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Reto Schmucki c, Pedro G. Blendinger a,b 

a Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET, CC 34, Yerba Buena, Tucumán 4107, Argentina 
b Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina 
c UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK   

A R T I C L E  I N F O   

Keywords: 
Apis 
Crop pollination 
Over pollination 
Pollination deficit 
Pollen deposition 
Pollinator effectiveness 

A B S T R A C T   

Pollination management for highbush blueberry crops (Vaccinium spp.) generally depends on beehives stocked at 
variable densities, with little consideration given to optimal pollination levels dictated by the mating system of 
the crop. This approach limits our capability to accurately forecast the consequences of animal pollination on 
crop productivity and can result in pollination shortfalls. Using experimental and observational data, we esti-
mated optimal pollination thresholds for blueberry crops that maximize fruit diameter. We manipulated stig-
matic pollen loads and used Bayesian models to evaluate the effects on fruit diameter. In this way, we were able 
to define thresholds for deficient, optimal and supraoptimal pollen deposition in blueberries. These thresholds 
were then evaluated under field conditions in blueberry farms, and used simulations to estimate the minimum 
number of honeybee visits required for optimal blueberry pollen deposition. A quadratic relationship described 
fruit diameter in response to stigmatic pollen load, with optimal pollen deposition peaking at 192 pollen tetrads 
and ranging between 112 and 274. Our simulations showed that a flower visitation rate guaranteeing, on 
average, six to seven honeybee visits per flower (i.e. flower visitation rate of 0.6 visits per 100 flowers h− 1) would 
result in 60% of the plant flowers receiving optimum stigmatic pollen deposition. Higher numbers of honeybee 
visits increased the probability that blueberry stigmatic pollen loads were below the optimum and the probability 
that smaller berries were produced. We show that adverse pollination scenarios in blueberries can occur through 
different pathways, either because of a deficit or an excess of pollination that directly impacts the quality of the 
fruits produced. By identifying thresholds, we provide a pragmatic basis for adaptive management of honeybees 
based on average visitation rates that are most suitable for growers to manipulate. Our study provides new 
insights into the mechanisms behind pollination, fruit production, and the contribution of honeybee to blueberry 
crops. We highlight that systematic pollination management through flower visitation monitoring and clear 
optimal pollination targets can help prevent detrimental pollination scenarios.   

1. Introduction 

Highbush blueberry, Vaccinium corymbosum L., is a mass flowering 
crop dependent on animal-mediated pollination (Eeraerts et al., 2023). 
In general, increasing pollen deposition through flower visitation pro-
motes blueberry production and reduces ripening time (Danka et al., 
1993; Dogterom et al., 2000; Drummond, 2019; Nagasaka et al., 2022). 
This pollen demand is mostly covered by stocking honeybee hives ––Apis 
mellifera L.–– in blueberry fields (Bushmann and Drummond, 2020; 
Cavigliasso et al., 2021; Rollin and Garibaldi, 2019), with this species 
providing ~80% of flower visits to blueberry crop along its cultivation 
range (Eeraerts et al., 2023). In the USA alone, the contribution of 

honeybee pollination has an annual economic value of around 400 
million USD for blueberry industry (Reilly et al., 2020). Even with its 
widely acknowledged importance, the management of honeybee polli-
nation in blueberry crops remains simplistic an often relies on growers’ 
intuition or rule-of-thumb for beehive stocking density (e.g., recom-
mendations can range from 1 to 25 beehives ha− 1 (Rollin and Garibaldi, 
2019; Isaacs and Kirk, 2010). The absence of reactive management 
strategies based on target honeybee visitation to cover crop pollen 
deposition demand means that growers may fail to reach optimal 
pollination due to either a shortfall or over pollination (Aizen et al., 
2014). At the very least, are wasting economic resources by stocking 
beehives at higher rates than needed. Moreover, such high levels of 
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honeybee abundance might have unexpected effects on wild pollinator 
communities through resources competition and transmission of path-
ogens (Mallinger et al., 2017). 

Profits in pollinator-dependent crops depend on sufficient stigmatic 
pollen deposition to ensure ovule fertilization, seed development and 
outcrossing in plants (Aizen and Harder, 2007; Garibaldi et al., 2013; 
Drummond, 2019). For many crops, the demand for pollen transfer is 
covered by honeybees which are comparatively easy to manage and are 
estimated to pollinate about 80% of commercial flowering crop species 
(Aizen et al., 2020; Klein et al., 2007). To understand the contribution of 
honeybees to pollination service, researchers commonly use surrogate 
measures of pollination success, including abundance or visitation rate, 
and single-visit pollen deposition (Javorek et al., 2002; Benjamin et al., 
2014). The levels of pollen deposited on crop flowers has received 
considerably less attention (Garibaldi et al., 2014), even though it is 
likely to represent a more accurate measure of pollination service de-
livery (Stavert et al., 2020). Pollen deposition is more closely linked to 
aspects of plant reproduction that determine seed set and, ultimately, 
fruit development and quality (Drummond, 2019). Linking pollen 
deposition and flower visitation in crops provides an opportunity to 
understand the mechanisms underlying pollinator contribution to crop 
productivity and could be the basis for developing management plans 
based on optimal pollination thresholds that can maximize crop pro-
ductivity while reducing hives stocking costs (Garibaldi et al., 2020). 

A precept of pollination management often focuses on saturating 
crop flowers with honeybees hoping to improve productivity profits 
(Eeraerts et al., 2020; Hevia et al., 2021). This assumption has serious 
potential implications for crop production if the relationship between 
honeybee numbers and pollination success is not a simple linear one. 
Instead of a non-saturated linear relationship, growing evidence in-
dicates that the response of crop production to flower visitation rates 
may be best described by a quadratic function (i.e. a ‘hump shaped’ 
relationship, see (Aizen et al., 2020; Rollin and Garibaldi, 2019) 
reflecting an optimum beyond which additional flower visits might 
come at an interaction cost to plants reducing crop productivity (Aizen 
et al., 2020). Supraoptimal pollination levels may result from stigma 
damage, nectar robbing, reduced stigmatic pollen load or pollen tube 
stagnation (Aizen et al., 2014; Harder et al., 2016b; Young and Young, 
1992). All those factors can negatively impact seed set, fruit set and fruit 
quality (Rollin and Garibaldi, 2019; Sáez et al., 2014). Reducing polli-
nation to lower but optimal levels in this scenario would improve ovule 
fecundity and crop production (Rollin and Garibaldi, 2019). Information 
on plant reproduction and pollination effectiveness of main visitors, 
integrated into a pollination management program can, for example, 
help to decide on appropriate stocking densities by removing or relo-
cating beehives based on objective evidence. 

In this study, we aim to estimate levels of pollen deposition and 
honeybee visitation rates that optimize highbush blueberry production 
quality, focusing on fruit diameter as a key metric of the commercial 
value of this crop. We experimentally assessed the relationship between 
blueberry fruit diameter and stigmatic pollen load to define the function 
and potentially identify the thresholds for deficit, optimal, and supra-
optimal pollen deposition. We also evaluated honeybee single-visit 
pollen deposition, and simulated random pollen deposition to estimate 
the number of visits needed to achieve optimal pollen delivery. This 
pollination threshold was then related to observed farm-level pollen 
deposition and honeybee abundance to assess its impact on pollination 
and crop productivity. We focused on honeybees as they account for 
more than 90% of floral visits in blueberry crops of Northern Argentina 
(Ramírez-Mejía et al., 2023a; Ramírez-Mejía et al., 2023b), and are the 
species currently most likely to be actively managed by growers. 
Because blueberry stigma should reach a pollen deposition saturation 
point (Parrie and Lang, 1992), we expect the relationship between fruit 
size and stigmatic pollen load to follow a non-linear function. Hence, if 
blueberries experience over-pollination due to an excess of pollen, we 
expect a quadratic relationship (Morris et al., 2010); otherwise we 

predict that a saturating exponential function will be the best model. In 
any case, we expect the optimal pollination region to be located around 
the vertex or asymptotic point of the quadratic or the saturating expo-
nential function, respectively. We predict that honeybee abundance —as 
a proxy for flower visitation rate— will have variable effects on 
field-level pollen deposition depending on extreme values (Aizen et al., 
2014; Rollin and Garibaldi, 2019; Sáez et al., 2014) and that farms with 
pollen deposition closer to the optimum will produce fruits of higher 
quality. 

2. Methods 

2.1. Study site and system 

We conducted the study during the blueberry bloom season of 2021 
in northwestern Argentina (central point of the studied locality, 
27◦06’01"S – 65◦34’32"W). We selected Snowchaser and Emerald cul-
tivars for the experimental and observational research stages, respec-
tively. Both cultivars are among the most commonly used by growers in 
the region (com. pers. APRATUC —NOA Blueberry Producers 
Association—). The flowering period (June – July) and the harvest 
season (August – November) of the Snowchaser cultivar start about one 
month earlier than most other cultivars. Emerald’s bloom and harvest 
take place in August and September respectively. Both cultivars are self- 
compatible and produce a delayed harvest of small-sized berries in the 
absence of pollinators (Müller et al., 2013). 

2.2. Finding optimal thresholds of pollen deposition 

Our main objective was to assess the relationship between blueberry 
fruit size and pollen deposition. Therefore, we conducted a field 
experiment to maximize the variation in stigmatic pollen load. On one 
farm, we randomly selected 20 plants of the Snowchaser cultivar and for 
each plant we selected four flowering branches that were similar in 
terms of orientation, size and number of flowers. On these branches, we 
applied four treatments: 1) pollination exclusion – this treatment con-
sisted of a nylon mesh bag surrounding the flowers to prevent animal 
pollination; 2) partial pollination – the flowers were excluded with a mesh 
bag, but hand-pollinated once with a brush; 3) free pollination – the 
flowers were exposed to natural pollination; 4) supplemented pollination – 
the flowers were exposed to natural pollination, but were also hand- 
pollinated once. The cross pollen used for hand-pollination was 
collected with a mechanical hand pollinator (VegiBee™, vegibee.com), 
a tool that we used to sonicate flowers and release pollen from flowers of 
randomly chosen plants from the same cultivar and block. When we 
conducted the experiment, Snowchaser was the only cultivar in bloom. 
We monitored three open flowers per treatment on each plant by la-
beling them with numbered tags attached to the pedicel (Ntotal = 240 
flowers). From 12 to 24 h after flower anthesis, when the corolla fell off 
naturally and the extraction of the style had no effect on the probability 
of the flower setting fruit, we detached each style from the flower 
receptacle using small forceps and stored it in an Eppendorf tube con-
taining 70% ethanol. In the laboratory, we used a stereoscope to do a 
transversal cut of the style at the stigma height and placed it on a mi-
croscope slide. We then positioned the stigma in polar view, covered it 
with a drop of Alexander’s stain (Alexander, 1969), allowed it to satu-
rate for one hour, crushed it with a coverslip and counted the pollen 
tetrads under a microscope (40x magnification). When the fruits were 
fully mature, we collected them and measured the equatorial diameter 
with a caliper of 0.05 mm accuracy. See photos illustrating the protocol 
in Appendix A Fig. S1. 

2.2.1. Statistics 
Using the data from the experiment, we fitted Bayesian quadratic 

and saturating exponential models to describe the relationship between 
fruit size and the number of pollen tetrads deposited on the stigma, and 
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used the lowest leave-one-out cross-validation information criterion 
(looic) to select the best-fitting model (Vehtari et al., 2017). For both 
models, we chose a normal distribution for the likelihood function. We 
also defined non-informative priors, Normal(0, 1), for the slope co-
efficients of the quadratic model and Normal(5, 3) for its intercept. 
Regarding the prior probabilities of the saturating exponential function, 
we used a Normal(17, 3) for the parameter denoting the asymptote of 
the function and Normal(0, 1) for the parameters controlling the growth 
rate. In both models, we used an exponential(1) prior distribution for the 
dispersion parameters of the likelihood function. We estimated the pa-
rameters of each model using three chains, 6000 sampling and 500 to 
1000 warmup iterations per model, with a thinning rate of 3. See the 
mathematical notation of the models and additional details on the prior 
probability used in Appendix B sections 1.1 and 1.2. We performed 
posterior predictive checks and used graphical analysis of the residuals 
to evaluate the quality of the models’ fit. Based on the best-fitting model, 
we delineated three pollination categories: pollination deficit, optimal 
pollination, and supraoptimal pollination. We consider pollination deficit to 
occur when increasing stigmatic pollen load increases fruit size (i.e. β >
0); optimal pollination when the relationship stabilizes and additional 
pollen deposition does not influence fruit size (β ~ 0); and supraoptimal 
pollination when the increasing stigmatic pollen load reduces fruit size (β 
< 0). The upper threshold of pollination deficit and the lower threshold of 
supraoptimal pollination delimit the range of optimal pollination and were 
estimated based on the first derivative of the curve, where the slope 
starts to decrease (maximum curvature knee point; Appendix B section 
1.4). The analysis was conducted in R 4.1.2 (R Core Team, 2022) using: 
base, dplyr, readxl, magrittr, cowplot and ggplot2 packages (Bache and 
Wickham, 2020; Wickham et al., 2021; Wickham, 2016; Wickham and 
Bryan, 2019; Wilke, 2020). We fitted the models using Stan 2.21.8 
with the R packages rstan, brms, and rethinking (Bürkner, 2017; McEl-
reath, 2021; Stan Development Team, 2023), estimated R2 following 
Gelman et al. (2019), and estimated the first derivative knee points in 
the non-linear functions using the kneearrower package (Tseng 2020). 

2.3. Number of honeybee visits to achieve optimal pollen deposition 

In the same farm where we did the pollination experiment, we 
conducted another field experiment to evaluate the range of variation in 
per-visit pollen deposition by honeybees. The main objective was to 
estimate the minimum number of honeybee visits required to maximize 
fruit diameter. To do this, we placed nylon mesh bags over flowering 
branches with immature flowers to prevent pollen deposition by polli-
nators. When the flowers were fully open, we removed the bag, cut the 
branch and kept it fresh in water. We then walked through the crop to 
offer the virgin flowers to honeybees. After a single honeybee-visit, we 
isolated the flower, tagged it, and brought the flowering branches to the 
laboratory for a period of at least 12 hours to ensure that the pollen 
tetrads had fully adhered to the stigma (Dogterom et al., 2000). We then 
collected the style and followed the procedure described above to esti-
mate the amount of pollen deposition by honeybees on blueberry 
flowers in a single visit. 

2.3.1. Statistics 
We estimated the posterior distribution of honeybee pollen deposi-

tion on blueberry flowers in a single visit using Bayesian quadratic 
approximation (Appendix B Sections 2–2.1). We then calculated 50 
posterior predictive distributions and used them to conduct simulations 
to replicate the random process of pollen deposition during sequential 
honeybee visits (Appendix B Section 2.2). Using each posterior predic-
tive distribution, we ran 2000 simulations per honeybee visit level. Each 
simulation can be considered as a flower —2000 flowers per honeybee 
visit level and per posterior predictive distribution— whose stigmatic 
pollen load is the additive result of random pollen deposition after n 
honeybee visits. We then calculated the proportion of stigmatic pollen 
load that falls within the optimum pollination interval for each level of 

honeybee visit (Appendix B Section 2.2). Here we assume that tetrads are 
added at each successive visit and that no stigmatic pollen was removed 
in the process. 

2.4. Field pollination levels and crop production 

We selected seven blueberry farms (Emerald cultivar) ranging in size 
from 10.1 to 70.7 ha (mean = 39.6 ± 20.9 SD) and with an average 
distance of 9.5 ± 2.4 km between each other. During the flowering and 
harvest season of 2021, we selected one plot per farm to record fruit 
diameter, field-level pollen deposition and honeybee abundance. (i) 
Fruit diameter — we randomly selected five plants from which we 
collected 10 mature fruits during the harvesting period to measure their 
equatorial diameter using a caliper with 0.05 mm accuracy (Nfarm = 50, 
Ntotal = 350). (ii) Field-level pollen deposition — on five randomly chosen 
plants, we collected three styles of senescent flowers (Nfarm = 15, Ntotal =

105) that we stored in 70% alcohol and estimated stigmatic pollen load 
following the protocol described above. (iii) Honeybee abundance — we 
conducted two honeybee counts during the flowering period and, each 
time, estimated the flowering percentage at the plot level by counting 
the ratio of open and closed/senescent flowers in two branches of ten 
plants. Then, on six farms we counted the number of honeybees visiting 
flowers during a period of 25 seconds on 25 five plants distributed in 
50 m transects (N = 4 transects). On one farm, we randomly selected five 
plants along a 50 m transect and conducted 5 min counts of honeybees 
visiting blueberry flowers. As the time spent on each honeybee count 
was higher on that farm, we adjusted the count for the time efforts by 
dividing the 5-minute count data by 12 (i.e. 25 s). We collected the data 
on sunny days, with low wind and temperatures above 15◦C. We 
sampled approximately between 1000 and 1700 h, and randomized the 
hour of visit to each plot. We accumulated a total sampling observation 
of 8.4 h. 

2.4.1. Statistics 
We used Bayesian models to compare honeybee abundance, stig-

matic pollen load, and fruit size across farms. In the honeybee abun-
dance model, we included the flowering percentage as a predictor to 
account for the potential effect of flower availability. We also use the 
average estimate of the posterior distributions per farm to assess the 
relationship between fruit size and stigmatic pollen load (conditioned by 
honeybee abundance), and between stigmatic pollen load and honeybee 
abundance. We estimated the parameters of each model using three 
chains, 2000 sampling, and 500 warmup iterations per model. We used a 
Poisson distribution as the likelihood function for the model assessing 
differences in honeybee abundance across farms and a Normal distri-
bution for the remaining models. Also, in the models comparing hon-
eybee abundance, pollen deposition, and fruit size among farms, we 
applied contrast analyses on the posterior distributions to estimate the 
average variation between farms. We used a mixture of informative and 
semi-informative priors in all models. We provide specific details on the 
mathematical notation of the models, the prior probability used, and the 
coding procedure in Appendix B Section 3. Because we fitted these 
models using data from the Emerald cultivar only, but also considered 
the experiment model fitted with Snowchaser data to derive conclusions 
on fruit size (Section 2.2), we added a series of validation analyses to 
demonstrate that the Snowchacer model can be used to predict Emerald 
fruit size (see Appendix A Table S1). We fitted all models using the 
rethinking R package (McElreath, 2021) and evaluated the models’ fit 
through posterior predictive checks. 

3. Results 

3.1. Optimal pollination thresholds 

From the 240 flowers monitored in the four experimental treatments, 
we collected data from 72 of them where the fruits successfully ripened 
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(Nexclussion = 21, Npartial = 8, Nfree = 27, Nsupplemented = 16). The 
remainder were lost when the style went senescent or as a result of 
ripened berries being damaged by birds or during harvest. In the polli-
nator exclusion experiments, the stigmatic pollen load increased pro-
gressively, from pollination exclusion to partial pollination, to free 
pollination, and with the highest load in the supplemented pollination 
treatment. That is, flowers with supplemented pollination received on 
average 38 tetrads more than the flowers in the free pollination treat-
ment, meaning stigmatic pollen loads ~24% higher (Appendix A 
Fig. S2). These increases corresponded to higher average fruit diameter, 
although the berries resulting from supplemented pollination were on 
average ~4% smaller than those in the free treatment (Appendix A 
Fig. S2). 

A quadratic function best described the relationship between fruit 
diameter and stigmatic pollen load (R2 quadratic model= 0.51 

(0.38–0.60); R2 saturating exponential model = 0.38 (0.23 - 0.50);  
Fig. 1a, Appendix B section 1.1.2). The number of pollen tetrads 
deposited on the stigma ranged from 1 to 370 (mean ± SD = 121.5 ±
98.5), and the stigmatic pollen load that maximized blueberry fruit 
diameter (the quadratic function vertex) was 191.7 tetrads (Fig. 1a). 
Optimal pollination of blueberry flowers was estimated to be between 
112 and 274 tetrads deposited on the stigma (Fig. 1b, Appendix B sec-
tion 1.4). That is, flowers pollinated with less than 112 or more than 274 
pollen tetrads can be assigned to the deficit or supraoptimal pollination 
categories, respectively (Fig. 1b). 

3.2. Optimal number of honeybee visits 

We collected data on stigmatic pollen loads from 41 virgin flowers 
that received a single honeybee visit. We found that on average, 

Fig. 1. Model predicting changes in blueberry fruit size as a function of the number of pollen tetrads deposited on the stigma. (a) Quadratic (solid) and saturating 
exponential (discontinuous) models; the red dot marks the vertex (coordinates: x = 191.2, y = 14.7) of the quadratic function; the inner green band indicates the 95% 
credibility intervals for average quadratic estimation, whereas the yellow band indicates the simulated 95% credibility intervals of the quadratic model prediction. 
The equation for the quadratic function is, Fruit size = 7.23 – 1.9e− 4 stigmatic pollen load2 + 0.076 stigmatic pollen load. (b) Thresholds of deficit, optimal, and 
supraoptimal pollination levels, given stigmatic pollen load deposition and respective fruit size outcome. Vertical discontinuous lines (x-axis values 112.4 and 274.1) 
are the thresholds for the optimal pollination interval, whereas the dotted line shows the stigmatic pollen load that maximizes fruit size (191.2 tetrads). The fitted 
lines are provided for each pollination level (bands denote 95% credibility intervals of the estimation), with the slope and its credibility intervals at the bottom. 
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honeybees deposit 18 pollen tetrads (95% CI= 12.7 – 25.1) after a single 
visit. We also found that six or seven honeybee visits are required to 
achieve the highest proportion of stigmatic pollen loads in the optimal 
range (Fig. 2). That is, our simulations indicate that when honeybee 
visitation rate ensures an average of six or seven visits to each flower 
during the receptivity period, 60% of the flowers on a blueberry bush 
will receive optimal pollen deposition. 

3.3. Field pollination levels and crop production 

The farms tended to vary in their abundance of honeybee, the field- 
level pollen deposition, and the size of the berries produced (Fig. 3a-c). 
The farms with the lowest honeybee abundance tended to have stigmatic 
pollen loads closer to the pollination optimum (Fig. 3a and b). That is, 
the stigmatic pollen loads were 82% higher on the farm with the lowest 
honeybee abundance (contrast of the posterior distributions between 
Acheral–Lucia; Fig. 3b), while farms with higher honeybee abundance 
tended to have stigmatic pollen loads closer to the pollination deficit 
threshold (Fig. 3a and b). Indeed, we found a 93% probability that 
honeybee abundance has a negative effect on the stigmatic pollen load 
on blueberry flowers (Fig. 3d, Appendix B sections 3.5 and 3.5.1). As 

expected, increasing pollen deposition in blueberry flowers promoted 
the production of larger fruits (Fig. 3e), resulting in berries 36% larger 
on the farm where the stigmatic pollen loads were closer to the optimum 
(contrast of the posterior distributions between Acheral–Lucia; Fig. 3c). 
The posterior predictive checks indicated that all models were well fitted 
(Appendix B Sections 3.1 - 3.5). 

4. Discussion 

Typically, farmers do not consider target values for honeybee density 
(Garibaldi et al., 2020); instead, they seek to saturate crop flowers with 
pollinators (Aizen et al., 2014). Such logic would be unacceptable in the 
case of other agricultural inputs. By combining observational and 
experimental data with simulation methods, we have estimated accurate 
values of pollen deposition and honeybee visits required to maximize the 
production of export quality fruit. While these values have been derived 
for one region, they provide a tangible basis for the wider management 
of this economically important crop. We found that optimum pollen 
deposition to maximize blueberry size ranges between 112 and 274 
pollen tetrads and that, on average, at least six or seven honeybee visits 
are required to ensure that 60% of the flowers receive optimum 

Fig. 2. Simulated stigmatic pollen loads (SPL) after random sequential honeybee visits (a), based on posterior predictive distributions from single-visits pollen 
deposition of honeybees on blueberry flowers (b), and (c) proportion of SPL in deficit (gray), optimal (orange), and supraoptimal (cyan) pollination ranges after n 
simulated visits. (a) From the first to the tenth visit, the density black lines correspond to random posterior predictive distributions —50 per panel— and the red line 
indicates the simulated value using the raw observations. Each density black line per panel resulted from 2000 simulations of honeybee pollen deposition through 
sequential random floral visits. The vertical dashed lines (x-axis values 112.4 and 274.1) are the thresholds for the optimal pollination interval, whereas the dotted 
line shows the stigmatic pollen load that maximizes fruit size (192 tetrads). (b) Observed values (orange density line and dots, N = 41) of single-visit honeybee pollen 
deposition in blueberry flower and its posterior predictive distribution (black density lines); the dotted line indicates the average value of ~18 (95% IC 12.7 – 25.1) 
pollen tetrads per visit. (c) Average proportion of SPL that falls within the three pollination interval for each honeybee visit; the vertical error bars denote the 0.025 
and 0.975 quantiles of the simulated stigmatic pollen loads. The simulations do not account for possible pollen removal after each visit or pollen saturation on 
the stigma. 

A.F. Ramírez-Mejía et al.                                                                                                                                                                                                                     



Agriculture, Ecosystems and Environment 365 (2024) 108903

6

stigmatic pollen loads. Also, we show that farms with the lower hon-
eybee abundance tend to have a higher probability of receiving optimal 
pollen load and can produce fruits that are up to 36% larger than those 
produced on farms with higher honeybee abundance. In fact, our results 
indicate that excess honeybee visits can lead to lower pollen deposition 
and, ultimately, to the production of smaller berries. 

This study provides new fine-grained information to precisely define 
the thresholds for deficient, optimal and supraoptimal pollen deposition 
for highbush blueberry. For instance, Dogterom et al. (2000) found that 
individual blueberry flowers reach their maximum fruit size when they 
receive 125 tetrads, but could not detect further changes beyond this 
level of pollen deposition. Similarly, our pollination experiment 
revealed that fruit size increased linearly up to the deposition of 112 
tetrads; beyond that limit, an increase in stigmatic pollen load did not 
result in increased fruit size. However, we demonstrated that the rela-
tionship between fruit size and stigmatic pollen deposition is not 
asymptotic, as excess pollen can have a detrimental effect on berry 
diameter. In pollination mutualisms an interaction surplus can result in 
costs to the plants in terms of fitness (Morris et al., 2010). Excess pollen 
deposition can increase competition between male gametophytes within 
the style and promote stagnation of growing pollen tubes, leading to a 

reduction in ovule fecundity (Harder et al., 2016a, 2016b). This may be 
occurring in blueberries when stigmatic pollen loads are artificially 
increased through, for instance, hand pollination experiments. Howev-
er, we also found that supraoptimal stigmatic pollen loads are highly 
unlikely to occur under typical field conditions (results not shown in 
main text, see Appendix A Table S2). That is, on average, the observed 
probability of a blueberry flower receiving harmful levels of pollen 
deposition was close to zero. The lower probability of over-pollination 
occurring through this path is probably due to physiological controls 
that prevent additional pollen deposition after stigma saturation (Parrie 
and Lang, 1992). However, our results also show that over-pollination in 
blueberries can occur in the first stages of the pollination process (i.e., 
before ovule fecundation), when the pollinator contacts the stigma and 
deposits the pollen. 

We found that six to seven honeybee visits are the minimum needed 
to ensure optimal pollen deposition in blueberry flowers, which is lower 
compared to the values reported in other works (~15 honeybee visits, 
see (Kendall et al., 2020; Devetter et al., 2022). Such disparity probably 
has two non-mutually exclusive explanations: (i) different pollination 
dependence of the cultivars used among studies and (ii) differences in 
the methodological approaches. That is, we simulated the proportion of 

Fig. 3. Models comparing in seven blueberry farms: (a) honeybee abundance, (b) stigmatic pollen loads, (c) fruit size produced and their causal relationships (d and 
e). In a to c, the boxplots show the range of the posterior distribution of each estimated parameter per farm and its mean (yellow dots); background black dotes 
indicate random predicted values given the posterior distribution (black dots are jittered for visualization). In b, the horizontal dashed and dotted lines show the 
optimal pollination range. In c, the horizontal dotted line indicates the global average of fruit size (16.05 mm). In d and e the farm labels denote the X and Y values 
for each farm; the inner light blue band shows 95% credibility intervals of the regression coefficient (i.e. the yellow trend line), and the outer pale band indicates the 
simulated 95% credibility interval of the prediction. 
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flowers that would receive optimal stigmatic pollen deposition after n 
honeybee visits, instead of directly evaluating the effect on fruit size of 
sequential visits on a single flower (Kendall et al., 2020). Still, our results 
agree that relatively few honeybee visits are needed to fully pollinate 
blueberry flowers (Devetter et al., 2022). Achieving the target of six to 
seven honeybee visits would require a visitation rate of 0.6 —visits per 
flower in a set of 100 flowers h− 1, assuming six hours of daily pollinator 
activity (Garibaldi et al., 2020) and two days of flower receptivity in 
blueberries (Ngugi et al., 2002). Previous studies have shown (see Danka 
et al., 1993) that maximum production gains are only achieved when 
flowers are exposed to “unlimited” honeybee visits. Using an “unlim-
ited” number of honeybee visits as a basis for pollination service man-
agement ignores the risk associated with increasing interaction costs for 
blueberries. In our study, blueberry flowers on farms with higher hon-
eybee abundance —a proxy of flower visitation rate— were less likely to 
receive optimal pollen deposition and had a lower probability of pro-
ducing high quality fruits. This suggests that an excess of honeybee visits 
may come at a cost to blueberry plants in terms of the removal of pre-
viously deposited pollen and, ultimately, reduce reproductive success 
and fruit quality (i.e. size). Over-pollination leading to reduced yield or 
production quality has been documented for raspberry (Aizen et al., 
2014; Sáez et al., 2014), grapefruits (Chacoff et al., 2008; Morris et al., 
2010), apples (Garratt et al., 2021) and probably blueberry (Ramír-
ez-Mejía et al., 2023a). Based on our data, we cannot infer a specific 
threshold above which additional honeybee visits will be detrimental to 
blueberry production. Rather, we have found a minimum number of 
visits that guarantees optimal pollination while reducing pollination 
deficit and potential over-pollination. 

We have assessed the optimal pollination level for one productive 
metric, the fruit size. Different aspects of crop and fruit production 
might result in different values and thresholds for optimum pollination. 
For example, in wild blueberry (V. angustifolium), an average pollen 
deposition of 25 pollen tetrads is sufficient to reach a fruit set of about 
70% (Drummond, 2019). Our results also demonstrate that flowers 
receiving small stigmatic pollen loads can set fruit, meaning that the 
pollen deposition demand for the quality (i.e., fruit size) and quantity (i. 
e., fruit set) components of blueberry production are not equal. Such 
variability should be taken into account when defining pollination tar-
gets to achieve specific production goals, avoid over-pollination risks 
and ensure pollinator effectiveness. We focused on honeybees because 
they are by far the most prevalent pollinator in blueberry crops in 
northwestern Argentina –91.4% (Ramírez-Mejía et al., 2023a) and 
97.6% of the total visits (Ramírez-Mejía et al., 2023a). In other regions, 
however, bumblebees (Estravis-Barcala et al., 2021) or dipterans (Cook 
et al., 2020) may be the main pollen vectors for blueberries. The 
single-visit pollen deposition rates and the effectiveness of these 
different species need to be considered for these systems. However, 
unlike honeybees, whose hives can be easily moved across the land-
scape, reactive management of wild pollinators is probably not possible 
and will require long-term habitat management. 

Based on our findings, we recommend that prior to the introduction 
of honeybee hives, blueberry growers establish an evidence-based 
management plan to optimize pollination services and production 
outcome. Such a management plan would benefit from a standardized 
pollinator monitoring protocol (Garibaldi et al., 2020) to estimate the 
effective number of honeybee visits and assess whether the visitation 
rate is sufficient to achieve optimal crop pollination (Garibaldi et al., 
2020, Vaissière et al., 2011). Where the flowers receive less than six 
honeybee visits (i.e. flower visitation rate of 0.6 visits per 100 flower 
h− 1) during the maximum receptivity period, the addition of honeybee 
hives could help to ensure sufficient pollen transfer. Ideally, growers 
would follow a honeybee precision management protocol designed for 
blueberry crops (Cavigliasso et al., 2021). Based on our results, such 
protocols should avoid saturating flowers with honeybees as this could 
increase the probability of over-pollination and is not cost-effective. 
These recommendations are not intended as definitive guidelines for 

crop pollination management. Instead, we aim to provide a first step 
towards a more systematic and evidence-based approach for honeybees 
pollination management. A robust framework for farm-level pollination 
management requires (i) monitoring of hive strength and sanitary status 
(Geslin et al., 2017), (ii) knowledge of pollen deposition targets, (iii) a 
deeper understanding of pollination outcomes resulting from the inter-
action between field-level hive deployment and the landscape context of 
the farm (Ramírez-Mejia et al., 2023b; Eeraerts et al., 2022; Mallinger 
et al., 2021), and (iv) an understanding of how the spatial arrangement 
of beehives interacts with flower density to influence the frequency of 
pollinator-crop interactions and pollen accumulation in flowers across 
the farm (Santibañez et al., 2022). 

5. Limitations and further steps 

Understanding the net contribution of animal pollination to blue-
berries ––and, more broadly, to any crop–– implies assessing the 
multivariate nature of the production (Ramírez-Mejía et al., 2023a, 
2023b; Kendall et al., 2020). That is, pollination effects in one produc-
tive metric can have underlying trade-offs with others (Ramírez-Mejía 
et al., 2023b), whereas the magnitude of pollination service benefits are 
contingent on the cultivar due to pollination dependence variation 
(Ramírez-Mejía et al., 2023a; Kendall et al., 2020). Therefore, more 
research is needed to define optimal pollination targets for other 
important production metrics (e.g. fruit set and nutritional content) and 
assess their consistency among cultivars. Computational models are a 
promising alternative for analyzing such dynamic systems (e.g., Santi-
bañez et al., 2022). This technique can allow the incorporation of higher 
complexity from the honeybee–crop interaction (e.g. Kendall et al., 
2022), the role of pollen quality (Parrie and Lang, 1992) and beehive 
stocking (Cavigliasso et al., 2021), to simulate scenarios where several 
productive metrics are jointly affected. Such a method would help to 
estimate the most parsimonious optimum that maximizes the net benefit 
to crop productivity, which would be the ultimate goal of a widely 
applicable pollination management protocol. 

The need for animal pollination to promote blueberry productivity is 
broadly recognized (Eeraerts et al., 2023). Still, there is also evidence 
that the relationship between production and honeybee flower visitation 
rate might be negative (Miñarro et al., 2023; Ramírez-Mejía et al., 
2023a, 2023b; Mallinger et al., 2021). Our data suggest that the removal 
of stigmatic pollen loads by extreme honeybee visits could be the un-
derlying mechanism explaining such a pattern. However, we highlight 
that more research and replication are needed to assess how common 
over-pollination might occur in blueberries and the real risk for the 
overall productivity of the crop. Moreover, including pollen tube growth 
and seed set would improve our understanding of the mechanisms 
behind over-pollination. 

Pollination service management based on optimal targets would not 
only help avoid undesired pollination scenarios but also offer a more 
cost-effective strategy for beehive management while reducing potential 
negative impacts on wild pollinators. That is, considering optimal 
pollination levels could maximize production gains while saving eco-
nomic resources by avoiding a surplus beehive stocking. Future research 
should assess the benefit-cost ratio of implementing such pollination 
protocols. Moreover, reducing unnecessary honeybee hive densities in 
agroecosystems can benefit local pollinator communities by limiting the 
abundance of a dominant competitor and the probability of disease 
transmission (Mallinger et al., 2017). 

6. Conclusions 

Honeybees are crucial to ensure production profits of blueberries in 
many situations, and hive management provides the simplest system to 
manipulate pollinator density in a responsive manner (Aizen et al., 
2009; Reilly et al., 2020). Our study provides new insights into: (i) the 
mechanisms underlying blueberry pollination and production, (ii) the 

A.F. Ramírez-Mejía et al.                                                                                                                                                                                                                     



Agriculture, Ecosystems and Environment 365 (2024) 108903

8

contribution of honeybees to blueberry crop pollination and yields, and 
(iii) the risks and opportunities to diagnose and prevent undesirable 
pollination outcomes. These findings are crucial to support the devel-
opment of a protocol for detecting deficient, optimal or supraoptimal 
pollination levels based on flower visitor monitoring and target values 
(Garibaldi et al., 2020). The levels of fertilization, irrigation, pesticide or 
herbicide application are, generally, well established and rigorously 
implemented as part of regular agronomic management of 
pollinator-dependent crops. Although pollination is another agricultural 
input that is crucial for securing crop yields and profits, its management 
is generally based on much more ambiguous criteria, leading to un-
certainties about its outcome and actual benefits. This study challenges 
the prevailing belief that ‘more is better’ when it comes to the man-
agement of pollination agents in pollinator-dependent crops and advo-
cates for evidence-based management of pollination service to maximize 
production gains. 
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Harder, L.D., Morales, C.L., Sáez, A., Vanbergen, A.J., 2020. Invasive bees and their 
impact on agriculture. In: advances in ecological research, advances in ecological 
research. Elsevier, pp. 49–92. 

Alexander, M.P., 1969. Differential staining of aborted and nonaborted pollen. Stain 
Technol. 44, 117–122. 

Bache, S.M., Wickham, H., 2020. magrittr: A Forward-Pipe Operator for R. R package 
version 2.0.1. https://CRAN.R-project.org/package=magrittr. 

Benjamin, F.E., Reilly, J.R., Winfree, R., 2014. Pollinator body size mediates the scale at 
which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449. https:// 
doi.org/10.1111/1365-2664.12198. 

Bürkner, P.-C., 2017. Brms: an R package for Bayesian multilevel models using Stan. 
J. Stat. Softw. 80 https://doi.org/10.18637/jss.v080.i01. 

Bushmann, S.L., Drummond, F.A., 2020. Analysis of pollination services provided by 
wild and managed bees (Apoidea) in wild blueberry (Vaccinium angustifolium 
Aiton) production in Maine, USA, with a literature review. Agronomy 10, 1413. 

Cavigliasso, P., Negri, P., Viel, M., Graziani, M.M., Challiol, C., Bello, F., Saez, A., 2021. 
Precision management of pollination services to blueberry crops. Sci. Rep. 11, 
20453. 

Chacoff, N.P., Aizen, M.A., Aschero, V., 2008. Proximity to forest edge does not affect 
crop production despite pollen limitation. Proc. Biol. Sci. 275, 907–913. 

Cook, D.F., Deyl, R.A., Mickan, B.S., Howse, E.T., 2020. Yield of southern highbush 
blueberry (Vaccinium corymbosum) using the flyCalliphora albifrontalis(Diptera: 
Calliphoridae) as a pollinator. Aust. Entomol. 59, 345–352. 

R. Core Team (2022). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL 〈https://www.R-project. 
org/〉. 

Danka, R.G., Lang, G.A., Gupton, C.L., 1993. Honey bee (Hymenoptera: Apidae) visits 
and pollen source effects on fruiting of “gulfcoast” southern highbush blueberry. 
J. Econ. Entomol. 86, 131–136. 

Devetter, L.W., Chabert, S., Milbrath, M.O., Mallinger, R.E., Walters, J., Isaacs, R., 
Galinato, S.P., Kogan, C., Brouwer, K., Melathopoulos, A., Eeraerts, M., 2022. 
Toward evidence-based decision support systems to optimize pollination and yields 
in highbush blueberry. Front. Sustain. Food Syst. 6 https://doi.org/10.3389/ 
fsufs.2022.1006201. 

Dogterom, M.H., Winston, M.L., Mukai, A., 2000. Effect of pollen load size and source 
(self, outcross) on seed and fruit production in highbush blueberry cv. “Bluecrop” 
(Vaccinium corymbosum; Ericaceae). Am. J. Bot. 87, 1584–1591. 

Drummond, F., 2019. Reproductive Biology of Wild Blueberry (Vaccinium angustifolium 
Aiton). Collect. FAO Agric. 9, 69. 

Eeraerts, M., Borremans, L., Smagghe, G., Meeus, I., 2020. A growers’ perspective on 
crop pollination and measures to manage the pollination service of wild pollinators 
in sweet cherry cultivation. Insects 11. https://doi.org/10.3390/insects11060372. 

Eeraerts, M., Rogers, E., Gillespie, B., Best, L., Smith, O.M., DeVetter, L.W., 2022. 
Landscape-level honey bee hive density, instead of field-level hive density, enhances 
honey bee visitation in blueberry. Landsc. Ecol. https://doi.org/10.1007/s10980- 
022-01562-1. 
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Schüepp, C., Szentgyörgyi, H., Taki, H., Tscharntke, T., Vergara, C.H., Viana, B.F., 

A.F. Ramírez-Mejía et al.                                                                                                                                                                                                                     

https://doi.org/10.1016/j.agee.2024.108903
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref1
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref1
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref2
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref2
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref2
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref3
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref3
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref3
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref4
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref4
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref4
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref4
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref5
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref5
https://doi.org/10.1111/1365-2664.12198
https://doi.org/10.1111/1365-2664.12198
https://doi.org/10.18637/jss.v080.i01
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref8
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref8
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref8
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref9
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref9
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref9
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref10
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref10
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref11
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref11
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref11
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref12
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref12
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref12
https://doi.org/10.3389/fsufs.2022.1006201
https://doi.org/10.3389/fsufs.2022.1006201
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref14
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref14
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref14
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref15
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref15
https://doi.org/10.3390/insects11060372
https://doi.org/10.1007/s10980-022-01562-1
https://doi.org/10.1007/s10980-022-01562-1
https://doi.org/10.1111/1365-2664.14516
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref19
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref19
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref19
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20
http://refhub.elsevier.com/S0167-8809(24)00021-5/sbref20


Agriculture, Ecosystems and Environment 365 (2024) 108903

9

Wanger, T.C., Westphal, C., Williams, N., Klein, A.M., 2013. Wild pollinators 
enhance fruit set of crops regardless of honey bee abundance. Science 339, 
1608–1611. 

Garibaldi, L.A., Carvalheiro, L.G., Leonhardt, S.D., Aizen, M.A., Blaauw, B.R., Isaacs, R., 
Kuhlmann, M., Kleijn, D., Klein, A.M., Kremen, C., Morandin, L., Scheper, J., 
Winfree, R., 2014. From research to action: enhancing crop yield through wild 
pollinators. Front. Ecol. Environ. 12, 439–447. 
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