
     

LETTER • OPEN ACCESS

A cross-regional analysis of red-backed shrike
responses to agri-environmental schemes in
Europe
To cite this article: Stephanie Roilo et al 2024 Environ. Res. Lett. 19 034004

 

View the article online for updates and enhancements.

You may also like
Effect of Intermolecular Interaction of
Compound Surfactant on Particle Removal
in Post-Cu CMP Cleaning
Lijing Qu, Baohong Gao, Xuanshi Wang et
al.

-

A new method of image encryption using
advanced encryption Standard (AES) for
network security
Saba Inam, Shamsa Kanwal, Rabia
Firdous et al.

-

Memristive chaotic system-based hybrid
image encryption application with AES and
RSA algorithms
M Emin Sahin

-

This content was downloaded from IP address 192.171.199.129 on 04/04/2024 at 16:00

https://doi.org/10.1088/1748-9326/ad264a
https://iopscience.iop.org/article/10.1149/2162-8777/ac08d2
https://iopscience.iop.org/article/10.1149/2162-8777/ac08d2
https://iopscience.iop.org/article/10.1149/2162-8777/ac08d2
https://iopscience.iop.org/article/10.1088/1402-4896/ad0944
https://iopscience.iop.org/article/10.1088/1402-4896/ad0944
https://iopscience.iop.org/article/10.1088/1402-4896/ad0944
https://iopscience.iop.org/article/10.1088/1402-4896/acdba0
https://iopscience.iop.org/article/10.1088/1402-4896/acdba0
https://iopscience.iop.org/article/10.1088/1402-4896/acdba0
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstAlSkKRBFg1YDPWZWcE-xXILmbSR7qc7VboRaAGyygoMJYqmZDT5KpvYfAyxyLq6Ntcf-7talfAvOUfXSYhPJItGivo6e7Qn-QEEETqiES1NPMdTi77egRkoa3es9hXTfdDhxrOstyNxLUxW00UCcGKrhbZYRwUzbaWRHgBLOt6Y8BxZ51N132g8YoGU5tpiLTrVqxh_lNpUZ7XPNjJxfcMDnAFHwvYE1v_3vZGASvHhgPY8FiyqEeoHDeIFVO3cqxtjCf66XyncxodhhUGWB8TW-828bLWCultW5wjxMJYmsJqD1sw5epAfMkVgbwl72xAHFYa9li4ZpBhUUMaeo&sig=Cg0ArKJSzEM6uDpd8Ia8&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Environ. Res. Lett. 19 (2024) 034004 https://doi.org/10.1088/1748-9326/ad264a

OPEN ACCESS

RECEIVED

4 August 2023

REVISED

21 December 2023

ACCEPTED FOR PUBLICATION

5 February 2024

PUBLISHED

15 February 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

A cross-regional analysis of red-backed shrike responses to
agri-environmental schemes in Europe
Stephanie Roilo1,∗, Rebecca Spake2, James M Bullock3 and Anna F Cord1

1 Chair of Computational Landscape Ecology, TUD Dresden University of Technology, Helmholtzstr. 10, 10169 Dresden, Germany
2 School of Biological Sciences, University of Reading, RG6 6EX Reading, United Kingdom
3 UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
∗ Author to whom any correspondence should be addressed.

E-mail: stephanie.roilo@tu-dresden.de

Keywords: context dependency, farmland birds, landscape structure, spatial analysis, species distribution models, semi-structured data

Supplementary material for this article is available online

Abstract
Agri-environmental schemes (AES) are the main policy tool to counteract farmland biodiversity
declines in Europe, but their biodiversity benefit varies across sites and is likely moderated by
landscape context. Systematic monitoring of AES outcomes is lacking, and AES assessments are
often based on field experiments encompassing one or few study sites. Spatial analysis methods
encompassing broader areas are therefore crucial to better understand the context dependency of
species’ responses to AES. Here, we quantified red-backed shrike (Lanius collurio) occurrences in
relation to AES adoption in three agricultural regions: Catalonia in Spain, the Mulde River Basin in
Germany, and South Moravia in the Czech Republic. We used pre-collected biodiversity datasets,
comprising structured and unstructured monitoring data, to compare empirical evidence across
regions. Specifically, in each region we tested whether occurrence probability was positively related
with the proportion of grassland-based AES, and whether this effect was stronger in simple
compared to complex landscapes. We built species distribution models using existing field
observations of the red-backed shrike, which we related to topographic, climatic, and field-level
land-use information complemented with remote sensing-derived land-cover data to map habitats
outside agricultural fields. We found a positive relationship between AES area and occurrence
probability of the red-backed shrike in all regions. In Catalonia, the relationship was stronger in
structurally simpler landscapes, but we found little empirical support for similar
landscape-moderated effects in South Moravia and the Mulde River Basin. Our results highlight
the complexity of species’ responses to management across different regional and landscape
contexts, which needs to be considered in the design and spatial implementation of future
conservation measures.

1. Introduction

Farmland covers almost half of Europe’s land area,
and is experiencing major biodiversity losses due
to agricultural intensification, changes in land-use
and landscape structure and farmland abandon-
ment (Queiroz et al 2014, Kehoe et al 2017, Reif
and Vermouzek 2019). Agri-environmental schemes
(AES) are a major policy tool of the European
common agricultural policy, designed to halt the
deterioration of agroecosystems (Batáry et al 2015).

Participation in AES is voluntary, and participating
farmers are compensated for income losses associ-
ated with reducing farming intensity and maintain-
ing or creating landscape elements such as tree lines,
hedgerows and wetlands (Batáry et al 2015).

AES are among the biggest conservation
expenditures in Europe (Batáry et al 2015). However,
their effectiveness in enhancing biodiversity is
repeatedly questioned, as different studies have
found mixed support (Kleijn and Sutherland 2003,
Concepción and Díaz 2019). While differences in
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study design may be one reason underpinning appar-
ent variation in AES outcomes (Josefsson et al 2020),
AES effectiveness is also likely moderated by the land-
scape context (Kleijn et al 2011). The intermediate
landscape-complexity hypothesis (Tscharntke et al
2012) postulates that AES effectiveness is highest in
structurally simple, rather than in extremely simpli-
fied or very complex landscapes. This is due to floor
and ceiling effects, wherein AES measures cannot
enhance biodiversity in highly modified, ecologically
depleted landscapes, or effects are negligible in com-
plex landscapes where biodiversity is already high
(Tscharntke et al 2012). A meta-analysis by Batáry
et al (2010) found cross-taxon evidence supporting
this hypothesis in cropland but not in grassland areas,
whereas in the synthesis by Scheper et al (2013) pol-
linators responded more positively to AES in simple
compared to cleared or complex landscapes across
agricultural land-use types, but with larger effect
sizes in croplands than in grasslands. Farmland birds
also responded more strongly to cropland-based AES
in the synthesis by Staggenborg and Anthes (2022).
This highlights the need for further research on how
to improve the effectiveness of grassland-based AES.

Combining effect sizes from very different land-
scape contexts, study designs and taxa presents a
challenge to meaningful interpretation and general-
isation of such syntheses (Spake et al 2022). High
variability in responses to AES may arise from over-
looked effect modifiers, differences in spatial scales
or in baseline biodiversity across studies (Spake et al
2022). Formal full-data analyses are therefore better
suited for modelling context-dependent variations in
ecological effects (Spake et al 2022, 2023). However,
data availability limits large-scale, spatially-explicit
empirical assessments due to a lack of systematic
monitoring of AES impacts on biodiversity across
Europe (Pe’er et al 2022). As a consequence, most
AES studies rely on field observations collected in
one or few regions (Hiron et al 2013, Concepción
and Díaz 2019, Sharps et al 2023), typically within
the same country (but see Concepción et al 2012,
Kleijn et al 2006). An alternative approach is to use
pre-collected biodiversity data from existing national
monitoring schemes or from semi- or unstructured
databases (i.e. opportunistic observations collected
without following formal sampling protocols; Arazy
and Malkinson 2021). In this case, additional effort
is required to ensure the quality of the data and to
correct for biases in monitoring effort and detec-
tion probability (Arazy and Malkinson 2021). Here,
we used bird observations from three (sub)national
biodiversity databases and field-level land-use data to
study the responses of the red-backed shrike (Lanius
collurio) to the area of grassland-based AES. These
schemes involve the extensive management of per-
manent grassland, such as reduced mowing or graz-
ing, or the protection of species-rich fields. We used

species distributionmodels tomodel the effect of AES
and other environmental covariates on the shrike’s
occurrence probability in three agricultural regions
located in Spain, Germany and the Czech Republic.
Moreover, we investigated the context dependency
of AES effectiveness in these three regions using
a recently developed analytical framework (Spake
et al 2019). Specifically, we sought to: (i) quantify
relationships between the area of grassland-based
AES and red-backed shrike occurrence across three
study regions, (ii) evaluate whether AES yield lar-
ger increases in occurrence probability in structur-
ally or compositionally simple landscapes, relative
to complex landscapes, and (iii) determine whether
(landscape-moderated) AES relationships are sim-
ilar across regions. Such understanding is crucial to
inform future land-management decisions and to
improve the spatial allocation of AES to maximise
their effectiveness.

2. Methods

2.1. Study regions
Our analysis encompassed three study regions in
Europe: Catalonia (32 106 km2) in Spain, the Mulde
River Basin (5814 km2) in Germany, and South
Moravia (2089 km2) in the Czech Republic (figure 1).
The regions vary considerably in their climatic and
topographical parameters and encompass different
agricultural systems (Beckmann et al 2022). Cropland
is the predominant land-cover type in the Mulde
River Basin and in South Moravia. In contrast,
Catalonia’s farmland is more evenly split between
cropland, fruit orchards (including olive, nut, citrus
groves and vineyards), and grassland. In all regions,
grasslands are abundant in the mountainous areas,
i.e. in the Ore Mountains in the Mulde River Basin,
in the White Carpathians in South Moravia, and in
the Pyrenees in Catalonia. In 2019, 45% out of the
317 km2 of grassland in South Moravia was under
AES management; 18% out of the 1154 km2 in the
Mulde River Basin, and 2.5% out of 5215 km2 in
Catalonia.

2.2. Study species and datasets
We selected the red-backed shrike, a carnivorous pas-
serine, as study species as its breeding range spans
most of Europe and its observations are abundant
across the three regions in the utilised datasets. High-
quality habitats for this species consist of open grass-
lands and bare areas with scattered bushes, shrubs
or low trees that provide perches and hunting posts
(BirdLife International 2023), making it an ideal spe-
cies to investigate the regulatory effects of landscape
complexity on grassland-based AES. Its population
declined dramatically between 1970 and 1990, likely
due to loss of habitat and food resources resulting
from agricultural intensification, though in Europe
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Figure 1. Location of the three study regions in Europe and their land-cover maps (see the methods subsection Environmental
data for data sources and preparation). Satellite data source: © ESRI World Imagery.

numbers appear to have stabilised since (BirdLife
International 2023).

We collated red-backed shrike records and those
of other farmland species to generate pseudo-absence
points, assuming that grid cells with records of
other farmland birds were monitored and that the
red-backed shrike was absent if not recorded. This
assumption is reasonable for the red-backed shrike,
a readily-identifiable species in both professional and
citizen science projects (Dylewski et al 2017). This
‘target-group approach’ is a common and effective
method to generate pseudo-absences and correct for
spatial biases in biodiversity data, thus improving
model performance, when monitoring effort is dis-
continuous (Phillips et al 2009, Ranc et al 2017).
For the target group, we used species included in the
European farmland bird index (Gamero et al 2017),
which we complemented, separately for each region,
with other common farmland species typical of Spain
(Traba and Morales 2019), Germany (Busch et al
2020), or the Czech Republic (Hanzelka et al 2015).

The complete list of species for each region is repor-
ted in table S1.

The datasets are sourced from (sub)national
biodiversity databases curated by the Catalan
Ornithological Institute (Catalonia), the Saxon State
Agency for Environment, Agriculture and Geology
(Mulde River Basin) and the Nature Conservation
Agency of the Czech Republic (South Moravia). They
include observations from standardised monitoring
projects (breeding bird and Natura2000 monitoring)
and opportunistic observations (e.g. from citizen sci-
ence projects and special interest groups), which have
been collated in the databases by the aforementioned
institutions. The Catalan bird data was downloaded
from the Global Biodiversity Information Facility
in the form of a 1 × 1 km grid for the year 2019
(GBIF.org 2021). The bird data for the Mulde River
Basin and for South Moravia were directly provided
by the owning institutions as geolocalised point
records. We filtered all datasets to remove obser-
vations with incomplete scientific names or missing
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year flags. To harmonise the spatial resolution of our
models across regions, we aggregated the German
and Czech point datasets to a 1 × 1 km grid (where
grid cells containing a point observation were used
as presences), matching the structure of the Catalan
dataset. While the Catalan dataset for 2019 has a
fairly good coverage of the whole region (figure S1),
the spatial coverage in the German and Czech data-
sets varied considerably across years (figures S2 and
S3). To increase sample size and spatial coverage in
these two regions, we pooled data from 2016 to 2019,
for which data on AES adoption was also available.
If the same grid cell was monitored multiple times,
we retained the most recent record. While species–
environment relationships may vary across years,
the red-backed shrike is a philopatric species, gen-
erally returning to the same breeding sites (Pasinelli
et al 2007). Therefore, combining data from this lim-
ited time period is unlikely to bias our inferences on
species–environment relationships.

2.3. Environmental data
We collated environmental variables known to influ-
ence the red-backed shrike distribution (Brambilla
et al 2009, Roilo et al 2023). For each 1 km grid cell,
we extracted the mean elevation (m; ELEVATION)
from the Copernicus EU-DEM v1.1 and the max-
imum temperature (◦C, TMAX) and the sum of
mean monthly precipitation (mm, PRECIP) between
May and July, corresponding to the red-backed shrike
breeding period, from the CHELSA Climatologies
1981–2010 V2.1 (Karger et al 2017, 2020). Field-level
information on land use (permanent grassland, crops
or orchards) and adopted AES was available from
the Integrated Administration and Control System
(IACS) data provided by the Ministry of Climate
Action, Food and Rural Agenda of Catalonia, the
Saxon State Ministry for Energy, Climate Protection,
Environment and Agriculture, and the Ministry of
Agriculture of the Czech Republic. We focused on
grassland-based AES and considered all those aimed
at preserving extensively-managed and species-rich
permanent grassland fields by preventing or redu-
cing mowing pressure and the use of fertilisers and
pesticides (table S2). The Catalan IACS data cover
both agricultural and non-agricultural areas, and was
hence used as base layer for the land-cover map
and was complemented with the Copernicus Small
Woody Features (SWF) 2015 layer. In theMulde River
Basin and in SouthMoravia, the IACS data only cover
the agricultural parcels; we therefore rasterised and
overlaid them onto the S2GLC Europe 2017 land-
cover map (Malinowski et al 2020), again comple-
mented by the SWF 2015 layer. From the result-
ing land-cover maps, we calculated the proportion
of area covered by arable land (ARABLE), perman-
ent grassland (GRASS), orchards (fruit and nut orch-
ards, vineyards, olive and citrus groves; ORCHARD),

SWF (SHRUBS), forest and other closed vegetation
(broadleaf and coniferous forests, woodland, moor-
and heathlands; FOREST). Moor- and heathlands are
infrequent in the study regions but were classified as
such as they provide closed ground cover for prey.
Land-cover diversity (LANDDIV) in each grid cell
was calculated using the Shannon diversity index as:

LANDDIV=− Σ pi × ln(pi)

where pi is the relative proportion of land-cover
type i. The finest thematic resolution of the land-
cover rasters was used, so that different e.g. forest
(broadleaf, coniferous) and orchard types (fruits,
nuts, vineyards, etc) counted as different land-cover
types. We calculated the proportion of grassland-
based AES from the IACS data for the year match-
ing the bird monitoring data, which was 2019 in
Catalonia and the year in which each grid cell was
last monitored (between 2016 and 2019) in theMulde
River Basin and South Moravia.

Prior to modelling, we filtered the datasets to
restrict our analysis to areas which could plausibly
constitute red-backed shrike habitat. As we focused
on grassland-based AES, we excluded grid cells with
less than 1 ha of permanent grassland, which is the
approximate territory size of the species (Brambilla
et al 2009). The Catalan dataset (Roilo 2023) was
additionally filtered to remove grid cells at elevations
below 200 m a.s.l. and above 2000 m a.s.l., which are
outside the altitudinal range limits of the red-backed
shrike in Catalonia (Rodríguez-Franch et al., 2021).
Data preparation and statistical analyses were per-
formed in R version 4.1.3 (R Core Team 2022; Roilo
2024).

2.4. Statistical analysis
We used generalised linear models (GLMs) to model
the relationship between shrike occurrence and AES
area in the three regions. We were primarily inter-
ested in the effect of AES and its potential interaction
with landscape-structure moderators (SHRUBS and
LANDDIV), which necessitated common support of
AES across the ranges of SHRUBS and LANDDIV
(Hainmueller et al 2019, Duncan and Kefford 2021).
This means that, to compute the marginal effect of
AES at a given value x0 of a moderator, there needs
to be sufficient observations of the moderator close
to x0 and variation in AES at x0 (Hainmueller et al
2019, Duncan and Kefford 2021). To ensure this, and
check whether the interaction effect between AES and
its moderator(s) was reasonably linear on the scale
of the linear predictor as assumed by the GLM, we
produced linear interaction diagnostic plots using the
R package interflex (Hainmueller et al 2019, 2021).
We detected a lack of common support at the upper
range of AES in all regions, as grid cells contain-
ing large areas of AES were rare (figures S4–S9). We
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therefore trimmed the datasets by setting upper lim-
its to the range of AES at the 90th percentile of its
value distribution, reducing the datasets to 2016 data
points (1 km2 grid cells) in Catalonia, 1113 in the
Mulde River Basin, and 789 in South Moravia. To
test the robustness of the results to different trim-
ming approaches, we conducted a sensitivity ana-
lysis using two additional cutoff values, the 95th and
99th percentiles. The results were qualitatively sim-
ilar across trimming approaches (tables 1, S3 and S4).
Additionally, we checked that AES were not highly
correlatedwith SHRUBS and LANDDIV, as this could
lead to spurious interactions (Duncan and Kefford
2021). Absolute Spearman’s correlation coefficients
were always <0.2 between AES and LANDDIV and
between AES and SHRUBS across all regions (figures
S10–S12).

We standardised (z-scored) all explanatory vari-
ables and then fitted a global GLMwith binomial dis-
tribution with the following model structure:

shrike_occurrence∼AES+ARABLE+GRASS+
ORCHARD+ FOREST+ SHRUBS+ LANDDIV+
TMAX+ PRECIP+ ELEVATION+AES:SHRUBS+
AES:LANDDIV.

To test for interactive effects of landscape com-
plexity on AES effectiveness, we included two inter-
action terms: one for structural complexity (approx-
imated by the SHRUBS cover) and one for compos-
itional complexity (LANDDIV). In the Mulde River
Basin, ORCHARD was excluded from the predictors
since the area covered by permanent cultures is negli-
gible. We fitted the global model and all its submod-
els, ranking them by their Akaike information cri-
terion score corrected for sample size (AICc) using
theMuMIn package (Barton 2022). Highly correlated
pairs of variables (i.e. with an absolute Spearman’s
correlation coefficient > 0.7, figures S10–S12) were
excluded from the same model. For the best model
(with lowest AICc) in each region, diagnostic plots of
model residuals were produced using the DHARMa
package (figures S13–S15; Hartig 2022). We tested
for spatial autocorrelation in the model residuals by
means of spline correlograms using the ncf package
(figures S16–S18; Bjornstad 2022). In theMulde River
Basin, spline correlograms showed evidence for spa-
tial dependence, so we refitted the models as general-
ised additive models with a Gaussian process spline
function of latitude and longitude using the mgcv
package (Wood 2017, 2020). We set the smooth-
ing basis dimension (k) to 150 and confirmed its
adequacy using the gam.check( ) function of the same
package.

To identify the most important predictors of red-
backed shrike occurrence in each region and eval-
uate the evidence for a landscape-moderated effect
of AES, we calculated the relative importance val-
ues for each predictor based on the sum of model
weights across all models with substantial empirical
support (with ∆AICc < 2; Burnham and Anderson

2002). To display the effect of each predictor, and of
their interactions, on the occurrence probability of
the red-backed shrike, we produced conditional plots
graphed on an additive scale (probability), rather
than the modelled scale (for ease of interpretation;
Spake et al 2023), using the visreg package (Breheny
and Burchett 2017). We produced maps of the prob-
ability of shrike occurrence by projecting the models
to two land-use scenarios: the current AES adoption
scenario, based on 2019 IACS data, and a hypothet-
ical scenario in which all permanent grassland fields
are converted to AES. Lastly, we produced an ‘effect
map’ (Spake et al 2019), as the arithmetic difference
between the two scenarios’ projections, which visual-
ises the change in occurrence probability of the shrike
between the two scenarios, i.e. after the conversion of
all grassland to AES.

3. Results

AES had a positive effect on shrike occurrence prob-
ability in all modelled regions (table 1). SHRUBS
had positive coefficients across all regions and was
included in all models with ∆AICc < 2 (relative
importance score= 1 in all regions). In Catalonia and
in South Moravia the interaction term AES:SHRUBS
was selected among the predictors of top-ranking
models with a negative coefficient, supporting the
hypothesis of a higher AES effectiveness in struc-
turally simpler landscapes. LANDDIV was positively
related to shrike occurrence probability in all regions.
The interaction term AES:LANDDIV was included
in the 5th-ranked model for Catalonia with a low-
valued but positive regression coefficient (0.03; table
S5), indicating higher AES effectiveness inmore com-
positionally diverse landscapes.

The adjusted R2 was low in all Catalan (0.20) and
South Moravian (0.05–0.07) models, but was higher
in the models of the Mulde River Basin (0.58–0.60),
in which the spatial Gaussian process spline explained
much of the variation in the data (tables S5–S7).

The conditional plots of the best model in
Catalonia showed that the positive effect of AES on
the occurrence probability of the red-backed shrike
was lower in landscapes with a high SHRUBS cover,
even turning negative when SHRUBS was very high
(figure 2). On the other hand, increasing LANDDIV
had an opposite, though much less pronounced
effect, with higher AES effectiveness in landscapes
with higher land-cover diversity.

In theMulde River Basin, none of themodels with
∆AICc < 2 included an interaction term. The best
model showed no evidence of a landscape-moderated
effect of SHRUBS on AES (figure 3). Confidence
intervals in the conditional plots were broad, likely
because of the flexible Gaussian process spline added
to the model to correct for spatial autocorrelation in
the model residuals.
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Table 1. Relative importance scores of model predictors, based on the sum of model weights across all models with∆AICc< 2,
calculated separately for each region and after trimming the dataset to the 90th percentile of AES. Direction of effect is+ if the predictor’s
estimated coefficient is positive and− if it is negative. Estimated coefficients of all models are presented in tables S5–S7. Relative
importance scores marked with bold indicate the predictors included in the best model (with lowest AICc) in each region. The term s(X,
Y, bs= ‘gp’, k= 150, m= 2) is the Gaussian process spline used to correct for spatial autocorrelation in the model residuals.
AES= grassland-based agri-environment schemes; LANDDIV= land cover diversity; SHRUBS= small woody features;
ARABLE= arable land; ELEVATION=mean elevation; FOREST= forest and other closed vegetation; GRASS= permanent grassland;
ORCHARD= fruit and nut orchards, vineyards, olive and citrus groves; PRECIP= precipitation; TMAX=maximum temperature.

Catalonia Mulde River Basin South Moravia

Relative
importance

Direction
of effect

Relative
importance

Direction
of effect

Relative
importance

Direction
of effect

AES 1.00 + 0.26 + 0.61 +
AES:LANDDIV 0.10 +
AES:SHRUBS 1.00 — 0.06 —
ARABLE 0.45 + 1.00 +
ELEVATION 1.00 + 0.14 —
FOREST 1.00 + 0.14 + 1.00 +
GRASS 1.00 + 0.38 + 1.00 +
LANDDIV 0.72 + 0.12 + 0.20 +
ORCHARD 0.87 — 1.00 +
PRECIP 0.88 + 0.14 —
SHRUBS 1.00 + 1.00 + 1.00 +
TMAX 0.38 +
s(X, Y, bs= ‘gp’, k= 150,m= 2) 1.00 /

In South Moravia, the best model did not include
any interaction term, and the conditional plots of AES
at low, middle and high values of SHRUBS did not
display any large interactive effect between the two
variables (figure 4).

Themaps of effect produced using the best model
for each region showed large increases in occurrence
probability in all regions (figure 5; figure S19). While
in the Mulde River Basin and in South Moravia the
changes in occurrence probability were only posit-
ive and varied in strength depending on the amount
of converted grassland (figure S19), in Catalonia the
map of effect showed negative changes following
grassland conversion to AES in certain landscapes
with very high SHRUBS cover (e.g. in the northern
tip of Catalonia; figure 5).

4. Discussion

4.1. Implications of the utilised bird datasets
Our analysis used existing bird monitoring data
derived from (sub)national datasets integrating mul-
tiple data sources. As such, we had no control over
the spatial and temporal patterns in the monitor-
ing effort, and our post-hoc study design (i.e. focal
and target-group species selection, dataset filtering
and trimming to reach substantial common support)
aimed to correct for such biases and to illustrate
approaches to using ‘imperfect’ biodiversity data.
Such approaches are particularly relevant as unstruc-
tured biodiversity databases are increasingly used
in research and hold great potential for ecological
applications (Brown and Williams 2019, Heberling
et al 2021). While several studies have investigated

AES effects on bird abundance or species diversity,
the majority of studies are conducted at relat-
ively small extents, typically in cropland areas in
the United Kingdom, Germany or the Netherlands
(Staggenborg and Anthes 2022, but see Billeter et al
2008, Concepción et al 2012, Sasaki et al 2020 for
cross-country examples). Here, we collected cross-
regional evidence of AES effects on red-backed shrike
occurrence. This was made possible by the availabil-
ity of existing bird data, as extensive fieldwork span-
ning three large regions would not have been feasible.
A main concern of using semi-structured datasets is
whether causal relationships can be reliably inferred
(Josefsson et al 2020). In this paper, we defined AES
effectiveness as the estimated regression coefficient of
AES in our models, rather than as an effect size meas-
ured in a field experiment. Nonetheless, our method-
ology is reliable in detecting and describing correlat-
ive relationships betweenAES cover and shrike occur-
rence across different regions, which we detail in the
next section.

4.2. Cross-regional variability in
landscape-moderated AES effectiveness
In all regions, we found positive relationships
between the area of AES and the probability
of red-backed shrike occurrence. These find-
ings are important as they contribute to the rel-
atively scarce literature on AES assessments in
grasslands: the meta-analysis by Staggenborg and
Anthes (2022) on effect size estimates of European
AES on farmland birds reviewed 129 studies,
of which only 27 were in grassland-dominated
areas.
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Figure 2. Conditional plots displaying the effect of the predictors included in the best model for Catalonia on the occurrence
probability of the red-backed shrike. Relationships were graphed for each predictor with all other covariates held at their medians.
To visualise interactive effects of SHRUBS and LANDDIV with AES, plots describing the effect of AES on occurrence probability
were produced for the 10th, 50th and 90th percentiles of their value distributions. As logistic regressions are inherently interactive
(Spake et al 2023), plots were produced also for the interaction term AES:LANDDIV, though it was not among the predictors of
the best model. Shading shows average estimated standard errors. Ticks on the upper and lower border of the plots represent data
points. Asterisks indicate whether predictors are significant at the 0.05 (∗), 0.01 (∗∗), or 0.001 (∗∗∗) levels.

Our results showed that the positive effect of AES
on shrike occurrence probability diminished at high
levels of structural landscape complexity (SHRUBS),
though at varying degrees across regions. Differences

in the environmental subniches among shrike popu-
lations may be the cause (Chandler et al 2022). The
red-backed shrike is considered a farmland species
throughout Europe, but has been shown to inhabit
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Figure 3. Conditional plots displaying the effect of the predictors included in the best model for the Mulde River Basin on the
occurrence probability of the red-backed shrike. Relationships were graphed for each predictor with all other covariates held at
their medians. Conditional plots for the spatial covariates (X and Y) included in the Gaussian process spline are also shown. The
interaction term AES:SHRUBS was not among the predictors of the best model, however logistic regressions are inherently
interactive (Spake et al 2023). Thus, to visualise potential interactive effects of SHRUBS with AES, plots describing the effect of
AES on occurrence probability were produced for the 10th, 50th and 90th percentiles of the value distribution of SHRUBS.
Shading shows average estimated standard errors. Ticks on the upper and lower border of the plots represent data points.
Asterisks indicate whether predictors are significant at the 0.05 (∗) level.

forest clear-cuts in Scandinavia, displaying high plas-
ticity in its habitat preferences (Bakx et al 2020).
Applying our analytical framework to boreal habitats
could clarify how landscape context moderates hab-
itat suitability of different clear-cuts for this species.

Cross-regional differences in landscape-
moderated effects may also be due to differences in
landscape configuration. While field size does not
vary much within regions, it is on average much
smaller in Catalonia (0.7 ha) than in the other two
regions (∼6 ha; Beckmann et al 2022), resulting in a
lower edge density in the latter. This or other factors,
like baseline land-use intensity or ecological contrast
(i.e. the difference in resource availability between

AES and the surrounding conventionally-managed
fields, Marja et al 2019), could be affecting the hab-
itat selection of the red-backed shrike or masking
landscape structure effects in the Mulde River Basin
and in South Moravia.

Compositional landscape complexity
(LANDDIV) was not often selected as a predictor
in our models, and only in Catalonia we detected an
interactive effect of LANDDIV and AES. Contrary
to our expectations, this interaction was positive,
although weak. This may be because unsuitable land-
cover types (e.g. urban areas, water bodies) also con-
tribute to land-cover diversity, but do not provide
resources for the shrike. Grouping land-cover types
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Figure 4. Conditional plots displaying the effect of the predictors included in the best model for South Moravia on the occurrence
probability of the red-backed shrike. Relationships were graphed for each predictor with all other covariates held at their medians.
The interaction term AES:SHRUBS was not among the predictors of the best model, however logistic regressions are inherently
interactive (Spake et al 2023). Thus, to visualise potential interactive effects of SHRUBS with AES, plots describing the effect of
AES on occurrence probability were produced for the 10th, 50th and 90th percentiles of the value distribution of SHRUBS.
Shading shows average estimated standard errors. Ticks on the upper and lower border of the plots represent data points.
Asterisks indicate whether predictors are significant at the 0.05 (∗), 0.01 (∗∗), or 0.001 (∗∗∗) levels.

into (species-specific) functional groups tomap func-
tional landscape heterogeneity (Fahrig et al 2011)
could be one way to test this.

4.3. Policy andmanagement implications
Our modelling framework may be particularly use-
ful for designing and optimising the spatial imple-
mentation of measures targeting selected species,
like priority and specialist bird species (Zmihorski
et al 2016, Sharps et al 2023). We have shown that
even single species’ responses to management are
complex and variable across different regions, and
that this context-dependency needs to be accounted

for to maximise conservation outcomes. AES design
should allow for an optimised spatial targeting that
can be adapted according to regional and land-
scape characteristics (Díaz and Concepción 2016).
Advisory services and farmers’ training can help
ensure that the right measures are applied in the
right places (Hölting et al 2022, Pe’er et al 2022).
Co-designed measures (between practitioners and
researchers; Hölting et al 2022) can also be an effect-
ive way of incorporating regional- and landscape-
context knowledge, such as that presented in our
study, into the design and allocation of future
AES.

9
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Figure 5. Predictions of occurrence probability of the red-backed shrike in Catalonia under the current, as of 2019, AES adoption
(a), if all permanent grassland was converted to AES (b), and the change in occurrence probability after conversion to AES (c).
Only grid cells with at least 1 ha of grassland and with an elevation between 200 and 2000 m a.s.l. are displayed.

5. Conclusions

This study illustrates how rigorous methodological
workflows in spatial biodiversity analyses can cor-
rect for biases in imperfect datasets to answer com-
plex ecological questions and inform management
actions. We found consistently positive relationships
between grassland-based AES and red-backed shrike
occurrence probability, and that structural landscape
complexity moderates AES effectiveness to varying
degrees across different regions. Cross-regional vari-
ations may depend on varying species–environment
relationships or cross-regional differences in edge
density or land-use intensity. Accounting for such
context-dependencies is crucial for improving the
cost-effectiveness of conservation actions. The design
of future AES should be flexible enough to allow for
regional and local adaptation and improved spatial
targeting.
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