary 
classification: (a) “With Cortaderia selloana”, if the image content dis-
played at least one C. selloana (n = 1237; Fig. 2a), and (b) “Without 
Cortaderia selloana” if the C. selloana was absent in the outdoor envi-
ronment (n = 1237; Fig. 2b). For the object detection CNNs, whenever 
an image exhibited the C. selloana (“Cortaderia selloana”), the position 
and presence of the species in the content of the image was manually 
annotated by drawing a labelling box around the space of the species in 
the image (Fig. 2c). The labelling procedure was done using labelImg 
(https://github.com/tzutalin/labelImg), a Python graphical image 

annotation tool that saves annotations as XML files in PASCAL VOC 
format. It was conducted by the same author (ASC), with expertise in 
both ecology and computer sciences, and previous experience in data 
annotation and labelling and species identification, thereby minimizing 
any bias or else maintaining any potential bias as systematic. 

2.5. Model implementation 

We first selected the CNNs architectures to be implemented (Section 
2.5.1). After that, we trained, validated, and tuned the CNNs using the 5- 
fold cross validation method, along with other performance improve-
ment strategies (Sections 2.5.2 and 2.5.3). Then, we evaluated the 
model’s performance by applying commonly adopted classification 
metrics (Section 2.5.4). Lastly, we tested the transferability and gener-
alization capacity of both classification and object detection CNNs when 
applied using social media images (Section 2.5.5). 

2.5.1. Model selection and parametrization 
For the classification task, before the implementation of deep 

learning models, all images were resized to the same resolution (227×
197 pixels) by considering the mean dimensions of the set, and then 
normalized to the [0,1] range (Na and Fox, 2020). Then, six open source 
CNNs were selected: VGG16 (Simonyan and Zisserman, 2015), 
ResNet50, ResNet101 (He et al., 2016), Inception-v3 (Szegedy et al., 
2016), DenseNet201 (Huang et al., 2017) and EfficientNetB0 (Tan and 
Le, 2019). These algorithms were selected because of their ease for 
transfer learning and high performance on similar classification tasks 
(Arun and Viknesh, 2022; Vallabhajosyula et al., 2022). For model 
optimization, we used the Adam optimizer algorithm (Kingma and Ba, 
2015), a batch size of 10 and 100 epochs. The learning rates were chosen 
from empirical trials over 100 epochs, with and 10− 4 and 10− 6 showing 

Fig. 1. Methodological framework adopted to identify the invasive alien test species Cortaderia selloana in online digital images from social media (A), based on the 
examination of image content with or without C. selloana and the species position in the image (B), and using classification and object detection models (CNNs). 
Images where the species has been correctly identified by the models were mapped to see the georeferenced location of the species from 2019 to 2021 (D). 
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the best performances. We also implemented an early stop approach, 
with a patience value of 16 to regularize the model and minimize the loss 
function (binary cross entropy). The early stop approach is a common 
technique in machine learning to halt the training process of a model 
prematurely if performance on a validation dataset fails to improve 
beyond a predefined threshold, thereby preventing overfitting and 
conserving computational resources. 

For the object detection task, we used three open source CNNs pre- 
trained for a diversity of object detection goals: Faster R-CNN 
ResNet50 (Ren et al., 2015), Faster R-CNN ResNet101 (Ren et al., 2015) 
and Faster R-CNN Inception-v2 (Szegedy et al., 2016). For each network 
we established 200,000 number of steps per epoch, a batch size of 1 and 
a L2 regularization penalty of 10− 2. The maximum number of the 
checkpoint file to be evaluated was set to 1. As in every optimization 
problem, we aimed to minimize the loss function, while maximizing the 
model’s performance. To do so, we followed two metrics - total loss and 
average inference time per image – which although not constituting 
evaluation metrics, support the choice of the most accurate and 
computationally efficient model (i.e. the lower the total loss, the better 
the model; the shorter the average inference time, the most computa-
tionally efficient the model). The total loss is usually computed as the 
sum of the classification (loss of the classifier that determines the type of 
target object) and localization losses (loss of the regressor that generates 
a rectangular box to locate the target object), while the average infer-
ence time per image corresponds to the amount of time taken by the 
models to process a new image and make a prediction. Details on both 
classification and detection CNNs description, parameterization and 
implementation can be found in the Supplementary Material. 

2.5.2. Model training and validation 
For the classification task, the performance of the models was 

evaluated using 5-fold cross validation over the dataset described in 
Sections 2.3 and 2.4, as this approach provides a robust and unbiased 
estimate of a model’s performance while also guiding effective hyper-
parameter tuning for improved overall performance (James et al., 
2023). The dataset was divided into 5 subsets, and, at each iteration of 
the 5-fold cross validation, one was used to evaluate the models using 
the performance metrics that will be presented in Section 2.5.4. The 
remaining 4 subsets were used for training (90% of the images) and 
validation (10% of the images). 

To enhance the performance of our classification and detection 
models while also avoiding overfitting, we increased the size of the 
training dataset through a data augmentation approach. This approach 
involves artificially increasing the diversity of a dataset by applying 
various transformations to the existing data samples, such as rotation, 
flipping, or cropping. These transformations modify the appearance of 
the original images, thereby creating new variations that can help 
improve the model’s ability to generalize across different scenarios and 
conditions. Specifically, for the classification models, we used four 
transformations per image that were selected considering the visual 
characteristics of plant species, as well as the typical properties of 
citizen-science and social media images. An example of such was the 
adoption of the horizontal flipping instead of the vertical flipping, as the 
former would not be reasonable for terrestrial plants. These trans-
formations were implemented using the data generator available in 
Keras (Chollet, 2015): horizontal flip, zoom (range of 0.2), width shift 
(range of 0.2) and height shift (range of 0.2). For the object detection 
models (following the same logic of the previous ones), we implemented 
five random transformations per image using the “data augmentation 
options” parameter of the TensorFlow configuration file: horizontal flip, 
image scale, adjust contrast, adjust brightness, and adjust saturation. 
Both original and transformed images were considered for training, 

Fig. 2. Examples of images included in the classification task: (a) “With Cortaderia selloana”, from Invasoras.pt., (b) “Without Cortaderia selloana”, from Flickr. The 
image also shows an example of an image labelled for the object detection task (c) “Cortaderia selloana”, from Invasoras.pt. 
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resulting in a final dataset of 3958 (for the classification models) and 
5565 (for the object detection models) images. 

2.5.3. Transfer learning 
To improve the performance of our models, we applied a transfer 

learning strategy, which consisted of initializing each CNN with weights 
of open source CNNs pre-trained on databases with similar character-
istics to our dataset. Specifically, we used CNNs pre-trained with the 
ImageNet database (https://www.image-net.org/), for the classification 
task. For the object detection task, we used CNNs pre-trained with the 
Microsoft Common Objects in Context (MS COCO; https://cocodataset. 
org/#home) and iNaturalist (https://www.inaturalist.org/) databases 
(see Supplementary Material for details). 

To achieve a good balance between generalization and specificity of 
image classification for the classification models, the first CNN model 
layers were kept frozen during training with transfer learning, while 
three fully connected layers in VGG16 and EfficientNetB0, and one fully 
connected layer in ResNet50, ResNet101, Inception-v3 and Dense-
Net201, were re-trained (fine-tuned) using our training dataset. Before 
the output layer, we also included an additional dense layer with 128 
units and a rectifier linear unit activation function (ReLU), to enhance 
the model’s adaptation to the classification task. ReLU is a mathematical 
function commonly used in deep learning approaches that replaces 
negative input values with zero, enabling the model to learn nonlinear 
relationships and facilitate faster convergence during training. Lastly, 
the output layer was modified to fit a binary classification (with 2 units). 

In the object detection models, all the parameters in the configura-
tion files were kept the same as the ones used during the original training 
of the networks (https://github.com/tensorflow/models/tree/maste 
r/research/object_detection/samples/configs), except for the number 
of classes, which we changed to 1 in order to fit our detection goals (the 
“Cortaderia selloana” class). 

2.5.4. Model performance evaluation 
The performance of each classification model (VGG16, ResNet50, 

ResNet101, Inception-3, DenseNet201 and EfficientNetB0) was evalu-
ated based on commonly adopted classification metrics (Tharwat, 2018; 
Table 1): accuracy (ACC), specificity (or True Negative Rate: TNR), 
sensitivity (recall or True Positive Rate: TPR) and f1-score (F1). For the 
classification task, the term positive stands for the presence of Cortaderia 
selloana in the images (“With Cortaderia selloana”), whereas the negative 

stands for C. selloana absence (“Without Cortaderia selloana”). The 
evaluation metrics were then calculated as the mean of the performance 
metrics obtained over the 5 different folds (see Section 2.5.2). Finally, 
we used a paired samples t-test, with a confidence interval of 0.05 (Hsu 
and Lachenbruch, 2005) to test for significant differences in classifica-
tion metrics between each pair of the five CNN models, for both learning 
rates (10− 4 and 10− 6). 

The performance of each object detection model (Faster R-CNN 
ResNet50, Faster R-CNN ResNet101 and Faster R-CNN Inception-v2) 
was evaluated using the MS COCO detection metrics and the PASCAL 
VOC detection metrics (Table 1): mean Average Precision (mAP) and 
Average Recall (AR). Both MS COCO and PASCAL VOC are widely used 
benchmarks for object detection in computer vision, allowing models to 
generalize effectively across various object categories and complex 
scenes (MS COCO; Lin et al., 2014), as well as to ensure standardized 
evaluation and facilitate consistent comparisons across different studies 
(PASCAL VOC; Everingham et al., 2010). The mAP was computed over 
different Intersection over Union (IoU) thresholds in the case of the 
models pre-trained on the MS COCO dataset and over a 0.50 IoU 
threshold in the models pre-trained on the iNaturalist dataset. IoU 
thresholds represent the ratio between the area of the intersection and 
the area of the union of the predicted and actual bounding boxes 
(Rezatofighi et al., 2019). On the other hand, the AR was calculated only 
for the models pre-trained on the MS COCO dataset, over 1, 10 and 100 
detections, as predefined by the transfer learning architecture (see 
Table A.9). 

2.5.5. Model testing 
The six classification and three object detection models trained with 

the citizen science images were used to classify and detect the Cortaderia 
selloana in social media images. For the classification models, all images 
were resized to the same resolution as the training ones (227× 197 
pixels), and then normalized to the [0,1] range (Na and Fox, 2020). 
Model performance on the new images was evaluated using the metrics 
previously described, with the aim of assessing the CNN models trans-
ferability and generalization capacity. 

2.6. Mapping 

Used the information on the time span of each georeferenced image 
containing the Cortaderia selloana to map the potential location of the 
species between 2019 and 2021. Due to lack of information on geo-
location and time span, only images from Flickr and Instagram were 
used in the mapping exercise. Procedures were conducted in QGIS3.10 
(QGIS.org, 2019). 

3. Results 

3.1. Identifying the Cortaderia selloana in citizen science images 

When using the classification task for discriminating pictures “With 
Cortaderia selloana” from those with “Without Cortaderia selloana” 
(Fig. 3a and b), the considered CNNs showed high performance (e.g., 
with f1-score values above 96.16%; Table 2) and few significant dif-
ferences in their performance metrics (p < 0.05; see Table A.8 for full 
results). Overall, the best performance results were obtained by the 
DenseNet201 with the learning rate of 10− 4 in terms of accuracy 
(99.07%) and f1-score (99.06%) values, followed by the EfficientNetB0 
with the same learning rate (10− 4), which also showed high accuracy, 
sensitivity, and f1-score (99.03%). In the case of the Desenet201 model, 
only 0.8% of the images displaying the C. selloana were confused by the 
model as showing no C. selloana (false negatives; Fig. 3c). Likewise, from 
the images showing no C. selloana, in 0.8% of the cases DenseNet201 
incorrectly predicted the class “With Cortaderia selloana” (false positives; 
Fig. 3d). A similar pattern was verified for the remaining CNN models 

Table 1 
Evaluation metrics considered in the classification and object detection models 
evaluation, with respective example. TP represents the True Positives, TN the 
True Negatives, FP the False Positives and FN the False Negatives.  

Metric Example 

Classification models 

Accuracy 
Calculates the level of correctly classified images as “With 
Cortaderia selloana” and as “Without Cortaderia selloana” by 
the model. 

Specificity 
Shows the proportion of correctly classified images as 
“Without Cortaderia selloana” by the model, in relation to all 
actual “Without Cortaderia selloana” images. 

Sensitivity (or recall) 
Shows the proportion of correctly classified images as “With 
Cortaderia selloana” by the model, in relation to all actual 
“With Cortaderia selloana” images. 

F1-score 
Calculates the level of correctly and incorrectly classified 
images as “With Cortaderia selloana” and “Without 
Cortaderia selloana” by the model.  

Object detection models 

mean Average 
Precision (mAP) 

Indicates the proportion of correctly detected images as 
“Cortaderia selloana” by the model, in relation to all actual 
and predicted “Cortaderia selloana” images. 

Average Recall (AR) 
Shows the proportion of correctly detected images as 
“Cortaderia selloana” by the model, in relation to all actual 
“Cortaderia selloana” images.  
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(see confusion matrices in Tables A.4 and A.5). 
Overall, the classification models mostly failed to classify images in 

which C. selloana is in the background, reduced in size or barely visible 
(e.g., Fig. 3c), as well as images displaying plants with similar features to 
C. selloana ones (e.g., Fig. 3d). 

When using the object detection models (Faster R-CNN ResNet101, 
Faster R-CNN ResNet50 and Faster R-CNN Inception-v2) performances 
differed depending on the transfer learning weights (MS COCO versus 
iNaturalist; Table 3). Overall, object detection models pretrained in the 
MS COCO dataset showed the most satisfactory results (Table 3), with 
Faster R-CNN ResNet50 showing the highest performance in terms of 
mean Average Precision (94.11%). 

In general, the object detection model with overall best performance, 
i.e., Faster R-CNN ResNet50 with MS COCO weights, failed mostly to 
detect images displaying more than one C. selloana, especially if they are 
in the background, reduced in size or barely visible (Fig. 4). 

3.2. Identifying the Cortaderia selloana in social media images 

The models pre-trained over the citizen science images showed to be 
very effective when applied to the social media images (Figs. A.1a and 

A.1b), with high performances (e.g., f1-score values above 93.09%; 
Table 4). Unlike the training task, the best results were obtained by 
EfficientNetB0 with a learning rate of 10− 4, in terms of accuracy 
(97.50%), sensitivity (96.00%) and f1-score (97.46%), followed by 
Inception-v3 with the same learning rate (10− 4), which also showed 
high accuracy (96.88%), sensitivity (94.00%), specificity (99.75%) and 
f1-score (96.78%). In the case of the EfficientNetB0 model, only 4% of 
the images displaying the Cortaderia selloana were confused by the 
model as showing no C. selloana (false negatives; Fig. A.1c). Likewise, 
from the images showing no C. selloana, in 1% of the cases Effi-
cientNetB0 incorrectly predicted the class “With Cortaderia selloana” 
(false positives; Fig. A.1d). A similar pattern was verified for the 
remaining CNNs (see confusion matrices in Tables A.6 and A.7). 

Regarding the object detection task, the models pre-trained over the 
citizen science images also showed a satisfactory performance when 
applied to the social media images (Table 5), with mean Average Pre-
cision above 76.85%. Similar to the training set, the best results were 
obtained by the models pre-trained in the MS COCO dataset, with Faster 
R-CNN Inception-v2 showing the most satisfactory mean Average Pre-
cision results (81.71%; Fig. A.2). 

Fig. 3. Examples of images where the classification models correctly predicted and failed to predict: (a) Cortaderia selloana (true positives), (b) absence of C. selloana 
(true negatives), (c) C. selloana (false negatives) and the (d) absence of C. selloana (false positives). 0 – “With Cortaderia selloana”, 1 – “Without Cortaderia selloana”. 
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3.3. Mapping the spatial distribution of Cortaderia selloana 

Overall, when analysing the spatial patterns of Cortaderia selloana 
potential occurrences (Fig. 5), we observed a pattern of increased de-
tections of the invasive species across time and in new locations, with 
few species’ observations in 2019 and more than double the number of 
observations in 2021. In comparison with the reported locations from 
the citizen science platform, social images show 11 new location in-
stances of the species, particularly in the North, Coastline and South 
regions of Portugal (Fig. 5a). 

4. Discussion 

4.1. General performance over Cortaderia selloana identification in 
citizen science images 

In this study we aimed to investigate the potential of using publicly 

available classification and object detection models over online digital 
images to monitor invasive alien plants, using the Cortaderia selloana in 
Portugal as a test case. Promising opportunities of combining deep 
learning approaches with online digital data have already been sug-
gested in previous applications addressing ecological and environmental 
challenges (Hartmann et al., 2022; Sujatha et al., 2021; Valarmathi 
et al., 2021). Our results also showed a high performance of deep 
learning tools to identify the C. selloana in citizen science and social 
media images, with the potential for identifying new locations of 
C. selloana in Portugal. 

4.2. Model performance over Cortaderia selloana identification in citizen 
science images 

From the different models considered in our study, the classification 
model DesenNet201 (with a learning rate of 10− 4) and the object 
detection mode Faster R-CNN ResNet50 (pre-trained on the MS COCO 

Table 2 
Performance metrics for both learning rates scenarios trained for each classification model (mean ±
standard deviation of the five folds). ACC – Accuracy, TPR – Sensitivity, TNR – Specificity and F1 – 
F1-score. Light grey cells highlight the best performance results for learning rate and metric. 

Classification 

models 

lr = 10-4  lr = 10-6 

ACC TPR TNR F1  ACC TPR TNR F1  

  

VGG16 
98.46 ± 

0.93 

98.69 ± 

0.81 

98.21 ± 

1.73 

98.47 ± 

0.91 

97.45 ± 

0.34  

96.92 ± 

0.70 

97.98 ± 

1.04 
97.44 ± 

0.35 

ResNet50 
98.46 ± 

0.72 
98.38 ± 

0.66 
98.54 ± 

1.18 

98.46 ± 

0.71 
96.20 ± 

0.98 

95.69 ± 

1.82 

96.69 ± 

1.43 

96.16 ± 

1.07 

ResNet101 
98.59 ± 

0.88 

98.04 ± 

1.52 

99.11 ± 

0.34 
98.57 ± 

0.91 

96.85 ± 

0.91 

95.77 ± 

1.58 

97.90 ± 

0.41 

96.79 ± 

1.00 

Inception-v3 
98.91 ± 

0.49 

98.62 ± 

0.75 

99.19 ± 

0.28 

98.90 ± 

0.50 

97.09 ± 

1.14 

94.99 ± 

1.78 

99.18 ± 

0.65 

97.02 ± 

1.17 

DenseNet201 
99.07 ± 

0.46 

99.03 ± 

0.62 

99.11 ± 

0.44 

99.06 ± 

0.47 

98.22 ± 

0.60 

97.32 ± 

0.9 

99.11 ± 

0.79 

98.20 ± 

0.64 

EfficientNetB0 
99.03 ± 

0.52 

99.03 ± 

0.72 

99.03 ± 

0.47 

99.03 ± 

0.51 

97.33 ± 

0.94 

96.84 ± 

1.63 
97.82 ± 

0.34 

97.31 ± 

0.99 

Table 3 
Performance metric (mAP@0.50IOU; mean average precision), average inference time per image and total 
loss (sum of the classification and localization losses) for each model. Light grey cells highlight the best model 
results for performance (mAP), total loss and speed. 

Faster R-CNN 

ResNet101 

iNaturalist

Faster R-CNN 

ResNet101 

MS COCO

Faster R-CNN 

ResNet50 

iNaturalist

Faster R-CNN 

ResNet50 MS 

COCO

Faster R-CNN 

Inception-v2 

MS COCO

Average 

inference time 

per image (ms)

395 106 366 89 58

mAP@0.50IOU 89.78 93.41 90.63 94.11 93.87

Total loss 1.22 0.53 1.27 0.61 0.55
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dataset) achieved the most promising results over citizen science images 
(i.e., maximum f1-score of 98.20% and mean Average Precision of 
94.11%). Previous studies classifying and detecting plant species in 
digital images also highlighted the performance of DenseNet201 (Haupt 
et al., 2018), and Faster R-CNN ResNet50 (Li et al., 2021). The densely 
connected architecture associated to DenseNet201 is particularly robust 
and easy to implement and re-train, as it substantially reduces the 
complexity and number of parameters, alleviates the vanishing-gradient 
problem, and reinforces feature propagation and reuse (Huang et al., 
2017). Faster R-CNN ResNet50 is a very fast Region Based Convolutional 
Neural Network that benefits from residual connections and batch 
normalization to extract features at deeper layers (He et al., 2016). All 
these particularities were probably the main drivers of the accurate re-
sults observed for these two architectures. 

When comparing the best classification model DenseNet201 (with a 

learning rate of 10− 4) with the object detection one Faster R-CNN 
ResNet50 (with MS COCO weights), we could notice slightly higher 
performances for the classification model. This may be attributed to the 
transfer learning procedure adopted when implementing the classifica-
tion models, which can improve image classifications of digital plat-
forms to produce more robust and reliable identification of invasive 
plant species (Cabezas et al., 2020). Considering that object detection 
models required a greater hyperparameter tuning to achieve stable and 
satisfactory evaluation results, our results might suggest the preferable 
use of classification models to monitor and map the distribution of the 
Cortaderia selloana efficiently and with less complexity. 

Fig. 4. Examples of images where the Faster R-CNN ResNet50 with MS COCO weights failed to design and predict Cortaderia selloana object detection boxes (left 
images – detected boxes; right images – real boxes). (a) with C. selloana in the background, reduced in size or barely visible; (b) with more than one C. selloana. 

Table 4 
Performance metrics of each model in the test set (for both learning rates scenarios). ACC – Accu-
racy, TPR – Sensitivity, TNR – Specificity and F1 – F1-score. Light grey cells highlight the best 
performance results for learning rate and metric. 

Classification 

models

lr = 10-4 lr = 10-6

ACC TPR TNR F1 ACC TPR TNR F1

VGG16 94.88 90.00 99.75 94.61 95.75 94.50 97.00 95.70

ResNet50 96.25 93.25 99.25 96.13 94.63 91.75 97.50 94.47

ResNet101 96.00 92.50 99.50 95.85 95.00 93.25 96.75 94.91

Inception-v3 96.88 94.00 99.75 96.78 93.50 87.50 99.50 93.09

DenseNet201 96.13 93.00 99.25 96.00 96.25 93.25 99.25 96.13

EfficientNetB0 97.50 96.00 99.00 97.46 93.62 89.50 97.75 93.35
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4.3. Model performance over Cortaderia selloana identification in social 
media images 

When we applied the pre-trained models with the citizen science 
imagery to the social media images, we observed a general decrease in 
model performance (maximum f1-score of 96.13% for DenseNet201 and 
mean Average Precision of 81.71% for Faster R-CNN ResNet50). How-
ever, although the decrease was more pronounced for the object 
detection models, it was minor, not compromising the efficiency and 
accuracy of the models to classify and detect the Cortaderia selloana. This 
supports the assumption that pre-trained models could still be useful to 
identify invasive plant species in different online image sources. The loss 
of model efficacy can be associated with the social media images 
properties, as these platforms typically resize and recompress images 
with their own preferred settings, resulting in lower resolution and 
quality. Also, in social media images, the C. selloana is more likely to be 
present in the background, at smaller dimensions, as users tend to take 

pictures at other environmental attributes (e.g., selfies, landscapes). This 
can compromise the performance of the models associated to lower 
image quality and resolution (Talebi and Milanfar, 2021). 

Still, from the different models considered, EfficientNetB0 and Faster 
R-CNN Inception-v2 performed best on social media images. These re-
sults agree with previous applications on biodiversity using Effi-
cientNetB0 (Hassan et al., 2021), and Faster R-CNN Inception-v2 
(Moniruzzaman et al., 2019). Regarding the performance of each pre- 
trained model, EfficientNetB0 with a learning rate of 10− 4 and Faster 
R-CNN Inception-v2 pre-trained on the MS COCO dataset performed 
better compared to the remaining architectures. These results also sug-
gest that classification models present a higher efficiency and perfor-
mance when applied to images containing different proprieties and 
sources, which makes them robust tools to support the identification of 
C. selloana. Identifying this species in pictures is very straightforward 
and simple, as C. selloana contains several specific features (such as the 
pampas) that make it very characteristic and difficult to be confused 

Table 5 
Performance metric (mAP@0.50IOU; mean Average Precision), average inference time per image and 
total loss (sum of the classification and localization losses) in the test set. Light grey cells highlight the 
best model results for performance (mAP), total loss and speed. 

Faster R-CNN 

ResNet101 

iNaturalist

Faster R-CNN 

ResNet101 

MS COCO

Faster R-CNN 

ResNet50 

iNaturalist

Faster R-CNN 

ResNet50 MS 

COCO

Faster R-CNN 

Inception-v2 

MS COCO

Average 

inference time 

per image (ms)

395 106 366 89 58

mAP@0.50IOU 76.85 79.23 74.93 80.80 81.71

Total loss 2.24 1.14 2.24 1.20 1.08

Fig. 5. Spatial distribution of Cortaderia selloana: (a) for Flickr across 2019, 2020 and 2021, (b) for Instagram, Flickr and Invasoras.pt. Black circles and red arrows 
indicate new potential locations in relation to the data available on Invasoras.pt. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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with other plant species. Moreover, there are no other plant species in 
Portugal (our study area) with the same features as C. selloana. Both of 
these particularities may be the source of the high results observed in 
this study. 

4.4. Monitoring the invasive alien Cortaderia selloana from online digital 
images 

Our methodological approach showed to be promising at identifying 
and classifying Cortaderia selloana in digital images and, therefore, 
supporting the monitoring of the distribution of this species. Other 
studies have also showed the potential of using digital data and tools, 
such as Google Street View, to track the spread of C. selloana (Pardo- 
Primoy and Fagúndez, 2019), as well as to understand public percep-
tions (Roldão Almeida et al., 2023) and to redirect citizens actions 
(Marchante and Marchante, 2016). Nevertheless, studies including 
either citizen science or social media data to map and monitor the dis-
tribution of invasive alien species are still scarce. As a popular orna-
mental species, C. selloana particularly arouses public interest, which is 
reflected in the frequency of social media posts. Thus, data from these 
online platforms is particularly promising for monitoring the distribu-
tion of C. selloana, with users from different locations posting several 
pictures of the species (in our specific case, we obtained around 
4483C. selloana pictures, however many more could be collected). 

The images we collected allowed us to complement citizen science 
distribution information about the species, by suggesting new potential 
locations of C. selloana in Portugal based on social media. The location of 
the images containing C. selloana could eventually suggest a tendency 
for increased species occurrences in Portugal from 2019 to 2021. 
Increased overall distribution of C. selloana in Portugal is naturally ex-
pected because of the species high invasiveness and fast spread facili-
tated by a warming climate and urbanization (Tarabon et al., 2018). Yet, 
it is important to view these results with some caution. For instance, we 
cannot discard the possibility of getting more species data locations 
because of a higher internet penetration or even social media use, 
similar to what might happen with other data sources (i.e., the more 
people engaged, the more data we may get: Ghani et al., 2019). Also, we 
only considered images showing the plumes of the invasive alien 
C. selloana. Monitoring the species outside of its blooming season, as 
well as detecting immature individuals, is constrained, as it can be 
confused with other plant species with similar vegetative characteristics. 
This may hinder our approach’s ability to identify pioneer populations 
in new areas, which could impact its effectiveness as an early alert 
system for invasive plants monitoring. Advancing detection of 
C. selloana outside its flowering season will require using imagery 
datasets that include a broader range of plant life stages and pheno-
logical states. For that, exploring other architectures, such as NasNet 
(Zoph et al., 2018), GoogLeNet (Szegedy et al., 2015) or Inception- 
ResNet (Szegedy et al., 2017) and techniques would also be a neces-
sary step for model performance improvement and tuning (e.g., Cluster- 
Based Over Sampling). 

4.5. Opportunities and limitations for monitoring invasive alien plants 

Even though our study is only exploratory, several issues need to be 
emphasised for the general detection, mapping, and monitoring of 
invasive alien plants. The process of acquiring data from citizen science 
or social media platforms can be quite easy, either through an API, or 
other scrapping methods, enabling the relatively fast and automated 
collection of big digital data. Yet, not all social media and citizen science 
platforms allow data scrapping, according to the terms and conditions of 
use of each platform. Likewise, the use of deep learning can automate 
the process of detecting invasive alien plants from big digital images, 
making the monitoring of invasive alien species more time-, and 
perhaps, cost-effective when looking into large geographic areas and 
time periods, compared to other conventional methods (e.g., field 

surveys; Qian et al., 2020). However, advancing such big analysis will 
also require developments to infrastructures and programming skills, 
which may not be accessible to a wide research community. 

Metadata associated with online digital images, such as coordinates 
and time span, can be used to identify locations potentially occupied by 
invasive alien plants (supporting the early detection of the species) and 
as input data in modelling frameworks to further explore potentially 
suitable areas for the species occurrence (e.g., Species Distribution 
Models or Habitat Suitability Models; César de Sá et al., 2019; Robinson 
et al., 2018). Online platforms have a large user base and far-reaching 
audience, which can greatly increase the coverage and visibility of 
invasive alien species monitoring and detection efforts in near real-time. 
However, user-generated content, particularly on social media, does not 
always include georeferenced or time information, and in some cases 
this information is not sufficiently precise for accurate mapping of 
invasive alien species. Inevitably, this limits our capacity to use this type 
of data for some contexts, particularly if the aim is informing manage-
ment activities. Furthermore, there is no guarantee that the quality and 
resolution of publicly available images will enable precise identification 
of the species. Incorporating other forms of online data, such as textual 
information (e.g., tags, captions, comments) may further improve the 
generalization of deep learning tools for invasive alien species detection, 
mapping, and monitoring (Jeawak et al., 2018; Tateosian et al., 2023; 
Terry et al., 2020). Lastly, the spatial concentration bias of social media 
images, particularly the prevalence of photo captures in some areas at 
the expense of other areas (e.g., due to accessibility limitations, 
appealing attributes, among others; Di Minin et al., 2015), may also lead 
to limitations in the detection of invasive plants (and other species or 
natural assets). 

Nonetheless, we are confident that the technology-driven approach 
followed in this study provides valuable contributions to the develop-
ment of a widespread and dynamic monitoring system where social 
media users become passive contributors of the monitoring process 
(Marchante and Marchante, 2016). Under proper developments, the 
information generated by the monitoring system for (near) real-time 
detection and identification of invasive plants across locations can 
contribute to timely intervention measures, such as containment of 
further occurrences, also serving as a guideline to time and cost- 
effectiveness management. As such, the outcomes of this study, even if 
preliminary, show potential for aiding government authorities, stake-
holders, or other organizations in their decision-making processes, 
including on resource allocation for invasive species management, and 
focused collaboration between the public and environmental agencies. If 
further developed, our methodological approach may contribute or 
complement to improve existing invasive species monitoring efforts. In 
practice, our monitoring tool can support the development of user- 
friendly interfaces or mobile applications that allow stakeholders, such 
as environmental researchers and land managers, to easily access and 
detect the Cortaderia selloana in digital images (Hussien et al., 2023). By 
analysing geotagged social media images, our approach can be used to 
create distribution maps of the invasive species infestations, allowing to 
identify areas of high invasion risk (Allain, 2019). It can also contribute 
to implement automated strategic monitoring programs that regularly 
scan social media platforms for images containing the C. selloana, aiding 
authorities to track the distribution of the species. Furthermore, our 
models can complement existing databases or mapping platforms to 
provide comprehensive information on the distribution and dispersal of 
C. selloana (Reeves et al., 2021). These applications have the potential to 
support the identification of priority areas for eradication efforts, the 
efficient allocation of resources, and the evaluation of the success of 
management interventions over time. Still, we are also aware of po-
tential barriers in the acceptability and confidence of using artificial 
intelligence tools and user-generated contents by these organizations, 
especially in the context of social issues like ethics and fairness (Whit-
tlestone et al., 2019). To promote acceptability and proper use, it is 
essential to highlight the transparency and fairness in the overall 
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workflow adopted, addressing any biases or ethical concerns associated 
with deep learning applications and the use of personal data. The 
collaborative nature of our approach, where the public contributes 
through citizen-science and social media platforms, can foster a sense of 
shared responsibility, which usually increases the trust in these methods 
(Liberatore et al., 2018). 
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