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Abstract 
We present a genome assembly from an individual female Gulosus 
aristotelis, previously known as Phalacrocorax aristotelis, (the European 
shag; Chordata; Aves; Pelecaniformes; Phalacrocoracidae). The 
genome sequence is 1,279.1 megabases in span. Most of the 
assembly is scaffolded into 36 chromosomal pseudomolecules, 
including the Z and W sex chromosomes. The mitochondrial genome 
has also been assembled and is 18.61 kilobases in length. Gene 
annotation of this assembly on Ensembl identified 16,474 protein 
coding genes.
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Species taxonomy
Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Deu-
terostomia; Chordata; Craniata; Vertebrata; Gnathostomata; 
Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomor-
pha; Tetrapoda; Amniota; Sauropsida; Sauria; Archelosauria; 
Archosauria; Dinosauria; Saurischia; Theropoda; Coeluro-
sauria; Aves; Neognathae; Suliformes; Phalacrocoracidae; 
Phalacrocorax; Phalacrocorax aristotelis (Linnaeus, 1761)  
(NCBI:txid126867).

Background
Gulosus aristotelis (previously known as Phalacrocorax aris-
totelis) and commonly known as the European shag, is a large 
seabird species within the cormorant family, Phalacrocoridae 
(Croxall, 1987; Thanou et al., 2017). European shags have 
dark-green plumage in adulthood but that can often appear 
black, a yellow gape, green eyes, black legs and feet and a crest 
during the breeding season (Wanless & Harris, 1997). Juve-
nile plumage is lighter brown and present up to two years old 
(Wanless & Harris, 1997). The species displays sexual dimor-
phism, with males weighing 1900 g on average, compared to 
1600 g in females (Daunt et al., 2001). Sex is typically identi-
fied using vocalisations in adults (Snow, 1960) and molecular 
techniques in juveniles (Thanou et al., 2013).

European Shags are benthic foot-propelled pursuit divers, with 
a partially wettable plumage that facilitates diving in shal-
low waters but requires individuals to return to shore each 
day to dry and roost (Grémillet et al., 1998), increasing their 
vulnerability to inclement weather conditions. The species’ 
diet primarily consists of fish with some predation of crusta-
tions, with both temporal and spatial variability consump-
tion of prey species (Howells et al., 2017; Howells et al., 2018; 
Velando & Freire, 1999).

Gulosus aristotelis breeds colonially, creating nest sites on 
cliff ledges or cavities under rocks (Velando & Freire, 2001; 
Wanless & Harris, 1997). European shags start breeding 
at 2 to 3 years (Aebischer, 1986), with the lifespan of over 
14 years on average (Herborn et al., 2014), with the oldest 
individual recorded on the Isle of May, an important seabird 
breeding colony where shags have been intensively moni-
tored since the 1970s, at 23 years-old (Hall, 2004). Breeding 
occurs seasonally, with shags laying on average a clutch of 
three eggs, which hatch asynchronously after an approxi-
mately 35-day incubation period (Granroth-Wilding et al., 2014; 
Snow, 1960). Both sexes provide parental care, in the form of 
incubation and provisioning until fledging of chicks at approxi-
mately 55 days (Daunt et al., 2007; Snow, 1960). During 
the non-breeding season, European shags remain coastal but 
may migrate variable distances from their breeding loca-
tion. For example, on the Isle of May in Scotland, approxi-
mately 50% of the population migrates during the winter, with 
half the population remaining resident at the breeding area 
and half migrating up and down the entire East coast of the 
UK and, more rarely, across the North Sea to the Netherlands 
(Acker et al., 2023).

G.aristotelis has a range that covers most of the coastline 
of Europe, with high concentrations the Atlantic coast and  

Mediterranean, and smaller populations at its southern range 
limit on the coast of North Africa (GBIF Secretariat, 2023). With 
a European breeding population estimated at 152,000 (BirdLife 
International, 2021), European shags are listed as ‘least 
concern’ but decreasing on the IUCN red list (BirdLife  
International, 2018), with threats including climate change and 
extreme weather events, changing prey availability, pollution 
and disease (BirdLife International, 2018; Hicks et al., 2019). 
Similarly to other seabirds, European shags are ecologically 
important, not only in their role as marine predators but as 
key indicators of marine ecosystem health and environmental  
change (Parsons et al., 2008; Piatt & Sydeman, 2007).

Long term monitoring programmes of seabird colonies, includ-
ing European shags, such as that carried out on the Isle of May 
in Scotland (from which this specimen originates), are cru-
cial in building a picture of the interacting processes that 
threaten seabirds. Therefore, the availability of this complete 
reference genome is a vital step in combining molecular tools 
with existing large life history datasets. For example, this 
genome will immediately aid the completion of an epigenetic 
clock, widening access to age data for birds that have not been 
individually marked as chicks, as well as the impact of stres-
sors on biological aging where birds are of known age. This 
includes responses to infection and the genome sequence 
will be used to explore the molecular mechanisms of resist-
ance and immunity against parasitism and disease, including 
long term chronic infections with parasites that are ubiquitous 
across individuals (Granroth-Wilding et al., 2017), and 
species differences in response to recent Avian Influenza  
outbreaks.

The genome of the European shag, Gulosus aristotelis, was 
sequenced as part of the Darwin Tree of Life Project and the 
Vertebrate Genomes Project (VGP). Here we present a chro-
mosomally complete genome sequence for Gulosus aristotelis, 
based on one female specimen from the Isle of May National 
Nature Reserve, Scotland.

Genome sequence report
The genome was sequenced from a blood sample taken from 
one female Gulosus aritotelis (previously Phalacrocorax  
aristotelis) (Figure 1) temporarily caught under licence from 

Figure 1. Photograph of a Gulosus aristotelis (previously 
Phalacrocorax aristotelis) (bGulAri2) from same study 
population as the specimen used for genome sequencing. 
Photograph by Fiona Greco.
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Table 1. Genome data for Phalacrocorax aristotelis, bGulAri2.1.

Project accession data

Assembly identifier bGulAri2.1

Species Gulosus aristotelis (previously Phalacrocorax aristotelis)

Specimen bGulAri2

NCBI taxonomy ID 126867

BioProject PRJEB57282

BioSample ID SAMEA10059652

Isolate information bGulAri2, female: blood sample (DNA, Hi-C and RNA 
sequencing)

Assembly metrics* Benchmark

Consensus quality (QV) 61.7 ≥ 50

k-mer completeness 100.0% ≥ 95%

BUSCO** C:97.2%[S:96.6%,D:0.6%],F:0.5%,
M:2.2%,n:8,338

C ≥ 95%

Percentage of assembly mapped 
to chromosomes

96.21% ≥ 95%

Sex chromosomes ZW localised homologous pairs

Organelles Mitochondrial genome: 18.61 kb complete single alleles

Raw data accessions

PacificBiosciences SEQUEL II ERR10462081, ERR10462082

Hi-C Illumina ERR10466815

PolyA RNA-Seq Illumina ERR11606292

Genome assembly

Assembly accession GCA_949628215.1

Accession of alternate haplotype GCA_949628205.1

Span (Mb) 1,279.1

Number of contigs 575

Contig N50 length (Mb) 11.4

Number of scaffolds 352

Scaffold N50 length (Mb) 78.9

Longest scaffold (Mb) 219.24

Genome annotation

Number of protein-coding genes 16,474

Number of non-coding genes 1,001

Number of gene transcripts 26,595
* Assembly metric benchmarks are adapted from column VGP-2020 of “Table 1: Proposed standards and metrics for 
defining genome assembly quality” from Rhie et al. (2021).

** BUSCO scores based on the aves_odb10 BUSCO set using version 5.3.2. C = complete [S = single copy, D = 
duplicated], F = fragmented, M = missing, n = number of orthologues in comparison. A full set of BUSCO scores is 
available at https://blobtoolkit.genomehubs.org/view/bGulAri2_1/dataset/bGulAri2_1/busco.

Isle of May National Nature Reserve, Scotland, UK (56.19, 
–2.57). A total of 42-fold coverage in Pacific Biosciences  
single-molecule HiFi long reads was generated. Primary assem-
bly contigs were scaffolded with chromosome conformation 
Hi-C data. Manual assembly curation corrected 52 missing 
joins or mis-joins, reducing the scaffold number by 9.49%, and 
decreasing the scaffold N50 by 6.93%.

The final assembly has a total length of 1,279.1 Mb in 352 
sequence scaffolds with a scaffold N50 of 78.9 Mb (Table 1). 
The snail plot in Figure 2 provides a summary of the assem-
bly statistics, while the distribution of assembly scaffolds on GC 
proportion and coverage is shown in Figure 3. The cumulative 
assembly plot in Figure 4 shows curves for subsets of scaf-
folds assigned to different phyla. Most (96.21%) of the assembly 
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Figure 2. Genome assembly of Gulosus aristotelis, (previously Phalacrocorax aristotelis), bGulAri2.1: metrics. The BlobToolKit 
Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference 
with each bin representing 0.1% of the 1,279,134,750 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot 
radius scaled to the longest scaffold present in the assembly (219,240,020 bp, shown in red). Orange and pale-orange arcs show the N50 
and N90 scaffold lengths (78,889,319 and 13,321,506 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log 
scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows 
the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and 
missing BUSCO genes in the aves_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.
genomehubs.org/view/bGulAri2_1/dataset/bGulAri2_1/snail.

sequence was assigned to 36 chromosomal-level scaffolds, rep-
resenting 34 autosomes and the Z and W sex chromosomes. 
Chromosome-scale scaffolds confirmed by the Hi-C data are 
named in order of size (Figure 5; Table 2). While not fully 
phased, the assembly deposited is of one haplotype. Con-
tigs corresponding to the second haplotype have also been 
deposited. The mitochondrial genome was also assembled and 
can be found as a contig within the multifasta file of the genome 
submission.

The estimated Quality Value (QV) of the final assembly is 61.7 
with k-mer completeness of 100.0%, and the assembly has 
a BUSCO v5.3.2 completeness of 97.2% (single = 96.6%, 
duplicated = 0.6%), using the aves_odb10 reference set 
(n = 8,338).

Metadata for specimens, barcode results, spectra estimates, 
sequencing runs, contaminants and pre-curation assembly statistics 
are given at https://links.tol.sanger.ac.uk/species/126867.
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Genome annotation report
The Gulosus aritotelis (previously Phalacrocorax aristotelis) 
genome assembly (GCA_949628215.1) was annotated at the 
European Bioinformatics Institute (EBI) using the Ensembl rapid 
annotation pipeline. The resulting annotation includes 26,595 
transcribed mRNAs from 16,474 protein-coding and 1,001 
non-coding genes (Table 1; https://rapid.ensembl.org/Phalacroc-
orax_aristotelis_GCA_949628215.1/Info/Index).

Methods
Sample acquisition and nucleic acid extraction
A blood sample was taken from a female Gulosus aristotelis 
(previously Phalacrocorax aristotelis) (specimen ID 
SAN0001768, ToLID bGulAri2) from the Isle of May National 
Nature Reserve, Scotland, UK (latitude 56.19, longitude –2.57) 
on 2021-06-29. The species was identified by Hannah Ravens-
water (University of Edinburgh) and, Fiona Greco (University 

Figure 3. Genome assembly of Phalacrocorax aristotelis, bGulAri2.1: BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. 
Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive 
version of this figure is available at https://blobtoolkit.genomehubs.org/view/bGulAri2_1/dataset/bGulAri2_1/blob.
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Figure 4. Genome assembly of Gulosus aristotelis, bGulAri2.1: BlobToolKit cumulative sequence plot. The grey line shows cumulative 
length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An 
interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/bGulAri2_1/dataset/bGulAri2_1/cumulative.

of Edinburgh) and Sarah Burthe (UK Centre for Ecology & 
Hydrology). Capture occurred via crook at the nest site during 
late chick rearing, and the individual released to the same 
location. Blood sampling was conducted by appropriately 
trained personal license holders, acting under a UK Home 
Office Project License in accordance with the Animals (Scien-
tific Procedures) Act 1986. The blood sample was collected via 
brachial venepuncture of the live specimen using a 25-gauge 
needle. 75 μl blood was placed in 500 μl 95% ethanol, and then 
frozen at –80 °C within 120 mins.

The workflow for high molecular weight (HMW) DNA extrac-
tion at the Wellcome Sanger Institute (WSI) includes a sequence 

of core procedures: sample preparation; sample homogenisation, 
DNA extraction, fragmentation, and clean-up. In sample prepa-
ration, the bGulAri2 sample was weighed and dissected on 
dry ice (Jay et al., 2023). The blood sample was homogenised 
using a PowerMasher II tissue disruptor (Denton et al., 2023a).

HMW DNA was extracted using the Nanobind whole blood 
protocol (Pacific Biosciences et al., 2023). DNA was sheared 
into an average fragment size of 12–20 kb in a Megaruptor 3 
system with speed setting 31 (Bates et al., 2023). Sheared 
DNA was purified by solid-phase reversible immobilisation 
(Oatley et al., 2023): in brief, the method employs a 1.8X ratio 
of AMPure PB beads to sample to eliminate shorter fragments 
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Figure 5. Genome assembly of Gulosus aristotelis, bGulAri2.1: Hi-C contact map of the bGulAri2.1 assembly, visualised using 
HiGlass. Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be viewed 
at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=AXw7sVdmRrWp1DFeFKZT-Q.

Table 2. Chromosomal pseudomolecules 
in the genome assembly of Phalacrocorax 
aristotelis, bGulAri2.

INSDC 
accession

Chromosome Length 
(Mb)

GC%

OX451222.1 1 219.24 41.0

OX451223.1 2 168.56 40.5

OX451224.1 3 131.34 41.0

OX451225.1 4 84.76 40.5

OX451227.1 5 71.72 42.0

OX451228.1 6 63.33 43.0

OX451229.1 7 55.81 43.0

OX451230.1 8 46.83 43.5

OX451231.1 9 39.05 42.0

OX451233.1 10 26.91 44.5

OX451234.1 11 24.85 44.0

OX451235.1 12 24.68 43.5

OX451236.1 13 19.06 47.0

OX451237.1 14 17.93 42.0

OX451238.1 15 17.37 46.0

OX451239.1 16 14.99 47.5

OX451240.1 17 13.73 48.0

INSDC 
accession

Chromosome Length 
(Mb)

GC%

OX451241.1 18 13.32 46.5

OX451242.1 19 9.84 47.5

OX451243.1 20 9.08 51.0

OX451244.1 21 8.89 52.5

OX451245.1 22 8.36 49.0

OX451246.1 23 8.19 52.5

OX451247.1 24 7.62 50.5

OX451248.1 25 3.89 57.0

OX451249.1 26 3.57 58.5

OX451250.1 27 2.68 47.5

OX451251.1 28 1.64 59.0

OX451252.1 29 1.11 54.5

OX451253.1 30 0.71 62.0

OX451254.1 31 0.63 57.5

OX451255.1 32 0.33 63.0

OX451256.1 33 0.23 61.5

OX451257.1 34 0.23 59.5

OX451232.1 W 31.35 47.5

OX451226.1 Z 78.89 40.5

OX451258.1 MT 0.02 44.5
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purge_dups (Guan et al., 2020). The assembly was then scaf-
folded with Hi-C data (Rao et al., 2014) using YaHS (Zhou et al., 
2023). The assembly was checked for contamination and cor-
rected using the gEVAL system (Chow et al., 2016) as described 
previously (Howe et al., 2021). Manual curation was per-
formed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and 
PretextView (Harry, 2022). The mitochondrial genome was 
assembled using MitoHiFi (Uliano-Silva et al., 2023), which 
runs MitoFinder (Allio et al., 2020) or MITOS (Bernt et al., 
2013) and uses these annotations to select the final mitochondrial 
contig and to ensure the general quality of the sequence.

A Hi-C map for the final assembly was produced using  
bwa-mem2 (Vasimuddin et al., 2019) in the Cooler file for-
mat (Abdennur & Mirny, 2020). To assess the assembly metrics, 
the k-mer completeness and QV consensus quality values 
were calculated in Merqury (Rhie et al., 2020). This work 
was done using Nextflow (Di Tommaso et al., 2017) DSL2  
pipelines “sanger-tol/readmapping” (Surana et al., 2023a) and 
“sanger-tol/genomenote” (Surana et al., 2023b). The genome 
was nalysed within the BlobToolKit environment (Challis  
et al., 2020) and BUSCO scores (Manni et al., 2021; Simão  
et al., 2015) were calculated.

Table 3 contains a list of relevant software tool versions and 
sources.

Genome annotation
The Ensembl Genebuild annotation system (Aken et al., 2016) 
at the EBI was used to generate annotation for the Gulosus 
aritotelis assembly (GCA_949628215.1). Annotation was cre-
ated primarily through alignment of transcriptomic data to the 
genome, with gap filling via protein-to-genome alignments 

and concentrate the DNA. The concentration of the sheared 
and purified DNA was assessed using a Nanodrop spectropho-
tometer and Qubit Fluorometer and Qubit dsDNA High Sen-
sitivity Assay kit. Fragment size distribution was evaluated 
by running the sample on the FemtoPulse system.

RNA was extracted from a blood sample from bGulAri2 in 
the Tree of Life Laboratory at the WSI using the RNA Extrac-
tion: Automated MagMax™ mirVana protocol (do Amaral  
et al., 2023). The RNA concentration was assessed using a Nan-
odrop spectrophotometer and a Qubit Fluorometer using the 
Qubit RNA Broad-Range Assay kit. Analysis of the integrity 
of the RNA was done using the Agilent RNA 6000 Pico Kit and 
Eukaryotic Total RNA assay.

Protocols developed by the WSI Tree of Life laboratory are 
publicly available on protocols.io (Denton et al., 2023b).

Sequencing
Pacific Biosciences HiFi circular consensus DNA sequenc-
ing libraries were constructed according to the manufactur-
ers’ instructions. Poly(A) RNA-Seq libraries were constructed 
using the NEB Ultra II RNA Library Prep kit. DNA and RNA 
sequencing was performed by the Scientific Operations core at 
the WSI on Pacific Biosciences SEQUEL II (HiFi) and Illumina 
NovaSeq 6000 (RNA-Seq) instruments. Hi-C data were also 
generated from a blood sample from bGulAri2 using the 
Arima2 kit  and sequenced on the Illumina NovaSeq 6000 
instrument.

Genome assembly, curation and evaluation
Assembly was carried out with Hifiasm (Cheng et al., 2021) 
and haplotypic duplication was identified and removed with 

Table 3. Software tools: versions and sources.

Software tool Version Source

BlobToolKit 4.1.7 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.3.2 https://gitlab.com/ezlab/busco

gEVAL N/A https://geval.org.uk/

Hifiasm 0.16.1 https://github.com/chhylp123/hifiasm

HiGlass 1.11.6 https://github.com/higlass/higlass

Merqury MerquryFK https://github.com/thegenemyers/MERQURY.FK

MitoHiFi 2 https://github.com/marcelauliano/MitoHiFi

PretextView 0.2 https://github.com/wtsi-hpag/PretextView

purge_dups 1.2.3 https://github.com/dfguan/purge_dups

sanger-tol/genomenote v1.0 https://github.com/sanger-tol/genomenote

sanger-tol/readmapping 1.1.0 https://github.com/sanger-tol/readmapping/tree/1.1.0

YaHS yahs-
1.1.91eebc2

https://github.com/c-zhou/yahs
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of a select set of proteins from UniProt (UniProt Consortium, 
2019).

Wellcome Sanger Institute – Legal and Governance
The materials that have contributed to this genome note have 
been supplied by a Darwin Tree of Life Partner. The submis-
sion of materials by a Darwin Tree of Life Partner is subject to 
the ‘Darwin Tree of Life Project Sampling Code of Prac-
tice’, which can be found in full on the Darwin Tree of Life 
website here. By agreeing with and signing up to the  
Sampling Code of Practice, the Darwin Tree of Life Partner 
agrees they will meet the legal and ethical requirements and 
standards set out within this document in respect of all samples 
acquired for, and supplied to, the Darwin Tree of Life Project.

Further, the Wellcome Sanger Institute employs a process 
whereby due diligence is carried out proportionate to the nature 
of the materials themselves, and the circumstances under 
which they have been/are to be collected and provided for use. 
The purpose of this is to address and mitigate any potential 
legal and/or ethical implications of receipt and use of the 
materials as part of the research project, and to ensure that in 
doing so we align with best practice wherever possible. The 
overarching areas of consideration are:

•     Ethical review of provenance and sourcing of the material

•     Legality of collection, transfer and use (national and 
international) 

Each transfer of samples is further undertaken according to 
a Research Collaboration Agreement or Material Transfer 
Agreement entered into by the Darwin Tree of Life Partner, 
Genome Research Limited (operating as the Wellcome Sanger 

Institute), and in some circumstances other Darwin Tree of 
Life collaborators.

Data availability
European Nucleotide Archive: Gulosus aristotelis (Euro-
pean shag). Accession number PRJEB57282; https://identi-
fiers.org/ena.embl/PRJEB57282 (Wellcome Sanger Institute, 
2023). The genome sequence is released openly for reuse. 
The Gulosus aristotelis genome sequencing initiative is part 
of the Darwin Tree of Life (DToL) project and the Vertebrate  
Genomes Project (VGP). All raw sequence data and the assem-
bly have been deposited in INSDC databases. Raw data  
and assembly accession identifiers are reported in Table 1.
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