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Anthropogenic climate and land-use change 
drive short- and long-term biodiversity shifts 
across taxa

Teresa Montràs-Janer    1, Andrew J. Suggitt    2, Richard Fox    3, 
Mari Jönsson    4, Blaise Martay5, David B. Roy    6, Kevin J. Walker    7 & 
Alistair G. Auffret    1 

Climate change and habitat loss present serious threats to nature. Yet, due 
to a lack of historical land-use data, the potential for land-use change and 
baseline land-use conditions to interact with a changing climate to affect 
biodiversity remains largely unknown. Here, we use historical land use, 
climate data and species observation data to investigate the patterns and 
causes of biodiversity change in Great Britain. We show that anthropogenic 
climate change and land conversion have broadly led to increased richness, 
biotic homogenization and warmer-adapted communities of British 
birds, butterflies and plants over the long term (50+ years) and short term 
(20 years). Biodiversity change was found to be largely determined by 
baseline environmental conditions of land use and climate, especially over 
shorter timescales, suggesting that biodiversity change in recent periods 
could reflect an inertia derived from past environmental changes. Climate–
land-use interactions were mostly related to long-term change in species 
richness and beta diversity across taxa. Semi-natural grasslands (in a broad 
sense, including meadows, pastures, lowland and upland heathlands and 
open wetlands) were associated with lower rates of biodiversity change, 
while their contribution to national-level biodiversity doubled over the long 
term. Our findings highlight the need to protect and restore natural and 
semi-natural habitats, alongside a fuller consideration of individual species’ 
requirements beyond simple measures of species richness in biodiversity 
management and policy.

One of the main concerns of the ongoing biodiversity crisis is that 
future losses are predicted to reduce the resilience of ecosystems to 
further change1,2. Already, shifts in land use and a changing climate are 
considered to be the most important drivers of global biodiversity loss 
and the reorganization of ecological communities over time3–5, both 

across taxa1,6 and spatiotemporal scales7–9. Since the early twentieth 
century, agriculture and forestry have intensified across Europe10,11 and 
these changes have been broadly associated with declining biodiversity 
and the homogenization of species assemblages across taxonomic 
groups12–15. Over the same period, the global climate has warmed by 
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2010s for the short term. The parameter estimate of this categorical 
variable therefore describes any increase or decrease in biodiversity 
and any shift in CTI between time periods. Estimated recorder effort 
was included in the model as a variable on the logarithmic scale for the 
richness models and on the natural scale for the beta diversity model. 
Because CTI strongly depends on the identity of the species within the 
community, which cannot be captured by the recorder effort per se, we 
dealt with uneven recorder effort by applying a species-richness grid 
cell threshold cutoff (Methods). (2) To investigate baseline and interact-
ing effects of land-use and climate change on biodiversity change, we 
fitted for each taxon, biodiversity metric and temporal scale, one linear 
mixed-effects model. The observed change in each biodiversity metric 
was modelled as a function of climate and land-use change, climate–
land-use change interactions, baseline conditions of climate, land use, 
biodiversity and microclimatic heterogeneity. Estimated recorder 
effort at the initial time period (1960s for the long term; 1990s for the 
short term) and change of estimated recorder effort were both included 
as variables in the models, in their natural scale. For the CTI models, 
we again applied the same species richness grid cell threshold cutoff 
and did not include recorder effort at the initial time period, only the 
change in recorder effort. (3) To identify environmental characteristics 
associated with grid cell contribution to national biodiversity, we first 
calculated for each taxon and time period, the relative contribution 
of each grid cell to national-level beta diversity (local contribution to 
beta diversity, LCBD)32. LCDB is a comparative indicator of the ecologi-
cal uniqueness of a site in terms of its contribution to beta diversity 
across all sites. Then, for each taxon and time period, we fitted one 
GLMM with a natural logarithm link function; LCBD was modelled as 
function of land use, climate and microclimatic heterogeneity, with 
estimated recorder effort included as a variable on the natural scale. 
All models in the study were run using the integrated nested Laplace 
approximation for Bayesian inference33, including controls for spatial 
autocorrelation. To deal with confounding collinearity effects, we made 
use of sequential regression analysis34–36.

Results
Trends of community change
Despite considerable variation between grid cells, our models (equa-
tions (1) to (3); Methods) show that communities of birds, butterflies 
and plants experienced an overall increase in species richness over 
both the long (50+ years) and short (20 years) temporal scales (Fig. 2). 
This was coupled with a trend of biotic homogenization, as measured 
by a decrease in beta diversity over time, with the exception of birds, 
for which beta diversity increased over the long term (1960s to 2010; 
Fig. 2). All three taxa exhibited an increase in CTI over the long term, 
indicating an increased representation of warm-associated species. 
However, butterfly communities showed a surprising decrease in CTI 
over the short term (1990s to 2010; Fig. 2), despite an overall warm-
ing climate. This result was counterintuitive, yet resistant to further 
examination of the data (Methods) and such a pattern has also been 
observed in other systems37.

Individual and interacting anthropogenic drivers
Despite variation across taxa, biodiversity metrics and temporal scales, 
some broad patterns emerged regarding the effects of anthropogenic 
climate and land-use changes on biodiversity and community change 
in birds, butterflies and plants during the last 60 years. Our models 
(equation (4); Methods) show that increases in species richness and 
biotic homogenization were generally associated with ongoing trends 
of increased temperature and precipitation and increased cover of 
anthropogenic land uses, especially in the long term (Fig. 3). The cover 
of agriculturally improved grasslands, forest, urban and arable land 
mostly increased at the expense of semi-natural grasslands (a broad cat-
egory including the land-cover classes defined as meadows, pastures, 
lowland and upland heathlands and open wetland habitats)38 (Methods, 

~1 °C (ref. 16), which has been associated with shifts in species’ ranges 
to higher latitudes6,17,18. However, climate and land-use change do not 
occur in isolation. Habitat availability is a prerequisite for successful 
climate-driven range expansions19,20, while landscapes that have already 
been subjected to habitat destruction can both inhibit colonization by 
warm-adapted species and reduce persistence in cold-adapted spe-
cies21,22. Also, the type of change in land use that occurs in each location 
affects the level of climate warming that organisms experience (land use 
affecting local, microclimatic conditions) and thus may influence the 
trajectories of biological change23–26. Furthermore, studies of climate 
change effects have shown that baseline environmental conditions 
(conditions at the beginning of the investigated time period of change) 
can determine both community change and modern patterns of bio-
diversity27,28. Yet, due to a lack of historical land-use data covering the 
timescales over which anthropogenic climate change and its effects 
have manifested, investigations of climate–land-use interactions are 
often limited to space-for-time substitution (comparison of sites across 
a spatial gradient29) or the use of modern anthropogenic land cover 
as a measure of landscape change21,22. Thus, the potential for land-use 
change to interact with a changing climate to affect biodiversity, as 
well as any effect of baseline environmental conditions remains largely 
unquantified, particularly over longer timescales (decades or more).

Here, we compile a comprehensive national-scale dataset of land 
use, climate (average mean annual temperature and average total 
annual precipitation) and species observations at the 10 km grid cell 
level, to investigate baseline and interacting effects of land-use and 
climate change on biodiversity changes in birds, butterflies and plants 
over two different temporal scales (Fig. 1): 50+ years (long term, 1960s 
to 2010s) and 20 years (short term, 1990s to 2010s) in Great Britain. 
First, we identify whether there has been an increase or decrease in 
taxonomic richness and biotic homogenization and community adap-
tation to warmer climates (via the community temperature index (CTI), 
an indicator of the relative occupancy of warm- and cold-adapted 
species within a community6). Second, we investigate how changes in 
these three metrics relate to concurrent changes in climate and land 
use, in terms of their individual effects, their interactions and the 
effects of baseline conditions. We also consider the roles of baseline 
biodiversity conditions and microclimatic heterogeneity (variation in 
microclimate temperature), which can influence biodiversity responses 
to larger-scale environmental changes1,2,24. Third, we uncover how 
climate and land use are associated with local (grid cell) contribution 
to national-level beta diversity over time, which can aid conservation 
prioritization and planning both by identifying particular locations that 
contribute to large-scale biodiversity, as well as finding environmental 
attributes shared by the most valuable sites30.

We focused on local-assemblage responses at the 10 km square 
grid cell resolution, rather than species-specific responses. For each 
taxon and temporal scale, we only included in the analysis the grid 
cells that were recorded in both time periods (1960s and 2010s for 
the long term; 1990s and 2010s for the short term). The species data 
refer to atlas and monitoring programmes with uneven and unknown 
recorder effort across time and space. To deal with spatiotemporal 
variation in recorder effort and to prevent our models from producing 
biased results, we first estimated for each taxon and time period (1960s, 
1990s and 2010s), the recorder effort in each focal grid cell, using the 
Frescalo approach31. Then, we proceeded as follows. (1) To reveal dif-
ferences in biodiversity between time periods (1960s and 2010s for 
the long term; 1990s and 2010s for the short term), we fitted for each 
taxon, biodiversity metric and temporal scale, one generalized linear 
mixed-effects model (GLMM), with a natural logarithm link function. 
Species richness, beta diversity (measured as the mean community 
distance of each focal grid cell in relation to the surrounding eight grid 
cells) and CTI were modelled as a function of estimated recorder effort, 
together with a categorical variable with two categories representing 
time period, that is, 1960s and 2010s for the long term and 1990s and 
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Fig. 1 and Supplementary Fig. 1). Results were robust to cross-validation 
(Methods and Supplementary Fig. 2) but there was a higher uncertainty 
in results for species richness, especially for plants (Fig. 3b).

Our findings also provide support for the effects of climate–
land-use interactions on biodiversity change. For species richness 
and biotic homogenization, we found that interactions were mostly 

associated with community change over the long term but there were 
no clear patterns between or within taxa in terms of the direction of 
interactions (synergistic or antagonistic) (Fig. 3a). For CTI, interactions 
were found at both the long (50+ years) and short term (20 years). In 
the long term, increased cover of arable land and improved grasslands 
lessened the effect of climate warming on increasing butterfly CTI 
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Fig. 1 | Overview of the change of land use and climate in Great Britain across 
three time periods and the timeline of the environmental and species 
datasets used in this study. a, Land use in Great Britain in the 1930s to 1940s, at 
the end of the twentieth century (1990) and in the modern period (2015), showing 
an overall increase of anthropogenic land cover (urban, arable and improved 
grasslands) mostly at the expense of decreasing coverage of semi-natural 
grasslands (Supplementary Fig. 1). b, Climate change in Great Britain showing 
changes of temperature (average annual mean temperature) (left) and changes 
of precipitation (average annual sum of daily precipitation) (right) over two 

different time periods: long and short terms (from 1960s to 2010s and 1990s to 
2010s, respectively). c, Timeline of the collected datasets for birds, butterflies 
and vascular plants, land use and climate data in Great Britain showing the 
temporal coverage of each one of the datasets and their correspondence with  
the three time periods of study (time 1, 1960s; time 2, 1990s; time 3, 2010s).  
Panel a adapted from ref. 38, Springer Nature Limited. Data credits for panel  
a: left, Land Use Survey of Great Britain, copyright Giles N. Clark; centre, ref. 78;  
right, ref. 79 (data for maps at centre and right owned by the UK Centre for 
Ecology & Hydrology, database right/copyright UKCEH).

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02326-7

(antagonistic interaction). In the short term, however, anthropogenic 
land-use change amplified the effect of climate in driving increases 
in butterfly and bird CTI (synergistic interaction) (Fig. 3a and Sup-
plementary Fig. 3).

The effect of baseline conditions
Baseline conditions of land use and climate were associated with biodi-
versity changes, especially on the short temporal scale (Fig. 3a). In the 
long term, community change was associated with both the baseline 
and the changes in environmental conditions that occurred, excep-
tions being CTI and biotic homogenization in birds. In the short term, 
biodiversity change was less related to changes in land use and climate 
and more related to baseline environmental conditions (that is, the 
group of explanatory variables for environmental baseline condi-
tions had at least two more associations at 95% credible interval with 
biodiversity change, than the group of variables for environmental 
change), except for plant richness and biotic homogenization. Baseline 
cover of semi-natural grasslands appeared particularly important, with 
grid cells that originally contained more semi-natural grassland cover 
exhibiting lower increases in species richness and lower levels of biotic 
homogenization (lower decreases in beta diversity) (Fig. 3a). However, 
despite this apparent stability, these grid cells did experience high 
levels of turnover in terms of the percentage of species both gained 
and lost over time (Supplementary Table 1). Wetter and colder baseline 
conditions also promoted stability in some taxa. In that respect, grid 
cells with higher baseline annual precipitation were associated with 
lower rates of increased richness and biotic homogenization in bird 
communities. Also, historically cooler grid cells were associated with 
lower rates of increased richness and biotic homogenization in but-
terflies and experienced less climate-associated community change 
at the short term (lower decreases in butterfly CTI and lower increases 
in plant CTI) (Fig. 3a). With the exception of plants, long-term changes 
in CTI were not related to baseline climatic or land-use conditions. 
However, in the short term, a higher proportion of improved grasslands 
and semi-natural grasslands in the initial time period was associated 
with increases of bird CTI; while higher proportions of arable cover 
were linked to higher decreases and increases of butterfly and plant 
CTI, respectively (Fig. 3a).

In addition to baseline environmental conditions, baseline levels 
of species richness and beta diversity were among the variables with 
the greatest effects on biodiversity change over time. These variables 
contributed more than any others to improved model fit, leading to 
an increase in the marginal R2 value (which considers only the vari-
ance captured by the fixed effects) of roughly 0.4 (Supplementary  
Fig. 4). All associations between biodiversity metrics and their baseline 
values were negative, meaning that higher baseline levels of species 
richness and beta diversity were associated with lower increases of 
species richness and greater decreases of beta diversity (higher biotic 
homogenization), respectively (Fig. 3a). Additionally, higher baseline 
levels of species richness and lower baseline beta diversity values were 
associated with more stable communities over time; that is, they were 
associated with lower percentages of both gained and extirpated spe-
cies (Supplementary Table 1). Microclimate also influenced community 
reorganization. Our results show that a higher microclimatic heteroge-
neity was associated with larger increases of plant and butterfly species 
richness at both long and short temporal scales, while for birds it was 
associated with lower increases of CTI (Fig. 3a). Overall, the conditional 
R2 values of our change models (equation (4); Methods) were consid-
erably higher than the marginal R2 (especially for CTI models) (Sup-
plementary Table 2 and Supplementary Fig. 4), indicating that more 
variation in biodiversity change was captured by the spatial effects.

Local contribution to beta diversity
Across all three taxa and time periods (1960s, 1990s and 2010s), our 
models (equation (5); Methods) indicated that higher values of relative 
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Fig. 2 | Biodiversity change over time in Great Britain. Estimated changes  
in species richness, beta diversity (as a measure of biotic homogenization)  
and CTI for three taxa in Great Britain at the long (1960s to 2010s) and short 
(1990s to 2010s) temporal scales. Arrows indicate increase or decrease in 
biodiversity between time periods, based on equations (1), (2) and (3) (Methods). 
Coloured numbers provide the estimated proportion of relative biodiversity 
increase or decrease (significant in all cases and s.d. <0.035; Supplementary 
Table 4). The violin plots (density curves with boxplots) capture the density 
distribution of the estimated biodiversity change across grid cells, based on 
equation (4) (Methods). Solid horizontal lines crossing the violin plots indicate 
the point where biodiversity change is zero. Red horizontal lines in box plot  
show the median values of the estimated change. Black bars display the 
interquartile range (IQR) (first and third quartile). Lower and upper black  
lines stretching from the black bars identify the first quartile −1.5× IQR and  
the third quartile +1.5× IQR. Black values in parenthesis give the estimated  
mean probability (in percentage) of increase or decrease (matching the  
arrow direction) ± s.e., across grid cells. For example, models estimate a 
significant average increase of 2% in bird species richness across Great  
Britain between the 1960s and the 2010s, with an estimated probability  
of 58–60% for a grid cell to have increased in richness during this time.  
Number of grid cells analysed as follows: birds 2,670 across all analyses; 
butterflies species richness and beta diversity 2,013 long term and 2,022 short 
term, CTI 996 long term and 1,222 short term; plants species richness and  
beta diversity 2,666 for both long and short terms, CTI 2,351 long term and  
2,406 short term.
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Fig. 3 | Effect of land use and climate change on biodiversity at two temporal 
scales. a,b, Environmental parameter estimates (mean values) (a) and associated 
uncertainty (standard deviation) (b) for the association analysis between 
changes in species richness (SR), beta diversity (BD) and CTI of three different 
taxon communities in Great Britain (response variable) and the changes of 
land use and climate, the interaction of land-use change and climate change, 
baseline conditions of land use and climate, baseline biodiversity (for SR and 
BD) and microclimatic heterogeneity (explanatory variables) over the long 
(1960s to 2010s) and short (1990s to 2010s) temporal scales. Coloured blocks 
in a represent the direction of the parameter estimate of each explanatory 
variable over the response (purple is positive, orange is negative), with gradient 

bars emanating from dashed zero lines within each box indicating the size of 
the fixed effect (Supplementary Table 2). Estimates are standardized within 
each taxon, biodiversity metric and temporal scale—based on equation (4) 
(Methods). Grey blocks indicate that (1) there was no improved grasslands 
category in the 1960s land-cover dataset and (2) we did not apply baseline-CTI in 
the models corresponding to this biodiversity metric. White blocks mean that no 
associations were found (that is, the 95% posterior distribution of the estimated 
mean of the coefficient included zero). For ease of interpretation, we have 
included the direction of the overall estimated biodiversity change at the top of 
the figure. Note that the compacted uncertainty table in b mirrors the table for 
the parameter estimates in a. Microclimate represents only the modern period.
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grid cell contribution to national beta diversity (LCBD) were associated 
with a higher proportion of semi-natural grassland. That is, the com-
munities of birds, butterflies and plants in grid squares that contained 
more semi-natural grassland cover were sufficiently different to other 
grid squares to have more positive effects on overall beta diversity in 
Britain. Semi-natural grasslands had the largest positive effect size of all 
predictor variables within each taxon and time period, while increased 
cover of forest and improved grasslands was associated with lower 
LCBD (Fig. 4 and Supplementary Table 3). Moreover, semi-natural 
grassland cover was the only variable to exhibit an increasing positive 
effect size over time, suggesting that the presence and maintenance of 
this habitat has become increasingly important for the contribution 
of each particular grid cell biodiversity in Great Britain (Fig. 4). For 
birds and plants, warmer areas were also associated with higher LCBD 
across all three time periods, whereas for all three taxa, microclimatic 
heterogeneity within a grid cell was associated with lower LCBD in the 
1990s and the 2010s. Cross-validation analysis showed our models to be 
robust at estimating fixed effects (Methods and Supplementary Fig. 5).

Discussion
Our study confirms that changes in climate and land use are associ-
ated with community reorganization and biodiversity change across 
several taxa for both long (50+ years) and short (20 years) temporal 
scales. Our analyses of British birds, butterflies and plants showed how 
anthropogenic land conversion, warming temperatures and wetter 
conditions led to increased richness within 10 km grid cell resolution 
and to decreases in beta diversity, resulting in an overall biotic homog-
enization and warmer-adapted communities at the national level.

Given the role of both climate and land-use change in determining 
biodiversity change over time20,22,29, we reveal that climate–land-use 
interactions affect the magnitude of change in richness and biotic 
homogenization, especially in the long term. Together with the rela-
tively large importance of baseline environmental conditions for deter-
mining community change over the short term compared to the long 
term, our results support the idea that short-term biodiversity change 
could reflect an inertia (a continuation of ongoing change) derived 
from past environmental changes. This means that ecological commu-
nities continue to reorganize at pace, despite the relatively low levels 
of climate and land-use change that occur over shorter periods of time. 
Increased land-use intensification, especially in terms of increased 
arable and improved grassland cover39,40, is likely to have contributed 
to these short-term community shifts to some extent13,29,41. However, 
it is also possible that the continuing increase in species richness and 
biotic homogenization were triggered by environmental changes that 
had already happened, as time-lagged responses to environmental 
change have been demonstrated previously in all three of our study 
taxa42–44. In any case, we found that trends of increased richness and 
biotic homogenization were weaker in regions that contained higher 
levels of semi-natural grasslands (including pastures, meadows, low-
land and upland heathlands and open wetlands) to start with, both in 
the long and short terms, signalling the importance of such habitats 
for biodiversity. In addition, our results indicated an increasing con-
tribution of this habitat to nationwide beta diversity over time. This 
supports existing knowledge that the unique communities supported 
by semi-natural grassland habitats are of high biodiversity value14,45 and 
shows that the losses in grassland cover that have occurred during our 
study period have only increased the importance to conservation of 
the grasslands that remain.

The broad biodiversity trends reported here align with previous 
findings of local and landscape-level change8,28,46–48. Nonetheless, 
to attribute increased species richness to anthropogenic land-use 
changes can be surprising and controversial at a time of global biodiver-
sity loss4. In that respect, it is important to remember that large changes 
in the landscape had already occurred before the creation of the histori-
cal maps in the 1930s and 1940s and comparisons with pre-agricultural 

conditions would probably reveal that biodiversity had already been 
severely degraded. Thus, many species occurring in Great Britain at the 
start of our study period may have already been those associated with 
anthropogenic land uses and therefore benefitted from the continued 
expansion of agricultural and urban habitats29,45. Widespread species, 
including non-natives, have been observed to expand and fill their 
distributions in recent decades49,50. It is not unexpected that climate 
change can drive increased species richness in some cases; indeed, 
there is ample evidence of many taxa expanding their ranges over time 
in Great Britain51. However, time-lagged extirpations both in relation to 
land use or climatic change52 could also mean that declines in species 
richness in response to environmental changes are yet to manifest.

The three taxa investigated here showed broadly similar trends 
over time and responses to environmental change, although the mag-
nitude of such changes varied somewhat. Most strikingly, increases 
in butterfly richness and decreases in butterfly beta diversity were 
stronger than for birds and plants (Fig. 2). This is likely to be at least 
partly due to the lower national-level richness of butterflies mean-
ing that changes in the same number of species as the other taxa will 
exhibit a larger percentage change, although this mathematical effect 
does not reduce the potential seriousness of these large changes that 
could result in corresponding impacts on any ecosystem functions 
carried out by butterflies. Additionally, fast generational turnover in 
butterflies means that they often respond relatively quickly to ongoing 
environmental change, especially habitat destruction45. This poten-
tially strengthens the idea that we are observing lagged biodiversity 
responses to environmental changes taking place in Great Britain, at 
least in plants and birds. There were also some important exceptions 
to the direction of community change across taxa and their drivers, 
detailed below.

Consistent with other studies, we find that reorganization of 
ecological communities of birds, butterflies and plants reflects a 
community-level adaptation to warmer climates6,17,18,25. Moreover, 
the interactive effect of warming climate and increasing anthropogenic 
land use resulted in higher increase of warmer-adapted communities of 
birds and butterflies in the short term. This is to be expected because 
temperature plays a fundamental role in biological processes53. How-
ever, we found that, although butterfly CTI has increased between 
the 1960s and the 2010s, butterfly communities in the modern period 
are associated with cooler conditions than they were in the 1990s, 
despite continued climate warming. That butterfly CTI appears to 
have increased over the long term but not the short term (with a lower 
decrease of CTI in those areas with higher baseline temperature) could 
be related to the difficulty of butterflies in tracking warming climate 
(climatic debt)6. CTI decrease in the short term might also be driven 
by losses in species that are associated with arable and semi-natural 
grasslands that have experienced intensification and degradation, 
respectively45. These habitat changes have been particularly concen-
trated in the warmer south and east of Britain (Fig. 1), where warmer 
microclimates in these habitat types54 could also favour warm-adapted 
species (compare Supplementary Fig. 6).

Birds, which have the highest dispersal capacity of our three taxa, 
exhibited a long-term increase in beta diversity, sticking out among 
the otherwise consistent trend of biotic homogenization. This higher 
mobility means that birds are both: (1) less constrained by local climates 
and (2) better able to track shifting isotherms albeit moderated by 
broad changes in land use55, resulting in increased richness and beta 
diversity in the long term but increased biotic homogenization in the 
short term. Our results are also consistent with previous findings where 
increasing forest cover facilitated bird responses to warming climates55 
and where human-associated species have driven CTI increases in 
plants56, providing evidence that changes in land use together with 
baseline environmental conditions can mediate community responses 
to climate change. On the other hand, increased precipitation was also 
shown to be related to reorganization of ecological communities, 
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with increasing richness and decreasing diversity of butterflies and 
plants. Increased annual precipitation has not always been found to 
benefit species that are associated with moist conditions56. Instead, 
higher variability in the timing of precipitation has resulted in more 
intense periods of drought, despite increased average rainfall57. This has 
been suggested to drive shifts towards communities tolerating drier 
climates26. We also found that microclimatic heterogeneity affected 
community reorganization on both long and short temporal scales. 
However, our results only provided evidence of microclimatic refugia 
for birds (that is, higher heterogeneity reducing the increase of CTI over 
time), while microclimatic heterogeneity was associated with increased 
richness for butterflies and plants and lower grid cell contribution to 
nationwide diversity across taxa. This was slightly surprising, given that 
the strong focus of microclimate in ecology on the reduction of extinc-
tion risk in communities experiencing environmental change22–24,26,27. 
Instead, our results indicate that microclimatic heterogeneity can also 
moderate community reorganization in the other direction, not by 
toning down the extirpation of declining species, but by potentially 
increasing niche opportunities for colonizing species24.

We use a nationwide dataset of historical land use, climate and 
biodiversity information to quantify broad changes in biodiversity and 
community composition, attributing these changes to anthropogenic 
drivers of global change. Exercises such as these give important insights 
into human impacts on biodiversity at relatively large spatiotemporal 
resolutions but at the same time are inevitably quite simplistic gen-
eralizations of subtle changes that often occur at smaller scales. One 
of our main findings was that climate and land-use change interact to 
affect richness and biotic homogenization, mostly in the long term. 
However, whether the combined effect of a changing climate interact-
ing with increased anthropogenic land use resulted in antagonistic or 
synergistic interactions varied across taxa. This suggests that com-
munity responses to interacting climate and land-use change probably 
mask a large variety of species-specific ecological requirements and 
shows that it is also important to consider species-specific responses 
to environmental changes, especially in a biodiversity conservation 
context. Species are also likely to respond to land-use change at a finer 
resolution than our 10 km grid cells. However, historical species obser-
vations are too sparse to be collated at a smaller scale. In a related point, 
despite accounting for uneven observer effort as much as possible, it is 

still not known exactly how representative historical observation data 
are and how any inconsistencies might affect our results. Nonetheless, 
although sometimes controversial, our findings (particularly regard-
ing increased species richness) are broadly ecologically rational and 
follow previous findings based on more structured time-series data.

Conclusions
High rates of climate change and land conversion are expected to 
continue through the twenty-first century. Despite being among the 
most degraded habitats in Great Britain and elsewhere in Europe10,38, 
semi-natural grasslands were shown here to be associated with lower 
rates of biodiversity change over time, which together with these 
large-scale habitat losses resulted in doubling their contribution to 
national-level beta biodiversity since the mid-twentieth century. There-
fore, we stress the need for protection, conservation and restoration of 
natural and semi-natural habitats to avoid more biodiversity loss in the 
future. We also showed that despite the significant effects of climate 
change and land conversion, these variables only explained a relatively 
low proportion of biodiversity and CTI change in our models. As such, 
other factors not addressed here, such as land-use intensification29,41, 
topography55, species’ functional traits58,59 or epigenetic mechanisms60, 
are also likely to drive community change to some extent. In addition to 
meeting national and international goals in relation to preventing cata-
strophic habitat loss and climate change, halting biodiversity loss will 
also require local approaches to conservation that consider individual 
species and community structure, rather than just broad measures of 
species richness or abundance.

Methods
Bird, butterfly and plant data
We retrieved a total of 3,715,724 species occurrence records describing 
British communities of birds, butterflies and plants in the n = 2,670, 
10 km square grid cells of the British National Grid. For birds, these data 
correspond to the atlases of breeding birds for 1968–197261; 1988–199162 
and 2008–201163. For plants, to the atlases of 1930–196064; 1987–199965 
and 2000–201966 (for which we retrieved the data corresponding to 
the period 2010–2019). For butterflies, we used the periods 1970–1974; 
1990–1994 and 2010–2014 from the national recording scheme Butter-
flies for the New Millennium, to match the other two taxa. For simplicity, 

Seminatural grasslands

Arable

Improved grasslands

Forest

Urban

Temperature

Precipitation

Microclimate heterogeneity

1960s 1990s 2010s 1960s 1990s 2010s1960s 1990s 2010s

Positive association Negative association No association

0.103 0.298 0.325 0.028 0.145 0.276 0.071 0.144 0.164

Fig. 4 | Effect of land use and climate on LCBD over time. Parameter estimates 
(mean values) for the association analysis between LCBD and land use and 
climate conditions in Great Britain, for three different taxon communities and 
three different time periods (1960s, 1990s and 2010s) based on equation (5) 
(Methods and Supplementary Table 3). Coloured blocks represent the values of 
the parameter estimates on a colour gradient, with orange indicating negative 
values and purple indicating positive values and on a scale from low positive or 

negative (light shades) to highly positive or negative (dark shades) within each 
taxon. Grey blocks indicate that there was no improved grasslands category in the 
1960s land-cover dataset. White blocks mean that no associations were found. 
Parameter estimates corresponding to semi-natural grassland demonstrate their 
increased contribution to national-level biodiversity across time for all three 
taxa. All parameter estimates have an associated s.d. <1. Microclimate represents 
only the modern period.
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each one of these time periods is referred hereafter as 1960s, 1990s 
and 2010s.

For each taxon, we included species (including some taxonomic 
aggregations and subspecies for plants) that represented stable taxo-
nomic concepts across time from a biological recording perspective, 
that is, recorded consistently throughout the study period (Supple-
mentary Note ‘Taxonomic filtering of observation data’). In total, 250 
species of bird, 55 species of butterfly and 1,587 species of plant were 
retained for analysis.

Recorder effort
All datasets refer to presence-only data with uneven and unknown 
recorder effort, across time and space. Uneven recorder effort among 
grid cells may potentially lead to biased results67,68. To tackle this issue, 
we estimated for each time period and taxon, the recorder effort in 
each focal 10 km grid cell using the Frescalo approach31. Frescalo is a 
well-established method to model the data collection process of bio-
logical recording schemes69,70. It was developed to estimate unknown 
recording effort, species occurrence and temporal trends of data 
aggregated in time periods, such as when comparing atlases. Frescalo 
calculates standardized local frequencies of species within each grid 
cell using a neighbourhood around each focal grid cell. This neighbour-
hood is first based on geographic distance and then weighted according 
to landscape similarity to the focal grid cell (that is, based on the pro-
portions of each land-use category in the 10 km grid cells, see below). 
Because Frescalo was designed for handling biological records in Great 
Britain at a 10 km resolution, we used the default settings to define the 
neighbourhood of each focal point (number of neighbours to include 
after ranking by distance, 200; and by landscape similarity, 100). For 
the butterfly and plant datasets, we calculated the recorder effort for 
each grid cell and time period, using the Frescalo implementation in the 
R package sparta71. Target values of φ (weighted mean frequency of a 
well-recorded grid cell31) were set at 0.92 for both the butterfly and plant 
datasets, suggested automatically, on the basis of the properties of the 
data. Recorder effort was then computed as 1/αA, where α represents 
the sampling effort multiplier (the number of searches required in a 
grid cell to achieve a standard value of φ for the neighbourhood31,71). 
For the bird dataset, another Frescalo-derived measure of recorder 
effort was already provided for each time period as the percentage of 
common benchmark species detected in each grid cell31,72. Metrics of 
recorder effort were incorporated in the corresponding taxon models 
described below.

Species richness, beta diversity and community temperature 
index
For each taxon, time period and grid cell, we calculated three met-
rics of biodiversity: species richness, beta diversity and CTI. Species 
richness refers to the number of species observed in a grid cell. Beta 
diversity was calculated as the community dissimilarity of each focal 
grid cell in relation to the eight surrounding grid cells, using the func-
tion beta.pair available in the R package betapart73, based on pairwise 
between grid cell computations of the Sørensen dissimilarity index. 
CTI is an indicator of the relative community composition of warm- and 
cold-adapted species, used to quantify how communities are respond-
ing to temperature change6,74. CTI was computed as the average of 
the species temperature index (defined as the average temperature 
experienced by a species across its European range) in each grid cell. 
Species temperature indices for birds, butterflies and plants were taken 
from available datasets6,75,76, covering all species retained for analysis 
(see above) except for 6 bird species and 80 plant species.

Land use, climate and microclimatic heterogeneity
Land-cover data for Great Britain corresponding to the 1960s species 
time period was extracted from the Land Utilisation Survey of Great 
Britain that took place in the 1930s to 1940s, producing maps at the 

1:63,360 scale77. Land-cover data for the 1990s and 2010s time periods 
were extracted from the 1990 Land-Cover Map78 and 2015 Land-Cover 
Map79 (LCM) at 25 m spatial resolution. Digitized versions of the histori-
cal maps were taken from refs. 38,80, who classified the maps into five 
land-cover categories: arable, semi-natural grasslands (broad category 
including the land-cover classes defined as meadows, pastures, lowland 
and upland heathlands and open wetlands in the LCM 1990 and 2015), 
agriculturally improved grasslands, forest, urban and surface water at a 
25 m resolution, providing proportions of each land-use category in the 
10 km grid cells. Categories of the LCM maps were aggregated to match 
the five categories of the historical maps, with agriculturally improved 
grasslands, which had negligible cover until the late 1960s, added as 
an additional category (Fig. 1 and Supplementary Fig. 1). Although the 
historical land-use data predate some of the species’ data by several 
decades, most of the major changes in land use, such as the widespread 
‘agricultural improvement’ of pastures, occurred from the end of the 
1960s81. Annual mean temperature and total annual precipitation 
were downloaded from the Met Office, UK82, at 5 km spatial resolution 
and aggregated at 10 km to give the mean values within 1965–1975, 
1985–1995 and 2005–2015, matching the three time periods of the 
biological data (Fig. 1 and Supplementary Fig. 1). To derive a proxy for 
grid cell level heterogeneity in temperature microclimates generated 
by topography, we used the averaged standard deviation of solar index 
values (2000–2010) at 10 km spatial resolution from the digital eleva-
tion model with horizontal resolution of 3 arcsec (~90 m) obtained from 
the Shuttle Radar Topography Mission24. Although the microclimate 
data used here represent only the modern time period, we consider 
these data adequate for use in all three time periods because there is 
very little difference in insolation regime over the duration of our study.

Statistical analysis
All statistical analyses were conducted with R v.4.1.1 (ref. 83). We ran 
all models using the integrated nested Laplace approximation (INLA) 
for Bayesian inference33 and R-INLA (www.r-inla.org) for model execu-
tion84,85. INLA is a method that approximates Bayesian inference for 
latent Gaussian models such as the spatial and generalized linear mod-
els used in this study, where stochastic structures in the data need to 
be captured.

Differences in biodiversity between time periods
To investigate the difference (proportion of increase or decrease) in 
species richness, beta diversity and CTI between the 1960s and the 
2010s (long term) and between the 1990s and the 2010s (short term), 
we fitted, for each taxon separately, temporal scale and biodiversity 
metric, one GLMM with the biodiversity metric acting as a response 
variable. For species richness, we fitted a Poisson GLMM (birds) and 
a negative binomial GLMM (butterflies and plants) with natural loga-
rithm link function. For beta diversity and CTI we used a logit link 
function and a Gamma GLMM with natural logarithm link function, 
respectively. For each temporal scale, we only include in the analysis 
those grid cells that were recorded in both time periods (1960s and 
2010s for the long term and 1990s and 2010s for the short term), which 
includes all 2,670 grid cells for the bird dataset; 2,666 for the plant 
data; and 2,013 and 2,022 for butterflies in the long and short terms, 
respectively. Then, for each model, we created a categorical variable 
T with two labels: ‘1960s’ and ‘2010s’ for the long-term models; ‘1990s’ 
and ‘2010s’ for the short-term models. Labels ‘1960s’ and ‘1990s’ were 
used as reference level. In that way, the estimated T coefficients would 
inform about the proportion of increase or decrease on biodiversity 
from the historical time period (1960s and the 1990s) to the modern 
time (2010s). To control for uneven recorder effort in the models 
for richness and beta diversity, we included the estimated recorder 
effort for the relevant time period as a variable in the logarithmic and 
natural scale, respectively86 (removing the part of variation of the 
response captured by the recorder effort). For the CTI models, we did 
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not use the estimated recorder effort per se because CTI depends on 
the identity of the species configuring the community and a higher 
or lower recorder effort does not necessarily imply a higher or lower 
CTI. Therefore, we used a slightly different method and, as for British 
Lepidoptera87 and for British invertebrates20, setting a species rich-
ness grid cell threshold. We excluded from the analysis all grid cells 
containing <25% of the number of species recorded in the ‘richest’ grid 
cell during the period with the lowest estimated recorder effort, that is, 
1960s (Supplementary Fig. 7). This allowed us to only include relatively 
well-recorded grid cells, with a minimum number of species needed 
for a meaningful estimation of CTI. For butterflies, the threshold was 
set at 10 species (that is, 25% of 39 species) leading to a dataset for the 
CTI analysis of 996 grid cells for the long term and 1,222 for the short 
term. For plants, the threshold was set at 214 species (that is, 25% of 
854 species), leading to a CTI dataset of 2,351 and 2,406 grid cells 
for the long and short terms, respectively. For birds, the estimated 
recorder effort was classed as well surveyed and with similar coverage 
across years for all three atlases72. Thus, we did not conduct any grid 
cell cutoff for the bird data. To account for spatial autocorrelation, as 
ignoring it could lead to underestimating the uncertainty of the model 
predictions88, we included a spatially structured random effect on 
grid (hereafter, γ). Parameter γ has a variance–covariance structure 
that depends on a neighbourhood structure. We defined this spatial 
dependency matrix structure to the eight surrounding grid cells of 
each focal grid. We then assumed a complete spatial dependency 
between the focal grid and the eight surrounding grid cells, that is, 
intrinsic conditional autoregressive model structure (iCAR)89 (Sup-
plementary Note ‘The iCAR model structure’). Nonetheless, for the 
Poisson and negative binomial GLMMs (species richness models) 
we wanted to have better control of the overdispersion. Hence, we 
included the spatial random effect on grid following a Leroux model 
structure90. The Leroux model is a generalization of the iCAR model, 
where the conditional distribution of the spatially structured random 
effects (γ, now referred to as υ) is specified as in the iCAR model above 
but it also incorporates an exchangeable structure for the spatially 
unstructured residual (hereafter, ν; where ν ≈ Gaussian (0, σ2

ν)90. See 
Supplementary Note ‘The iCAR model structure’ for assessment of 
spatial dependency in the models. Our models for species richness 
are expressed as SRi ≈ Poisson (μ∧SRi) (for birds) and SRi ≈ negative 
binomial (μ∧SRi, ɸ) (for butterflies and plants) with model equation

log(μ∧SRi) = Intercept + η × Ti +Ω × log(Ei) + υi + νi (1)

For beta diversity the model is expressed as BDi ≈ Beta (μ∧BDi,Ø) with 
model equation

logit(μ∧BDi) = Intercept + κ × Ti +ψ × Ei (2)

For community temperature index the model is expressed as 
CTIi ≈ Gamma (μ∧CTIi, θ) with model equation

log(μ∧CTIi) = Intercept + τ × Ti + γi (3)

The subscript i refers to each one of the grid cells. SR, BD and 
CTI are the observed species richness, beta diversity and CTI 
with estimated means referred as μ∧ and the variances being: 
variance(SR) = μ∧SR (for birds) and variance(SR) = μ∧SR + (μ∧SR)2/ɸ 
(for butterflies and plants); variance (BD) = (μ∧BD × (1 − μ∧BD))/(Ø + 1); 
and variance(CTI) = (μ∧CTI)2/θ. Hyperparameter ɸ (variation-type 
parameter) describes the size of the negative binomial observations 
(1/overdispersion), while Ø and θ are the precision hyperparameters 
of the Beta and Gamma distributions, respectively. Parameter E refers 
to the estimated recorder effort and Ω and ψ are the coefficients 
of E. The categorical variable is T and η, κ and τ are the coefficients 
(regression-type parameters) of T. The proportion of increase in 

richness, biotic homogenization and CTI will be given by calculating 
exp (T coefficient) and the proportion of decrease by 1 − exp (T coef-
ficient) (Fig. 2).

Even though we accounted for uneven and unknown recorder 
effort when evaluating differences in CTI between time periods, using 
a minimum species richness grid cell threshold cutoff, we could not 
discard the possibility that the surprising result of decreasing butter-
fly CTI over the short term was an artefact of recording bias. The CTI 
decrease could have been driven by under-recording in the 1990–1994 
period in those areas of western Britain which show strong drops in 
CTI (compare Supplementary Figs. 6 and 7). To test this possibility, 
we replicated the analysis using the period 1995–1999 instead, as it 
had higher recorder effort (Supplementary Fig. 7). We found that 
the estimated average change of CTI also decreased over this period 
(−0.001 °C). However, in this case the 95% credible interval around 
the estimated change ranged from −0.003 to +0.000 °C, meaning 
that the possibility of no change at all or an increase in CTI over all 
Great Britain (probability of CTI increase = 0.64%, derived from the 
posterior) could not be discarded.

Modelling associations between changes in biodiversity and 
changes of land use and climate
To investigate the associations between baseline and interacting 
effects of land-use and climate change on biodiversity change, we first 
calculated for each taxon, temporal scale and grid cell, the observed 
changes in biodiversity (species richness, beta diversity—as measure 
of biotic homogenization—and CTI), land use, climate and estimated 
recorder effort (2010s to 1960s for the long term; 2010s to 1990s 
for the short term). Then, for each biodiversity metric, taxon and 
temporal scale, we fitted one spatially explicit linear mixed-effects 
model with Gaussian distribution. The change in biodiversity acted 
as a response variable. As explanatory variables, we used change in 
temperature and precipitation; change in proportion cover of each 
land-use category; two-way interactions between each climate and 
land-use change variable; microclimatic heterogeneity; and baseline 
conditions of land use, climate and biodiversity (species richness and 
beta diversity; Supplementary Note ‘Dealing with collinearity’). To 
control for uneven recorder effort in the species richness and beta 
diversity models, we included both the change in estimated recorder 
effort between time periods (to match the response) and the estimated 
recorder effort in the initial time period of change (as recorder effort 
was always found to be highest in 2010s; Supplementary Fig. 7) both 
in its natural scale86. In the CTI models, for butterflies and plants 
we applied the species richness grid cell threshold as described in 
the previous section and for all three taxa we included the change in 
estimated recorder effort (but not the initial value). All explanatory 
variables were standardized (mean = 0, s.d. = 1) to interpret their rela-
tive effect over the response. To account for spatial autocorrelation, 
we included a spatially structured random effect on grid (γ) modelled 
following an iCAR model structure as described in previous section. 
The model structure is expressed as:

Ci ≈ Gaussian (μ∧Ci,σ2)

μ∧Ci = Intercept + Xi × βββ + Ei × δδδ + γi
(4)

C is the change in biodiversity (species richness, beta diversity or 
CTI), with estimated mean = μ∧C and residual variance (or error) = σ2. 
X is the vector of explanatory variables and β the vector containing 
the coefficients of interest (Fig. 3). E is the vector containing esti-
mated recorder effort and change of estimated recorder effort and δ 
the vector of their coefficients. The posterior distribution of μ∧C will 
inform about the probability of each grid cell to have experienced an 
increase or decrease of biodiversity and the uncertainty around it. To 
obtain this information, we subtracted the posterior distribution of 
μ∧C, calculated the average probability for the area under the curve 

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02326-7

to be >0 (that is, estimated probability of biodiversity increase) ± s.e. 
(both in percentage) across all grid cells and captured the density 
distribution of μ∧C through violin plots (Fig. 2). Because beta diversity 
is by definition spatially autocorrelated, we did not incorporate γ in 
these models to avoid overfitting (Supplementary Note ‘Assessing 
spatial dependency’). To make sure that the different structures of 
the models 1–3 (quantifying biodiversity change) and 4 (attributing 
change to environmental predictors) were statistically compatible, 
we compared predicted values of change for each taxon, time period 
and community metric; Supplementary Note.

When running spatial models, much of the variation might be 
captured by the spatially structured random effect, while little might 
be due to the fixed effects of interest. To assess how much variation of 
the response was explained by our models and captured by the fixed 
effects, we calculated conditional and marginal R2 values. R2 condi-
tional considers the variance captured by both the fixed and the spatial 
random effects. R2 marginal considers only the variance captured by 
the fixed effects91. To assess how much variation of the response was 
explained by each group of variables: changes in climate and land use, 
climate–land-use change interactions, baseline conditions of climate 
and land use, baseline biodiversity and microclimatic heterogeneity, 
we implemented an additional analysis. This analysis consisted of 
running the models in consecutive steps. First, we ran a model that 
only contained the spatially structured random effect + estimated 
recorder effort at the beginning of the period of change + change of 
estimated recorder effort. Then, we added a group of variables at a 
time, starting with changes in climate and land use and followed (in 
order) by interaction of climate–land-use change, baseline conditions 
of climate and land use, microclimatic heterogeneity and baseline 
biodiversity. At each step, R2 conditional and marginal were calculated 
and the contribution of each group of explanatory variables, could be 
assessed (Supplementary Fig. 4). Recall that models for beta diversity 
did not contain spatial dependency and that models for CTI did not 
include baseline biodiversity.

Revealing habitat characteristics associated with grid cell 
contribution to national beta diversity
To unravel which habitat characteristics were associated with grid cell 
contribution to national beta diversity, we first calculated for each 
taxon, grid cell and time period (1960s, 1990s and 2010s), the relative 
contribution of each grid cell to national beta diversity, that is, LCBD 
a comparative indicator of the ecological uniqueness of a site for its 
contribution to the overall beta diversity32 using the beta.div func-
tion available in the R package adespatial92. Then, for each taxon and 
time period, we fitted one Beta GLMM with a logistic link function, to 
ensure that the fitted values ranged between 0 and 1. LCBD acted as 
the response variable. Climatic variables, proportion cover of each 
land-use category and microclimatic heterogeneity acted as explana-
tory variables (Supplementary Note ‘Dealing with collinearity’). To 
control for uneven recorder effort, we included the estimated recorder 
effort for each time period in its natural scale86. All explanatory vari-
ables were standardized. To account for spatial autocorrelation, we 
included a spatially structured random effect on grid (γ) modelled 
following an iCAR model structure as described in the previous section 
(Supplementary Note ‘Assessing spatial dependency’).

The model structure is expressed as:

Li ≈ Beta(μ∧Li,Φ)

logit(μ∧Li) = Intercept + Xi × βββ + γi
(5)

Li refers to the LCBD in each grid cell, with estimated mean = μ∧L 
and variance(L) = (μ∧L × (1 − μ∧L))/(Φ + 1), where Φ is the precision 
hyperparameter of the Beta distribution. X is the vector of explana-
tory variables and β the vector of the estimated fixed effects of the 
explanatory variables. Large values of LCBD indicate that a grid cell 

has a strongly different species composition compared to a mean site 
and therefore makes a relatively large contribution to the total beta 
diversity across all Great Britain’s grid cells. From a conservation per-
spective, high LCBD indicates: a site of special ecological conditions, 
with an unusual species composition and high conservation value; a 
degraded species-poor site but functionally unique species that might 
be a good candidate for ecological restoration; or the result of invasive 
species on communities32.

Model robustness estimating fixed effects
To evaluate the performance of our models (equations (4) and (5)) 
on estimating the effect of climate and land use on biodiversity in 
a consistent manner, we used a tenfold cross-validation technique. 
Cross-validation is a method for evaluating the ability of a model to be 
effective when presented with new inputs from the same distribution as 
the training data. When using the tenfold cross-validation technique, 
we randomly divided the data into ten subsets of equal size, use nine 
subsets to fit the model and the remaining subset to validate it. We 
repeated this procedure so that each one of the ten subsets was used 
once for validation93 and assessed the performance of our models 
on estimating fixed effects by plotting the parameter coefficients 
of the fitted models against their correspondent from the tenfold 
cross-validation (Supplementary Figs. 2 and 5).

Prior choice
Because we used a Bayesian approach, priors are required for the 
parameters in the models. For model equations (1) to (5), the priors 
for the fixed parameters and intercept were left as default settings 
in R-INLA, which follow a Gaussian distribution N (0, σ2 = 1,000) and 
N (0, σ2 = ∞), respectively. Priors for the hyperparameter ɸ (equa-
tion (1)) and precision hyperparameters Ø and Φ (equations (2) and 
(5)) and θ (equation (3)) were also set at their default settings, that 
is, log-gamma (1, 0.1). For the spatially structured hyperparameter 
σΥ (iCAR model structure in equations (3), (4) and (5)) and spatial 
hyperparameters συ and σν (Leroux model structure equation (1)), we 
used weakly informative penalized complexity prior distributions94, 
recommended for spatial models with no available prior information. 
We provide full description of penalized complexity priors choice in 
the Supplementary Note .

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
BTO Bird Atlas data are available on request from (http://www.bto.org/
datasets). The data for the Butterflies for the New Millennium record-
ing scheme are available on request from the Butterfly Conservation 
(https://ukbms.org/request-data). Plant Atlas data are available on 
request from the Botanical Society of Britain and Ireland (https://bsbi.
org/maps-and-data)66. Historical land-use data are available at https://
doi.org/10.5878/9wks-qg91 refs. 38,80. Modern land cover data were 
extracted from the 1990 Land Cover Map (https://catalogue.ceh.ac.uk/
documents/3d974cbe-743d-41da-a2e1-f28753f13d1e) and 2015 Land 
Cover Map (https://catalogue.ceh.ac.uk/documents/bb15e200-9349-
403c-bda9-b430093807c7) at 25 m spatial resolution. Climate data 
were downloaded from the Met Office, UK (https://www.metoffice.
gov.uk/research/climate/maps-and-data/data/index). The data for the 
birds’ Species Temperature Index were requested from the authors of 
ref. 6; for butterflies, Species Temperature Index can be downloaded 
from GBIF (https://doi.org/10.15468/ug7pft)75; and for plants, from 
Zenodo (https://doi.org/10.5281/zenodo.1155850)76.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No code was used for data collection. All data was downloaded from repositories accessible or upon request.

Data analysis R version 4.1.1. was used to conduct the analyses, along with the following packages: Sparta (version 0.2.19); betapart (version 1.5.4); 
adespatial (version 0.3-14); INLA (version 21.02.23)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

BTO Bird Atlas data is available on request from (http://www.bto.org/datasets). The data for the Butterflies for the New Millennium recording scheme is available 
on request from the Butterfly Conservation (https://ukbms.org/request-data). Plant Atlas data is available on request from the Botanical Society of Britain and 
Ireland (https://bsbi.org/maps-and-data). Historical land-use data are available at http://doi.org/10.5878/9wks-qg91. Modern land cover data was extracted from 
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the 1990 Land Cover Map (https://catalogue.ceh.ac.uk/documents/3d974cbe-743d-41da-a2e1-f28753f13d1e) and 2015 Land Cover Map (https://
catalogue.ceh.ac.uk/documents/cb84ee95-01e4-4d55-a33c-380fe01bc58d) at 25-m spatial resolution. Climate data was downloaded from the Met Office, UK 
website (https://www.metoffice.gov.uk/research/climate/maps-and-data/data/index). The data for the birds’ Species Temperature Index were requested from the 
authors of https://doi.org/10.1038/nclimate1347; for butterflies, Species Temperature Index can be downloaded from GBIF (https://doi.org/10.15468/ug7pft); and 
for plants, are available from http://doi.org/10.5281/zenodo.1155850

Human research participants
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Population characteristics N/A
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Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Study description In this study, we use historical and modern datasets of land-use, climate and species observations from national atlas and monitoring 
schemes, to investigate how baseline and interacting effects of land-use and climate change drive biodiversity changes in British 
birds, butterflies, and plants over 50+ years (long-term, approx. 1960s-2010s) and 20 years (short-term, 1990-2010s) time-periods. 
The main dataset consists of 3,715,724 species occurrence records describing the British communities of breeding birds, butterflies, 
and plants, in the n = 2,670 10-km square grid-cells of the British National Grid. As biodiversity metrics, we use species richness, beta 
diversity and community temperature index. Our analyses are based on spatially-explicit generalized linear mixed models and 
spatially-explicit linear mixed models. We use integrated nested Laplace approximation for Bayesian inference. This method 
approximates Bayesian inference for latent Gaussian models such as the spatial generalized and mixed-effects linear models used in 
this study, where latent structures in the data need to be captured. Our models include controls for spatial autocorrelation, variation 
in recorder effort in space and over time, deal with confounding collinearity effects, and control for the effect of microclimatic 
heterogeneity in moderating climate-driven effects on biodiversity, and for baseline biodiversity conditions.

Research sample Our study targets the communities of British breeding birds, butterflies and plants at three different time periods (i.e., 1960s, 1990s 
and 2010s). Specifically, we focus on local-assemblage at the 10-km square grid-cell resolution across Great Britain (i.e., 2,670 grid-
cells). We use available datasets. For breeding birds, these data correspond to the atlases from 1968-72; 1988-91 and 2008-11. For 
plants, to the atlases of 1930-60; 1987-99 and 2000-19 (for which we retrieved the data referring to the period 2010-2019). For 
butterflies, we use the periods 1970-1974; 1990-94 and 2010-14 from the national recording scheme, Butterflies for the New 
Millennium, to match the other two taxa. We retrieved a total of 3,715,724 species occurrence records describing the British 
communities of breeding birds, butterflies, and plants. These available datasets provided us with species-occurrence data for all 
three taxons, across 2,670 10-km resolution grid-cells over all Great Britain. For each 10-km resolution grid-cell, taxon and time 
period (1960s, 1990s and 2010s), we calculated three measures of biodiversity: species richness, beta diversity and community 
temperature index. To calculate the community temperature index metric, we require the species temperature indices. For 
butterflies, these are available online at “Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. CLIMBER: Climatic niche characteristics 
of the butterflies in Europe. ZooKeys 367, 65-84 (2014)”. For birds and plants, species temperature indices are available upon request 
at “Devictor V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2: 121-124 
(2012)” and “Sparrius, L. B., van den Top, G.G. & van Swaay, C. A. M. An approach to calculate a Species Temperature Index for flora 
based on open data. Gorteria – Dutch Botanical Archives 40, 073-078 (2018)”, respectively. As for environmental data, for each grid-
cell, we retrieved 1) land cover data from the available repositories (Land Utilisation Survey of Great Britain, LUSGB, and the 1990 
and 2015 1990 Land Cover Maps from the NERC Environmental Information Data Centre); 2) climate data downloadable from the 
Met Office (UK), available at 5-km spatial resolution and aggregated at 10-km to give the mean values of annual mean temperature 
and annual total precipitation within years 1965-75, 1985-95 and 2005-15, to match the three time-periods of the biological data; 3) 
heterogeneity in temperature microclimates available upon request from “Suggitt et al. Extinction risk from climate change is 
reduced by microclimatic buffering. Nat. Clim. Change 8, 713-717 (2018).” 

Sampling strategy For each taxon (i.e., birds, butterflies, and plants), we included native species (including some taxonomic aggregations and 
subspecies for plants) that represented stable taxonomic concepts across time from a biological recording perspective (i.e., they have 
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been recorded consistently throughout the period of the study). A further description is specified in Methods. In total, 250 species of 
birds, 55 species of butterflies and 1,587 species of plants were retained for analysis. 

Data collection All data used in this study is freely available from on-line repositories or upon request from authors and organisations, and are 
described in Methods. Datasets were collated by the authors as specified in Methods.

Timing and spatial scale This study concerns three time periods, i.e., 1960s; 1990s and 2010s. Observations of breeding birds, butterflies and plants, land-use 
and climate data are available for each time period and across the 2,670 10-km square grid-cells of the British National Grid included 
in this study.

Data exclusions First, we excluded from the analysis those species that did not fulfil the criteria for study inclusion described above (in Sampling 
strategy) and specified in Methods. Second, because we are using atlas and presence only monitoring data, and we are interested in 
changes between time periods, for each taxon (birds, butterflies, and plants), we only included grid-cells recorded on both time 
periods, i.e., 1960s and 1990s for the long-term analysis; 1990s and 2010s for the short-term analysis. This covered all 2,670 grid-
cells for the bird dataset; 2,666 grid-cells for the plant data; and 2,013 and 2,022 grid-cells for butterflies at the long- and short-term, 
respectively. 

Reproducibility All data used in this study is freely available from on-line repositories or upon request from authors and organisations. The results are 
fully reproducible by following the modelling description in the Methods section.

Randomization Randomization is not applicable in this study. All data used in this study is already collected and available upon request. However, we 
had to control for 1) uneven and unknown recorder effort of the monitoring and atlas data collection, to avoid biased results, and 2) 
spatial dependency, as ignoring it could lead to underestimating the uncertainty of the model predictions. To control for uneven and 
unknown recorder effort, we estimated for each time-period and taxon, the recorder effort in each focal 10-km grid-cell using the 
Frescalo approach (further describe in Methods). For the community temperature index analysis, we used a species-threshold cut off 
similarly to “Macgregor, C.J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive 
cycles per year. Nat Commun 10, 4455 (2019)” and “Platts, P.J. et al. Habitat availability explains variation in climate-driven range 
shifts across multiple taxonomic groups. Sci Rep 9, 15039 (2019)”. To account for spatial dependency, we used a Leroux model 
(which allows the structured part of the spatial residuals to be part of the parameter space, detaching it from the unstructured 
spatial random effect) and an Intrinsic Conditional Auto-Regressive model (i.e., a random effect with spatial dependent structure - 
iCAR model) as specified in Methods. We defined the spatial dependency matrix to the eight surrounding grid-cells of each focal grid-
cell for both Leroux and iCAR models. 

Blinding Not applicable in the analysis of this study. This study is based on records of birds, butterflies and plants as well as on land-use and 
climate data that has already been collected and is available on online repositories or upon request.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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