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• Soil porosity is a fundamental environ
mental property, often represented as 
static. 

• We explore relative contribution of 
different dynamic and static predictors. 

• Machine learning and statistical models 
were used to assess predictors of 
porosity. 

• Habitat and soil organic matter are 
promising dynamic predictors. 

• Dynamic estimates of soil porosity could 
improve feedbacks in Earth System 
Models.  
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A B S T R A C T   

Soil porosity and its reciprocal bulk density are important environmental state variables that enable modelers to 
represent hydraulic function and carbon storage. Biotic effects and their ‘dynamic’ influence on such state 
variables remain largely unknown for larger scales and may result in important, yet poorly quantified envi
ronmental feedbacks. Existing representation of hydraulic function is often invariant to environmental change 
and may be poor in some systems, particularly non-arable soils. Here we assess predictors of total porosity across 
two comprehensive national topsoil (0-15 cm) data sets, covering the full range of soil organic matter (SOM) and 
habitats (n = 1385 & n = 2570), using generalized additive mixed models and machine learning. Novel aspects of 
this work include the testing of metrics on aggregate size and livestock density alongside a range of different 
particle size distribution metrics. We demonstrate that porosity trends in Great Britain are dominated by biotic 
metrics, soil carbon and land use. Incorporating these variables into porosity prediction improves performance, 
paving the way for new dynamic calculation of porosity using surrogate measures with remote sensing, which 
may help improve prediction in data sparse regions of the world. Moreover, dynamic calculation of porosity 
could support representation of feedbacks in environmental and Earth System Models. Representing the 
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hydrological feedbacks from changes in structural porosity also requires data and models at appropriate spatial 
scales to capture conditions leading to near-saturated soil conditions. 

Classification. 
Environmental Sciences.   

1. Introduction 

Water and carbon storage and exchange at the earth's surface 
represent two linked environmental cycles that are central to under
standing earth system dynamics and feedbacks to global environmental 
change. Soil structural characteristics are important mediators of these 
cycles, yet have been regularly overlooked in Earth System Models 
(ESMs) (Fatichi et al., 2020), limiting our ability to quantify human 
impacts on the Earth System. Soil porosity contributes to hydraulic 
function, and appropriate representation is important for partitioning of 
precipitation between run-off and infiltration (Jarvis et al., 2013). This 
in turn will have implications for modelling other land degradation 
phenomena such as soil erosion (Borrelli et al., 2021) and the magnitude 
and persistence of heatwaves (Lorenz et al., 2010). Similarly, accurate 
representation of its reciprocal, bulk density, is essential for estimating 
soil carbon stocks and other components of soil health (Walter et al., 
2016; Panagos et al., 2024). 

Pedo-transfer functions (PTFs) are commonly used in models to 
predict hydraulic behavior and parameters such as soil porosity. 
Development and implementation of PTFs are widely discussed in the 
literature (e.g. Pachepsky et al., 1999; Wösten et al., 2001; Rawls et al., 
2004). Critically, Weihermüller et al. (2021) highlight the sensitivity of 
ESMs to the choice of PTF, which often represents a greater source of 
error than uncertainty in input parameters. Concerns of data bias when 
using PTFs to estimate soil hydraulic properties have led to use of 
alternative approaches, for example interpolation from ground-based 
observations was used for SoilGrids (Turek et al., 2023). 

Jarvis et al. (2013) challenged current assumptions for texture based 
PTFs when they found that soil hydraulic conductivity was more closely 
related to land use, bulk density, and soil carbon than to soil texture, the 
key component of many PTFs. Early PTFs such as those derived in 
Rosetta used texture (Rosetta model versions H1 and H2) or a combi
nation of texture and bulk density (Rosetta model versions H3-H5) 
(Schaap et al., 2001; Zhang and Schaap, 2017). Major improvement is 
observable when bulk density is incorporated. The issue is illustrated in 
Fig. 1 which shows the textural and structural contributions to a water 
retention curve, one of the fundamental descriptors of soil hydraulic 
function. In agricultural soils, the structural component can be much 
reduced by tillage for example (e.g. Bronick and Lal, 2005, Jarvis, 2007), 
hence, the textural component is dominant and may describe hydraulic 
function adequately. Conversely in undisturbed soils under grass, shrubs 
and trees there may be substantial development of structural porosity 
such as macropores from roots (e.g. Bonetti et al., 2021). Since the 
historical development of PTF's is based on data with a sampling bias 
toward agricultural, particularly arable soils that is endemic in global 
databases (Rahmati et al., 2018), the structural component is largely 
omitted. Wösten et al. (2001) call for updates to PTFs and increased 
availability of appropriately structured databases to support this, and 
Rabot et al. (2018) further advocate for open data from soil structure 
imaging to support improved prediction of soil function. 

With regard to the textural component of porosity, Robinson et al. 
(2022a) discuss previous work on particle size distribution and influence 
on geometric packing, leading to the emergence of bulk density and 
porosity. Parameters representing the particle size distribution (PSD) 

Fig. 1. A schematic diagram of a water retention curve where the volumetric water content is a function of the soil matric potential in meters (− m). The grey circle 
marks the textural porosity (φtex) often determined using a pedo-transfer function (PTF), whilst the black circle represents the total porosity (φtot), that of the 
textural and structural porosity combined. The green and yellow arrow indicates change in dominant drivers of porosity when moving between soils where porosity is 
primarily structural or textural. SOM = Soil organic matter content. 
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may capture these effects better than separate variables representing 
mass in different size classes, since greater heterogeneity would allow 
for denser packing (e.g. Martín et al., 2017). A range of mathematical 
approaches have been explored for representing PSD curves, including 
information entropy, hyperbolic and power law equations, logarithm 
equations and fractal approaches (summarized in Bayat et al., 2015). 

For the structural component of porosity, land use and management 
are likely to play a key role in the pore space evolution leading to dy
namic changes in porosity and environmental function of soils (Rob
inson et al., 2022b). Dynamic changes in porosity are also common on 
short temporal scales in managed soils, for example in response to tillage 
and subsequent precipitation events or other compacting forces (e.g. 
Sandin et al., 2017). Furthermore, evidence from soil data across the 
USA predicts changes on decadal time scales, with unknown conse
quences for the hydrological cycle (Hirmas et al., 2018). However, PTFs 
are generally modelled as a static property of the soil. Incorporating 
influence from biotic factors such as vegetation could support repre
sentation of a dynamic component of porosity. 

In order to develop a dynamic model of soil structure to support 
ESMs, understanding dynamic drivers of gross measures such as porosity 
and its reciprocal, bulk density, is a desirable starting point. Three 
important challenges are thus identified that must be addressed in order 
to realize a step change toward a dynamic model of soil structure:  

(i) Collect unbiased datasets from across habitats to assess soil 
structural properties and their state and change.  

(ii) Narrow the uncertainty for porosity prediction by understanding 
the factors that contribute to variation across habitats.  

(iii) Identify dynamic indicators and co-variates that can be assessed, 
using remote sensing for example, to track the state and change of 
soil structure at national scale. 

Here we attempt to address these challenges using national unbiased 
stratified random data sets to model total porosity. These data sets 
constitute a novel aspect of our study, spanning a gradient of climate, 
parent material and vegetation across the national scale. Tifafi et al. 
(2018) showed that the steepest rate of change in soil carbon occurs 
between the latitudes of 50–60 degrees in the northern and southern 
hemispheres. Great Britain straddles this same latitudinal gradient and is 
thus an ideal study site, with soils ranging from close to 0 to 100 % soil 
organic matter (SOM). 

We construct a series of machine learning (ML) and generalized 
additive mixed models (GAMMs) to determine how land use, SOM and 
soil aggregation contribute to topsoil (0-15 cm) total porosity at a na
tional scale. We use the models to assess our hypothesis that key factors 
determining the structural porosity are SOM, aggregation and the root 
architecture of vegetation; we omit physical cracking in this study and 
focus on biotic induced structural change which will be dominant along 
our SOM gradient. We also include soil texture metrics where available 
to represent the textural component of porosity. Through this approach, 
we also aim to identify indicators that could lead to a dynamic model of 
soil structural change and impacts on structural and total porosity. 

2. Materials and methods 

2.1. Data 

2.1.1. National scale field survey data 

2.1.1.1. Study area. The research used two study areas. The Country
side Survey (CS) data was collected from across Great Britain (GB; En
gland, Scotland and Wales) during 2007 (CS2007) and 2019 (CS2019), 
whilst data from the Glastir Modelling and Evaluation Programme 
(GMEP) was collected between 2013 and 2016 from across Wales. The 
GMEP data provide a semi-independent comparable data set, covering a 

subset of the geographical range, with which to construct comparable 
models or assess the predictive performance of models constructed on 
the full GB dataset. All methodological details for soil sample analyses 
can be found in the supporting information of the respective data sets 
described below. Only basic information is provided here. Summary 
statistics and number of samples in each habitat class are presented for 
each data set in the supplementary material (Table S26), along with 
maps of sampling locations (Fig. S9). The sites have assessment of 
vegetation, SOM and bulk density. The CS data collected in 2019 also 
include measurement of soil texture and aggregate size distribution 
using laser diffractometry to obtain spectrums of soil physical charac
teristics. These texture data are also available for the GMEP data. The 
resulting data are uniquely positioned to assess the state and change of 
soils along an environmental, climate, habitat and SOM gradient. 

2.1.1.2. Countryside survey data. Topsoil samples (0–15 cm) were 
collected from across Great Britain based on a stratified random design 
using ITE Land Class (Bunce et al., 1996). Subsets with the variables 
required for our models (n = 2570 for 2007 and n = 287 for 2019) are 
presented in this work (Emmett et al., 2016). SOM was determined using 
loss on ignition and bulk density was determined on oven dry fine earth 
(<2 mm). All methods were based on the Countryside Survey as detailed 
in the supporting information in Emmett et al. (2016). 

2.1.1.3. GMEP data. Topsoil samples (0–15 cm) were collected from 
across Wales based on a stratified random design using Land Class, a 
combination of parent material, climate and relief (Bunce et al., 1996), 
to stratify. N = 1385 measurements are presented in this work (Robinson 
et al., 2019). All methods were based on, and are compatible with, the 
Countryside Survey data. 

Bulk density can be determined for the total soil including stones, or 
for the fine earth fraction removing the stones and adjusting the volume 
accordingly (Grossman and Reinsch, 2002; Page-Dumroese et al., 1999). 
Here, the bulk density was determined for the fine earth fraction 
following the laboratory procedure described in the supplementary 
material of Emmett et al. (2008), on soil cores extracted using a 
stainless-steel corer 5 cm diameter and 15 cm deep. Total porosity for 
the fine earth fraction was then determined based on the oven dry bulk 
density and the particle density. For this study, we define total porosity 
as the pore space that can be measured within the soil core contributed 
by the physical arrangement of individual soil particles (textural) and 
their aggregation (structural). Particle density was determined accord
ing to the mixing model approach of Ruehlmann (2020) using SOM 
proportion and assumed particle density of SOM 1.4 g cm− 3 and mineral 
particle density 2.7 g cm− 3. We acknowledge that these soil cores cannot 
capture larger macropore features such as larger animal burrows, but 
the calculated metrics may still be considered largely representative of 
total porosity. 

We analyzed all mineral soils (SOM fraction <0.4) using laser 
granulometry to obtain a full particle size spectrum. Particle size anal
ysis was undertaken using a laser granulometer for the GMEP data and 
the CS2019 data. Aggregate size distribution was also determined for the 
CS2019 data using laser granulometry. A Beckman Coulter LS13 320 
laser diffraction particle size analyser (Beckman Coulter Inc.) was used. 
To evaluate the accuracy of the instrument we used different size stan
dards: nominal 500 μm glass beads (Beckman Coulter Inc.) and nominal 
15 μm Garnnet (Beckman Coulter Inc.). We also used sandy soil from 
Gleadthorpe (Cuckney, UK), clay soil from Brimstone (Denchworth, UK) 
and a silty soil from Rosemaud (Bromyard, UK) as soil standards. All 
three soils are well-characterised farm soils from ADAS Ltd. (Helsby, 
WA6 0AR). In addition, we used two well-characterised internal soil 
standards: Bangor standard 1 (BS1) and Bangor standard 3 (BS3) soils 
representative of North Wales soils, they are loam and silty clay loam 
respectively. The soil particle size data obtained were used to calculate 
distribution metrics. 
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2.1.2. Livestock density data for the survey locations 
Livestock density maps were created at a 1 km resolution. Livestock 

data for sheep and cattle retrieved from EDINA agCensus for years 
nearest to 2007 and 2019 (EDINA, 2007a, 2007b, 2010, 2016, 2018, 
2019; Stuart Neil, 2022) were converted to livestock units (LU) based on 
conversion factors described by Nix and Redman (2021). Livestock unit 
data were combined to a 1-km grid for each country using country 
boundaries (ONS, 2020) and converted to density per ha of grassland 
using the Land Cover Map (Morton et al., 2014, 2022a, 2022b, 2022c). 
Calculations were performed in R version 4.2.1. and ArcMap version 
10.7.1. 

2.1.3. Particle size distribution metrics 
We calculated several different multifractal metrics for the particle 

size distribution by implementing the moment method as described in 
Salat et al. (2017) and previously demonstrated for the GMEP data 
(Seaton et al., 2020). In our models we used D0, D1, D2, Dα and Dfα. D0, 
D1 and D2 represent the Rényi dimension Dq (where q = 0,1,2) of the 
particle size distribution, which addresses how μ (multifractal measure) 
varies with ε (box size or aggregation of size classes) and q (range of 
moment orders) defined according to Eq. (1), or Eq. (2) where q = 1. 

Dq =
1

q − 1
lim
ε→0

logμ(q, ε)
logε (1)  

Dq = lim
ε→0

logμ(q, ε)
logε (2)  

where μ(q, ε) is defined according to Eq. (3) and pi is the proportion of 
mass in the ith box of size ε. 

μ(q, ε) =
∑

pq
i (3) 

These multifractal Rényi dimension parameters generated describe 
different aspects of the distribution. The box-counting dimension, D0 
has a maximum value of 1 when all subintervals are occupied at all 
scales, decreasing with increasing empty subintervals. The entropy 
dimension, D1, quantifies how Shannon entropy scales as ε tends to 0, to 
represent the disorder or heterogeneity of the distribution. D1 ranges 
from 1 for the most heterogeneous distribution to 0 for a homogenous 
distribution. The correlation dimension, D2, computes the correlation of 
measures contained in size ε (Posadas et al., 2001). For both the GMEP 
and CS data, D declined with increasing q. This indicates, as expected, 
that the soil particle size distribution does not follow a power law dis
tribution, hence the multifractal approach implemented here is more 
appropriate than a single fractal model (Posadas et al., 2001). 

Dα is the spectral width for a multi-fractal spectrum, which repre
sents the heterogeneity of particle size distribution across the full fractal 
structure (Wang et al., 2015). This is calculated according to Eq. (4), 
where α is calculated according to Eq. (5) for q from − 5 to 5. 

Dα = max(α(q) ) − min(α(q) ) (4)  

α(q) = dτ(q)
dq

(5) 

For the moment method, τ is the mass or correlation exponent of the 
qth order (Salat et al., 2017), and is calculated by Eq. (6). 

τ(q) = (q − 1)Dq (6) 

Dfα reflects the multi-fractal spectrum shape feature (Wang et al., 
2015), and is calculated by Eq. (7), where fα is calculated by Eq. (8). 

Df α = max(f α(q) ) − min(f α(q) ) (7)  

f (α(q) ) = α(q)q − τ(q) (8) 

Further particle size distribution metrics were calculated on the 
texture data aggregated into 8 classes from colloid to very coarse sand 

using the Krumbein phi scale. The classified texture data and the 
aggregate data were then used to calculate distribution metrics. Weibull 
or Rosin-Ramler is a continuous probability distribution, here the pa
rameters describing shape and size of the fitted distribution were 
calculated according to Eq. (9) using the package “fitdistrplus” in R 
(Delignette-Muller and Dutang, 2015). 

P(X > x) = 100e

(

x/β

)α

(9)  

where P(X > x) is the percentage by weight of particles (or aggregates) 
greater than size x, and the PSD curve is then described by α as the size 
parameter and β as the shape parameter describing the spread of the 
distribution (Keller et al., 2010). Shannon information entropy is a 
measure of PSD or aggregate size distribution heterogeneity, according 
to eq. (10), calculated using the package “entropy” (Hausser and 
Strimmer, 2009) in R, using the Maximum Likelihood method. 

H = −
∑k

i=1
pilogpi (10)  

2.2. Modelling 

Models were constructed using machine learning and GAMMs. 
Where possible, models were constructed on the full GB dataset (CS2007 
n = 2570) and tested on the Wales dataset (GMEP n = 1385) or the 
corresponding texture subsets (CS2019 n = 287, GMEP n = 728). Models 
were used first to explore the extent to which soil texture variables, 
including krumlin phi size classes and the various particle size distri
bution metrics described in Section 2.1, are predictors of total porosity. 
Further models were then constructed to explore our hypotheses that 
soil aggregates and SOM are important drivers of total porosity. 
Appropriate metrics were reported for assessment of the different model 
types. A novel aspect of the modelling was to test inclusion of habitat, as 
an example of variables that are increasingly available from earth 
observation data, which could support upscaling for national mapping 
and dynamic predictions for land surface modelling. As a comparison, 
we also include the Rosetta H1 PTF model https://www.handbook60. 
org/rosetta/ which predicts porosity as the average for that USDA 
texture class based on the sand silt and clay content (Schaap et al., 
2001). 

2.2.1. Machine learning algorithm 
Machine learning (ML) was performed using conditional random 

forests to explore relative importance of different environmental vari
ables in predicting topsoil total porosity. ML can tell us which variables 
are more important and can handle large numbers of variables. Condi
tional random forest ML as used here also enables comparison between 
factor and continuous variables. Random forest is a supervised learning 
algorithm, which generates multiple decision trees using bootstrap 
samples from the data, and at the same time computes estimates of 
variable importance (Breiman, 2001). These were used to plot ranked 
variable importance according to impacts on % Mean Square Error 
(MSE) of randomly permuting the variable. The approach was applied 
primarily to explore the relative importance of different predictors in the 
data; in particular, to enable us to compare the impact of a large number 
of variables on soil particle size. Therefore, we implemented the R 
function “cforest” in the package “partykit” (v1.2–20; Hothorn and 
Zeileis, 2015) which achieves improved performance for identifying 
variable importance, by using conditional inference trees as base 
learners, and calculating the conditional permutation importance 
(Strobl et al., 2008; Strobl et al., 2007). This reduces issues identified 
with traditional random forest approaches around correlated variables 
and comparison of categorical and continuous variables. However, the 
effects of correlation between predictor variables cannot entirely be 
removed (Strobl et al., 2008), hence we tested a two-step approach; first 
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constructing the model with all available variables, and then removing 
the least important correlated variables. 

Reported model metrics of r2 and RMSE reflect how well out-of-bag 
predictions explain the target variance of the training set. We have not 
assessed the performance of the ML models for predictive modelling 
because soil particle size data were only available for a subset of sam
ples, and because the conditional inference tree approach requires 
bootstrap sampling without replacement, which should only be used for 
the evaluation of variable importance, not for predictive modelling. 
Hence, these models are primarily useful for understanding the relative 
importance of different drivers in our data, in particular for comparing 
habitat with the continuous variables. 

2.2.2. Statistical modelling 
We separately constructed statistical models to explore the nature of 

nonlinear relationships in the data and look for variations in these re
lationships between habitats. We used a mixed model structure 
(Generalized Additive Mixed Model, GAMM) to account for random 
factors. A factor identifying the 1-km square location (each of which 
contained up to 5 soil sampling locations) was included as the random 
factor. Due to the bimodal distribution of residuals in many of these 
models, Gaussian distribution was not always appropriate. In these 
cases, a Tweedie distribution was used with p assigned in preliminary 
model fitting using the “gam” function in the R package “mgcv” 
(v1.8–42; Wood, 2011). By fitting the Tweedie distribution p value to 
the model, the distribution of residuals can be more appropriately 
captured. 

As part of model fitting, we fitted cubic regression splines, hence
forth termed “smooths”, to all continuous terms in the model, to both 
capture nonlinearity in the relationships and test deviation away from a 
constant zero effect. Smooths were applied via the “gamm” function in 
the ‘mgcv’ library (Wood, 2011). These smooths allow nonlinear vari
ation of the coefficient applied to the predictor variable. The approach 
here also removes spurious predictor variables, by using a double pen
alty smoother which allows the penalized regression routine which 

selects for the “wiggliness” of the smooths to also shrink covariates out 
of the model entirely (per Marra and Wood, 2011). We did not include 
interaction terms in most of the models, in order to assess the marginal 
influence of individual covariates, however we did separately test the 
interaction between SOM and habitat, to explore the influence of habitat 
on the relationship between SOM and total porosity. Models were con
structed separately on both the CS and GMEP datasets (where required 
variables were available in both datasets) and the CS models were tested 
on the GMEP dataset to assess performance on a separate sample. 

3. Results and discussion 

3.1. Evaluating PTFs and the need for a structural component parameter 

Our analysis framework is developed around the concept of the soil 
water retention curve (Fig. 1). PTFs use soil survey data such as soil 
texture to predict water retention characteristics including what we term 
the textural porosity (Fig. 1). PTFs using only soil texture work reasonably 
well in unstructured mineral soils (Robinson et al., 2022a). However, 
unless they include bulk density, PTFs are currently poor at predicting 
what we term the total porosity which is a combination of the structural 
and textural porosity. Fig. 2 illustrates this using only the sand, silt and 
clay data from our CS dataset (subset of the 2019 data with texture n =
287) with the Rosetta H1 PTF model (Table 1 Model 1) to predict the 
saturated water content (PTF porosity). Fig. 2 compares these estimated 
soil porosity values with measured porosity (see 2.1.1), in order to illus
trate the missing structural porosity component to values estimated from 
texture alone. All data should fall on the one-to-one line, but performance 
is very poor due to the absence of bulk density in this model. Drivers of 
soil structural porosity such as SOM are also omitted from this PTF. The 
data clearly show that as you move away from Arable and Horticulture 
systems, disagreement increases, suggesting that structural porosity, 
hence bulk density, becomes more important. Overall performance of the 
PTF was very poor in predicting soil porosity (r2–3.7, RMSE 0.215), as 
might be expected of a model based on texture alone. 

Fig. 2. Measured porosity vs the predicted porosity using a PTF applied to the CS dataset. The black line is the 1:1 line and indicates the missing structural 
contribution to the porosity. 
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Soil structure is commonly omitted from databases used to develop 
PTFs (Fatichi et al., 2020). As a consequence, early data driven PTFs 
were based largely on analysis of cropland soils, and their soil texture; 
newer functions incorporate SOM and illustrate the need for bulk den
sity (Schaap et al., 2004; Tóth et al., 2017; Turek et al., 2023). As with 
other statistical models, PTFs of soil hydraulic properties should not be 
applied outside of the range of soils used in their development (Wösten 
et al., 2001). Large composite hydraulic databases are susceptible to 
sampling bias, over representing agricultural land uses (Rahmati et al., 
2018; Robinson et al., 2022b), and under representing woodland and 
semi natural habitats. Given cropland accounts for ~7 % of the land 
surface (Ritchie and Roser, 2013), this is a substantial bias, failing to 

represent habitats with shrubs and trees that are likely to alter the 
structural porosity of soils more so than arable crops and associated 
management. 

Fig. 3 contains data used in this study from CS2019. Fig. 3a-c are for a 
subset of the data with additional metrics of texture and aggregates, 
whilst Fig. 3d shows the full dataset. Fig. 3a shows that soil porosity does 
not show a strong dependence on clay content which is the existing 
paradigm as used in PTFs. 

Fig. 3b plots very large aggregates (>256 μm) as a function of the 
SOM indicating a strong relationship, with aggregation increasing 
sharply as SOM increases between 0 and 0.2 g g− 1, which is the domain 
of mineral soils. Several reviews on aggregates using published data 

Table 1 
Model performance for GMEP (G) and Countryside Survey datasets (CS). (V) denotes metrics which represent the performance when testing models constructed on the 
CS data, to predict topsoil total porosity in the GMEP data.  

Model CS GMEP V 

r2 RMSE deviance r2 RMSE deviance RMSE 

1) PTF (CS2019, G)  − 3.736  0.215      
2) GAMM Texture (CS2019, G)  0.373  0.077  1.688   0.073  7.564  0.101 
3) GAMM Texture distribution metrics (CS2019, G)  0.171  0.089  2.277   0.082  7.707  0.104 
4) ML texture with distribution metrics, habitat (CS2019, G)  0.666  0.057   0.570  0.053   0.081 
5) GAMM texture with SOM (CS2019, G)  0.747  0.049  0.680   0.047  2.372  0.066 
6) GAMM texture distribution metrics with SOM (CS2019, G)  0.710  0.053  0.793   0.048  2.516  0.064 
7) ML texture with distribution metrics, SOM, habitat (CS2019, G)  0.799  0.044   0.800  0.036   0.065 
8) GAMM Texture and aggregates (CS2019)  0.705  0.052  0.781     
9) GAMM Texture and aggregate distribution metrics (CS2019)  0.618  0.060  1.038     
10) GAMM Texture and aggregates, SOM (CS2019)  0.764  0.047  0.625     
11) GAMM Texture and aggregate distribution metrics, SOM (CS2019)  0.709  0.053  0.796     
12) ML texture and aggregates with distribution metrics, habitat (CS2019)  0.765  0.048      
13) ML texture and aggregates with distribution metrics, SOM, habitat (CS2019)  0.804  0.044      
14) GAMM SOM (CS2007, G)   0.060  14.337   0.046  3.966  0.055 
15) GAMM SOM, SOM smoothed by habitat (CS2007, G)   0.059  13.117   0.040  2.981  0.052 
16) GAMM SOM, SOM smoothed by habitat and habitat (CS2007, G)   0.057  13.567   0.040  3.021  0.052 
16b) GAMM SOM, SOM smoothed by habitat and habitat (CS2007, G: Grassland subset)   0.054  5.082   0.040  2.044  0.051 
17)GAMM SOM, SOM and livestock smoothed by habitat and habitat (CS2007, G: Grassland subset)   0.053  4.898   0.040  2.151  0.050 
18) Habitat, livestock (CS2007, G: Grassland subset)   0.089  14.101   0.071  8.492  0.078  

Fig. 3. Plots of relationships between percentage of clay and porosity; percentage of large aggregates and porosity; soil organic matter (SOM) fraction and large 
aggregates, with markers coloured by habitat. d) relationship between porosity and SOM and bulk density and SOM fraction. 
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have identified positive relationships between SOM and macroaggre
gates (e.g. Six et al., 2000, King et al., 2019, Wiesmeier et al., 2019; 
Sullivan et al., 2022). Relationships have been attributed to aggregate 
hierarchy theory, with microaggregates bound together by organic 
binding agents which contribute additional organic matter to soils with 
larger aggregates (Six et al., 2000). Wiesmeier et al. (2019) suggest this 
is commonly a top down process with macroaggregate (>250 μm) for
mation acting as the first step to long term stabilisation of soil carbon, 
although data from Verchot et al. (2011) suggest that this carbon sta
bilisation can be a bottom up process starting with the micro-aggregates. 
King et al. (2019) also suggest that published data may not support 
formation of microaggregates within macroaggregates. They found that 
high SOC soils had a greater proportion of microaggregates occluded in 
macroaggregates, and that occluded microaggregates had higher C, 
hence they attributed the correlation of SOC with macroaggregates to 
lower macroaggregate turnover. In line with this, Fig. 3b also shows 
generally lower values for very large aggregates and SOM for arable sites 
where aggregates are likely to be disrupted by tillage. 

Fig. 3c shows that the increase in aggregation is also associated with 
an increase in soil porosity. Finally, panel 3d shows the strong rela
tionship between SOM and soil porosity and the reciprocal bulk density. 
These data tell an important story, that the development of the structural 
and total soil porosity is a function of the aggregation in the mineral soils 
which in turn can be related to SOM content. Large datasets derived 
from agricultural soils are generally restricted to mineral soils telling 
only part of the story (e.g. Ramcharan et al., 2017; Rawls et al., 2004). 
Clearly this data from across habitats with a full range of SOM shows 
how porosity is related to SOM. In mineral soils the relationship is due to 
carbon in aggregates, but as the organic content increases the wiry shape 
of the SOM is likely to dominate the porosity (Robinson et al., 2022a), 
until the fibrous structure of peats results in soil porosities of 90 % or 
more. 

The deviance from the 1:1 line in Fig. 2 could be due to a number of 
factors, e.g. omission of SOM, or largely unexplored structural factors 
such as the arrangement of particles that are dependent on the intrinsic 
characteristics of the particles. These characteristics would be better 
represented in the more complex ROSETTA models which include bulk 
density (H3, H4 and H5). Since measured values consistently exceed 
predicted, the deviance is unlikely to be due to packing factors such as 
compaction that are the result of an externally applied load, in our data- 
although this may be present in the datasets used to develop the PTF 
parameters. Additionally, it could be due to the greater development of 
soil structure in some habitats in our dataset, likely driven by SOM. We 
use particle size data and habitat as surrogate information to test these 
ideas, in models of total porosity constructed with and without SOM. 
These models (2− 13) were constructed on subsets of the data, for which 
the texture variables were available (CS2019 n = 287; GMEP n = 728). 

3.2. Testing relative contribution of soil texture to total porosity 

We applied the GAMMs to the particle size data, first aggregated into 
texture classes on the logarithmic Krumbein phi scale, and then 
replacing these with PSD metrics (Table 1, models 2 and 3). Overall, 
model performance was poor for both texture models, and deteriorated 
slightly when the models constructed on the CS2019 dataset were used 
to predict for the GMEP sites. The poor predictive performance could 
suggest that our statistical models do not hold outside of the sample, or is 
likely a reflection of the poor performance of the models overall. The 
relative importance of and contribution from the various texture metrics 
discussed here should be considered in the context of the poor perfor
mance of these models. 

By constructing models on texture classes (Table 1, model 2), we test 
whether certain particle sizes and their groupings might form geomet
rical bridges or clusters that influence the geometric arrangement of 
particles and associated packing density and support prediction of total 
porosity. The colloidal size fraction was the most important texture class 

in both data sets, followed by medium sand (Tables S1 and S2). Although 
better than model 1, performance was relatively poor (note larger 
deviance values for GMEP models may reflect larger sample size). 

Particle size distribution (PSD) should be important for total porosity 
due to the influence of mixing on packing density. Since size fractions 
are not independent of one another, the individual fractions included in 
model 2 may to some extent be indicative of PSD and associated mixing 
effects on packing. Larger particle size fractions tended to have positive 
correlations with one another and negative correlations with small 
particle size fractions (Fig. S3). Work by García-Gutiérrez et al. (2019) 
linking the use of information entropy to characterize soils with the use 
of fractals as a PSD model demonstrates that coarse aggregations of soil 
texture data into triplets can be sufficient to describe the full PSD. 
However, they found that the triplets required vary between soil types, 
hence information may be lost through aggregation into inappropriate 
size classes, and PSD metrics may be more informative. 

Exploration of PSD metrics elsewhere has identified relationships 
with bulk density using Shannon information entropy (Martín et al., 
2017) or the Weibull equation (Keller and Håkansson, 2010) and mul
tifractal parameters (Wang et al., 2015). We therefore tested a GAMM 
model using these metrics as PSD descriptors (Table 1, model 3). Model 
performance was poor, with RMSE and model deviance both increased 
compared to the model based on texture classes. Whilst PSD descriptors 
were important in the models, relative importance of different distri
bution metrics was inconsistent between the data sets (Tables S3 and 
S4). This inconsistency may reflect correlations between these distri
bution metrics (Fig. S3). 

We might expect better performance of PSD metrics in the compar
ison studies cited, since they do not seek to explain raw field values of 
bulk density. Reference bulk density predicted by Keller and Håkansson 
(2010) could be considered analogous to the non-structural component 
of porosity, and likewise, in using averages of bulk density, Martín et al. 
(2017) remove some of the variation from structural porosity. 
Conversely to predict total porosity of topsoil, our models would need to 
represent the variation from the structural component of porosity. 
Nonetheless, it is important to note that our models using PSD metrics 
performed poorly compared to models with the individual size fractions. 
This suggests total porosity in our data is more strongly related to size of 
individual important fractions. 

3.3. Testing contribution from land use to total porosity 

We then introduced habitat as a surrogate for compaction or devel
opment of soil structure, with the assumption that heavily managed 
habitats such as arable or improved grass will experience more 
compaction than extensive systems and woodland, which will be subject 
to greater development of soil structure (Byrnes et al., 2018). We thus 
included habitat using a ML approach to compare relative importance of 
habitat with the continuous variables for soil texture. Model perfor
mance was improved (Table 1, model 4), but deteriorated when pre
dicting for the GMEP sites using the CS model. The model fitting 
approach is intended to explore relative importance, hence good per
formance was not expected for prediction. 

Habitat was most important by several orders of magnitude in the 
models for both data sets, whilst relative importance of the other vari
ables was inconsistent (Figs. 4a, b and S1a, S1b). Removing the least 
important correlated variables led to changes in the relative importance 
of remaining variables, and this was also seen for our other ML models 
where there was a large step in relative importance. In such cases, the 
co-correlation between many of our related predictors (e.g. texture 
classes, and distribution metrics) may make them somewhat 
interchangeable. 

Importance of habitat is supported by a recent global meta-analysis 
(Robinson et al., 2022b) and the analysis of Jarvis et al. (2013) identi
fying increased hydraulic conductivity under grassland and woodland 
compared to cropland given the same soil type. This reflects influence of 
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vegetation type and management on soil hydraulic properties such as 
macropore development (Jarvis et al., 2013; Bonetti et al., 2021; Rob
inson et al., 2022b). Soil structural changes with vegetation have the 
most effect on hydraulic conductivity near-saturated conditions (Bonetti 
et al., 2021), hence the importance of this type of porosity which is 
seasonally variable. For much of the annual cycle the textural porosity, 
it's size distribution and connectivity, determines the hydraulic function 
of soils. However, under intense rainfall or near saturated soil condi
tions, the structural pores become the dominant pathways for flow and 
transport of water and are increasingly important for accurate repre
sentation in ESM. This was illustrated by Fatichi et al. (2020) who 
showed that using biotic factors in the form of proxy measures from 
vegetation productivity to modify soil hydraulic parameters can 

enhance performance of ESMs under these conditions. It must be noted 
that site conditions including soil properties also drive anthropogenic 
land use and management decisions (e.g. Smith, 1989), which will 
contribute to variation between habitats, complicating predictions of 
land use change impacts. Comparison of matrix flows with saturated 
conductivity in structured soils suggests that the impacts of structure are 
greater in finer textured soils, further complicating understanding of the 
impacts of vegetation (Rahmati et al., 2018). 

3.4. Exploring contribution of SOM to total porosity 

We then tested our hypothesis that SOM would be a better predictor 
of total porosity by including it in the GAMM models (Table 1 models 5 

Fig. 4. Variable importance plots for conditional random forest models of total porosity. The panels relate to the following models: a) model 4 CS2019; b) model 4 
GMEP; c) model 7 CS2019 d) model 7 GMEP; e) model 12 CS2019 and f) model 13 CS2019. SOM = Soil organic matter. Variables shown are those retained after 
removing the least important correlated variables (see methods Section 2.2.1 for description or Fig. S1 for full models with all variables). 
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and 6) and the ML models (Table 1 model 7). SOM was most important 
in the GAMM models with texture classes (Table S5 and S6) and with 
PSD metrics (Table S7 and S8) and model performance was improved. 
Colloid and a sand class remained the most important of the texture 
classes, and again for the GAMM models with PSD metrics predictor 
importance was inconsistent between the data sets. In the ML model 
(Table 1 model 7), SOM was most important by several orders of 
magnitude, then habitat (Fig. 4c, d). Colloids were the most important 
textural component in both data sets, followed by D2, however these 
variables had low relative importance compared to SOM and habitat, 
and again order of importance was altered entirely when removing the 
least important correlated variables (Figs. S1c, S1d). 

The improvements seen for inclusion of SOM in all models here 
contradict previous work that suggested little impact of omitting SOM 
from models predicting bulk density from Shannon information entropy 
(Martín et al., 2017). This may reflect the much lower SOM of their data 
compared to the GB data in our texture models (max 12 % mean 2 % 
compared to max 36 % mean 9 % for CS2019 and max 38 % mean 11 % 
for GMEP). Overall, these models indicate greater importance of SOM 
and habitat over texture variables when predicting total porosity. 
Nonetheless, the texture fractions remain important in our model, likely 
due to explaining the textural component of total porosity in our data (as 
discussed in Robinson et al., 2022a). 

3.5. Testing relative contribution of soil aggregates to total porosity 

We next tested our hypothesis that aggregates would be important 
predictors, using data for CS2019 where aggregate size fractions were 
recorded (n = 287). The model with aggregate fractions included 
showed improved performance in predicting total porosity relative to 
texture alone (Table 1, model 8). Very large aggregates were most 
important, followed by medium sand and colloid fractions (Table S9). 
The exponential increase in total porosity with increasing percentage of 
very large aggregates can be seen in Fig. 3b, whilst the partial rela
tionship in the model more closely resembles a linear increase. Very 
large aggregates were correlated with the other aggregate fractions 
(Fig. S3C). Performance again deteriorated when the size classification 
data were replaced with distribution metrics (Table 1, model 9), but was 
greatly improved over the model with only texture PSD (Table 1, model 
3). The aggregate Weibull scale parameter was most important in the 
model, and the only significant aggregate metric (Table S10); and is 
correlated with other aggregate metrics (Fig. S3c). 

Including SOM in models with aggregate metrics gave less 
improvement than in the texture only models (Table 1, models 10 and 
11). This is potentially related to the stronger correlations of SOM with 
the aggregate size fractions compared to weak correlations with the 
texture metrics (Fig. S3c). Aggregate metrics may be less useful as pre
dictors where SOM data are available, since the relative importance of 
these metrics was reduced in models with SOM. However, very large 
aggregates remained more important than individual texture classes in 
model 10 (Table S11). 

When habitat was also included in the ML models (Table 1 model 
12), this had high importance, but the aggregate Weibull scale param
eter was more important, and several orders of magnitude more 
important than any texture classes or distribution metrics (Fig. 4e). 
When SOM was also added (Table 1 model 13), this was orders of 
magnitude more important than habitat, texture, and aggregate vari
ables (Fig. 4f). 

SOM, habitat, and aggregate size distribution are related properties. 
Aggregate parameters with high importance in models without SOM 
(very large aggregates model 8 and aggregate Weibull scale, models 
9,12) were co-correlated and were correlated with SOM (see Fig. S3c). 
Vegetation directly affects soil aggregates, with the rate and stability of 
aggregation, and the rate of aggregate turnover affected by inputs from 
plants to soil and influence of roots in the rhizosphere (Bronick and Lal, 
2005). Soil aggregates are themselves mass fractals; i.e. their bulk 

density decreases with size (Anderson and Mcbratney, 1995) and 
aggregate size distribution will further affect the packing density of soils 
driving porosity change. Aggregate size distribution has also previously 
been shown to be correlated with pore size distribution (Lebron et al., 
2002). Findings from these models (2–13) suggest that land manage
ment intensity and soil aggregation are more important than soil texture 
per-se, and also further support our hypothesis of the greater importance 
of SOM content. 

3.6. Exploring variation in relationship of total porosity to SOM between 
habitats 

Having confirmed the greater importance of SOM over texture and 
aggregates in predicting total porosity, GAMMs were then constructed 
on the full datasets (CS2007 n = 2356; GMEP n = 1335), for which those 
variables were not available. The increase in model deviance compared 
to the models on the texture subsets may be explained by the increase in 
n (Table 1, models 14–16; sample size was 8 times larger for the CS data 
and 1.8 times larger for the GMEP data). 

To explore whether the relationship between SOM and total porosity 
varies between habitats, further GAMM models were constructed. Firstly 
from SOM only (Table 1 model 14), then allowing the model to adjust 
the gradient of the relationship for different habitats (Table 1 model 15) 
and then additionally allowing the intercept to differ between habitats 
(Table 1 model 16). Whilst habitat was important in models 15 and 16, 
which show small improvements in RMSE compared to the SOM only 
model, the gradient of the relationship between SOM and porosity did 
not generally vary between habitats (Supplementary table S15 to S18, 
and text S2). These findings suggest that impacts of habitat on total 
porosity are largely consistent across the SOM range sampled in GMEP 
and CS2007. 

3.7. Contribution of land management to total porosity 

Higher stocking densities are known to lead to soil compaction and 
thus reduced structural porosity (Byrnes et al., 2018). Robinson et al. 
(2022b) highlight the importance of counteracting effects in grassland of 
vegetation increasing structural porosity vs grazing intensity and man
agement reducing it. 

To explore this, we further tested the inclusion of data on stocking 
density in a model predicting total porosity for a grassland subset of the 
data. This resulted in a very marginal improvement in model perfor
mance (Table 1 Model 17, note improvements in model deviance reflect 
reduction in sample size). In both data sets partial effects from livestock 
density were nonlinear, and much smaller than from SOM. When models 
were constructed with just livestock density and habitat, model perfor
mance was reduced and cows were more important in both models 
(Table 1 model 18, supplementary Tables S19 and S20). 

The relatively limited influence of stocking densities in models 17 
and 18 may reflect the quality of the data available, and scale (1 km) in 
relation to the soil sampling. Because compaction effects will be local
ised to the fields containing stock and large-scale patterns may not be 
representative of stocking densities in the field or location sampled. 
Furthermore, livestock are commonly moved around between fields on a 
farm, and there will be influence from climate at the time stocking 
numbers are higher in the field (wet soils being more vulnerable to 
compaction (MAFF, 1970)). Moreover, the soil data were collected in 
summer and a larger stocking density effect might be observed when 
contrasting winter and summer, or wet and dry soils. We expect a po
tential seasonal change in structural porosity due to this but are yet to 
have suitable data to test this. 

The performance for these models was nonetheless better than 
models based only on the texture data and PSD. Although only two 
broad habitats were included in the model, the habitat level differences 
may be sufficient to explain this, alternatively, the stocking density 
pattern may also follow other broad spatial drivers of climate or land 
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management intensity at national levels. Additionally, the opposing 
trends for sheep and cows in the models may reflect inverse correlation 
of cows with sheep in grassland areas. 

3.8. Comparison of models and implications 

Given the strong relationship between total porosity and SOM, it is 
informative to explore the performance of the models throughout the 
SOM range (Fig. 5b) as well as the porosity range (Fig. 5a) captured by 
our data. Thus comparing the models visually, the models without SOM 
perform poorly; total porosity is under predicted in the texture only 
model (2) and livestock model (18) above 0.1 g g− 1 SOM and 0.6 
porosity, whilst at lower porosity both models over-predict, with worse 
performance by the livestock model. Adding SOM to the texture model 
(5) improves performance throughout the full range, not just at higher 
porosity and SOM; this may be because by representing the influence of 
SOM the partial relationship to texture is also better captured. However, 
the SOM only model (14) follows a broadly similar form to the texture 
with SOM model (5). Conversely, the texture based PTF performs poorly 
(model 1), underpredicting soil porosity except at very low SOM content 
and porosity below 0.4. 

Results confirm that SOM is key to predicting total porosity, as 
highlighted by the consistently greater importance in the models than 
any other variable. Previous work (Robinson et al., 2022a) suggests the 
physical reason for this is the mixture of mineral and organic geometries 
in the packing, pertinent to the soils studied. The mineral component is 
granular, and the organic component is increasingly fibrous in this data 
set, resulting in the emergent response curve for soil porosity to SOM. 
The results show the importance of incorporating a structure metric such 
as bulk density or SOM (which alters the bulk density) in order to predict 
the higher porosities. New PTFs are now doing this as data becomes 
more widely available (Tóth et al., 2017). Moreover, the improvement 
in prediction through the incorporation of even coarse habitat data in
dicates that the biota are contributing to structural porosity over and 
above surrogates such as carbon, supporting the importance of land use 
as a metric found in the analysis of Jarvis et al. (2013). 

The incorporation of SOM and land use or habitat metrics could lead 
to a more dynamic representation of soil structure to aid modelling ef
forts such as those presented in Fatichi et al. (2020). Bonetti et al. (2021) 
present a framework to account for the impacts of vegetation on struc
tural porosity and hydrological function, and this could also be used as a 
basis for incorporating representation of SOM. However, due to spatial 

Fig. 5. a) Model trendlines for predicted total porosity as a function of measured porosity and b) Measured data points and model trendlines for total porosity as a 
function of soil organic matter (SOM) content. Data and models from the Countryside Survey (CS) data. Measured data point markers are color coded by Broad 
Habitat. Model trendlines in both plots are shown for predicted porosity on the CS data using a series of Generalized Additive Mixed Models, as listed in Table 1, 
alongside model 1: pedotransfer function for comparison. The lines represent LOESS mean of the predicted total porosity output from the specified model. Data were 
filtered to remove points missing values for predictor variables. The grey shaded area around each trendline represents the 0.95 confidence interval of the rela
tionship to predicted total porosity for a) measured total porosity and b) SOM. Note for model 14, because porosity is predicted from only SOM the confidence 
interval in plot b is approximately zero and therefore too small to be visible on the plot. 
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variability of SOM and the nonlinear relationship between SOM and 
porosity, the spatial scale of both available SOM data and ESMs must be 
taken into account for such representation. Similarly, modelling at 
coarse spatial scales will average out areas of higher intensity rainfall, or 
areas with greater soil moisture due to topographic features, and thus 
may not realistically predict the saturated conditions under which 
structural porosity pathways are relevant (Fatichi et al., 2020). There is 
further complexity to representing impacts of land use change on soil 
hydraulic properties, since correlation between soil properties and land 
use decisions (Smith, 1989) contributes to observed variation between 
habitats, and the impacts of vegetation induced structure vary with soil 
type (Bonetti et al., 2021). 

4. Conclusions 

We show that a combination of ML and statistical approaches ad
dresses both challenges of gaining better physical understanding of the 
soil porosity/SOM relationship and predictive capability. The work 
demonstrates the importance of representing structural porosity when 
predicting total porosity for unbiased datasets from across habitats. 
Furthermore, it suggests statistical approaches have good potential for 
predicting total porosity based on combining soil data and biotic remote 
sensing data in temperate systems. SOM still proves to be the best pre
dictor of total porosity, with land cover providing a useful covariate. 
These drivers affect structural porosity, and thus total porosity and its 
reciprocal bulk density. Attempts to improve the prediction of total 
porosity by incorporating particle size metrics such as entropy and 
multifractal parameters did not improve performance in this analysis. 
The incorporation of aggregates did improve performance, indicating 
the importance of these emergent structures for prediction of total 
porosity. An attempt to incorporate animal stocking density data in the 
analysis may have potential, but the data are currently too coarse 
spatially and temporally relative to our survey data. Overall, the analysis 
suggests future focus should seek to better understand and incorporate 
biotic effects and emergent structural features such as aggregation into 
models. Moreover, these are more likely than texture to be affected by 
management and climate resulting in potentially important environ
mental feedbacks. 

In hydrology, soil porosity provides the foundation for predicting 
hydraulic properties, whilst bulk density is used to estimate soil carbon 
stocks. The availability of annual land cover maps from remote sensing 
could support inclusion of dynamic soil porosity and bulk density pa
rameters in models, helping account for feedbacks from land use or 
climate change. We acknowledge that this relationship between SOM 
and soil porosity/bulk density may only hold in temperate and northern 
latitudes where SOM is more plentiful, and only reflects micro-meso 
scale soil structural components. Further research and validation is 
necessary to develop appropriate algorithms and understand regional 
variation. Future work should also explore drivers of macro scale 
structural components such as large cracks and burrows which will 
further affect hydrologic processes. Nonetheless, our approach provides 
an important step in the assessment of drivers of soil porosity and bulk 
density for use in modelling at larger scales. 
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