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Abstract  Landslide hazards have significant social, economic, and 
environmental impact. This work provides a critical review of the 
main existing literature using satellite data for mapping landslides. 
We created and examined an extensive bibliographic database from 
Web of Science (WoS) consisting in 291 outputs from > 1,000 authors 
who studied almost 700,000 landslides across all continents, for 
a total of 52 countries represented with China and Italy on top of 
the list with more authors. The outputs are equivalent to ~ 5% of 
the whole landslide-related production for the period 1996–2022, 
with a 600% increase in the number of papers after 2014 driven by 
the availability of Sentinel-1 and Sentinel-2 data. Analysis of the 
geographical location across the 66 different countries analysed 
shows that, within the total number of contributions, the satellite 
imagery was used to detect and map two main types of landslides: 
flows and slides. When specified in the manuscripts, the events have 
been triggered by rainfall (104 cases), earthquakes (32 cases), or 
both (17 cases). Slope instabilities in these areas were predominantly 
identified through manual detection (40%); but since 2020, the 
advent of artificial intelligence is suppressing all other techniques. 
Despite the undisputed progress of EO-based landslide mapping 
over the last 26 years, which makes it a consolidated tool for many 
landslide-related applications, challenges still remain for an effective 
and operational use of EO images for landslide detection and map-
ping, and we provide a perspective for future applications consider-
ing the existing and the planned SAR satellite missions.

Keywords  Earth Observation · Landslide · Landslide mapping · 
Web of Science

Introduction
Landslides represent a global hazard accounting for ~ 72,000 
deaths and > $11.5B of damage worldwide between 1900 and 2022 
according to the Emergency Events Database (EM-DAT 2023; 
Supplementary Material – S1), and these numbers are expected 
to increase as a result of anthropogenic climate change (Gariano 
and Guzzetti 2016). Our ability to mitigate and forecast landslides 
hazard is strongly limited by the lack of complete and accurate 
information on their temporal and spatial occurrence that, in turn, 
represent a key factor for geoscientists to understand their evolu-
tion and relationships with triggering factors (Wieczorek 1996). 
Despite their relevance for landslide hazard and risk assessment, 
landslide maps are unexpectedly rare with estimates that land-
slide maps cover less than 1% of slopes globally (Guzzetti et al. 
2012). We argue that the situation has not improved significantly 
in the last 10 years, despite global community efforts to consist-
ently use Earth Observation (EO) datasets to compile and organise 

geographical landslide information. Since the launch of the first 
EO satellite in 1975, Landsat-1, spaceborne techniques have become 
widely used and broadly recognised tools for landslide mapping 
and monitoring (Casagli et al. 2016).

In this article, we attempt a systematic, critical review of avail-
able literature on the use of (optical and radar) spaceborne imagery 
to detect and map landslide failures. Failures are defined by Hungr 
et al. (2014) as ‘the single most significant movement episode in the 
[…] history of a landslide’, and landslide failure events are one or 
many landslides in an area caused by a single trigger (Guzzetti et al. 
2012). Systematic reviews of the literature on landslide detection 
and mapping techniques have been published over the last 20 years 
considering several input materials:

–	 Geomorphological mapping, topographic maps, and aerial pho-
tography (Parise 2001)

–	 Spaceborne, airborne, and terrestrial remote sensing technolo-
gies (Guzzetti et al. 2012)

–	 Synthetic Aperture Radar (SAR; Modini et al. 2021) and multi-
temporal interferometric SAR (Schlögl et al. 2022)

Our work complements and updates these reviews with a unique 
focus on satellite data and how better observing methodologies and 
additional EO systems have improved our capabilities in landslide map-
ping. Compared to such recent reviews, our work provides the addi-
tional focus on how recent technologies are drastically changing the 
way EO is deployed in landslide mapping and based on the evolution 
of such discipline, the manuscript provides areas where future research 
can focus to tackle existing challenges. The article is organised as fol-
lows: a brief explanation of the terminology and traditional landslide 
mapping techniques (the ‘Landslide mapping’ section) followed by the 
main EO satellite missions that contributed to landslide mapping (the 
‘Earth observation datasets’ section). Next, we give a description on 
the approach we used to scope the literature datasets (the ‘Methodol-
ogy for the data collection’ section) and how we critically analysed the 
results (the ‘Results’ section). Ultimately, we discuss the theoretical, 
research, and operational frameworks for the future exploitation of 
satellite imagery for detecting and mapping landslides (the ‘Discussions’ 
section) and summarise the lessons learnt (the ‘Conclusions’ section) 
and what improvements are still needed for a better use of EO datasets 
according to end user and non-specialist needs.

Landslide mapping
A “landslide” is the movement of a mass of rock, debris, or Earth 
down a slope, under the influence of gravity (Cruden and Varnes 
1996). Landslides can be sub-aerial and subaqueous, and different 
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phenomena cause landslides, including intense or prolonged 
rainfall, earthquakes, rapid snow melting, volcanic activity, and 
multiple human actions. Landslides can involve flowing, sliding, 
toppling, or falling, and many landslides exhibit a combination of 
two or more types of movements, at the same time or during the 
lifetime of a landslide (Hungr 2014). In this work, the words ‘land-
slide’, ‘mass movement’, and ‘slope failure’ are used as synonyms. 
There are two main characteristics used to classify landslides 
(Fig. 1): type of movement according to Hungr et al. (2014) and 
velocity according to Cruden and Varnes (1996).

A landslide inventory map records the location of mass movements 
that have left discernible traces in an area along with, where known, 
the date of occurrence, the type of motion and velocity (Guzzetti et al. 
2000), and, if complete, also the extent and volume. In this work, the 
words ‘inventory’, ‘landslide map’, ‘landslide inventory’, and ‘landslide 
inventory map’ are used as synonyms. There are different ways to com-
pile a landslide inventory: collecting landslide distributions for a single 
triggering event; mapping landslides identified from satellite imagery 
or aerial photos, in situ mapping coupled or not with remote sensing 
observations; or cataloging reports from news media (Juang et al. 2019). 
Satellite imagery now represents a unique opportunity to regularly add 
and support landslide inventories at both local and large scales.

Conventionally, landslides have been mapped using geo-
morphological field mapping (Cardinali et al. 2002) and visual 
interpretation of stereoscopic aerial photographs (Turner and 
Schuster 1996). The need for rapid mapping of landslide events 
over large areas along with the regular availability of EO imagery 
has driven, over the last decade, the development of new methods 
specifically tailored for processing and interpreting satellite data.

Earth observation datasets
Since the US Landsat programme began in 1972, many nations have 
embarked on EO programmes and today, hundreds of operational 
satellites are available to geoscientists for mapping, measuring, and 

monitoring resources, land cover changes, and geohazards (Belward 
and Skoien 2015).

According to the Observing System Capability Analysis and 
Review Tool (OSCAR, https://​space.​oscar.​wmo.​int/ accessed on 
20/3/2023) of the World Meteorological Organization, 713 satellite 
launches of sun-synchronous orbiting satellites in low Earth orbit 
have occurred between 1972 and October 2022, from civilian and 
commercial providers (Supplementary Material – S2). Most of these 
belong to communication (like GNSS) or meteorological missions 
and only 337 EO missions (Fig. 2).

The increasing number of EO systems has allowed the moni-
toring of continental surfaces at local (from metric to decamet-
ric resolution sensors) to global (from decametric to kilometric 
resolution sensors) scales, with daily to multi-year observation 
frequency, and in different wavelengths (e.g. near-infrared and 
visible to microwave spectral domains). The improved availability 
and accessibility to satellite imagery have been driven by two major 
events: data from the NASA Landsat mission becoming available 
from 2008 through the United States Geological Survey (USGS) 
and the start of the Copernicus mission with the launch of the first 
Sentinel satellite in 2014 from the European Space Agency (ESA). 
These events have underpinned an exponential increase in geosci-
ence research productivity (Tomás and Li 2017) and a growth in 
users downloading EO data (ESA 2021). The science, and market 
opportunity, around remote sensing is still rapidly growing given 
the innovations brought by the enhanced computing capabilities 
of cloud computing, more efficient processing techniques such as 
artificial intelligence (AI), and the improved affordability of satel-
lites for the reduction in manufacturing costs, the possibility to 
build longer-lived payloads that are smaller in size and weight (also 
known as CubeSats), making it possible to ship multiple and inde-
pendent payloads into orbit with the same spacecraft.

Methodology for the data collection
In this review work, we exploited the freely accessible search engine 
Web of Science (WoS) database (https://​www.​webof​scien​ce.​com/, 
accessed on 4/4/2023) which provided access to multiple databases 
giving reference and citation data from academic journals, confer-
ence proceedings, and other documents from various academic dis-
ciplines (Clarivate 2019). This online tool has also been used recently 
for scientific reviews in Earth Sciences (Raspini et al. 2022) and is a 
database accepted as one of the most comprehensive bibliographic 
data sources (Zhu and Liu 2020). WoS was selected because it pro-
vides a simple but comprehensive picture of scholarly impact as it 
indexes only traditional peer-reviewed sources and discards sources 
such as theses or presentations (Martín-Martín et al. 2018). We col-
lected original and peer-reviewed articles, book chapters, confer-
ence proceedings, and extended abstracts. The data collection is 
based on the following eight criteria as part of the advanced search:

1.	 Time interval: limited from July 1972, the launch of Landsat-1 
which we considered as the start of the spaceborne EO era, 
until October 2022, the time of writing.

2.	 Title words (TI): this condition allowed us to select contribu-
tions from words included in the title. In this field, the fol-
lowing words were used: ‘landslide mapping’, ‘satellite’, ‘Earth 
Observation’, or ‘Remote Sensing’. All these words could be 
inserted in the same string of conditions separated by ‘OR’.

Fig. 1   Types of movement of a landslide regardless of the material 
involved (left) and landslide velocity scale (right). Complex landslides 
are movements that feature components of two or more of the basic 
types of landslides and can occur either simultaneously or at differ-
ent times during the onset of slope failure.  Modified from United 
States Geological Survey (USGS 2004) and Cruden and Varnes (1996)

https://space.oscar.wmo.int/
https://www.webofscience.com/
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3.	 TI: we excluded submarine landslides, so we excluded the terms 
‘submarine’ and ‘subaqueous’ from #2.

4.	 Author Keywords (AK): this condition allowed for selecting 
contributions from words included as keywords. In this field, 
we used the same terms adopted in #2.

5.	 AK: we excluded submarine landslides, so we excluded the 
terms ‘submarine’ and ‘subaqueous’ from #4.

6.	 Presence in the abstract of any of the following four combina-
tions: ‘landslide mapping’ and ‘satellite’, ‘landslide detection’ 
and ‘satellite’, ‘landslide mapping’ and ‘space’, and ‘landslide 
detection’ and ‘space’.

7.	 The language of the main text (not just the abstract or the title) 
must be in English.

8.	 We constrained the topic and science categories to the ‘Remote 
Sensing’ and ‘Environmental Science’ areas.

Three Boolean operators were used for combining these criteria, 
for extracting all the contributions respecting these requirements: 
AND (both), OR (at least one), and NOT (eliminates items that con-
tain the specified term).

WoS initial results were exported as a.csv file (Supplementary 
Material – S3) where we:

–	 kept contributions even when the landslide inventory map was 
not the core of the work (e.g. inventory used to produce suscep-
tibility or risk maps).

–	 removed contributions outside the topics of Earth Sciences, 
retracted or pre-print articles, papers where the full text was not 
available in English, and finally works that mapped landslides 
on other planets such as Mars (Crosta et al. 2018) and the Moon 
(Scaioni et al. 2018).

–	 labelled the contributions in different categories: articles 
including technical notes and early access (i); books, chapters, 
and proceedings (ii); reviews (iii); and letter and editorial mate-

rial (iv). Some proceedings in (ii) were later collected as chap-
ters of a book, this is why we group them together.

–	 in order to fully characterise the studies in our collection, 
each article was read and critically analysed, and the following 
information was extracted, when available: continent and coun-
try hosting the institute of the corresponding author and where 
the study area was located, satellite(s) used to perform the work, 
triggering factor and type of motion, validation through field 
surveys, or ground truthing. We could not always consider the 
individual country since works sometimes cross administrative 
borders and authors might have double affiliations.

Results
Following the filtering and criteria described in the ‘Methodology 
for the data collection’ section, we narrowed down a total of > 76 M 
scientific contributions available on WoS to just 518 works (Fig. 3) to 
which we added 40 contributions not intercepted by WoS, but still 
relevant to our literature review, for a total of 558 works analysed. 
The authors have also tried synonyms and other similar keywords 
for the WoS search (e.g. map instead of mapping), with the cor-
responding results not generating significant changes to the final 
number of outputs.

To assess the performance of our WoS search for relevant works, 
a confusion matrix has been calculated. The check of the collection 
returned an accuracy close to 1, sensitivity of 0.48, and specificity 
of 0.99. Indeed, upon expert reading, the total number of papers 
relevant for this work is down to 291, which is the number we have 
based any calculations on for the results. Essentially, WoS search 
is particularly effective in removing outputs not relevant to this 
work, although the number of false positives (papers not related to 
the scope of this analysis) is still high compared to true positives, 
namely, the number of outputs correctly identified as pertinent 
for this work. The database comprises a range of publication types 
including articles (~ 82%), followed by books, chapters, editorial 
material and proceedings (~ 13%), and reviews (~ 5%).

Fig. 2   The cumulative number of near-polar orbiting EO civilian and commercial satellite in low Earth orbit with the most important mile-
stones in the EO space history
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In order to fully characterise the studies in our collection, we 
read and critically analysed each article, extracting the follow-
ing information, when available: country hosting the institute of 
the corresponding author and country(ies) where the study area 
is located (the ‘Temporal and spatial analysis’ section), satellite(s) 
used to perform the work (the ‘Satellite data’ section), triggering 
factor and type of motion (the ‘Landslides analysed’ section), and 
technique(s) used (the ‘Techniques used’ section).

Temporal and spatial analysis

All the outputs combined account for almost 12,000 citations 
(up to October 2022) with the first relevant output from 1996 
(Mantovani et al. 1996), although opportunities to map landslides  
with satellite were mentioned almost 20 years before this baseline date 
(Sauchyn and Trench 1978) (Fig. 4). The total number of outputs 
retrieved accounts for just ~ 3% of the landslide-related scientific 
production for the period 1996–2022 according to a conservative 
WoS search, with a share growing with time. Indeed, the increase 
in the satellite data discussed in the ‘Earth observation datasets’ 
section, is the main reason driving a growing trend in scientific 
productivity with an average of 4 papers (and ~ 370 citations) 
per year between 1996 and 2014 followed by a 700% increase in 
publication rates (and ~ 170% in citation rates) between 2014 and 
2022 with 2014 being the year of launch of Sentinel-1, a milestone 
in the EO science (see the ‘Earth observation datasets’ section). 

Following the same policies of space agencies, in recent years, it 
has been more common to publish with open-access (via gold, 
bronze, or green routes) with 126 out of 138 freely available 
works published from 2014 onwards.

A comprehensive review on the full potential of EO for landslide 
mapping was missing until the start of the twenty-first century due 
to the poor spatial and temporal resolution of the data available 
before that time (Mantovani et al. 1996), and by that time, most of 
the inventories were still produced by interpretation of topographic 
maps and aerial photos (Parise 2001).

The geographical distribution of the corresponding author’s 
institution considers cross-national institutions (e.g. ESA or the 
Central Asian Institute of Applied Geosciences) and any double 
affiliations (Fig. 5a). The analysis shows that, although all continents 
are represented, works are concentrated in few countries with Italy 
and China alone accounting for ~ 35% of the contributions.

Out of the 291 works, only 9 did not provide a specific area 
of interest, either because they were reviews or focussed on the 
technical aspect of the mapping. Similarly with the location of 
authors, the studied areas are inevitably affected by the location 
of the corresponding authors (Fig. 5b). However, along with Italy 
(52) and China (51), also small countries emerge: Taiwan (21) and 
Nepal (20). In both countries, frequent typhoons (e.g. Mondini 
et al. 2017) or large earthquakes like Gorkha 2015 (Kincey et al. 
2021) with at least 23 dedicated works have provided opportuni-
ties to develop new techniques for landslide mapping given the 
high spatial density of slope failures occurred in a short time 

Fig. 3   Steps used to refine the bibliographic research through Web of Science with the relative number of outputs generated every time
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span. On the other hand, large countries such as Canada (5 works, 
e.g. Deijns et al. 2020) and Russia (3 works, e.g. Verdonen et al. 
2020) have a limited number of contributions despite their large 
geographical scale. This might reflect the main language used for 
the outputs, as we only included works in English.

We performed a cross-country analysis, in order to under-
stand the trends in both the outcoming and incoming influx of 

the contributions by country and continent (Fig. 6). In 98 cases, 
the corresponding author has worked in a country different from 
her/his own institution with authors from China and Italy work-
ing most of the time in their own country (> 74% of the cases); for 
India, the percentage is up to 100%. In 28 cases, the work involved 
the analysis of landslides over multiple countries, up to a maximum 
of 7 different nations (Meena et al. 2022).

Fig. 4   Temporal distribution of the 291 contributions published from 1996 to October 2022

Fig. 5   Global map showing the geographical distribution of the corresponding author of EO studies for landslide mapping (a) and of the 
country where the study has been conducted (b)
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Around 86% of the works involve at least a country between 
Europe and Asia, in terms of corresponding author or study area. 
Specifically, there is a large outflow of papers (110) from Europe 
across the whole world, with Asia being the primary study area. 
On the other side, most of the works (126) produced in Asia are 
focussed in the continent (Fig. 6).

Satellite data

In total, 40 different satellites have been used 484 times across the 
291 works (Supplementary Material – S3). We could not retrieve 
information on the satellites used for ~ 4% of the works, mainly 
because they were reviews or not focussed on the landslide map-
ping itself (see criteria of the search in the ‘Methodology for the 
data collection’ section), so this information was deemed not 
necessary by the authors. In 53% of the cases, the satellite data 
are freely and publicly available, while in the other cases, data is 
commercial or, even if free, comes with restricted access. We have 
single satellites used in half of the contributions (53%) and ~ 43% 
of contributions deploying multiple satellite platforms, up to 6 
different sources. In terms of wavelengths, the sensors most used 
are multispectrals (346 times, as some papers use more than 1 
satellite) compared to radar (138 times). In terms of satellite 
platforms, the Sentinel and Landsat constellations prevail (67 
and 48 times, respectively), followed by the group of satellites 
whose imagery is collectively displayed through Google Earth 
(40 times). Among the commercial datasets, SPOT is by far the 
most popular platform (39 times). Given the different range of 
satellite platforms used across the different years, we have sum-
marised the results considering a binary classification for the 
satellite imagery (multispectral vs. radar) and the minimum and 
maximum resolution available for these two categories used in 
each given year (Fig. 7).

Our analysis reveals that the increase in the use of satellite data 
happened together with the increased availability of data in terms 
of both sensors and pixel resolution, especially starting from the 
2010s (Fig. 6).

Landslide mapping is also facilitated by the increased frequency 
of revisiting time of the latest satellite missions. This factor is more 
influential than improved spatial resolution, which has remained 
almost unchanged since 2014. The increased frequency translates 
into a greater number of repeated images and therefore a higher 
probability of being able to detect changes to the Earth surface and 
the identification of landslides soon after their occurence.

Such a wealth of data, more easily available if not free, has inevi-
tably made it easier for scholars to work and extend their analysis 
to remote or difficult to access locations. Indeed, before 2014, only 
18 countries were represented among the corresponding authors; at 
the end of 2022, the number of countries was up to 52. Likewise, the 
number of countries where EO studies focussed on landslides was 
20 until 2014, with the number rising up to 66 by the end of 2022.

In terms of agency, provider, or operator, the landscape is het-
erogeneous with 21 different organisations involved. Over the last 
15 years, additional, and mainly private, organisations have been 
providing data in addition to the main national and international 
public institutions. Examples include the Disaster Monitoring Con-
stellation (5 different missions), the European Space Agency, the 
Indian Space Research Organisation, and the National Aeronaut-
ics and Space Administration, each with 4 different constellations.

Landslides analysed

From the analysed contributions, a total of 693,319 landslides 
were mapped, redrawn, and validated or updated in terms of their 
state of activity. EO is used for mapping single landslides 17 times, 
but in 205 cases, multiple landslides have been analysed: most of 
the contributions work on tens to hundreds of slope instabilities. 
Milledge et al. (2022) alone use a database of > 237,000 landslides 
from EO for the validation of landslide locations extracted from 
their newly proposed approach. This highlights how impactful 
the use of satellite data for large scale and rapid mapping can be.

The number of landslides analysed inevitably does not facili-
tate the reporting of additional information such as type of 
movement and velocity. In 24 cases where velocity information 

Fig. 6   Sankey map showing the volumes of works on mapping landslides with EO across the globe in terms of numbers of contributions on 
incoming, outcoming, and within the continent
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was clearly available, displacement rates fall within the extremely 
slow (< 16 mm/year) and the moderate velocity (< 13 mm/year) 
of the Cruden and Varnes (1996) classification.

In terms of type of motion (Fig. 8), most of the cases (182 
times), the works deal with landslides with different types of 
motion that are not specified. Slides and flows are analysed in 
30 times each, fall landslides 6 times, complex landslides 3 times, 
and deep-seated gravitational slope deformation (DSGSD) once 
(Manconi 2021).

In terms of landslide triggering factors, 104 cases analyse rain-
fall-induced (storms) landslides, 32 studies include earthquake-
driven landslides, and 17 works include a combination of both, 
as the works analyse different events. In two cases, snow melting 
(Kyriou and Nikolakopoulos 2018) and volcanic activity (Di Traglia 
et al. 2018) are mentioned as triggering factors.

Some large earthquakes such as the Sichuan in 2008 and Gorkha 
in 2015 disasters have provided EO scientists with an opportunity 
to study thousands of landslides occurred at the same time and 

Fig. 7   Time series showing the different amount of satellite data available with the relative resolutions. For detailed information on the list of 
satellites classified as multispectral and radar, see Supplementary Material – S4

Fig. 8   Extraction methods. For more details, see S3
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distributed over regional- to country-scale. These events have 
represented the chance to deploy and test innovative solutions for 
mapping multiple events at large scale (Burrows et al. 2019).

Techniques used

For most of the works (85%), we could clearly identify one (216 
cases) or multiple (32 cases) satellite data analysis techniques used. 
We grouped the techniques in the following categories: change 
detection (i), indexing (ii), segmentation (iii), displacements-meas-
urement (iv), and AI (v) (Fig. 9). A similar distinction has been 
recently applied for EO-based classifications for waterline mapping 
in McAllister et al. (2022).

In 40% of the cases, a change detection approach has been used, 
namely, basic principles of image interpretation where events are 
manually mapped based on the discretionary presence of landslide 
features resulting from a slope failure and reflected in the geomor-
phology: scarps, trenches, bulging toes, and double ridges. Usually 
a pre- and a post-event image is used (Psomiadis et al. 2020). These 
methods were dominant during the 2000s and 2010s but are time-
consuming for landslide mapping over large spatial extents and 
require high-resolution imagery.

 The indexing (or pixel-based) group of techniques, represent-
ing ~ 9% of the database, includes thresholding methods, manually 
or automatically selected (supervised or unsupervised, respectively) 
thresholding methods. Such thresholds are used for identifying pix-
els belonging to landslides and refer to the assumption that land-
slides are more likely to occur under conditions similar to those 
that have caused them in the past. Usually, the parameters used are 
well-known indices such as the Normalised Difference Vegetation 
Index (NDVI, Fiorucci et al. 2019), topographic parameters (Scheip 
and Wegmann 2021), or SAR back-scatter values (Burrows et al. 
2020). These methods still require extensive human involvement 

with a large degree of subjectivity in order to decide the parameters 
and the relative thresholds; despite the application of filters, they 
still produce the salt-and-pepper effect due to single pixels being 
demarcated as landslides (Hölbling et al. 2017).

Segmentation is an alternative to pixel-based methods with 
basic analysis units used as image objects instead of individual 
pixels. This method, representing ~ 6% of the database, intends to 
bypass the problem of artificial square cells as used in per-pixel 
indexing methods by grouping a number of pixels into shapes with 
a meaningful representation of the objects based on homogeneous 
spectral, textural, morphological, and topographical characteristics 
(Amatya et al. 2021). The segmentation ruleset is created based on 
site-specific characteristics and manual thresholding of landslide 
diagnostic features (e.g. slope and relief), so the selected features 
might not work well beyond the study area.

Displacement-measurements include Interferometric Synthetic 
Aperture Radar (InSAR) and pixel offset and represent ~ 17% of the 
database. Collectively, these techniques are capable of providing 
wide-area coverage (thousands of square kilometre) and precise 
(millimetre–centimetre resolution), spatially dense information 
(from hundreds to thousands of measurement points/square kilo-
metre) of ground surface deformations (Wasowski and Bovenga 
2014). Such information is particularly useful because tiny displace-
ments (in the order of millimetre or centimetre) are not detectable 
even with high-resolution imagery. However, InSAR processing can 
be time-consuming and is not always applicable due to the maxi-
mum detectable displacements and topographic constraints (van 
Natijne et al. 2022).

AI (~ 16% of the database) is mainly driven by the quantity of 
satellite data available over recent years; AI methods map landslides 
by training data-driven models on a variety of parameters that are 
combined to form an input or training dataset. These parameters 
can include both the effect and the cause of a landslide: scarps, 

Fig. 9   Extraction methods. For more details, see S3 
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lack of vegetation, geology, slope, and weather conditions, as well as 
satellite imagery. The training process eliminates the requirement 
for a well-defined physical or numerical model and relies on ad hoc 
learning of the relationships between the existing landslide inven-
tory and the derived features. This is the most promising approach, 
with better accuracy compared to other approaches (Prakash et al. 
2020), and the predominant technique used for landslide mapping 
since 2020. Although data-driven algorithms such as principal 
component analysis (Đurić et al. 2017) and maximum likelihood 
(Modini et al. 2017) have been recently used to map landslides, in 
recent years, there is a growing consensus towards the use of U-Net 
Convolutional Neural Networks (CNN) (e.g. Amankwah et al. 2022). 
Compared with other AI methods, like neural networks, U-Net is 
a deep learning model that can exploit small (on the order of hun-
dreds of individual events) or large datasets and extract the most 
effective features for mapping landslides automatically by segment-
ing the image and then assigning each individual pixel to a class 
(i.e., landslide/no landslide). However, a large training dataset and 
computational power are required for most of the AI methods.

Apart from the change detection approaches, all the other meth-
ods do not require pre- and post-event imagery but can work only 
with the post-event data.

Discussions
Over the last three decades, EO has proven to be a highly valuable, 
if not the only tool available (e.g. in remote areas) for landslide 
identification and mapping under different scenarios, scales, and 
in different geological settings, being deployable across all stages 
of the disaster management cycle.

The discussion will cover both the literature search we per-
formed and the successive analysis. Our analysis shows that 
the WoS is a good starting point for refining the initial online 
research of relevant works but cannot be considered sufficient 
for a full and complete literature analysis, mainly because of the 
number of false positives and the number of outputs deemed 
not relevant for this work. At the same time, we are aware that 
an extensive manual search and quality check would still be 
needed with other search engines. Despite this, we are confident 
that we reported the main works, based on the citations rates, 
in the field of EO for landslide mapping. In the future, comple-
mentary engines might be used to extend the analysis to other 
digital library database such as Google, Constellate (https://​const​
ellate.​org/), or Google Ngram Viewer (https://​books.​google.​com/​
ngrams/) or beyond the scientific community with Google Trends 
(https://​trends.​google.​com/​trends/). This will allow us to have a 
complete database that automatically intercepts other outputs, 
equally valuable in such a rapidly evolving environment, such as 
presentations, promotional pages, table of contents, and course 
readings. In that case, the main concern is avoiding duplication 
of reporting (papers occurring both on a journal and Research-
Gate, for example) and multiple citations. Regardless of the tool 
used for the search, older and hardcopy papers might be still 
completely missing since they have never been uploaded on any 
digital archive or repositories online. Finally, some of these works 
might not be focussed on the EO mapping of landslides, so their 
inclusion/exclusion remains discretionary.

Spatial distribution of the works and study areas (the ‘Tem-
poral and spatial analysis’ section) reflects countries (e.g. China, 

India, and Italy) where landslides represent a major natural hazard 
(Herrera et al. 2018) resulting from earthquakes or severe weather 
events, so the attention of the academic and research community 
is greater. Other factors to be considered, even if they are out of 
the scope of this work, are socio-economic and political drivers. 
Examples might be that we have less focus on areas where there 
is less impetus in terms of people making insurance claims that 
research is funded or more fundable in some countries compared 
to others or that (internet) accessibility to the data is simply poor. 
While satellite data are not directly influenced by this, what is 
reported on the Internet also depends on and controls general lev-
els of education. There is definitely a future opportunity to increase 
the number of landslide mapping works in large countries such as 
Brazil, Canada, and Russia where, even if slope movements might 
not represent the major geohazards, available techniques give the 
opportunity to quickly analyse large regions at a limited cost.

Regarding the temporal analysis of the list of works extracted 
(the ‘Satellite data’ section), we can clearly see that there is an 
increase in the use of satellite data from 2010s due to more fre-
quent acquisitions. This has driven a constant proliferation of novel 
methodologies for automatically processing and interpreting satel-
lite data in the context of landslide mapping. A trend that it is now 
directed towards continental or global scales, fuelled by upcoming 
missions (NISAR and Sentinel-2c and -2d), will further increase 
the availability of data.

Flows and slides remain the easiest types of landslide to detect 
(the ‘Landslides analysed’ section). This is due mainly to the size 
and characteristic shape of the landscape area affected. Falls and 
topples are more challenging to identify unless high-resolution 
satellite data is available. This is due to their small footprint on the 
environment and tendency to occur on steep slopes which might 
be in the shadow of the satellite line of sight. Conversely, DSGSD 
despite being large events are usually very slow and do not leave 
visible markers in the environment as vegetation can quickly cover 
the unstable area.

With reference to techniques, our literature analysis (the ‘Tech-
niques used’ section) reveals that until the 2020s, the combinations 
of satellite data and investigation methods used are of the same 
order of magnitude as published articles. This implies that there 
is no predominance of one specific mapping method, as already 
noted in Mondini et al. (2021). Such fragmentation of techniques, 
whose programming code is not usually available, indicates the nar-
row interest of scientists to experiment and test their own mapping 
techniques without any strategic interest or effort towards a com-
mon pathway for improving EO landslide mapping. However, the last 
few years have seen the extensive use of AI, specifically CNN, where 
code is publicly released in online repositories; recent initiatives 
such as Landslide4Sense (https://​www.​iarai.​ac.​at/​lands​lide4​sense/, 
accessed on 1/4/2023) signal a change in working practice towards 
common efforts in sharing best practices. In order to contribute to 
this, we recommend and encourage repeating detection and mapping 
experiments comparing different quantitative methods in different 
geomorphological settings.

AI has proven so far to provide the best results in terms of map-
ping accuracy (Prakash et al. 2020). A substantial number of limita-
tions, not related to the technique itself, exist for AI models to be 
extended at a global scale with different geological, geomorphologi-
cal, and climatic settings. These limitations include (i) availability 

https://constellate.org/
https://constellate.org/
https://books.google.com/ngrams/
https://books.google.com/ngrams/
https://trends.google.com/trends/
https://www.iarai.ac.at/landslide4sense/
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of large freely available computing capabilities that support CNN 
architectures and (ii) data latency between an event and the first 
satellite image becoming available, limiting the usefulness of land-
slide maps during emergency responses. The timing of suitable 
datasets for an initial evaluation of landslide disaster impacts will 
depend on the timing of an event relative to acquisition schedules 
of the satellite platforms and their uploading time on the data hubs. 
The delay can be in the order of days or weeks in the worst-case 
scenario according to atmospheric conditions (e.g. cloud cover dur-
ing or following a rainfall-triggered mass-wasting event or smoke 
from long-burning wildfires) and seasonal considerations. In this 
regard, integration of SAR imagery with, for example, optical data 
is a favourable approach. (iii) The absence of DTM data following a 
landslide is a limiting and almost inevitable factor at the moment. 
Most of the works that include geomorphometric parameters for 
mapping landslides are actually based on elevation models that 
precede the event, such as the SRTM produced in 2000 that are used 
for filtering out portions of a region like flat areas (Handwerger 
et al. 2022), or as training factors (Yang et al. 2022). The possibil-
ity of including DTMs at global scale, updated at regular intervals, 
and with resolutions able to capture small events (in the orders of 
thousands of square metre) would represent the breakthrough step 
for adding geomorphometric parameters to spectral information, 
but such type of data does not currently exist. This last step will in 
turn provide enough information to retrieve, not just the location, 
but also the (iv) size and speed of the landslide, difficult param-
eters to constrain, especially in the absence of geomorphometric 
information.

Conclusions
In this work, three decades of literature data on EO applied to land-
slide mapping has been analysed. The growing accessibility to satel-
lite data along with processing software and platforms is driving a 
surge in new techniques with more accurate results. These results 
have allowed researchers to collect and compare data from differ-
ent constellations and techniques on different landslide types and 
sizes and in various geomorphological settings, while supporting 
the use of open-available platforms such as the NASA Global Land-
slide Catalog (accessed on 1/4/2023). We envisage that additional 
improvements can be reached in the short term involving topics 
beyond the field of EO and landslide research, such as Citizen Sci-
ence. Data mining from news and social media is indeed a promis-
ing support to constrain time and spatial location where satellite 
data can be analysed (Pennington et al. 2022). Having rapid infor-
mation on landslide events is a key factor, especially during disaster 
response activities when emergency responders need information 
on safe/unsafe areas and where support needs to focus. This brings 
us to the second and final point. Research is still required if these 
tools are to be effective in an operational environment, for example, 
through the establishment of common guidelines on the mapping 
of landslides with satellite data (e.g. during the training of the AI 
models which are now becoming predominant). With this regard, 
one limiting factor is the lack of expertise needed by scientists 
to communicate the results to a wider and non-technical audi-
ence and the capability to meet end user requirements (e.g. for 
civil protection agencies, land managers, and emergency respond-
ers). However, the last few years of work provide promising trends 
towards the consistent use of AI, and we do believe that the next 5 

to 10 years will see the development of more landslide inventories 
with CNN-based techniques. The development of more complete 
and regularly up-to-date inventories will (i) allow a deeper under-
standing of landslide location, type, volume, and run-out distances 
needed to advance our understanding of the physical process itself 
and (ii) improve our knowledge on the spatio-temporal relation-
ships between landslides and other natural hazards (e.g. floods and 
earthquakes) and key information for establishing possible trig-
gering and cascading effects during multi-hazard events. Finally, 
by integrating these multi-hazard outputs, (iii) policy makers and 
disaster risk reduction specialists will have more accurate and com-
plete information during the decision-making process.
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