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Quasilinear theories have been shown to well describe a range of transport
phenomena in magnetospheric, space, astrophysical and laboratory plasma
“weak turbulence” scenarios. It is well known that the resonant diffusion
quasilinear theory for the case of a uniform background field may formally
describe particle dynamics when the electromagnetic wave amplitude and
growth rates are sufficiently “small”, and the bandwidth is sufficiently “large”.
However, it is important to note that for a given wave spectrum that would
be expected to give rise to quasilinear transport, the quasilinear theory may
indeed apply for given range of resonant pitch-angles and energies, but may
not apply for some smaller, or larger, values of resonant pitch-angle and
energy. That is to say that the applicability of the quasilinear theory can be
pitch-angle dependent, even in the case of a uniform background magnetic
field. If indeed the quasilinear theory does apply, the motion of particles with
different pitch-angles are still characterised by different timescales. Using a
high-performance test-particle code, we present a detailed analysis of the
applicability of quasilinear theory to a range of different wave spectra that
would otherwise “appear quasilinear” if presented by e.g., satellite survey-
mode data. We present these analyses as a function of wave amplitude, wave
coherence and resonant particle velocities (energies and pitch-angles), and
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contextualise the results using theory of resonant overlap and small amplitude
criteria. In doing so, we identify and classify five different transport regimes that
are a function of particle pitch-angle. The results in our paper demonstrate that
there can be a significant variety of particle responses (as a function of pitch-
angle) for very similar looking survey-mode electromagnetic wave products,
even if they appear to satisfy all appropriate quasilinear criteria. In recent years
there have been a sequence of very interesting and important results in this
domain, and we argue in favour of continuing efforts on: (i) the development
of new transport theories to understand the importance of these, and other,
diverse electron responses; (ii) which are informed by statistical analyses of the
relationship between burst- and survey-mode spacecraft data.

KEYWORDS

space plasma, plasma waves, wave-particle interactions, quasilinear theory, radiation
belts, pitch-angle, diffusion, test-particle

1 Introduction

A grand challenge problem in radiation belt science is the
understanding and parameterisation of the relative contributions
of quasilinear and nonlinear wave-particle interactions respectively
(e.g., see Bortnik et al. (2008a); Omura et al. (2008); Albert et al.
(2012); Tao et al. (2012b); Allanson et al. (2021); Artemyev et al.
(2021b); Gan et al. (2022); Allanson et al. (2023)). Informed by
spacecraft observations (e.g., Agapitov et al., 2015; Foster et al.,
2017; Kurita et al., 2018; Mozer et al., 2018; Shumko et al., 2018;
Zhang et al., 2019; Tsai et al., 2022; Zhang et al., 2022), many
theoretical/analytical and numerical advances have been made in
recent years (see discussions and context in e.g., Vainchtein et al.
(2018); Mourenas et al. (2018); Lukin et al. (2021); Allanson et al.
(2022); Albert et al. (2022b); Bortnik et al. (2022); Frantsuzov et al.
(2023); Artemyev et al. (2022) in the context of local wave-particle
interactions; Lejosne (2019); Desai et al. (2021); Osmane and
Lejosne (2021); Camporeale et al. (2022); Lejosne et al. (2022);
Osmane et al. (2023); Lejosne and Albert (2023) considering
radial transport; as well as Brizard and Chan (2022) for a
combined and self-consistent formalism). Recent works have
also pioneered the importance of including inherent ‘sub-grid’
variability of particle dynamics in radiation belt modelling
(Watt et al., 2017; Watt et al., 2019; Ross et al., 2020; Ross et al.,
2021; Watt et al., 2021; Watt et al., 2022), and machine learning
techniques to parameterise wave particle interactions (Kluth et al.,
2022).

The dominant features, dynamics, acceleration and decay
of the outer radiation belt can often be well reproduced using
numerical codes that utilise the quasilinear theory: over sufficiently
‘long’ timescales (usually significant numbers of drift periods)
and ‘large’ (bounce- and/or drift-averaged) lengthscales (e.g.,
see Thorne et al. (2013); Tu et al. (2014); Li et al. (2014); Su et al.
(2016); Drozdov et al. (2017); Glauert et al. (2018); Ma et al. (2018);
Allison and Shprits (2020); Ross et al. (2021); Summers and
Stone (2022). While we must acknowledge the many successes
of current models, the sustained interest in the field is clearly
based upon the fact that we do not yet always capture all details
of acceleration, loss and decay for all values/ranges of energy and
pitch-angle simultaneously (e.g., see discussion in Green et al.

(2004); Kersten et al. (2014); Ma et al. (2015); Ni et al. (2015);
Drozdov et al. (2015); Mourenas et al. (2016); Kessel (2016); Li
and Hudson (2019); Ripoll et al. (2020); Lejosne et al. (2022);
Osmane et al. (2023)). To give a subset of examples that pertain
to velocity-space transport, it is clear that there are still many
outstanding questions regarding: (a) the cumulative/‘long term’
effects of nonlinear wave-particle interactions that either may or
may not be explained via a quasilinear-esque approach applied
over a given timescale (Artemyev et al., 2022; Frantsuzov et al.,
2023; Vargas et al., 2023; Lukin et al., 2024); (b) the short timescale
and small lengthscale effects that likely cannot be explained
by quasilinear theory on any timescale, and that may have
a macroscopic/non-neglible contribution - for example, but
not limited to: microbursts driven via nonlinear interactions
(Osmane et al., 2016; 2017; Mozer et al., 2018; Shumko et al.,
2018); and resonance broadening corrections to chorus and
EMIC diffusion rates for equatorial particles (Cai et al., 2020;
Tonoian et al., 2022).

Radiation belt models solve particular examples of Fokker-
Planck diffusion equations Schulz and Lanzerotti (1974); Roederer
and Zhang (2013) and are implemented most typically in 3D
(E,αeq,L

⋆) (e.g., see Varotsou et al. (2005); Subbotin and Shprits
(2009); Tu et al. (2013); Glauert et al. (2014); Ma et al. (2018);
Wang et al. (2020)), but sometimes in 4D to additionally incorporate
magnetic local time or latitudinal variations (e.g., see Fok et al.
(2011); Shprits et al. (2015)). The version of the quasilinear theory
used in radiation beltmodels is ‘parasitic’, in the sense that there is no
feedback of the particle densities and currents on the waves (known
as the resonant diffusion limit of the quasilinear theory (Kennel
and Engelmann, 1966)). Most models currently parameterise ‘local’
diffusion via bounce- and drift-averaged versions of the quasilinear
diffusion coefficients, themselves derived for an infinite uniform
plasma in a gyrotropic (independent of gyrophase) velocity space
(e.g., relativistic kinetic energy E, and pitch-angle α) Glauert and
Horne (2005). The bounce-averaging procedure (as introduced by
Roberts (1969); Lyons et al. (1972) produces an averaged diffusion
coefficient that is calculated as a time-weighted mean of the local
expression (the local expression is calculated by (Kennel and
Engelmann, 1966; Lerche, 1968)). The time-weighting is calculated
via consideration of the adiabatic motion that the particle would
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have followed, had it not been disturbed by a wave. The drift-
averaging procedure then further averages these bounce-averaged
diffusion coefficients over all magnetic local time. We also note
other recently developed approaches to radiation beltmodelling that
involve the incorporation of test particles into different varieties
of global-scale simulation (Desai et al., 2021; Chan et al., 2023;
Lukin et al., 2024).

Therefore, it is the diffusion coefficients calculated in the
infinite and uniform domain that currently underpin the local
(velocity-space) transport in operational radiation belt models,
and so that is the formalism that we examine in this work.
We note that a number of works have analysed the validity of
the bounce-averaged diffusion coefficients for specific examples
of narrowband/coherent wave-modes and dipolar background
field structures (e.g., see (Bortnik et al., 2008a; Albert, 2010;
Tao and Bortnik, 2010; Artemyev et al., 2023), which have been
generalised to broadband wave modes in e.g., Gan et al. (2022);
Artemyev et al. (2022); Frantsuzov et al. (2023). Importantly, and
depending on the value of relevant parameters, the inhomogeneity
of the background magnetic field in these cases can mean that
bounce-averaged quasilinear theories are valid, in circumstances
when otherwise one would not have expected this to be
the case.

Fundamentally, by using the Fokker-Planck diffusion equations,
we need a description of the diffusion coefficients, which capture

the sub-grid physics of the wave-particle interaction itself,
summarising its efficacy as a function of energy and pitch-
angle. Diffusion coefficients arise due to many different wave
modes from the “zoo” of naturally-occurring electromagnetic
waves in the magnetosphere. We do not yet have fully self-
consistent kinetic plasma physics methods of modelling all
electron interactions over global magnetospheric scales. There
are self-consistent numerical experiments of magnetospheric
wave activity (e.g., Devine et al., 1995; Hikishima et al., 2009;
Hikishima et al., 2010; Hikishima and Omura, 2012; Nunn
and Omura, 2012; Ke et al., 2017; Ratcliffe and Watt, 2017;
Allanson et al., 2019; Fan et al., 2019; Li et al., 2019; Allanson et al.,
2020; Hikishima et al., 2020; Allanson et al., 2021; Zhang X.-
J. et al., 2021; Chen et al., 2022; Nogi and Omura, 2023), but it is
necessary to constrain these experiments in order that they are
computationally tractable.

The temporal and spatial variability of the waves is not
fully understood (e.g., Zhang et al., 2021a; Zhang et al., 2021b),
and so models of diffusion coefficients are constructed from
statistical descriptions of wave activity obtained from many years
of spacecraft and ground-based observation (Pahud et al., 2009;
Li et al., 2011; Rae et al., 2012; Agapitov et al., 2013; Spasojevic et al.,
2015; Malaspina et al., 2017; Hartley et al., 2018; Bentley et al.,
2019; Meredith et al., 2019; Meredith et al., 2020; Sarris et al.,
2022). Spacecraft can provide information regarding wave

FIGURE 1
(A–C) show a 0.468s time-series of the By component of whistler-mode wave spectra constructed exactly as done for this article, with
nwave = 10,100,1000 respectively and a fixed value of Bwave/B0 = 10

–4. (D–F) show the respective spectra for these wave forms that were calculated
using a standard numerical FFT routine. (G–I) plot Fourier spectra for the same wave-forms but calculated exactly as per the FFT engine on the Van
Allen Probes EMFISIS WFR (Kletzing et al., 2013; Kletzing et al., 2023).
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amplitude, frequency and wave-normal angle; in addition to
indirect measures of local number density (via wave spectra or
spacecraft potential); and observations of the strength of the local
magnetic field. All of these observations provide a snapshot of
information at discrete times along the spacecraft track. Wave
information is obtained as a discrete Fourier transform (i.e., a
Fourier Series), derived from a discrete time series over short
intervals. These data are combined together to form models
of the diffusion coefficients (Horne et al., 2013; Orlova et al.,
2014; Sandhu et al., 2021; Wong et al., 2022; Murphy et al., 2023).
What is important is to consider how we use those observations
in terms of the theory of quasilinear and nonlinear wave
interactions.

The aim of this work is to present a thorough exploration
of the variety of particle transport regimes during interactions
with different varieties of field-aligned waveforms in a uniform
background magnetic field, and to assess the applicability/validity
of quasilinear theory for these cases. One key point is that all results
presented relate to waveforms that (when Fourier transformed
according to standard techniques as used on operational scientific
spacecraft, and as discussed in e.g., Kletzing et al. (2013);
Kletzing et al. (2023)) ‘look quasilinear’ in all aspects. In Figure 1
we present analytical wave forms and subsequently derived wave
spectra to illustrate this point. Figures 1A–C show time-series of the
By component of whistler-mode wave spectra constructed exactly
as done for this article, and to be discussed further in Section 2.
In Figures 1D–F we present the respective power spectra for these
wave forms that were calculated using a standard numerical Fast
Fourier Transform (FFT) routine. In Figures 1G–I we further plot
power spectra for the same wave-forms but calculated exactly as per
the FFT engine on the Van Allen Probes EMFISIS Wave Frequency
Receiver (WFR) instruments. Therefore Figures 1G–I represent
protypical wave spectra that one might expect to download as a
EMFISIS WFR survey mode data product (Kletzing et al., 2013;
Kletzing et al., 2023). Figures 1A–F demonstrate three possible
examples to demonstrate the (infinite) variety of waveforms and
wave spectral forms that could in principle be underlying these
survey mode spectral prototypes. The waveforms that we choose
are somewhat idealised, but this is in order to allow us to probe
different physical phenomena in a precise manner, as is very
common practice (Tao et al., 2011; Tao et al., 2014). The results
in this paper seek to understand the variety of particle responses for
essentially identical looking survey-mode products 1 (g)-(i), which
appear to satisfy all appropriate quasilinear criteria. In particular,
we highlight the variety of responses that are possible as a function
of pitch-angle, since we believe that this feature is often overlooked,
and does relate directly to more complicated scenarios such as
those in e.g., Bortnik et al. (2008b); Albert and Bortnik (2009);
Albert (2010); Tao et al. (2012a); Gan et al. (2020), Gan et al. (2022);
Artemyev et al. (2023).

In Section 2 we demonstrate that the applicability of the
quasilinear theory to a wave power-spectral-density that one
might obtain from survey-mode on a spacecraft depends on the
pitch-angle of interest, and also on information that cannot be
obtained from the survey-mode data itself. We show this via
numerical experiment and plasma physics theory. In addition,
we show that even for a survey-mode wave spectrum that
essentially satisfies all possible quasilinear requirements, there

are noteworthy time-dependent phenomena that occur at small
and large-pitch angles, to be defined. In Section 3 we present a
thorough discussion and relate these results to others recently
obtained in the literature, and also to ‘more realistic’ physical
scenarios. Section 4 includes a summary of the results obtained and
presented, an indication of worthwhile future work, implications,
and questions raised.

2 The regime of particle transport in
response to a given wave spectrum is
dependent on the pitch-angle

2.1 The small amplitude criterion
underpinning quasilinear theory

Under the assumption of a quasi-static (vanishing
growth/damping rate) electromagnetic wave power spectral density
in a uniform plasma with uniform magnetic field, there is an
important condition that should be satisfied in order for quasilinear
theory to be valid. This condition is essentially that of small wave
amplitudes as described in e.g., Kennel and Engelmann (1966),
but made more precise and in relation to the wave bandwidth, as
described/used in Karpman (1974); Le Queau and Roux (1987);
Tong et al. (2019); Kuzichev et al. (2023). The condition requires
that the wave amplitudes are sufficiently small, or equivalently
that the wave spectra is sufficiently broad, and can be written as
follows (see equation 2.18 in Karpman (1974) or just above Eq. 8
in Tong et al. (2019))

√
Brms

B0
≪√
|ωce|
kv⊥

ωbandwidth

ω
= √
|ωce|

k|v| sin α
ωbandwidth

ω
, (1)

with v the particle velocity; B0 > 0 the magnitude of the
background magnetic field; ωce = qB0/(m0γ) the signed and
relativistic gyrofrequency (for relativistic gamma γ = 1/√1− v2/c2);
α the pitch angle; Bwave the root-mean-square amplitude of the
magnetic wave spectrum, characterised by spectral width ωbandwidth;
m0 the restmass;q the signedcharge; andω the frequency thatdefines
the spectral peak, corresponding to mode k = |k|. This condition is a
statement on the applicability of the ‘random-phase approximation’
(Lemons, 2012): which is paramount to the validity of quasilinear
theory, and essentially states that for random phase to be valid, we
require the existence of a diffusion timescale that is many times
larger than the wave-particle interaction timescale. We note that
this random phase is relating to the wave-gyroangle phase (e.g.,
see definition in Section 2.3 of Omura (2021)), and it need not
be the case that the wave modes themselves have a random phase
(Matsoukis et al., 1998).

Note the appearance of the (v⊥)1/2 = (|v| sin α)1/2 in the
denominator of Equation 1, for α the pitch-angle. There are two
fundamental points to note here. The small-amplitude criterion
enabling the application of the quasilinear theory is

1. A function of particle pitch-angle, for a given fixed
wave spectrum,

2. More readily satisfied for small pitch-angles (closer to
0°), and more difficult to satisfy for large pitch-angles
(closer to 90°).
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2.2 The chirikov resonance overlap
criterion underpinning quasilinear theory

2.2.1 On fourier series representations
Conversely, there is also a condition on wave amplitudes being

sufficiently large. In order to explain this, we will first need to
clarify some fundamentals regarding the electromagnetic waves.
Theoretical diffusion coefficients are usually derived with respect
to Fourier transform representations of the electromagnetic waves
(e.g., see Kennel and Engelmann (1966)). These are formally
valid over infinite spatial domain and temporal domains, only. In
particular, the electromagnetic field wave power is defined as the
average over (infinite) space, and is calculated by integrating over
all continuous frequency space (Lyons, 1974; Allanson et al., 2022).
All continuous frequencies can be considered, because (and only
because) the temporal domain is infinite.

In contrast, the spatial domain of a real space plasma
phenomenon is finite in extent. Likewise, the timeframe considered
for some phenomenon is finite. As such (and due to elementary
mathematical/physical considerations), one can only obtain a
discrete Fourier series representation of an electromagnetic wave
field for a finite spatio-temporal domain observed ‘in nature’.
The lowest non-zero frequency that can be observed will be
unambiguosuly determined by the total elapsed (finite) time, and
likewise the largest wavelength that can be observed will be
unambiguously determined by the total spatial extent. This is not a
technical/theoretical artifice, but a fundamental aspect of the nature
of the problem considered. There will be (a countably) infinite
number of frequencies/wavelengths that can be used in the Fourier
series representation, but they will fundamentally be discrete.

In further contrast, when one considers the input/output of
a numerical experiment, or the measurements in a laboratory
experiment, or indeed the observations made by a spacecraft
instrument, we have the further restriction ofmeasurementsmade at
discrete time and space. This further limits the range of frequencies
and wavelengths that can be considered, and sets an upper limit to
frequency (lower limit to wavelength), as determined by the Nyquist
criterion. This will give a finite number of (necessarily discrete)
frequencies and wavelengths.

All of this is to say (in preparation for what follows), that
the notion of a Fourier series is not a theoretical artifice or a
mathematical hiccup, but in actual fact a fundamental consequence
of the fact that we require a representation over finite spatio-
temporal domains. There is then the added clarification that this
representation is countably infinite in number (but discrete) for
continuous time (i.e., what a real Newtonian particle ‘observes’); but
finite and discrete in an experiment/observation.

2.2.2 The overlap criterion
The overlap criterion dictates that the Fourier wave amplitudes

Bw,k formode k are sufficiently large so as to enable stochasticity (i.e.,
diffusion) via resonant island overlap (Chirikov, 1960; Zaslavskiĭ and
Chirikov, 1972; Chirikov, 1979; Lichtenberg and Lieberman, 1992;
Matsoukis et al., 1998; Wykes et al., 2001; Artemyev et al., 2015). If
the islands do not overlap in the given region of velocity space that
corresponds to given mode k, then the particles resonant with mode
kwill evolve deterministically (i.e., not diffusion) in accordance with
their interaction with that one resonant mode. This criterion states

that ‘adjacent’ (in ω,k space) wave amplitudes must be sufficiently
large so as to appear incoherent to the resonating particles, and is
expressed approximately as

vwidth ≥ Δv/2, (2)

for vwidth = 2ωtr,k/k the trapping width in velocity space for mode
k (for ωtr,k = √kv⊥qBw,k/(m0γ) the trapping frequency of mode k
with Fourier amplitude, Bw,k (Omura, 2021)); and Δv the distance in
velocity space between two resonant island centers, associated with
two adjacent modes in k space. Precise definitions of other related
definitions of overlap can be found in Escande (2018); Lichtenberg
and Lieberman (1992). The resonance-overlap condition (Eq. 2) can
be rewritten as

√
qBw,k|v| sin α

m0γk
≥
|vr1 − vr2|

4
, (3)

with vr1 and vr2 the values of two resonant velocites adjacent to
each other in k space, as determined by solutions to the cyclotron
resonance condition for our scenario with k = k‖ (ω− k‖v‖ = |ωce|/γ),

vr = vph,k −
|ωce|
γk
, (4)

for vph,k = ω/k the phase velocity. Note the appearance of the particle
pitch-angle in Eq. 3. Once again, there are two fundamental points
to note here. The Chirikov resonance-overlap criterion enabling the
application of the quasilinear theory is

1. A function of particle pitch-angle, for a given fixed
wave spectrum,

2. More difficult to satisfy for small pitch-angles (closer to 0°), and
more readily satified for large pitch-angles (closer to 90°).

2.2.3 Island overlap enables phase randomisation
which enables transition to stochasticity

There are many derivations of electrostatic and/or
electromagnetic quasilinear theory in the literature (e.g.,
Vedenov et al. (1962); Drummond and Pines (1962); Andronov
and Trakhtengerts (1964); Rowlands et al. (1966); Kennel and
Engelmann (1966); Hall and Sturrock (1967); Lerche (1968);
Sagdeev and Galeev (1969); Kulsrud and Pearce (1969); Lyons et al.
(1972); Melrose (1980); Schlickeiser (1989); Steinacker and Miller
(1992); Stix (1992); Walker (1993); Albert (2001); Swanson (2003);
Brizard and Chan (2004); Albert (2010); Lemons (2012); Brizard
and Chan (2022); Allanson et al. (2022); Cunningham (2023).
The majority of those derivations utilise a perturbative Vlasov-
Poisson/Maxwell approach in a uniform geometry, but there are the
following exceptions: (i) Lyons et al. (1972) and Stix (1992) further
apply bounce-averaging procedures; (ii) Albert (2001), Albert
(2010) use an approach that is based upon a Hamiltonian analysis
of single particle motions, and also include an inhomogeneous
background field; (iii) Lemons (2012); Allanson et al. (2022) use
a Markov approach; (iv) Brizard and Chan (2004), Brizard and
Chan (2022) use a Hamiltonian/Vlasov-Maxwell approach in an
axisymmetric field.

Underlying all of these derivations is the key observation that
the diffusion equation evolves a distribution function on a ‘slow’
timescale, as determined by the action of sufficiently many wave-
particle interactions that themselves occur on a separate ‘fast’
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timescale (Brizard and Chan, 2001). The separation between slow
and fast is essentially determined by a transition from deterministic
to stochastic trajectories (achieved via decorrelation of particle
dynamics), and will usually occur after ‘many’ wave-/gyro-periods,
leading to validity of the so-called random-phase approximation
(Karpman, 1974; Lemons, 2012), as discussed in Section 2.1.
As described and/or demonstrated in Chirikov (1960); Smith
and Kaufman (1978); Smith et al. (1980); Matsoukis et al. (1998);
Lichtenberg and Lieberman (1992); Karimabadi et al. (1992); Sigov
and Levchenko (1996); Neishtadt (1999); Wykes et al. (2001);
Kaufman (2009); Ukhorskiy and Sitnov (2013); Artemyev et al.
(2015); Escande (2018); Kaufman and Cohen (2019), the notion
of the Chirikov resonance overlap is fundamental to this entire
philosophy, despite the fact that it is rarely mentioned in respective
derivations of the quasilinear theory.

2.3 The quasilinear prediction

Therelativistic resonant limit quasilinear theory for field-aligned
waves as presented in e.g., Lerche (1968); Albert (2005); Glauert and
Horne (2005); Summers (2005); Allanson et al. (2022) gives energy,
pitch-angle and mixed diffusion coefficients as follows

DEE =
⟨(ΔE)2⟩

2Δt
=

Ω2
0

W0

π
2
sin2 α (E (E+ 2ER))

×∫W (k) 1
n2
k

δ(ω− k‖v‖ ±Ω0)dk,

(5)

DαE =
⟨(ΔE) (Δα)⟩

2Δt
= −

Ω2
0

W0

π
2

sin α√E (E+ 2ER)

×∫W (k) 1
nk
(1− ω

k‖v‖
cos2 α)δ(ω− k‖v‖ ±Ω0)dk,

(6)

Dαα =
⟨(Δα)2⟩

2Δt
=

Ω2
0

W0

π
2
∫W (k)(1− ω

k‖v‖
cos2 α)

2

×δ(ω− k‖v‖ ±Ω0)dk, (7)

for W(k) here defined with respect to the energy density of the
spatially and temporally averaged (root-mean-square) magnetic
wave amplitude

B2
wave

2μ0
= ∫

k=∞

k=−∞
W (k)dk; (8)

W0 = B2
0/(2μ0) the background magnetic field energy density;

ER =m0c
2 the rest-mass energy (for a particle with rest massm0 and

c the speed of light in vacuo); Ω0 = qB0/(m0γ) the signed relativistic
gyrofrequency; nk = c/vph,k the refractive index for plasma mode k
with vph,k = ω/k; δ(x) the Dirac delta function; and the ± symbol
denoting right-/left-handed wave modes. We note that the delta
function operation reduces the continuous integral sum to a discrete
sum of resonances via

δ (R (x)) = ∑
j

δ(x− xj)

|dR/dx(x = xj) |
, (9)

with the sum over roots (of multiplicity one), xj, of a generic
function R(x) Summers (2005). These diffusion coefficient formulae
are implemented in the following specific ‘diffusive’ example of a (in
principle more general, e.g., see Zheng et al. (2019); Allanson et al.
(2022)) Fokker-Planck equation

∂ f
∂t
= 1
G1

∂
∂E
(G1(DEE

∂ f
∂E
+DEα

∂ f
∂α
))

+ 1
G2

∂
∂α
(G2(Dαα

∂ f
∂α
+DαE

∂ f
∂E
)), (10)

for G1 = (E+ER)√E(E+ER) and G2 = sinα. The upper time limit
(known as the “departure time”) for the validity of the diffusion
coefficient expressions to describe the ‘standard linear scattering’
(e.g., “⟨(Δα)2⟩ = 2DααΔt”) of a given particle ensemble is not a priori
obvious, but is typically seen to scale with “1/D” Liu et al. (2010);
Lemons (2012); Allanson et al. (2020). The delta factors, e.g., Δα are
defined according to somecommon initial value,Δα = α(t) − α(t = 0)
(e.g., see discussions in Zheng et al. (2019); Allanson et al. (2021)).
Furthermore, the angle brackets are taken to mean an appropriate
ensemble average over a given random-phase resonant particle
ensemble (Lemons, 2012; Allanson et al., 2022). Very interestingly,
“1/D”becomesaveryimportantpartoftheevaluationoftheCourant-
Friedrichs-Lewy (CFL) criterion for the solution of explicit diffusion
codes, and therefore regarding the linear stability of the numerical
solver in that case (Albert, 2009; 2013; Camporeale et al., 2013).

2.4 Different particle transport regimes for
different pitch-angles

In this work we are interested in the wave effects on particles and
not vice versa, thus allowing the use of a test-particle code. In order to
examine the fundamental particle reponse to different wave spectra
as a function of particle pitch angle, we use high-performance
test-particle numerical experiments (open access and open source
at https://github.com/donglai96/taiparticle-uniform) that solve the
full relativistic equations of motion for charged particles interacting
with electromagnetic fields and waves

d(γm0v)
dt
= q(Ewave + v× (B0 +Bwave)) , (11)

for p =m0γv the relativistic momentum, and uniform
background magnetic field B0 = B0ẑ. The wave spectra are
parallel-propagating right-hand polarised whistler-mode waves
(Ewave ⋅B0 = Bwave ⋅B0 = 0), and numerically implemented in the
same way as in Tao et al. (2011), according to

Bwave =
nwave
∑
j=1
(Bxj cosϕjx̂−Byj sinϕjŷ) ,

(12)

Ewave =
nwave
∑
j=1
(−Exj sinϕjx̂−Eyj cosϕjŷ) , (13)

With ϕj = kjz−ωjt+ϕ0j for randomised ϕ0j; ωj = ωmin + jΔω; and
kj determined via the cold plasma dispersion relation (Stix, 1992).
We choose (ωmin,ωmax) = (0.2|ωce|,0.4|ωce|), for ωce the signed,
non-relativistic gyrofrequency, and this frequency range therefore
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determines the value of Δω via Δω = (ωmax −ωmin)/(nwave − 1). The
choice of a parallel-propagating wave spectrum fixes Bxj = Byj = Bj
for each independent value of j (likewise Exj = Eyj = Ej). We further
assume that the spectrum has uniform Fourier amplitude, and
therefore that all Bj are the same as each other. It can be
shown that in the case of a uniform spectrum their values are
determined as Bwave/√nwave, for Bwave the root-mean-sqaure wave
amplitude (Tao et al., 2011). The same arguments hold for the
electric components, with their amplitudes further determined via
consideration of Ej = cBj/nk.

We choose system parameters B0 = 140nT, n = 1cm−3, and
therefore fpe/fce ≈ 7.2, for fpe the electron plasma frequency,
and fce = |ωce|/(2π) ≈ 3919 Hz the non-relativistic and unsigned
ordinary electron gyrofrequency. These are the same parameters
as were chosen in Tao et al. (2011); Allanson et al. (2019),
Allanson et al. (2020); Cai et al. (2020). Separate experiments are
run for individual particle populations. In each experiment, electron
ensembles consisting of 120 members are initialised with identical
values of kinetic energy and pitch-angle, such that they are resonant
with a mode in the center of the spectrum at f = 0.3fce, according to
Eq. 4. We note that the code is implemented to ensure that there is
a well-defined mode with f = 0.3|fce|. These particles are initialised
with randomly distributed gyrophase between 0 and 2π.

The run-timeof the experiments is 4,000 relativistic gyroperiods,
i.e. 4000γ/|fce| (which is 1.02s for γ = 1, and 1.02γs otherwise),
significantly extending the range of previous similar experiments
that have validated and constrained the quasilinear theory in a
uniform homogeneous setting (Liu et al., 2010; Tao et al., 2011;
Allanson et al., 2019; Allanson et al., 2020; Cai et al., 2020). The
equations of motion are solved via a Boris algorithm (see Birdsall
and Langdon (2004), and as described in section 2.2 of Arber et al.
(2015)), with timestep Δt set at 1/500 of the relativistic gyroperiod,
Δt = γ/(500fce). We track the pitch-angle, relativistic kinetic energy,
and gyrophase of each particle, and output the value of these
parameters every 100Δt, i.e. 5 times every relativistic gyroperiod.We
specifically note whether the small amplitude criteria (Eq. 1) and/or
the Chirikov resonance-overlap criteria (Eq. 3) are being satisified in
each case.

We run 126(= 3 ∗ 3 ∗ 14) individual experiments. For each
of the three values of nwave = 10,100,1000, and three values of
Brms/|B0| = 10–5,10–4,10–3, we run 14 experiments for initial pitch-
angle values given as

αinitial = (0.1°,0.5°,1°,5°,15°,25°,35°,

45°,55°,65°,75°,85°,89°,89.9°) . (14)

We will not present the outcome of all 126 experiments in the
main text, but all plots are given in the Supporting Information
S1. In the manuscript, we will highlight the main conclusions that
can be drawn.

3 Dependence of particle dynamics
on pitch-angle and wave coherence

In Figures 2–5 we plot nine sub-figures, each with four plots.
These show the pitch-angle and gyrophase response of 120 electrons
with (initially) uniformly distributed gyrophase that are resonant

with f = 0.3|fce|, and for different values of pitch angle and energy.
We present these results for different values of Bwave/B0 and
nwave, as indicated on the figure. Each horizontal row of three
sub-figures presents results for a fixed value of Bwave/B0 (and
varying nwave = 10,100,1000), and each vertical column of three
sub-figures presents results for a fixed value of nwave (and varying
Bwave/B0 = 10

–5,10–4,10–3). Each sub-figure presents four plots as a
function of time (4,000 relativistic gyroperiods), namely; (i) a pitch-
angle scatter plot of all 120 particles; (ii) ⟨(Δα)2⟩; (iii) ⟨Δα⟩; (iv) a
gyrophase scatter plot of all 120 particles.

In the title of each sub-figure, we further indicate whether or
not the two important ‘quasilinear criteria’ as described in Sections
II A,B are satisfied for this experiment. We define “overlap?” to be
satisfied (“✓”) if Equation 3 is satisfied by a margin greater than
50% (i.e., vwidth ≥ (3/2)Δv/2); borderline (“ ≈ ”) if the margin is
within the range 2/3–3/2; and not satisfied (“X”) for the cases with
vwidth < (2/3)Δv/2. Furthermore we define “island amplitude” to
be the ratio (converted to a percentage) of the resonant island
centred on f = 0.3|fce|, when compared to the wave spectrum
bandwidth, (see Eq. 1), which should be very small for validity
of the quasilinear theory.

We combine the outcome of these tests to colour code the plots
as follows, to indicate whether or not the quasilinear theory criteria
are satisfied, according to the following:

• Green: Overlap criteria is satisfied, and island amplitude
criteria is <2%;
• Orange:Overlap criteria is borderline, and/or amplitude criteria

is ≥2% but <4%;
• Red: Overlap criteria is not satisfied, and/or island amplitude

criteria is ≥4%.

Note that the exact values for the boundaries that we choose
for overlap and amplitude criteria are (within reason) somewhat
arbitrary, but are nonetheless sensible and chosen to be indicative
of different regimes.

For all plots of ⟨(Δα)2⟩, we overplot in black the linear response
predicted by resonant limit quasilinear theory according to Eq. 7.
Furthermore, we also plot (as vertical grey lines) integer multiples
of (1/2)(2π/ωtr,k), namely, multiples of “half-trapping-periods”
for the mode k that corresponds to f = 0.3|fce|, with a trapping
period defined as 2π/ωtr,k. A half-trapping-period represents the
(theoretical) return of particles to the exact resonant parallel
velocity, if they are exhibiting deterministic trajectories, e.g., see
phase space plots in Dysthe (1971); Wykes et al. (2001).

In the Supporting Information S1 we further present similar
figures for all 126 experiments as previously discussed.These figures
further include analagous quantities for transport in energy space,
omitted in the main text for brevity, and also since energy transport
is exactly correlated to pitch-angle transport for the special case of
parallel-propagting waves (Brice, 1964; Allanson et al., 2019).

3.1 The small and very small pitch-angle
regimes

In Figures 2A–I we present the pitch-angle and gyrophase
response for particles initially resonant with f = 0.3|fce| for α = 0.1°,
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FIGURE 2
Demonstrating the effect of wave coherence and wave amplitude on particle trajectories for α = 0.1°, E = 5.463keV. All details pertaining to sub-figures
(A–I) are described in Section 3.

E = 5.463keV. It is clear that the resonant overlap criteria can be
difficult to satisfy for such a small pitch angle, with only case
2(i) demonstrating a satisfaction of the overlap criteria. There is
also a good and sustained agreement with the quasilinear theory
prediction for that case, and an apparently sustained randomised
gyrophase distribution. Having said that, the ‘drift’ ⟨Δα⟩ observed
for case 2(i) is substantial. We remind that ‘drift’ and ‘true
advection’ are not the same thing (Lemons, 2012; Zheng et al., 2019;
Allanson et al., 2022), and so it may be the case that this drift can be
attributed to that expected within the domain of quasilinear theory
itself, pending further investigation beyond the scope of this work.
For all other sub-figures, we can see that the overlap criteria is not
satisfied, but the small wave-amplitude criteria is satisfied. There
are a diverse range of particle responses, that can be characterised
as follows:

• Deterministic periodic trapping. Cases 2(a) (b), 2(d) (e)
and 2(g) resolve periodic deterministic trapped electron
trajectories in pitch-angle space, with the gyrophase response
also obeying a corresponding periodic behaviour. It is clear
that the quasilinear prediction does not describe these

cases (although it is of course not expected to do so in
this case);
• An initial ‘convex response’ (∝ tn, n > 1) followed by a

‘saturation’. Cases 2(c) and 2(f) demonstrate an initial
response for early times which appears to be reasonably
well fitted by the quasilinear theory very early on, followed
by enhanced transport. There is no obvious discernible
correlation between structure in the gyrophase response and
the pitch-angle response;
• ‘Concave response’ (∝ tn, n < 1). Cases 2(h) and 2(i) appear

phenomenologically similar, although case 2(i) satisfies
the overlap criteria as previously discussed (and appears
well described by the quasilinear prediction), whereas
case 2(h) does not.

To summarise, we see that it is challenging but not impossible
to satisfy the quasilinear conditions at such a small pitch-angle.
There are a range of particle responses, described by a range of
behaviours varying from deterministic trapping to quasilinear
diffusion. The corresponding measured drift in all cases is non-
negligible. For those particle responses that are deterministic, we do
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FIGURE 3
Demonstrating the effect of wave coherence and wave amplitude on particle trajectories for α = 1°, E = 5.465keV. All details pertaining to sub-figures
(A–I) are described in Section 3.

see a corresponding periodic structure in the gyrophase response,
whichmakes sense when one considers the technicalities of trapping
by resonant islands.Having said that, the periodicity of these trapped
populations does not match well with the predictions using the
trapping period as overplotted. However, we suggest that this is due
to the fact that trapping islands are necessarily distorted at small
pitch-angles (Artemyev et al., 2021a; Albert et al., 2021).

In Figures 3A–I we present the pitch-angle and gyrophase
response for particles initially resonant with f = 0.3|fce| for α = 1°,
E = 5.465keV. The results for this value are broady similar to those
presented in Figure 2, with a few exceptions. The main differences
are as follows:

• We observe a closer matching of the deterministic periodic
motion to that predicted by the integer multiples of the half-
trapping-periods, and in particular for Figures 3D, E;
• We observe that one additional case satisfies the Chirikov

overlap criterion (Figure 3F). Interestingly, the quasilinear
theory matches very well for this case, but only for a portion
of the run-time, with the electron response then rising and
saturating, as in other presented cases;

• a number of the sub-figures (in particular Figures 3A, B, D, E)
demonstrate a significant and periodic ordering of particles
in gyrophase space, with particular gyrophases being favoured
during a trapping half-period, and then subsequently re-mixed.

This figure therefore demonstrates that there is a notable difference
between particle dynamics at very small (i.e., close to 0°), and
small (i.e., at the boundary of resonant overlap, and perhaps
close to the loss cone) pitch-angles. This fact is well-known based
on a number of recent studies that consider the context of an
inhomogeneous background magnetic field (e.g., see Albert et al.
(2021); Artemyev et al. (2021a)), and here we demonstrate a related
phenomenon for the case of a uniform background magnetic field.

3.2 The quasilinear regimes

The two core requirements for validity of the quasilinear
theory (low-amplitude perturbations and resonant island overlap)
have been defined in Section 2 A,B. We here emphasise that all
experiments that are expected to satisfy the quasilinear theory
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FIGURE 4
Demonstrating the effect of wave coherence and wave amplitude on particle trajectories for α = 65°, E = 28.751keV. All details pertaining to sub-figures
(A–I) are described in Section 3.

(i.e., when these two conditions are satisfied, and with the ‘low-
amplitude/island amplitude’ criterion being at or below a few
percent) show either good or very good agreement with the
quasilinear diffusion coefficient for a certain amount of time.
Further, there are some cases when the conditions are not
satisfied, and yet we still observe a partial agreement with the
quasilinear theory, which is very interesting to note, and certainly
motivates future work.

In Figures 4A–I we present the pitch-angle and gyrophase
response for particles initially resonant with f = 0.3|fce| for
α = 65°, E = 28.751keV. The main features that we observe here
are the following:

• Fewer examples (if any) display (quasi-)deterministic
trajectories. Collective periodic motions are observable
via the scatter plots in Figures 4A, D. Howevever this is
of a fundamentally different nature to the deterministic
oscillations demonstrated in some examples in Figures 2, 3. In
Figures 4A, D there is a dispersion and subsequent coalescence
of particles on trapping timescales, as indicated by the vertical
lines. Chirikov resonant overlap is not demonstrated in these

examples, and so we suggest that this behaviour can be
attributed to particles ‘hopping’ in ‘gyroangle-wave-phase’
space from one island to another (‘horizontally’ if one considers
the standard island diagrams, e.g., see Dysthe (1971)), without
significantly changing velocity.
• Correspondingly, we observe that the quasilinear theory

is frequently valid (overlap and small amplitude criteria
satisfied), and this is reflected by the particle behaviour in
sub-Figures 4C, E–I). However, we make the important note
that the linear response has an inherent time-limitation∝ 1/D
that decreases as island amplitude increases.
• Interestingly, cases 4(b) and 4(d) demonstrate an apparent

satisfaction of the quasilinear prediction for a brief initial phase,
despite not satisfying the overlap criterion. This timescale is of
the order of a half-trapping period. It is interesting to consider
this within the context of the theories presented by e.g., Albert
(2010), in which it is shown that one resonant island can give
rise to diffusive trajectories in an inhomogenousmagnetic field,
due to the fact that the resonant island is moving in phase
space. In that case, a resonant interaction can give rise to
diffusion provided the particles interact with the wave-particle
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FIGURE 5
Demonstrating the effect of wave coherence and wave amplitude on particle trajectories for α = 89.9°, E = 1150.233keV≈1.1MeV. All details pertaining to
sub-figures (A–I) are described in Section 3.

potential (i.e., the resonant island) transiently, and therefore
avoid trapping or bunching.
• Negligible drift is observed in all cases except for 4(g)-(i), of

the order of a few degrees. Once again, it is not the purpose of
this paper to ascertain whether or not this motion is ‘diffusion-
induced’ or true advection (see discussion in Section III A and
e.g., Lemons (2012); Zheng et al. (2019); Allanson et al. (2022)
and references therein). But it will be important to consider in
future studies, after further theoretical developments.

3.3 The large pitch-angle regime

In Figures 5A–I we present the pitch-angle and gyrophase
response for particles initially resonant with f = 0.3|fce| for α = 89.9°,
E = 1150.233keV≈1.1MeV. The main distinction that sets these
experiments apart is that (if it applies) the quasilinear linear response
is observed to apply for shorter timescales, and we attribute this to
the enhancement of resonant island overlap (and equivalently the
larger values of ‘island amplitude’). Therefore, the saturation phase

is initiated more quickly than in Figure 4, and in particular the cases
plotted in Figures 5G–I saturate near-instantaneously. Neglible drift
is observed for all cases considered. A number of these sub-figures
resemble those presented in e.g., Cai et al. (2020), which specifically
considered local diffusion for particles with large pitch-angles in the
context of resonance broadening (Dupree, 1966; Karimabadi and
Menyuk, 1991; Karimabadi et al., 1992), with very similar parameter
ranges to those presented in this work.

3.4 A summary of the different regimes

In Figure 6 we collect together the main conclusions that we
draw from experiments performed in this paper, and in particular
the different ‘species’ in the ‘zoo’ of particle responses. We classify
five different varieties of particle response, according to

1. Very small pitch-angle with no overlap. In these cases the
resonant overlap criteria is not satisfied, particles evolve
deterministically due to trapping in resonant islands with
e.g., Δα∝ sin(Ct), for C < ωtr,k some constant. However, the
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trapping period does not fit the standard trapping period
formulae (Omura, 2021), but this is not surprising given
that trapping islands are deformed at very small pitch-
angles (Le Queau and Roux, 1987; Artemyev et al., 2021a;
Albert et al., 2021);

2. Small pitch angle with no overlap. Again, the resonant overlap
criteria is not satisfied, and particles evolve deterministically
due to trapping in resonant islands with e.g., Δα∝ sin(ωtr,kt);

3. Small pitch-angle with overlap. The quasilinear theory is
technically valid but dynamicsmay not reproduce the standard
linear response for a long time, if at all. We observe Δα∝ t
and there is evidence to suggest that the governing equation in
such cases may not be the standard ‘diffusion equation’ since
additional advective terms may be required Lemons (2012). In
any case, it is important to note that the diffusive component
of the dynamics are likely still well described by the diffusion
equation, despite the fact that we do not observe the linear
response (Vanden Eijnden, 1997). This is clearly a complicated
issue and requires further investigation;

4. The standard quasilinear regime. Resonance overlap and small
amplitude criteria are satisfied, and Δα∝ t1/2. We see the
standard linear response, however this will saturate after some
departure timescale∝ 1/D (Liu et al., 2010; Lemons, 2012);

5. The large pitch-angle regime. Quasilinear theory may or may
not technically be valid since the overlap criteria will be
satisfied but the small wave-amplitude criteria may be broken.
This regime is characterised by an initial response that very
rapidly saturates. It often seems to be the case that the linear
response is well matched by the quasilinear theory, even if only
for a very short time.

These different regimes are demarcated in Figure 6. As nwave→∞
for a fixed Bwave then this picture will tend to a function of
pitch angle according to Eq. 1 in this paper (equation 2.18 of
Karpman (1974)), independent of the resonant overlap criteria,
leaving only three distinct regimes. As nwave increases for a fixed
Bwave, then islands overlap more readily, because island width
(ωtr,k/k) decreases (∝ √Bw,k ∝ n−1/4wave) more slowly than island
spacing (Δv∝ ωbandwidth/nwave ∝ n−1wave)). As Bwave increases, the
applicability of standard perturbative/weak turbulence/quasilinear
approaches will break down in a general sense, and this will also be
a function of pitch-angle.

4 Discussion

4.1 A zoo of possibilities for the particle
response for a given sample of
survey-mode spacecraft data

We return now to the modelling of diffusion coefficients
that drive radiation belt models. It is important to note that
electromagnetic observations from spacecraft that are used to build
empirical wave maps for use in constructing diffusion coefficients
are usually ‘survey-mode’ spectra. As one example, the Van Allen
Probes spacraft produce survey mode spectra of electromagnetic
waveforms via the EMFISIS WFR instrument (Kletzing et al., 2013;
Kletzing et al., 2023) with a cadence of 6s, and a discrete Fourier

Transform that is performed over a 0.468s sub-section of the
“continuous waveform burst-mode” data (sampled at 35 kHz over
a 5.968s interval (Kletzing et al., 2023)). This survey mode spectra
is therefore ‘averaged’ in the sense that it is composed using all
burst-mode waveforms collected over a given 0.468s period, and
it is implicitly assumed to represent the 6s period. Furthermore
the frequency bins used are quasi-logarithmically spaced and
therefore the powers in each bin represent averages over that
logarithmically sized bin. Therefore, the spectra are siginifcantly
averaged both temporally and in frequency space (Tyler et al., 2019a;
Tyler et al., 2019b).

In Figure 1 we present analytical wave forms and subsequently
derived wave spectra to illustrate this point. Figures 1A–C
show a 0.468s time-series of the By component of whistler-
mode wave spectra constructed exactly as done for this article,
with nwave = 10,100,1000 respectively and a fixed value of
Bwave/B0 = 10–4. In Figures 1D–F we present the respective spectra
for thesewave forms that were calculated using a standard numerical
FFT routine. In Figures 1G–I we further plot Fourier spectra for the
samewave-forms but calculated exactly as per the FFT engine on the
Van Allen Probes EMFISIS WFR instruments, as described above
using quasi-logarithmic bins. Therefore Figures 1G–I represent
prototypical wave spectra that one might expect to download
as a EMFISIS WFR survey mode data product. Figures 1A–F
demonstrate the variety of waveforms and wave spectral forms
that could in principle be underlying these survey mode spectral
prototypes. The results in our paper therefore demonstrate how
one can obtain a significant variety of particle responses (as a
function of pitch-angle) for essentially identical looking survey-
mode products, even if they appear to satisfy all appropriate
quasilinear criteria.

As discussed and implied by many authors (e.g., see Cully et al.
(2008); Wilson et al., 2011; Breneman et al. (2011); Kellogg et al.
(2011); Li et al. (2011); Santolík et al. (2014); Tyler et al. (2019b);
Watt et al. (2017);Watt et al. (2019); Zhang et al. (2019); Zhang et al.
(2020b); Zhang et al. (2020a)), these features imply that there could
be a wide variability of waveform amplitudes and structures in
time-frequency space for ‘similar-looking’ survey-mode spectra,
and this has significant implications for the resultant particle
transport (Zhang et al., 2020a; Zhang et al., 2020b; Allanson et al.,
2021; Frantsuzov et al., 2023). Significant recent progress has been
made in statistical analyses of the effects of the underlying “burst
mode wave structure” of nonlinear whistler-mode waves on electron
dynamics (e.g., see Artemyev et al. (2022) and references therein),
ultimately aiming to charaterise diverse electron responses via
effective diffusion coefficients that may scale with wave amplitude
to powers other than two, depenmding on wave amplitude and wave
packet duration.

It will be interesting in future work to assess the relative
occurences of the different particle regimes indicated in Figure 6.
It is true to say that the different wave fields used in the
numerical experiments in this paper are somewhat idealised
(e.g., Figures 1D, E), but they are chosen as such in order to
isolate different regimes in which fundamentally different kinds
of phenomena occur. Future work should focus on constraining
the relative occurences of the different particle transport regimes
by comparing with spacecraft data. Nonetheless, this idealisation
does not detract from the main conclusions/contributions of this
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FIGURE 6
A schematic to describe different regimes of particle transport as a function of initial pitch-angle and the incoherence of the wave spectrum.

work, namely,: (i) to our knowledge, the most extensive numerical
examination of electron scattering regimes for field-aligned and
static R or L mode spectra in a cold and uniform plasma with
uniform background magnetic field (expanding upon Liu et al.
(2010); Tao et al. (2011); Allanson et al. (2019); Allanson et al.
(2020); (ii) the key observation that extensively averaged spectra
such as are provided via survey mode products can obscure
significant structure in the wave spectrum, and that this can
therefore imply a mulipliicity of electron responses; (iii) this
multiplicity of electron responses is demonstrated, and is a strong
function of resonant particle pitch-angle (and therefore energy),
wave amplitude and wave coherence.

Further, and to give a specific example, whilst the spectra in
e.g., Figures 1D, E, could be argued to have unphysical attributes
(namely, the periodicity of the ‘spikes’ in frequency space), this
exact feature is inconsequential for the electrons of interest,
which are chosen to be resonant with the ‘spike’ at f = 0.3fce.
The dynamics of those electrons will be determined by wave
power that is either at or very much local to f = 0.3fce, and
the non-zero ‘noise’ that is surrounding it. It is certainly not
uncommon to observe ‘spikes’ in whistler-mode wave spectra (e.g.,
but not limited to chorus and transmitter mode waves), especially
when one considers higher resolution data (e.g., see Cully et al.
(2008); Wilson et al., 2011; Breneman et al. (2011); Kellogg et al.
(2011); Li et al. (2011); Santolík et al. (2014); Tyler et al. (2019b);
Watt et al. (2017);Watt et al. (2019); Zhang et al. (2019); Zhang et al.
(2020b); Zhang et al. (2020a)).Therefore we believe that the electron
dynamics associated with the waves in Figures 1D, E are certainly
relevant, and in fact demonstrate the trapping of electrons in
the island associated with the frequency for which the peak
of the ‘spike’ occurs.

4.2 Relationship with work done in the
context of an inhomogeneous background
magnetic field

Most frequently, treatments on ‘non-quasilinear’ interactions
have historically considered the effect of resonant interactions
between coherent/monochrommatic electromagnetic waves on
electrons in an inhomogeneous background field (e.g., see Tao et al.
(2020); Omura (2021); Albert et al. (2022a); Artemyev et al. (2023)
and references therein), although we note works that consider
the effects of incoherent/broadband waves in inhomogeneous
fields (Tao et al., 2012a; Artemyev et al., 2022; Gan et al., 2022;
Frantsuzov et al., 2023). Furthermore, one could consider the
additional effects of one or more of amplitude modulation
(Tao et al., 2012b; Tao et al., 2013; Gan et al., 2020), rapid
frequency variations and phase decoherence (Zhang et al., 2020b;
Zhang X.-J. et al., 2021), and sequential resonant interactions
(Tao et al., 2014), for a fully realistic treatment such as in
An et al. (2022).

In short, the one foundational idea that unites many of
these works in the inhomogeneous regime is the notion of the
inhomogeneity parameter, a dimensionless ratio of the influence of
the wave field to the background field inhomogeneity (Omura et al.,
2008; Albert et al., 2012; Artemyev et al., 2023). For the case of
a monochromatic coherent wave, then analysis based on the
inhomogeneity parameter shows that dynamics can be described
using bounce-averaged quasilinear diffusion coefficients for
sufficiently small wave amplitudes and sufficiently large values of
|∇B0|. Then, more complicated and perhaps more realistic wave
form spectral varieties make this dichotomy more nuanced, e.g., see
Artemyev et al. (2022).
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Furthermore, there has recently been significant work that
specifically aims to understand deviations fromquasilinear diffusion
theory (either whistler-mode or electromagnetic ion-cyclotron
waves) for small pitch-angles in the context of an inhomogeneous
background magnetic field (Grach and Demekhov, 2018; Kitahara
and Katoh, 2019; Artemyev et al., 2021a; Albert et al., 2021;
Albert et al., 2022a; Bortnik et al., 2022; Hanzelka et al., 2023), or
large pitch angles within the context of a homogeneous background
magnetic field (Camporeale, 2015; Camporeale andZimbardo, 2015;
Cai et al., 2020), and also a dipolar field (Tonoian et al., 2022).

The results of all of these studies can certainly be framed within
the resonant island paradigm, as in our study. Furthermore, there
are clear links between our results and those presented by Cai et al.
(2020) within the context of resonance broadening (Dupree, 1966;
Salat, 1988; Karimabadi and Menyuk, 1991; Karimabadi et al.,
1992), meriting further investigation. We reiterate that the reasons
for considering all of these important features (background
magnetic field inhomogeneity, wave amplitude modulation, phase
decoherence) are clear and beyond reproach, namely, to best
represent and describe physical reality. However, in this study
we make the choice to directly probe weak turbulence/quasilinear
theories (Kennel and Engelmann, 1966; Lerche, 1968; Lyons et al.,
1972; Summers, 2005; Allanson et al., 2022) that currently form
the foundations of radiation belt models (Subbotin and Shprits,
2009; Tu et al., 2013; Glauert et al., 2014;Ma et al., 2018;Wang et al.,
2020), prior to bounce- and drift-averaging Roberts (1969);
Lyons et al. (1972).

This manuscript contributes to this wider body of work by
specifically considering wave modes that at first appearances may
appear relatively benign, namely, low amplitude-broadband and in
the case of a uniform background field.We demonstrate that there is
a range of particle responses permissible to wave spectra that ‘look
quasilinear’, and that these behaviours are a function of pitch-angle
andwave coherence.Thismotivates further future observational and
theoretical studies, including those that may derive new transport
theories for such phenomena.

4.3 On the extraction of diffusion
coefficients from numerical experiments

It has been noted in a number of recent works that (even in
the quasilinear regime), and for a given ‘short’ initial decorrelation
time, the particle response (e.g., for pitch-angle ⟨(Δα)2⟩) may
not evolve ∝ t1 (Allanson et al., 2019; Allanson et al., 2020), and
likely will evolve ∝ t2 (Liu et al., 2010; Lemons, 2012; Escande,
2018). Therefore, when extracting a ‘diffusion coefficient’ from
experimental data, one may obtain a Dexperiment ∝ t1 over that short
time. This at first would appear to be a violation of the quasilinear
predictionsDquasilinear ∝ t0. However, this ‘convex/parabolic’ particle
response (⟨(Δα)2⟩ ∝ t2) may not in fact violate the assumptions of
quasilinear theory, and is likely a natural initial transient phase of
a quasilinear system that can (conditions permitting) later develop
into the ‘linear’ particle response (⟨(Δα)2⟩ ∝ t1) that is standard for
quasilinear theory (Vanden Eijnden, 1997; Liu et al., 2010; Escande,
2018).

Very interestingly, Lemons (2012) indicated that, nonetheless, a
new form of the Fokker-Planck equation may be required in such

a regime during early decorrelation times (in the case of pitch-
angle dynamics only), despite the fact that the quasilinear conditions
of the electromagnetic perturbations are satisfied (in their case it
was magnetic perturbations only). We leave investigations of this
nature for our system to future work, noting that related (analogous)
phenomena have been recently described in Lejosne and Albert
(2023) for the case of radial transport.

5 Summary

Wepresent a detailed analyis of the resonant electron response to
whistler mode waves in a uniform background magnetic field using
a test-particle code. The waves are uniformly distributed between
0.2 and 0.4 of the electron gyrofrequency, and parallel-propagating.
We vary the coherence of the wave spectrum and we further vary
the value of wave amplitude to create a two-dimensional parameter
space.We analyse the electron response as a function of initial pitch-
angle, and compare to the evolution predicted by the relativistic
resonant limit quasilinear theory.

One of the immediate practical implications is to consider the
multiplicity of electron responses that could in truth be occurring in
nature when electrons respond towaveforms that are consistent with
a given survey-modewave spectra downloaded from spacecraft.This
motivates future studies that consider the diversity of waveforms
that exist in burst-mode datasets for ‘apparently quasilinear’ survey-
mode spectra (as depicted in Figure 1 and discussed in Section 4.1),
and the corresponding implications of these diverse responses in
statistical models of electron dynamics.

We interpret the results obtained within the context of the two
relevant conditions for the validity of the quasilinear theory (in
this system), namely, the Chirikov resonant overlap criteria and
the small amplitude criteria. Both of these criteria are a function of
pitch-angle, even in the regime of a uniform background magnetic
field. We find five distinct regimes/‘species’ in the ‘zoo’ of particle
responses (summarised in Figure 6), and our main conclusions are
as follows:

1. ‘Intermediate pitch-angles/the standard quasilinear regime’:
reassuringly, we observe that the quasilinear theory well
matches the evolution of the electrons in almost all cases when
it is predicted to do so. However, the pitch-angle range that
this relates to is very much a function of wave coherence
and wave amplitude. Furthermore, the duration of the ‘linear
particle response’ that is predicted by quasilinear theory
is variable (∝ 1/D).

2. ‘Small pitch-angle quasilinear regime’: interestingly, there
are occasions at small pitch-angles where the quasilinear
theory is technically valid, but we observe an extended
‘convex/parabolic’ phase. As discussed, this is not entirely
unexpected and not a refutation of the diffusive Fokker-Planck
equation in order to describe the diffusive component of
the dynamics (Vanden Eijnden, 1997), however there is good
reason to expect that there may be an additional and ‘true’
advective component to the dynamics for this transient phase
(Lemons, 2012), but this remains a hypothesis at the current
stage until further analysis is performed (beyond the scope of
this manuscript).
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3. ‘Small pitch-angle deterministic regime’: for sufficiently small
pitch-angles stochasticity is prevented and the particles
demonstrate a periodic and deterministic trajectory over the
timescale considered, with periodicity determined by the
trapping period (in the framework of resonant islands). This is
a manifestation of the fact that the Chirikov resonant overlap
criterion has not been satisfied.

4. ‘Very small pitch-angle deterministic regime’: here, particles
respond in almost exactly the same way as in case 3., except for
the fact that they do not oscillate with the period as predicted
by standard trapping theory. We attribute this to the now well-
known fact that resonant islands are necessarily deformed at
very small pitch-angles.

5. ‘Largepitch-angle regime’: if thepitch-angle is sufficiently large,
then ‘extreme overlap’ and/or the wave-amplitude result in
electron trajectories that briefly transport in a manner that
is often well matched by quasilinear theory but very rapidly
saturate. It will be important in the future to consider this
phenomenon within the context of resonance broadening
theory(Dupree,1966;KarimabadiandMenyuk,1991;Cai et al.,
2020), and the related so-called ‘90° problem’ for quasilinear
theory (Camporeale, 2015; Camporeale and Zimbardo, 2015).

6. One feature that is common to regimes two to five, is that
often (but not always) it appears that the linear response
predicted by quasilinear theory well matches the transport for
an initial short time. We will not overly speculate here what
we believe may be causing this, but it certainly merits future
work, and we believe (based on the conclusions presented in
e.g., Lemons (2012)) that the Markovian formalism developed
in Allanson et al. (2022) may be particularly well suited to
analysing these phenomena. In particular the regimes of one
or more of small pitch-angle, small times, large pitch-angles,
all as a function of the underlying wave spectra.

7. A continuum of responses: all of the above mentioned
conclusions are a function of the value of nwave and Bwave. The
relationshipisquitecomplex,but isdiscussedthoroughlywithin
thiswork.The results presented in this paper certainlymotivate
further works that seek to find a unified description that can
access all different five regimes for different parameter values.
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