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Abstract Pedo‐transfer functions (PTFs) relate soil/landscape static properties to a wide range of model
inputs (e.g., soil hydraulic parameters) that are essential to soil hydrological modeling. Combining PTFs and
hydrological models is a powerful strategy allowing the use of soil/landscape static properties for the
generalization of large‐scale modeling. However, since the spatial scales of soil hydraulic parameters required
for model inputs and soil/landscape static properties are often not identical, cross‐scale transfer is required,
which can be a significant source of errors. Here, we investigate uncertainties in cross‐scale transfer and develop
an approach that avoids them. The proposed method uses the convolutional neural network (CNN) as a cross‐
scale transfer approach to directly map soil/landscape static properties to soil hydraulic parameters across
different spatial scales. The proposed CNN approach is applied under two different estimation strategies to
invert the hydraulic parameters of a soil‐water balance model and subsequently the quality of the parameters is
assessed. Both synthetical and real‐world results around the conterminous United States indicate that in general
the employed end‐to‐end strategy is superior to the two‐step strategy. The CNN‐based integrated model
successfully reduces potential errors in cross‐scale transfer and can be applied to other areas lacking information
on hydraulic parameters or observations. The proposed method can be extended to improve parameter
estimation in earth system models and enhance our understanding of key hydrological processes.

1. Introduction
Soil moisture is an essential hydrological component connecting surface water and groundwater (Peng
et al., 2021; Seneviratne et al., 2010; Zha et al., 2019). The spatio‐temporal soil moisture movement at different
scales can be simulated by soil‐water models (Paul et al., 2021; Telteu et al., 2021). In general, the performance of
these models partly depends on model parameterization. Reducing its uncertainties is still one of the major un-
solved problems in hydrology (Blöschl et al., 2019; Clark et al., 2017; Feng et al., 2023; Shen et al., 2023),
particularly for situations without enough observations to correctly define soil hydraulic parameters.

The use of pedo‐transfer functions (PTF) is one potential solution to determine soil hydraulic parameters. PTF
relates soil/landscape static properties to soil hydraulic parameters (Clark et al., 2016) and allows for soil moisture
simulation in ungauged basins (Feigl et al., 2020). Many efforts in the past decades have been devoted to
developing PTFs to estimate soil hydraulic parameters (Van Looy et al., 2017; Y. Zhang & Schaap, 2019) based
on in situ measurements of soil properties (De Lannoy et al., 2014), for example, UNSODA (Unsaturated Soil
Database, Nemes et al., 2001) and EU‐HYDI data set (Weynants et al., 2013). However, scale mismatch issues
arise when the developed point‐scale PTFs are used in regional or global scale modeling (Nearing et al., 2021;
Van Looy et al., 2017).

To solve the scale mismatch problem, Kumar et al. (2013) and Samaniego et al. (2010) proposed the multi‐scale
parameter regionalization (MPR) approach. It involves (a) transferring soil/landscape static properties into soil
hydraulic parameters at the same scale by PTFs and (b) up‐/down‐scaling the derived parameters to match the
scale of soil‐water models based on up‐/down‐scaling techniques. Note the mathematical forms of the PTF at step
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(a) and up‐/down‐scaling technique at step (b) in MPR are predefined before inversely estimating soil hydraulic
parameters using hydrological observations. Based on the MPR model, Klotz et al. (2017) proposed a symbolic
regression approach to automatically estimate PTFs, which relaxes the restriction of predefined PTFs. Feigl
et al. (2020) proposed a calibration method of PTFs based on a text‐generating neural network to transfer text
semantics into a continuous space, further improving the PTF estimation. However, the state‐of‐the‐art MPR
model (a) still requires the predefined mathematical forms of an up‐/down‐scaling technique and (b) requires
solving high‐dimensional optimization problems during calibration, which is prohibitive for large‐scale hydro-
logical modeling.

With the help of advanced deep learning techniques, some progress has been made in soil hydraulic parameter
estimation using PTFs in conjunction with hydrological models. For example, by using long short‐term memory
models instead of predefined PTFs, Tsai et al. (2021) proposed a novel differentiable PTF learning model based
on regional surface soil moisture observations, while Kraft et al. (2022) developed a similar method to obtain
model parameters varying in time. Furthermore, both their models in estimating PTF are based on automatic
differentiation implemented in PyTorch (Paszke et al., 2019), which is very efficient and can deal well with high‐
dimensional optimizations (Shen et al., 2023). However, Tsai et al. (2021) did not consider scale conversion and
implicitly assumed that soil/landscape static properties have a scale consistent with that of model parameters, like
Beck et al. (2020) and Hundecha and Bárdossy (2004). While Kraft et al. (2022) used an independent encoder to
derive a low‐dimensional representation of soil/landscape static properties to avoid their initial high dimen-
sionality, spatial scale mismatch issues are still not fully resolved.

Therefore, several issues in PTF estimation and the corresponding up‐/down‐scaling techniques still exist (Van
Looy et al., 2017). The uncertainties in cross‐scale transfer should be assessed. In addition, there are two choices
in scale conversion frameworks (i.e., by scaling soil/landscape static properties before applying the PTF or
scaling soil hydraulic parameters after applying the PTF), which could lead to diverse results of hydraulic
parameter estimation. Although scaling soil hydraulic parameters based on PTF is suggested (e.g., Feigl
et al., 2020; Samaniego et al., 2010), scaling soil/landscape static properties before applying the PTF is also
widely used (e.g., Beck et al., 2020; Hundecha & Bárdossy, 2004; Tsai et al., 2021). These issues can undermine
confidence in utilizing the published soil hydraulic parameter data sets (Dai et al., 2019; Zhang et al., 2018) or
proposed PTF functions (Van Looy et al., 2017). Developing a more flexible model, which simultaneously avoids
the potential errors from scale conversion frameworks and the assumptions for mathematical forms of PTFs and
up‐/down‐scaling techniques is an urgent task.

Deep learning can approximate any given complex nonlinear function from structured data sets (Cybenko, 1989;
Hornik et al., 1989), and has shown promising results for representing PTFs. Particularly, the convolutional
neural network (CNN) (Lecun et al., 2015) has been reported to be highly suitable for learning multi‐scale spatial
patterns from multi‐scale gridded data (Sun et al., 2019) ‐ a feature that can be used to derive soil hydraulic
parameters across different scales. Moreover, auto‐differentiation techniques (Paszke et al., 2019) allow training
the CNN model and inverting the hydraulic parameters efficiently, even with high dimensional parameters and
states.

Thus, in order to reduce uncertainties in the cross‐scale transfer, a CNN‐based model that integrates PTFs and up‐/
down‐scaling techniques to derive soil hydraulic parameters from soil/landscape static properties at different
scales is proposed. The model does not require the pre‐definition of the mathematical formula for PTFs and up‐/
down‐scaling techniques, or the selection of two alternative scale conversion frameworks, namely scaling soil/
landscape static properties before applying the PTF or scaling soil hydraulic parameters after applying the PTF.
Before testing its performance, we first assess the uncertainties in PTF and scale conversion. Then, two different
optimization strategies are introduced and compared to estimate the CNN‐based integrated model. Whether these
uncertainties from cross‐scale transfer can be reduced effectively is tested both in synthetic and real‐world cases.

2. Methods and Material
2.1. PTF and Scale Conversion

Pedo‐transfer functions are typically described as,

β lPTF = PTF(u lPTF) (1)
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where u denotes soil/landscape static properties, β denotes the parameters required in modeling, such as soil
hydraulic parameters (Van Looy et al., 2017), and the superscript lPTF denotes the spatial scale of PTF. Traditional
PTF model does not have a function for crossing scales, thus input u and output β shall own the same scale lPTF,
although this scale itself can be quite flexible. In this study, two Cosby PTFmodels (Cosby et al., 1984) that link
hydraulic conductivity to sand fraction (CB1, Equation 2) or to sand and clay fraction (CB2, Equation 3) are used:

Ksat = 0.6096 × 101.53× fsand − 0.884 (2)

Ksat = 0.6096 × 101.26× fsand− 0.64× fclay− 0.6 (3)

where fsand and fclay are point‐scale sand and clay fractions of soil; Ksat is the saturated hydraulic conductivity (m/
d) of the corresponding scale. However, in many practical applications as shown in Figure 1, the spatial resolution
for available u (l0) and that for the required β(l1) are generally different. Therefore, scale conversion is required
for traditional PTF. Commonly, two opposite scale conversion frameworks are widely employed: (a) MPR‐type
scale conversion that scales β l f into β l0 (e.g., Feigl et al., 2020; Samaniego et al., 2010); (b) traditional
regionalization—TR‐type scale conversion that scales u l0 into u l f ready for PTF conversion (e.g., Beck
et al., 2020; Hundecha & Bárdossy, 2004; Tsai et al., 2021). The choice of PTF forms (e.g., CB1 and CB2) and
scale conversion frameworks (e.g., MPR‐type and TR‐type scale conversions) may significantly affect the final
soil hydraulic parameters (Van Looy et al., 2017; Paschalis et al., 2022; Weihermüller et al., 2021; Y. Zhang &
Schaap, 2019). In addition, the choice of an up‐/down‐scaling algorithm can also introduce uncertainty. In this
study, we investigate eight up‐/down‐scaling techniques during up‐/down‐scaling: the nearest neighbor (NN),

Figure 1. Schematic representations of different processes for estimating the soil hydraulic parameters β at the spatial scale l1
(i.e., β l1 ) with the soil/landscape static properties u at the spatial scale l0 (i.e., u l0 ). The established pedo‐transfer function
model (PTF) is originally developed based on β lPTF with u lPTF . The reasonable way may be to first scale u l0 to u lPTF , then map
u lPTF to β lPTF , and finally scale β lPTF to β l1 , which is characterized by the deep learning convolutional neural network (CNN)
model in this study. We can adopt TR‐type scale conversion (first scaling u l0 to u lPTF and then mapping from u lPTF to β lPTF ) when
spatial scale lPTF ≈ l1, and adopt MPR‐type scale conversion (first mapping u lPTF to β lPTF and then scaling β lPTF to β l1 ) when
spatial scale l0 ≈ lPTF. The CNN model is used to represent the cross‐scale transfer from u l0 to β l1 . The red arrow denotes the
scaling process by up‐/down‐scaling technique. The blue arrow represents the scale‐consistent transfer by PTF or soil‐water
model. The dashed arrow represents the possible scale‐consistent transfer by PTF when lPTF ≈ l1 or l0 ≈ lPTF. Different color of
the circle denotes the different spatial scale.
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bilinear (BL), bicubic (BC), mean (ME), minimum (MI), maximum (MA), median (MD), and mode (MO)
algorithms.

To avoid these preconceived assumptions, CNN (Fukushima, 1980), which can flexibly integrate the two tasks
(PTF and up‐/down‐scaling technique) in soil hydraulic parameter identification, is proposed here. CNN usually
consists of different concatenating, convolutional, and pooling layers, which allows for transforming different
multi‐scale soil/landscape static properties (u l0 ) directly into parameters in the target scale for modeling (β l1 ), as
demonstrated by the red arrows in Figure 1.

2.2. Model Estimation Strategies

In order to invert the hydraulic parameters based on the proposed CNN approach using the information on soil/
landscape static properties and dynamic soil state variables (e.g., soil moisture, which can be effectively retrieved
by remote sensing technique) (Vereecken et al., 2008, 2016; Wanders et al., 2014), we employed two parameter
estimation strategies for the CNN approach, namely, the classical two‐step (Beck et al., 2016) and the end‐to‐end
(Feigl et al., 2020; Tsai et al., 2021) strategies.

2.2.1. Two‐Step Strategy

The two‐step strategy first obtains the hydraulic parameters and subsequently trains the CNN‐based integrated
model. In step one (blue dashed box in Figure 2a), we invert soil hydraulic parameters cell‐by‐cell based on the
fitting between the simulated and the observed soil moisture data using inverse methods, such as Ensemble
Kalman filter or ensemble smoother (Crestani et al., 2013). In this study, we adopt the iterative ensemble
smoother, which performs well in nonlinear problems (Chen & Oliver, 2013; P. Li, Zha, Shi, et al., 2020; P. Li,
Zha, Tso, et al., 2020). In step two (yellow dashed box in Figure 2a), the inverted soil hydraulic parameters in step
one and the data for soil/landscape static properties are used as targets and inputs, respectively, to train the CNN‐
based integrated model based on the gradient descent method implemented in PyTorch (Paszke et al., 2019). A
proper design of CNN structure should bridge the input and output of different spatial scales. Finally, the trained
CNN‐based integrated model can be used to obtain the soil hydraulic parameters at the region without soil
moisture observations.

2.2.2. End‐To‐End Strategy

In the end‐to‐end strategy, the CNN and the soil water model are jointly trained. That means the soil hydraulic
parameters, the output of the last layer of CNN, are directly fed into the soil‐water model, which serves as an
additional nonlinear layer. Its output, the soil moisture, is compared with the observed counterpart to calculate the
loss function, which is minimized during training. At the prediction stage, we keep only the CNN layers by
discarding the last soil‐water model layer, and this CNN‐based integrated model is again used to obtain the soil
hydraulic parameters at the region without soil moisture observations. Compared to the two‐step strategy, the
main benefit of the end‐to‐end strategy is that it can simultaneously optimize the PTF, scale conversion, and the
soil hydraulic parameters based on soil\landscape static property and soil moisture observation, achieving a global
optimization. Furthermore, since the soil hydraulic parameters are obtained through the second‐last layer, the
spatial scale of this is quite flexible and solely depends on the design of the CNN layers (Tsai et al., 2021), which
could save significant computational time compared to the two‐step strategy involving cell‐by‐cell parameter
inversion.

2.3. Soil‐Water Model

The soil water balance model used in this study is based on the root zone water balance computation described in
Allen et al. (1998):

Dr,i = Dr,i− 1 − (Pi − ROi) − IRn,i − CRi + ETc,i + DPi (4)

where i is the current time (day); Dr [L] is the root zone depletion relative to the field capacity at the end of a time
period; P [L] is the effective precipitation; RO [L] is the runoff; IRn [L] is the net irrigation depth; CR [L] is the
capillary rise; ETc [L] is the evapotranspiration; DP [L] is the water loss through deep percolation. IRn and CR are
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small in our simulation cases and considered as zero. For the detailed hydrological calculation process in the soil‐
water model, please see Text S1 in Supporting Information S1.

To calculate DP, we ignore the matrix potential gradient and assume that precipitation and evapotranspiration do
not affect the soil moisture distribution, leading to the equation:

∂θ
∂t
+
∂K(θ)
∂z

= 0 (5)

where t [T] is time; z [L] represents the vertical coordinate, positive upward; K(θ) [L/T] is the unsaturated hy-
draulic conductivity, which is a function of soil moisture (θ):

Figure 2. The (a) two‐step and (b) end‐to‐end strategies for the cross‐scale transfer estimation. In the two‐step strategy, model parameters are first estimated by the
inversion method using the regional soil moisture observations. Then, the soil/landscape static property data and the derived model parameters are used as inputs and
outputs, respectively, to train the CNN‐based integrated model. In the end‐to‐end strategy, the soil hydraulic parameters inferred by the CNN‐based integrated model
based on the soil/landscape static property data are directly sent to the soil‐water model to obtain the soil moisture. The gradient descent method is employed to train the
CNN‐based integrated model by reducing the loss function between the regional soil moisture observations and simulations.
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K(θ) =
⎧⎪⎨

⎪⎩

Ksat
θ − θ f c

θs − θ f c
θ f c < θ≤ θs

0 0< θ≤ θ fc

(6)

where Ksat [L/T] is the saturated hydraulic conductivity. θfc and θs are θ values at the field capacity point and
saturation point. DP∆t can be derived by integration as,

DP∆t = − (θt+∆t − θt)Zr (7)

where Zr [L] is the root zone depth. Based on Equations 5 and 6, θt+∆t can be written as

θt+∆t = θ fc + (θt − θ fc) · exp(−
Ksat

Zr (θs − θ fc)
∆t) (8)

where ∆t is the numerical calculation step, which is generally 1 hr. Therefore, there are 24 necessary to run for
each i step. We implement this model in Python based on the open‐source swb code (Christofides, 2018). Unlike
the original swb model using an empirical parameter, drain time, to calculate DP, the revised DP calculation
procedure (Equations 7 and 8) is widely used in many regional‐scale hydrological models, for example, SWAT
(Neitsch et al., 2011), to provide a more accurate description of soil water redistribution during drainage
(Zha, 2014). In addition, compared with drain time, the parameter Ksat has a clearer soil physical meaning, which
is convenient for evaluating Ksat estimates against the open data sets for saturated hydraulic conductivity obtained
by other PTF models (e.g., Dai et al., 2019; Y. Zhang et al., 2018).

In this regard, the parameter Ksat is selected to be estimated by the CNN‐based integrated model. That means we
keep all the other parameters known and optimize Ksat to reflect the information embedded in soil moisture
observation. In the meantime, the CNN training parameters (i.e., weights and bias) are also optimized to establish
the link between the optimizedKsat and observation of soil/landscape static properties. As mentioned before, these
two optimizations are done simultaneously in the end‐to‐end strategy but sequentially in the two‐step strategy.
However, previous studies (e.g., Peng et al., 2021) have noticed that there are intrinsic differences between
model‐simulated and satellite‐derived soil moisture. Direct assimilation of the satellite‐derived soil moisture to
the model without consideration of its difference compared to the simulated result could lead to the failure of
parameter inversion. To resolve this issue, we follow the procedures employed by De Lannoy et al. (2007), P. Li,
Zha, Tso, et al. (2020), R. H. Reichle et al. (2004), Tian et al. (2019), Tsai et al. (2021), and Varble and Chá-
vez (2011) and adopt a linear model to describe this difference between the simulated soil moisture θsim and
observed soil moisture θobs,

θobs = A × θsim + B (9)

In addition, the parameters in this equation, namely, scaling parameter A and bias parameter B, are believed to be
linked to some soil/landscape static/statistical attributes (e.g., standard deviation and mean values of soil
moisture), making them possibly derived by PTF in conjunction with Ksat estimation (Tsai et al., 2021). In the
synthetic scenarios (see Section 3 for details), the scaling (A) and bias (B) parameters associated with soil/
landscape static properties are simply set based on Equations 10 and 11, respectively.

A =
( fsand + fclay + fsand ∗ fclay ∗ 5 − 0.5)

4
+ 0.9 (10)

B =
( fsand + fclay + fsand ∗ fclay ∗ 5 − 0.9)

3.5
(11)

To sum up, the CNN‐based integrated model is only used to estimate parameters Ksat, A, and B, while the un-
certainties from the other soil hydraulic parameters are omitted, and parameters θs, θfc, θwp, Zr, p, and Kc over
CONUS are set to be constant as 0.5, 0.2, 0.078, 1 m, 0.1, and 0.5, respectively.
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2.4. CNN‐Based Integrated Model

Due to the convolution function of CNN (Fukushima, 1980), the spatial scales represented by CNN input and
output are solely dependent on CNN structure. For the basic CNN model, the first layer consists of x inputs (i.e.,
soil/landscape static properties), each with the dimensions of 10 × 10 grids and each grid with a spatial size of
1 × 1 km2. The final output layer consists of y outputs (e.g., soil hydraulic parameters), each with the shape of
1 × 1 and each grid with a spatial size of 10 × 10 km2. Using this CNN setting, the inputs of the scale 1 km are
linked to outputs of the scale 10 km. Similarly, inputs with dimensions of 50 × 50 and 100 × 100 grids are used for
output parameters with 50 and 100 km scales. The detailed configuration of the CNN adopted in this study is
shown in Text S2 and Figure S1 in Supporting Information S1.

2.5. Description of Data

2.5.1. Soil/Landscape Static Data

Soil/landscape static data are needed as input for training the PTF and scale conversion. To evaluate the proposed
CNN‐based integrated model, a series of tested cases under synthetic and real‐world scenarios are designed (see
Section 3 for details). Under the synthetic scenario, percentages of sand and clay with a resolution of 1 km (soil
basic property) around the conterminous United States (CONUS) (60°–130°W, 20°–54°N) are used as the inputs
for PTF, which are derived by scaling (nearest neighbor sampling, i.e., NN algorithm mentioned in Section 2.1)
from SoilGrids 250 m V2 (Hengl et al., 2017; Poggio et al., 2021). Other static attributes, such as NDVI, Slope,
etc (Table 1), are also collected for the real‐world scenario. They are also scaled into 1‐ or 10 km based on their
raw resolutions. Please refer to Figures S2–S4 in Supporting Information S1 for these variables' spatial
distributions.

2.5.2. Dynamic Data

Dynamic data are usually used for forcing the soil water model (e.g., precipitation and evaporation) and also serve
as the observations (e.g., soil moisture) for inversion. Daily total precipitation and potential evaporation at 10 km
resolution around CONUS during 2014–2017 are obtained from the ERA5‐Land analysis by scaling hourly data
to daily one (Muñoz Sabater, 2019). Daily root zone soil moisture (0–1 m) data at 10 km resolution (Brocca
et al., 2012) around CONUS from 1 April 2015 (the earliest available date) to 31 December 2017 are derived from
Soil Moisture Active Passive (SMAP) L4 V6 Analysis Update data (Reichle et al., 2021).

It is known that soil moisture time series may have a strong temporal correlation. Very high‐frequency obser-
vations for data assimilation may significantly increase the computational burden while not improving model
performance because of the information redundancy. Previous studies indicate that the optimal temporal sampling

Table 1
Static Data Used in the Real‐World Case

Predictor Description Resolution Data source

MTP Temporal mean of daily total precipitation (mm/d) during 2014–2017 10 km (11,132 m) ERA5‐Land, See Section 2.5.2

MET0 Temporal mean of daily potential evaporation (mm/d) during 2014–2017 10 km (11,132 m) ERA5‐Land, See Section 2.5.2

AvgSMAP Temporal mean of daily root soil moisture observations (m3/m3) at depths over 0–1 m by
SMAP during 2015–2017

10 km SMAP L4 AU, See Section 2.5.2

StdSMAP Standard deviation of daily root soil moisture observations (m3/m3) at depths over 0–1 m
by SMAP during 2015–2017

10 km SMAP L4 AU, See Section 2.5.2

NDVI Temporal Mean of Normalized Difference Vegetation Index during 2014–2017 1 km (333 m) SPOT‐VEGETATION and PROBA‐V
(Maisongrande et al., 2004)

Slope Topographic slope (º) 1 km (90 m) MERIT (Yamazaki et al., 2017)

Sand Soil sand content (%), average over the first six layers (0∼1 m) and values over the last
layer (1∼2 m)

1 km (250 m) SoilGrids 250 m V2, Section 2.5.1

Clay Soil clay content (%), average over the first six layers (0∼1 m) and values over the last
layer (1∼2 m)

1 km (250 m) SoilGrids 250 m V2, Section 2.5.1

Note. The values in parentheses in the resolution column represent the original resolution of the data.
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interval for soil moisture data assimilation ranges from one to more than 10 days (Yu et al., 2021). We, therefore,
sample the observations every 3 days for inversion from 3 April 2015 to 31 December 2017, leading to 335
observations at each location. Temporally, the data in the years 2015 and 2016 (213 temporal points) are used for
training, and the rest (data in the year 2017, 122 temporal points) are kept for testing. Regarding spatial grids, we
randomly select 80% of all spatial grids (i.e., 164,623) as training grids and the remaining 20% as test grids. The
combination of temporal and spatial division leads to four data sets: observations at the training grids during the
training period, observations at the training grids during the test period, observations at the test grids during the
training period, and observations at the test grids during the test period, respectively. Apparently, the first data set
is used in training the PTF and scale conversion while the latter three can be used to test the temporal, spatial, and
spatio‐temporal generalization of the model simulation. Besides, to eliminate the influence of the initial condition
on soil‐water modeling, the forcing data during the year 2014 are employed to warm up the soil‐water model
described in Section 2.3 based on the IC‐WUP method (Yu et al., 2019).

2.6. Evaluation Criteria

To evaluate the accuracy of parameter estimates (i.e., Ksat, A, and B) and state simulation (i.e., soil moisture),
several metrics are used: correlation coefficient (CORR), root mean square error (RMSE), and its normalized
version (NRMSE). Please see Text S3 in Supporting Information S1 for the calculation details of these
metrics.

3. Case Implementations
In this section, we first take different combinations of PTFs, up‐/down‐scaling techniques, and scale conversion
frameworks to evaluate the effects of uncertainties in PTF and scale conversion on the derived parameters
(Section 3.1). Then, we designed several synthetic cases (Section 3.2): seven cases for comparisons of estimation
strategies and effects from potential errors (Section 3.2.1) and three cases for investigating the performances of
the proposed methods at different scales (Section 3.2.2). Finally, the comprehensive performance of the proposed
methods is tested in three cases designed under real‐world cases.

3.1. Assessment of Uncertainty in PTF and Scale Conversion

Unlike the proposed CNN‐based integrated model, the MPR‐type and TR‐type scale conversion involve
explicit implementation of scale conversion framework, either pre‐mapping u l0 to u lPTF (TR) or post‐mapping
β lPTF to β l0 (MPR) (Figure 1). However, the choice between MPR and TR seems to be undetermined, and there
are various choices for up‐/down‐scaling techniques and forms of PTF functions. In this section, we exten-
sively assess the uncertainty in PTF and scale conversion, that is, from u l0 to β l1 , based on MPR‐type and TR‐
type scale conversion. During the assessment, soil basic properties within the 0 ∼ 5 cm depth cover CONUS
with the spatial scale of 1 km are employed as inputs, while the outputs are the Ksat maps of the spatial scale
of 10 km. For the TR‐type scale conversion, we first aggregate the 1 km soil basic properties into 10 km ones,
and then they are used as inputs for the given PTF function to obtain the 10 km Ksat maps. In contrast,
the MPR model first obtains the 1 km Ksat maps by running the PTF at the 1 km scale, and then the results are
aggregated to the scale of 10 km. Here, two forms of PTF (i.e., CB1 and CB2) and eight up‐/down‐scaling
techniques (i.e., NN, BL, BC, ME, MI, MA, MD, and MO, see Section 2.1) are used ergodically for both
MPR‐type and TR‐type scale conversions, leading to a total of 8 × 2 × 2 = 32 Ksat maps at 10 km resolution
(Please refer to Figure S5 in Supporting Information S1 for the visual illustration). The evaluation metrics (see
Section 2.6) are calculated for each pair of Ksat maps, leading to three metric matrices of the size 32 × 32. For
brevity, we removed diagonals and duplicate elements in matrices and only present the RMSE matrix in
Figure 3 (RMSE), and the remaining two can be found in Figure S6 in Supporting Information S1 (CORR) and
Figure S7 in Supporting Information S1 (NRMSE) of the Supporting Information S1. It should be noted that in
this section, there are no “true” values for Ksat, and the RMSE values only reflect the difference in Ksat

prediction induced by choice in the 32 combinations. For convenience, the 32 combinations are named with
the format XX‐YY (for MPR‐type scale conversion) or YY‐XX (for TR‐type scale conversion model), where
XX and YY are selected from the names of PTF and the names of the eight up‐/down‐scaling techniques,
respectively. For instance, CB1‐NN means that PTF of the form CB1 and up‐/down‐scaling technique NN are
used in MPR‐type scale conversion.
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3.2. Cases Designed Under Synthetic Scenarios

In this section, the proposed CNN‐based integrated model is assessed by different cases under synthetic scenarios,
with the benefit of knowing the “true” hydraulic parameters and the exact relationship between soil basic
properties and hydraulic parameters.

3.2.1. Comparisons of Estimation Strategies and Potential Errors

As for the reference model in the synthetic cases, CB2‐MA is selected as the reference PTF, up‐/down‐scaling
technique, and scale conversion framework to derive the reference 10 km Ksat A, and B values, based on which the
soil‐water model has run from 2014 to 2017 to provide reference observations.

Figure 3. RMSE matrix of uncertainties from cross‐scale transfer. Sand and clay contents within the 0–5 cm depth (1 km) around CONUS are used as the inputs to
generate the parameter Ksat (10 km). The RMSE value is calculated between different Ksat estimates around CONUS by different combinations of PTFs, up‐/down‐
scaling techniques, and scale conversion frameworks. The black solid lines divide MPR‐type and TR‐type scale conversions, forming four big frames. The gray solid
lines segment the PTFs of CB1 and CB2.
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Table 2 shows seven cases (including the reference truth) that are designed and tested. They are: (a) case
“Reference,” in which CB2‐MA (see Section 3.1 for naming rules) generates the reference soil hydraulic pa-
rameters, and then the synthetic “observed” soil moisture data are generated by the soil‐water model with
reference parameters Ksat, A, and B; (b) Case “Inverse,” estimating the soil hydraulic parameters using the first
step of the two‐step strategy with only “observed” soil moisture, which does not consider the information from
soil basic properties and thus is similar to traditional inverse approaches; (c) case “CNN (two‐step),” estimating
the parameters by sequentially incorporating the information of “observed” soil moisture and soil basic properties
by the two‐step strategy; (d) case “CNN (end‐to‐end),” estimating the parameters by simultaneously assimilating
information from “observed” soil moisture and soil basic properties by the end‐to‐end strategy; (e) Case “TR,” in
which the 1 km soil basic properties are first mapped to 10 km ones via theMA up‐/down‐scaling technique, and
then CNN is used to map the 10 km soil basic properties to 10 km soil hydraulic parameters (TR‐type scale
conversion). The hydraulic parameters are estimated by simultaneously assimilating information from soil
moisture observations and soil basic properties (end‐to‐end strategy); (f) case “MPR (with error),” in which the
1 km soil basic properties are first mapped to 1 km soil hydraulic parameters by CNN, and then aggregated to
10 km ones via the MI up‐/down‐scaling technique (MPR‐type scale conversion). The CNN model is optimized
using the end‐to‐end strategy; (g) case “MPR (without error),” similar to case “MPR (with error),” but using the
MA up‐/down‐scaling technique instead of the MI up‐/down‐scaling technique. For each case, in addition to the
visual inspection of the spatial distribution of Ksat, A, and B, they are also quantitatively evaluated by independent
model simulations using these inputs and compared with the three “observed” data sets that are used for temporal,
spatial, and spatio‐temporal generalization (see Section 2.5.2).

The results from case “CNN (two‐step),” case “CNN (end‐to‐end),” and case “Inverse” can be compared and used
to demonstrate the performance of the CNN‐based integrated model optimized by two different estimation
strategies (two‐step and end‐to‐end) and traditional inverse method. The results are analyzed and discussed in
Section 4.2.1. Meanwhile, based on the same end‐to‐end strategy, the comparison between the case “CNN (end‐
to‐end),” case “TR,” case “MPR (with error),” and case “MPR (without error)” can demonstrate the effects of
different sources of errors on parameter estimation (presented in Section 4.2.2).

3.2.2. Cross‐Scale Transfer in Other Scales

In this section, the ability to transfer parameters at different scales using the CNN‐based integrated model is tested
with the comparison to the MPR‐type scale conversion framework. Therefore, soil hydraulic parameters at other
model scales, namely, 50 and 100 km are derived. To this end, the forcing data and soil moisture observation of
corresponding scales are generated based on the average up‐/down‐scaling technique of 10 km scale forcing data
and soil moisture observation (Vereecken et al., 2007) to run the models of corresponding scales. Served as the
comparative benchmark, the calibrated PTF model in Section 3.2.2 using the MPR‐type methods from cases

Table 2
Synthetic Cases in Sections 3.2.1, 4.2.1, and 4.2.2 Developed to Investigate the Performance of Different Estimation
Strategies and the Effects of Errors in Scale Conversion Framework and Up‐/Down‐Scaling Technique on the Estimation

Test cases Description

Reference Combining CB2 (PTF) and MA (up‐/down‐scaling technique) in MPR‐type
scale conversion (CB2‐MA)

Inverse Estimating parameters of the soil‐water model by the inverse method in step one
of the two‐step strategy

CNN (two‐step) Training the CNN‐based integrated model based on the two‐step strategy

CNN (end‐to‐end) Training the CNN‐based integrated model based on the end‐to‐end strategy

TR Mistaking MPR‐type scale conversion as TR‐type scale conversion and only
training the PTF based on the end‐to‐end strategy

MPR (with error) Mistaking the MA up‐/down‐scaling technique as MI and only training the PTF
based on the end‐to‐end strategy (in MPR‐type scale conversion with errors in up‐/down‐
scaling technique)

MPR (without error) Only training PTF based on the end‐to‐end strategy (in MPR‐type scale
conversion without errors in up‐/down‐scaling technique)
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“MPR (with error)” and “MPR (without error)” are used. Accordingly, three kinds of cases are designed and
conducted. They are (a) case “MPR (with error),” (b) case “MPR (without error),” and (c) case “CNN (end‐to‐
end).” As for the MPR‐type cases, their PTF and scale conversion are the same as the cases with the same name in
Section 3.2.1, and we do not recalibrate the model, using the previously adopted up‐/down‐scaling technique,
scale conversion framework, and trained PTF to directly transfer parameters Ksat A, and B at the scales of 10, 50,
and 100 km. As for the CNN‐based integrated method, we recalibrate the model using the aggregated obser-
vations and forcing data, and all other settings are similar to the case “CNN (end‐to‐end)” in Section 3.2.1. The
evaluation is based on the model simulation fitting to the observations during the test period and in test grids
(spatial‐temporal generalization) at different scales.

3.3. Cases Designed Under Real‐World Scenarios

In this section, three cases under real‐world scenarios are designed and conducted to examine the robustness of
our proposed CNN‐based integrated model. They are (a) case “Inverse,” (b) case “CNN (two‐step),” and (c) case
“CNN (end‐to‐end)”. Unlike synthetic scenarios, under real‐world scenarios, estimations of parameters Ksat, A,
and B can be improved by including more factors in addition to sand and clay fractions (Y. Zhang &
Schaap, 2019). Therefore, additional static attributes, that is, MTP, MET0, AvgSMAP, StdSMAP, NDVI, Slope,
and Sand and Clay fractions at different depths, are included as predictors for training PTF and scale conversion
(Table 1). Besides, instead of using model‐simulated soil moisture as the benchmark under synthetic scenarios,
SMAP‐derived root‐zone soil moisture data around the CONUS are used as the truth to evaluate the soil moisture
predictions based on estimated parameters for the three cases. All other settings and evaluations are identical to
the synthetic cases with the same names.

4. Results
4.1. Differences in Ksat Values

To evaluate the effects of the uncertainties in PTF and scale conversion on derived parameters, different com-
binations of two PTFs, eight up‐/down‐scaling techniques, and two scale conversion frameworks, are used to
derive the parameter Ksat values (Section 3.1). The abbreviations for specific PTF, up‐/down‐scaling technique,
and scale conversion framework are described in Section 2.1. Here, the differences between the derived parameter
Ksat values are illustrated in Figure 3 (RMSE), Figure S6 in Supporting Information S1 (CORR), and Figure S7 in
Supporting Information S1 (NRMSE). The three evaluated metrics present similar results; hence, we focus on
RMSE values here. The results reveal that differences resulting from different up‐/down‐scaling techniques (e.g.,
CB2‐MI&CB2‐MA) surpass those arising from different scale conversion frameworks (e.g., CB2‐MA&MA‐
CB2) and different PTFs (i.e., CB1‐MA&CB2‐MA). This discrepancy may be attributed to the relatively linear
mathematical forms of the PTFs. When considering only different scale conversion frameworks, scenarios
involving CB2 with MA, MI, and MO, especially with the MA up‐/down‐scaling technique (i.e., CB2‐MA&MA‐
CB2), generally exhibit larger differences compared to scenarios with other up‐/down‐scaling techniques (refer to
the diagonal to the left in panel divided by the gray lines in the fourth row and second column of Figure 3). When
only different up‐/down‐scaling techniques are considered, the largest differences relate to the MA and MI up‐/
down‐scaling techniques (refer to the four frames divided by the gray lines located on the side of the hypotenuse in
Figure 3). The second largest differences relate to the MO/MD followed by the remaining up‐/down‐scaling
techniques. MPR‐type scale conversion results in larger differences than TR‐type scale conversion (refer to the
comparisons between the frames divided by black lines in the upper left corner and lower right corner of Figure 3).
This discrepancy suggests that the TR‐type scale conversion considers less spatial heterogeneity resulting from
the fine‐scale soil/landscape static properties (Samaniego et al., 2010). Within MPR‐type scale conversion, CB2
introduces larger differences than CB1 (refer to the comparison between the frames divided by the gray lines in
the second row and second column and in the first row and first column in Figure 3). Conversely, within TR‐type
scale conversion, CB1 with one independent variable brings larger differences than CB2 (refer to the comparison
between the frames divided by the gray lines in the third row and third column and the fourth row and fourth
column of Figure 3). In general, when different PTFs, up‐/down‐scaling techniques, and scale conversion
frameworks are combined, significantly larger differences may emerge, compared with the case when only one
type of uncertainty exists (e.g., CB2‐MA&MI‐CB1 vs. CB1‐NN&CB1‐BL). These findings underscore the
critical importance of the method development to mitigate errors caused by the different sub‐processes in cross‐
scale transfer, and provide a guideline for the subsequent model evaluation.
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4.2. Performance of the Synthetic Cases

All the results from the synthetic cases are presented in this section. In synthetic cases, the “true” parameters and
soil moisture states are known to us. Therefore, it is easy to conduct in‐depth evaluations of the performances of
our proposed methods. Here, we followed the implementation details of Section 3.2 to first investigate the dif-
ferences between the two model estimation strategies: the two‐step and end‐to‐end strategies (Section 4.2.1).
Then, based on the better estimation strategy, the effects of different potential errors in the scale conversion
framework (case “TR”) and in the up‐/down‐scaling technique (case “MPR (with error)”) on the model estimation
are assessed (Section 4.2.2). Finally, the ability of our proposed CNN‐based integrated model to conduct cross‐
scale transfer at different spatial scales (10, 50, and 100 km) is examined (Section 4.2.3).

4.2.1. Performance of Two Estimation Strategies

The results on the soil moisture estimates from different estimation methods (the first‐third bars of each group in
Figure 4; scatter plots between reference and estimated soil moisture data are shown in the first‐third columns of
Figure S8 in Supporting Information S1) indicate that the inverse method (labeled as “Inverse”) performs best,
followed by the end‐to‐end (labeled as “CNN (end‐to‐end)”) and two‐step (labeled as “CNN (two‐step)”) stra-
tegies. However, the case “CNN (end‐to‐end)” performs consistently over different scenarios (e.g.,
RMSE = 0.0056–0.057), followed by the case “CNN (two‐step)” (e.g., RMSE = 0.0084–0.0088) and case “In-
verse” (e.g., RMSE = 0.0005–0.0013). Note that the high performance yielded in the case of “Inverse” results
from a lack of uncertainties, for example, the model structure error (Q. Zhang et al., 2019). Its performance may
deteriorate quicker than the results in the case “CNN (end‐to‐end)” if other sources of errors are considered. This
could be caused by the nature of the inverse method, which is optimized cell‐by‐cell, while the end‐to‐end strategy
considers the global performances of all the training grids.

Surprisingly, the best performance in regional soil moisture estimations by the inverse method (“Inverse”) has the
worst Ksat estimation (column 1 of Figure S9 in Supporting Information S1 and row 2 of Figure 5). However, the
inverse method still yields good estimates of parameters A and B. In the reference model, parameters A and B are
sensitive to the observations for all grids, while the parameter Ksat is a key factor controlling the soil moisture
simulation when soil moisture is between saturation and field capacity as described in Equation 6. Once out of this
scenario, the inverse method will estimate functionally equivalent Ksat values that are significantly different from
the “true” values. It is the common issue named “the issue of parameter identifiability” (Beven, 2006; Yi &
Park, 2021), which is elusive in real‐world cases but may significantly affect model performance. For example,
the wrong parameters significantly deteriorate the CNN‐based integrated model estimation in step two of the two‐
step strategy (“CNN (two‐step)”). Although the Ksat estimates by the inverse method and the two‐step strategy are
similar to the reference in some regions, many parts are affected by the “issue of parameter identifiability.” In
these parts, the estimated wrong but functionally equivalentKsat values are very homogeneous and low, which can
be attributed to the initial guess values, parameter‐constrained range, and logarithm‐based parameter estimation
of the parameter Ksat (Please refer to Figure S10 in Supporting Information S1). All of these factors have effects
on the derived Ksat values when the parameter Ksat is not sensitive to the observations. For example, logarithm‐
based parameter estimation makes the calibrated logarithm‐based distribution of Ksat that is not sensitive to the
observations close to the initial logarithm‐based Ksat distribution, but the logarithm‐based Ksat distribution be-
comes much narrower when transformed into a normal distribution. On the contrary, the end‐to‐end strategy
(“CNN (end‐to‐end)”), directly regularized (or constrained) by soil/landscape static properties, can obtain Ksat

estimates as accurate as its performance of soil moisture simulation. Compared with the performances of the case
“CNN (two‐step)” and case “Inverse,” the spatial patterns of Ksat estimated by the end‐to‐end strategy are also
closest to the reference. Furthermore, the parameters Ksat and A estimated by the two‐step strategy (“CNN (two‐
step)”) have a globally better performance than the parameters directly derived from the inverse method (“In-
verse”), showing the advantages of global regularization based on the soil/landscape static properties. However,
the soil moisture estimates by the two‐step strategy (“CNN (two‐step)”) perform worse than the inverse method
(“Inverse”), probably because parts of Ksat values estimated by the inverse method in step one are sensitive to the
observations. This part of the estimated Ksat values is relatively correct in step one and becomes more biased
toward the reference after global regularization in step two due to false Ksat estimations in step one in some grids
where Ksat is not sensitive to the observations. Feigl et al. (2020) also stated that pursuing a parameter transfer
function after conducting parameter optimization might generate a weak or false regionalization due to the issue
of parameter identifiability (Beven, 2006; Yi & Park, 2021).
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4.2.2. Influence of Potential Errors on Performances

The soil moisture estimates with different potential errors by the end‐to‐end strategy (the fourth‐fifth bars of each
group are shown in Figure 4; scatter plots between reference and estimated soil moisture data are shown in the
fourth‐fifth columns of Figure S8 in Supporting Information S1). The results exhibit that both mistaken scale
conversion framework (labeled as “TR”) and up‐/down‐scaling techniques (labeled as “MPR (with error)”)
generate several times larger errors in the soil moisture simulation than those by our proposed CNN‐based in-
tegrated model that avoids these potential errors (case “CNN (end‐to‐end)”). The mistaken scale conversion
framework shows fewer adverse effects on estimating parameters than the mistaken up‐/down‐scaling technique,
since the parameters are assumed to be only related to sand and clay fractions based on the relatively simple
Equations 10 and 11 in the synthetic cases, which may explain the better performance of case “TR” than case
“MPR (with error).” Therefore, it is not easy to determine the relative magnitudes of effects in optimizing PTF

Figure 4. Statistical results, that is, (a) CORR, (b) RMSE, and (c) NRMSE, between reference and estimated soil moisture
data in different cases of Table 2. “Inverse” indicates the performances at the training grids based on the soil‐water model
directly estimated by the inverse model. “CNN (two‐step)” and “CNN (end‐to‐end)” indicate the performance using our
proposed models trained by two different estimation strategies. “TR” indicates the performances based on TR‐type scale
conversion. “MPR (with error)” and “MPR (without error)” indicate the performances based on the MPR‐type scale
conversion with and without errors in up‐/down‐scaling techniques. Training, temporal, spatial, and spatio‐temporal
generalizations are respectively used to exhibit the results based on the data at the training grids during the training period, at
the training grids during the test period, at the test grids during the training period, and at the test grids during the test period.
Note that the y‐axis in subplot (a) is not from zero.
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caused by the two kinds of errors, namely, errors in the scale conversion framework and the up‐/down‐scaling
technique. However, the results clearly indicate that our CNN‐based integrated proposed models can effectively
avoid such errors.

The parameters estimated in cases 4–5 are shown in columns 4–5 of Figure S9 in Supporting Information S1 and
Rows e‐f of Figure 5. Compared with the errors in the up‐/down‐scaling technique, namely, case MPR (with
error), all the parameters estimated in the case “TR” have relatively largerCORR values with the reference values,
an expected result since there are fewer adverse effects from the mistaken scale conversion framework. The
mistaken up‐/down‐scaling technique significantly affects all parameter estimations (i.e., Ksat, A, and B) in the
case “MPR (with error)”, consequently biasing the results toward the reference values. Also, the spatial pattern of
parameters estimated in case “TR” is more similar to the reference, although the absolute differences between
them exist. Meanwhile, the spatial pattern of parameters estimated in the case “MPR (with error)” presents more
differences in the spatial patterns compared with the reference, particularly for the parameter Ksat. However, the
error for soil moisture retrieved in case “MPR (with error)” seems to be on a similar level in comparison with
results from the case “TR” due to the issue of parameter identifiability (Beven, 2006; Yi & Park, 2021). The
utilization of derived parameters in case “MPR (with error)” should be handled with caution since the wrong but
functionally equivalent parameters may lead to (a) a wrong hydrological process and (b) wrong simulated soil
moisture values in the case of a nonstationary future scenario. The parameters estimated in case “CNN (end‐to‐

Figure 5. Spatial distributions of reference and estimated parameters in the synthetic cases. Rows a‐g denote the reference and
estimated parameters from different cases in Table 2, respectively, also labeled at the left of each row. Columns 1–3 denote
the parameters Ksat, A, and B, respectively, also labeled at the bottom of each column.
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end)” have a much more similar spatial pattern and better statistical results to
the reference than those obtained in the two cases (i.e., cases “TR” and “MPR
(with error)”), further showing the harmful effects of potential errors in cross‐
scale transfer on parameter and state estimations and the advantages of using
the proposed CNN‐based integrated model.

Additionally, the case “MPR (without error)” (column 6 of Figure S9 in
Supporting Information S1 and Row g of Figure 5) yields better results in
comparison with the cases that have the mistaken scale conversion framework
(case “TR”) and the mistaken up‐/down‐scaling technique (case “MPR (with
error)”), the performances by our proposed CNN‐based integrated model
(case “CNN (end‐to‐end)”), and even the case “Inverse” globally for the
training grids, which highlight the correctness of the up‐/down‐scaling
technique and the scale conversion framework on the parameter and regional
soil moisture estimation and great practical significance of the MPR method
after we cautiously determine the up‐/down‐scaling technique.

4.2.3. Performance on the Other Scales

The reference up‐/down‐scaling technique from 1 to 10 km is set as the MA
up‐/down‐scaling technique, which can bring much nonlinearity in the cross‐
scale transfer. The nonlinearity in the cross‐scale transfer from 1 to 50 km or
100 km tends to decrease as the nonlinearity in cross‐scale transfer for other
scales tends to be less. These factors may have caused the up‐/down‐scaling
technique to significantly differ between scale changes (Binley et al., 1989).
Besides, the “true” cross‐scale transfer process from 1 to 50 km and 100 km is
unknown even in these synthetic cases. Therefore, we evaluate the perfor-
mances according to the model simulation fitting to the observations at
different scales. Figure 6 shows that although case “MPR (without error)”
performs best at the 10 km spatial scale, the CNN‐based model (case “CNN
(end‐to‐end)”) performs best and most stably at other spatial scales, followed
by case “MPR (without error)”, and case “MPR (with error)” performs worst.
It is not surprising since there is a high probability that the up‐/down‐scaling
technique is not fixed in the processes of conducting parameter transfer at
these different scales. In these scenarios, it is better to recalibrate PTF and
scale conversion when deriving the parameter at another scale. It should be
noted that we do not change the soil‐water model over different scales, which
may bring some uncertainties. It would be better to select the most appropriate
hydrological model in the real world since different hydrological models
generally have their best applicable scales, and the parameter in one hydro-
logical model to describe the scale‐mismatch hydrologic process may not
exist. The performance results indicate that these complexities and un-
certainties in the cross‐scale transfer have deteriorated the performance of
case “CNN (end‐to‐end)” from 10 to 100 km. Nevertheless, it shows that our

proposed CNN‐based integrated model with the end‐to‐end strategy, combining the features of the “forward
upscaling” and “inverse upscaling” (Vereecken et al., 2007), has made great progress on the issues of parameter
scaling and derivation of effective values.

4.3. Performances of Real‐World Case

The performance of our proposed CNN‐based integrated model is tested in this section based on the comparisons
between the simulated and the SMAP‐derived soil moisture values in the real‐world case. It should be noted that
there are many more uncertainties (e.g., observations, models, and forcing data) under real‐world scenarios than
under synthetic scenarios that only include uncertainties in parameters. Figure 7 shows that the errors in the soil
moisture estimated by all methods are very similar to the inherent error of the SMAP‐derived data (Reichle
et al., 2021). Unsurprisingly, the soil moisture performances simulated by all methods, especially for the inverse

Figure 6. Comparisons between soil moisture reference data and simulation
data based on the parameters at different scales from different cases during
the test period and at test grids (spatial‐temporal generalization). Note that
the y‐axis in subplot (a) is not from zero.
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method (“Inverse”), significantly deteriorate from periods during training to
test since more significant uncertainties exist in the real world than in the
synthetic cases. Besides, the end‐to‐end strategy (“CNN (end‐to‐end)”) out-
performs the inverse method (“Inverse”) for temporal generalization, which is
different from the synthetic cases. Scatter plots between the SMAP‐derived
and model‐simulated soil moisture data (Figure S11 in Supporting Informa-
tion S1) show that more outliers by the inverse method (“Inverse”) and two‐
step strategy (“CNN (two‐step)”) than the end‐to‐end strategy (“CNN (end‐
to‐end)”) are far away from the 45‐degree line, especially during temporal and
spatio‐temporal generalization, which indicates that the inverse method
(“Inverse”) and two‐step strategy (“CNN (two‐step)”) may capture fewer
“true” parameters due to the issue of parameter identifiability (Beven, 2006;
Yi & Park, 2021) as discussed in the synthetic cases.

All the model parameters (i.e., Ksat, A, and B) estimated by these methods
(i.e., the inverse method, the two‐step strategy, and the end‐to‐end strategy) in
the real‐world case are presented in Figure 8. It shows that the Ksat values
estimated by the inverse method (“Inverse”) and two‐step strategy (“CNN
(two‐step)”) are generally smaller and more homogeneous than those esti-
mated by the end‐to‐end strategy (“CNN (end‐to‐end)”), except for a few
small areas where soil moisture observations are sensitive to Ksat. This per-
formance is similar to that in the synthetic case, where the Ksat values esti-
mated by the inverse method (“Inverse”) tend to have some lower values
(Figure S9 in Supporting Information S1 and Figure 5) than the rest of the
methods. All methods have more similar spatial patterns of estimated
parameter A and B values. The performances are similar in the synthetic cases
since the soil moisture observations in all scenarios are sensitive to the values
of parameters A and B. Furthermore, the spatial distribution of the parameters
estimated by the end‐to‐end strategy (“CNN (end‐to‐end)”) has a more similar
pattern to the different static attributes (Figures S3 and S4 in Supporting
Information S1). That is, the spatial distribution of Ksat is similar to that of
MET0, the spatial distribution of A is similar to that of stdSMAP, and the
spatial distribution of B is similar to that of AvgSMAP.

A more intuitive comparison between parameters estimated by the end‐to‐end
strategy (“CNN (end‐to‐end)”) and inverse method (“Inverse”)/two‐step
strategy (“CNN (two‐step)”) is shown in Figure S12 in Supporting Infor-
mation S1. The patterns of Ksat are similar to the patterns of the relationship
between reference Ksat and Ksat estimated by the inverse method (“Inverse”)/
two‐step strategy (“CNN (two‐step)”) in the synthetic cases shown in Figure
S9 in Supporting Information S1. Meanwhile, the CORR values between the
parameter Ksat values estimated by the two‐step strategy (“CNN (two‐step)”)
and those estimated by the end‐to‐end strategy (“CNN (end‐to‐end)”) are
higher than the CORR values between the parameter Ksat values estimated by

the inverse method (“Inverse”) and those estimated by the end‐to‐end strategy (“CNN (end‐to‐end)”). The above
performances may serve as a supplement to indicate that the parameter Ksat values estimated by the end‐to‐end
strategy (“CNN (end‐to‐end)”) are closer to the “true” parameters, which also shows the improvements of using
the global constraints from the static attributes as revealed in the synthetical cases.

The use of different parameters derived from the three methods analyzed above also leads to differences in es-
timates of other variables, like runoff, in comparison with ERA5‐Land (Figure S13 in Supporting Informa-
tion S1). Runoff simulations using parameters estimated by the end‐to‐end strategy (“CNN (end‐to‐end)”) are
generally closer to the runoff values from ERA5‐Land than the runoff simulations using parameters derived by the
other two methods, particularly for the metrics RMSE and NRMSE. Although the soil‐water model used in this
study was not particularly developed for the runoff simulation, it also shows the effects of using worse parameter

Figure 7. Statistical results between the SMAP‐derived and model‐estimated
soil moisture data in the real‐world case, that are, (a) CORR, (b) RMSE, and
(c) NRMSE. Training, temporal, spatial, and spatio‐temporal generalizations
are respectively used to exhibit the results based on the data at the training
grids during the training period, at the training grids during the test period, at
the test grids during the training period, and at the test grids during the test
period. The “Inverse,” “CNN (two‐step),” and “CNN (end‐to‐end)” denote
the different estimation methods, respectively, that is, the inverse method
used in step one in the two‐step strategy, the two‐step strategy, and the end‐
to‐end strategy. Note that the y‐axis in subplot (a) is not from zero.
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estimates from the inverse method and two‐step strategy, as well as the impact of the issue of parameter iden-
tifiability (Beven, 2006; Yi & Park, 2021).

5. Discussions
While this study analyzes the potential errors in PTF and scale conversion as well as some progress made by our
proposed method, further investigation into the following issues is still necessary.

In our synthetic cases, the reference Cosby PTF model is relatively simple and may not be appropriate for all
kinds of soil types (Weihermüller et al., 2021) and results in fewer effects from different scale conversion
frameworks on the retrieved soil moisture values and parameter estimates. The impact of other kinds of up‐/down‐
scaling techniques (Schweppe et al., 2022) (e.g., harmonic mean and geometric mean) and scale conversion
frameworks (e.g., first scaling, then conducting PTF, and finally scaling) are not investigated. In investigating the
effects of errors in the scale conversion framework and the up‐/down‐scaling techniques (i.e., cases “TR” and
“MPR (with error)”), the scenarios with relatively large errors (i.e., MA in MPR‐type and TR‐type scale con-
versions, MA and MI in the MPR‐type scale conversion) are selected to demonstrate the performance. However,
we believe that errors with such magnitude exist with more complex PTF and more heterogeneous static attribute
maps or in real‐world scenarios. Therefore, a future iteration of this analysis should consider more realistic
scenarios and attribute maps to evaluate each method's performance better.

We also compared our Ksat values estimated by the end‐to‐end strategy (“CNN (end‐to‐end)”) in the real‐world
case with a publicly available data set, that is, Zhang et al. (2018) (Figure 9), although their spatial resolutions,
generating predictors, and modeling methods are pretty different. Results show that similar spatial patterns in
some areas exist, for example, the southeast part around CONUS. However, some significant differences arise at
other locations, even showing values with opposite spatial patterns. These different results may be attributed to
the following reasons. First, there are inherent errors in the predictors of both studies, and Zhang et al. (2018) only
included texture, bulk density data, field capacity, and wilting point to estimate the parameter Ksat, while some
other covariates (e.g., the organic content and the large cracks) are not included in one or both studies, affecting

Figure 8. Spatial distributions of parameters estimated in the real‐world case. Rows a‐c denote the parameters estimated by the inverse method (step one in the two‐step
strategy, labeled as “Inverse”), the two‐step (labeled as “CNN (two‐step)”), and the end‐to‐end (labeled as “CNN (end‐to‐end)”) strategies, respectively, also labeled at
the left of each row. Columns 1–3 denote the parameters of Ksat, A, and B, respectively, also labeled at the bottom of each column.
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the estimates. Second, there are differences in the spatial coverage of the
parameter Ksat values estimated by regional observations in this study and the
point‐scale measurements of Ksat in Zhang et al. (2018). Dong et al. (2020)
also found some negativeCORR values between parameters derived using the
static attribute data only or the remote sensing observations only in their
model. Similarly, the spatial scale of Ksat values estimated in Zhang
et al. (2018) is 1 km for surface soils (0–5 cm), which are not consistent with
ours of the 10 km resolution for root‐zone soils (0–100 cm). Because of this
difference in the spatial scale between both data sets, significantly high
nonlinearity in up‐/down‐scaling techniques and scale conversion frame-
works can result in huge differences between the estimated parameters. Third,
the soil‐water model used in the current study has known limitations for
representing soil moisture. For instance, the soil‐water model does not
consider the irrigation water and capillary rise terms, which can affect the
retrieved results. In addition, there may be inconsistencies in the SMAP‐
derived soil moisture data (Fang et al., 2020) and ERA5‐Land data, as well
as in the static attribute inputs or predefined parameters in the soil‐water
model (e.g., NDVI and crop coefficient). Fourth, only the static attributes
located within each grid cell of the model in this study are selected as inputs.

Therefore, the effect of cells outside each model grid but correlated to the model parameters could be missed.
Establishing an additional buffer distance for the static attributes, including the grid cells outside each model grid,
may allow us to consider such effects (Xu et al., 2023).

Also, future improvements on the CNN‐based integrated model can involve novel structures like ConvLSTM (Li
et al., 2021; Shi et al., 2015) that can enhance the utilization of the spatio‐temporally varying predictors (e.g.,
dynamic landscape features), adopting more advanced loss functions like Kling–Gupta efficiency (Gupta
et al., 2009), and applying multi‐objective optimization (e.g., soil moisture, terrestrial water storage, and runoff)
to further avoid the issue of parameter identifiability (Beven, 2006; Yi & Park, 2021). Our approach can be
flexibly transferred to other regions, improving the regionalization of the model and increasing our understanding
of the natural environment. Furthermore, our CNN‐based integrated model can serve as one candidate for
parameter transfer functions and be integrated into the MPR framework to consider more scenarios in the future.

Overall, when significant nonlinearity exists in the cross‐scale transfer (Binley et al., 1989) and the training data is
adequate for avoiding overfitting (Van Looy et al., 2017), using our proposed CNN‐based integrated model can
yield great returns. After we successfully avoid the assumptions for mathematical forms of PTFs and up‐/down‐
scaling techniques and selections for scale conversion frameworks, it is of great importance to determine the
relevant static or even spatiotemporal predictors for the cross‐scale transfer (Y. Zhang & Schaap, 2017). Also,
highly accurate predictors are necessary and need to be generated (Chaney et al., 2016). The loss function is based
on the differences between the model simulations and observations in training the CNN‐based integrated model.
Therefore, structure errors (Scanlon et al., 2018; Q. Zhang et al., 2019) in the applied hydrology model have
significant negative effects on mining observation information, which is important to eliminate as much as
possible.

6. Summary and Conclusions
This study first evaluates the uncertainties in PTF and scale conversion. A CNN‐based model to integrate PTF,
up‐/down‐scaling techniques, and scale conversion framework is developed to mitigate these uncertainties. Based
on the soil moisture simulation and parameter estimates, two optimization strategies (i.e., the end‐to‐end and two‐
step strategies) are compared, and the effects of errors in the up‐/down‐scaling technique and the scale conversion
framework in optimizing PTF are investigated. Finally, the proposed method is tested in a real‐world case. The
major conclusions are drawn as follows:

1. Different PTFs, up‐/down‐scaling techniques, and scale conversion frameworks can yield markedly different
parameters. Specifically, MA, MI, and MO produce the most significant differences in the retrieved soil
hydraulic parameters compared to other considered up‐/down‐scaling techniques. The order in which the
process (scale conversion framework) is applied is also relevant. Conducting PTF first and scaling then (i.e.,

Figure 9. Maps of saturated hydraulic conductivity (lg10Ksat) at 1 km
resolution estimated based on the Kosugi K3 model using sand, silt, clay
percentage, and bulk density from the SoilGrids product at 1 km resolution
(Zhang et al., 2018).
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MPR‐type scale conversion) tends to cause more significant parameter space variability than the opposite scale
conversion framework (i.e., TR‐type scale conversion).

2. Parameters estimated by the inverse method (the first step in the two‐step strategy) provide reasonable soil
moisture estimates at training grids, but generally encounter the issue of parameter identifiability
(Beven, 2006; Yi & Park, 2021) and large parameter deviations. After regularizing by the CNN‐based inte-
grated model, the parameter estimation improves globally, while the soil moisture simulation deteriorates. The
optimized CNN‐based integrated model by the end‐to‐end strategy has stronger global constraints and gives
the best overall parameter and soil moisture estimations.

3. Errors in up‐/down‐scaling technique and scale conversion framework exacerbate performance in both soil
moisture and parameter estimations. Among them, errors in up‐/down‐scaling techniques tend to encounter
more significant parameter identifiability issues than errors in scale conversion frameworks when the PTF is
relatively simple. The CNN‐based model effectively mitigates these uncertainties by integrating the up‐/down‐
scaling technique and scale conversion framework, since selecting them in advance becomes unnecessary.
Also, the performance of the CNN‐based model is robust when applied to derive parameters at different scales.

4. The performance by the end‐to‐end strategy is more robust than the two‐step strategy, even when several
sources of uncertainties are included. More effort is still required to eliminate discrepancies between advanced
published soil hydraulic parameter data sets and applicable soil hydraulic parameters of regional models.

Data Availability Statement
The data and scripts of the Python languages used in this work are available at HARVARD Dataverse (https://
dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8VJDPT, last access: 7 March 2024).
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