

RICHARD HASLAM, ROBERT RAINE, DAVID BOON, IAIN STAFFELL, ANDRES GONZALEZ-QUIROS, VASILEIOS CHRISTELIS, EDWARD HOUGH , MATTHEW JACKSON

ATES National Tool

Aims of the ATES National Tool

- The UK uses around 221 TWh of space heating and 6.2 TWh of space cooling per year
- Seasonal with peak heat demand with a peak heat demand of 131 GW
- Aquifer thermal energy storage (ATES) has been widely applied in other countries
- Aim to provide a national scale tool to understand the potential of ATES to meet in the UK's net zero strategy
- Work as part of the ATESHAC (EPSRC Grant: EP/V041878/1)

(Heat Pumps	5	Heat Networks	Q	Low Carbon Hydrogen	8	Public Transport	111	-wide			
	CCUS	Ø-	Retrofit	~	, ,		and Cycling		-wide	2		
6	Offshore Wind	®	Nuclear	0	Electricity Networks		Onshore Wind					
0	Automotive	3	Aerospace	Ø	Green Finance	*	Solar	a	1	Ĥ	80-	
6	Rail		Forestry	9	Maritime		Tidal	×			÷	\$
æ	Waste and Circular	8	Oil and Gas	•	Agriculture	0	Smart Systems	*	22	80	B	(
	Economy	R	Science and Innovation	B	Steel	Ŀ	Nature Conservation					
®	Climate Change Adaptation		intovation				& Restoration	*	S		2	

Net Zero Strategy: Build Back Greener (Gov.uk)

ATES Systems

- Doublet system with a hot well and a cold well
- Inject warm water and abstract cool water during summer
- Inject cool water and abstract warm water in winter
- Engineering and system optimisation and balancing at or above surface

GSHP tool (BGS-EA)

- Open loop ground source heat pump viability screening tool
 Published in 2012
- Published in 2012
- Only England and Wales
- Based on an energy output of 0.1MWth with flowrates > 1l/s
- Generally considered smaller systems for residential and small commercial properties

 $Q_{ATES} = \frac{1}{C_w \cdot (T_{out} - T_{in})}$

Assumptions

- Medium to large scale system for commercial and public sector e.g. Hospitals
- Minimum 0.5 MWth ATES system
 - Change in temp ~10°C
 - Requires flow rate > 12l/s
- Geological considerations only
- Where covered by superficial deposits or at surface the top of the aquifer is assumed to be at surface.
- At a national scale aquifers are considered homogeneous

Aquifers

- Based on published aquifer yield values and the UK Hydrogeology map (<u>uncertainty and</u> <u>variability in borehole yield values</u>)
- Principal aquifers (categories 1A and 2A) consistently produce at or above the required yield rates
- 3D problem
 - Depth to top of aquifers is taken from the GIS Atlas
- Depth range for aquifers considered are
 - England and Wales 400m
 - Northern Ireland 400m (limited to the Permian and Triassic Sandstone)
 - Scotland All (limited to a few small basins of Stewartry Group and Stratheden Group)

Aquifers

- Based on published aquifer yield values and the UK Hydrogeology map (<u>uncertainty and</u> <u>variability in borehole yield values</u>)
- Principal aquifers (categories 1A and 2A) consistently produce at or above the required yield rates
- 3D problem
 - Depth to top of aquifers is taken from the GIS Atlas
- Depth range for aquifers considered are
 - England and Wales 400m
 - Northern Ireland 400m (limited to the Permian and Triassic Sandstone)
 - Scotland All (limited to a few small basins of Stewartry Group and Stratheden Group)

Aquifers

- Based on published aquifer yield values and the UK Hydrogeology map (<u>uncertainty and</u> <u>variability in borehole yield values</u>)
- Principal aquifers (categories 1A and 2A) consistently produce at or above the required yield rates
- 3D problem
 - Depth to top of aquifers is taken from the GIS Atlas
- Depth range for aquifers considered are
 - England and Wales 400m
 - Northern Ireland 400m (limited to the Permian and Triassic Sandstone)
 - Scotland All (limited to a few small basins of Stewartry Group and Stratheden Group)

National Map of ATES favorability (per 1km² grid cell)

- Map is coded to show 2 categories
 - Favourable for ATES
 - Area is underlain by at least 1 principal aquifer that can sustain a yield greater than 12 l/s
 - Less favourable for ATES
 - Areas where local aquifers may have potential for ATES but additional local investigation may be required to prove the resource
 - Consider the GSHP Tool in England and Wales

Limitation

- Onshore only
- National scale 1:625, 000 scale
- Systems greater the 0.5 MWth
- Selected aquifers minor aquifers may have potential
 - Aquifer productivity and variability (borehole yields)
- Only considers abstraction rates; limited injectivity data available

- Does not consider
 - Protected Areas including source protection zones
 - Existing ground water abstraction licences
 - Reduction in aquifer productivity near the outcrop boundaries due to decreasing thickness of the aquifer
 - Groundwater chemistry
 - Groundwater gradients
 - Storage capacity
 - Superficial Deposits
 - Sustainability of system
 - Above ground system engineering and optimisation

Conclusions

- UK has significant potential for ATES systems
- ~33% of the country area within areas favourable for ATES
- ~53% of the country with a population over 10 people/km favourable for ATES
- Better mapping of energy storage requirements (especially cool)
- Secondary aquifer properties and variability

Population Density

ATES Favourability

United Kingdom: High Resolution Population Density Maps + Demographic Estimates; Facebook 2020

Questions?

