
1. Introduction
On 4 February 2022, SpaceX lost 40 of its 49 launched Starlink satellites, due to miscalculations in the predicted 
space weather indices, and the following unexpected increase in atmospheric drag. By further investigation of 
the event, it was found that the geomagnetic storm was only a minor one. Nevertheless, two consecutive coronal 
mass ejections hit the Earth on the 3–4 February, causing an average increase in thermospheric density of about 
20%, with local peaks up to 60%, when compared with 2 February. This event, together with the fact that we are 
approaching the solar maximum of the 25th solar cycle when solar activity is expected to grow, show that an 
accurate prediction, modeling, and understanding of the Sun's influence on the thermospheric density is needed 
(Dang et al., 2022). In fact, atmospheric drag is the main perturbing force and the biggest source of uncertainty 
for space objects below 1,000 km (Berger et al., 2020). For this reason, its precise estimation is paramount to 
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position and velocity in low-Earth orbit. This has negative consequences in several space domains, including 
space traffic management, collision avoidance, re-entry predictions, orbital lifetime analysis, and space 
object cataloging. In this paper, we investigate the prediction accuracy of empirical density models (e.g., 
NRLMSISE-00 and JB-08) against black-box machine learning (ML) models trained on precise orbit 
determination-derived thermospheric density data (from CHAMP, GOCE, GRACE, SWARM-A/B satellites). 
We show that by using the same inputs, the ML models we designed are capable of consistently improving 
the predictions with respect to state-of-the-art empirical models by reducing the mean absolute percentage 
error (MAPE) in the thermospheric density estimation from the range of 40%–60% to approximately 20%. As 
a result of this work, we introduce Karman: an open-source Python software package developed during this 
study. Karman provides functionalities to ingest and preprocess thermospheric density, solar irradiance, and 
geomagnetic input data for ML readiness. Additionally, it facilitates developing and training ML models on the 
aforementioned data and benchmarking their performance at different altitudes, geographic locations, times, 
and solar activity conditions. Through this contribution, we offer the scientific community a comprehensive 
tool for comparing and enhancing thermospheric density models using ML techniques.

Plain Language Summary Accurately modeling the density of the thermosphere is pivotal for 
spacecraft operations such as collision avoidance, re-entry prediction, and orbital lifetime analysis. In this study, 
our aim is twofold. First, we want to study and compare the performance of data-driven machine learning (ML) 
models in predicting thermospheric density data against standard empirical models used in the field, which 
are used as baseline. By training ML models using precise orbit determination-derived satellite data, we show 
that they can achieve significant performance improvement compared to empirical models, with a reduction 
of 61% in the mean absolute percentage error. Second, we also provide the community with a shared software 
framework that supports the ingestion of solar irradiance, geomagnetic, and thermospheric density data, as 
well as a training and benchmarking framework to develop ML models. This framework allows researchers 
and operators to both train their ML models and to compare them at different periods of the solar cycle, 
geomagnetic storm conditions, geographical locations, and times.
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many space applications, including but not limited to collision avoidance, re-entry, orbital lifetime estimation, 
orbit propagation, and tracking (Vallado, 2001).

The most common models used to forecast thermospheric density from solar irradiance and geomagnetic driv-
ers are either physics-based or empirical models. The most widespread empirical models used in the opera-
tional community are NRLMSISE-00 (Picone et al., 2002), JB-08 (Bowman et al., 2008), and HASDM (Storz 
et  al.,  2005). The first two are publicly accessible, while the last model, maintained by Air Force Space, is 
not available open-source. Among the most used and publicly available ones, JB-08 is considered among the 
most accurate ones (Marcos et al., 2006). It is well known that these models present biases and do not always 
perform accurately, especially in periods of high and low solar activity (He et al., 2018; Licata et al., 2021). 
On the other hand, physics-based models also exist, which attempt to accurately model the underlying physics 
phenomena behind the Sun-Earth interaction in the atmosphere. These models, such as TIE-GCM (Richmond 
et  al.,  1992), were demonstrated to be more accurate than empirical models during geomagnetic storms (S. 
Bruinsma et al., 2021). However, results across all geomagnetic storm conditions, altitude ranges and irradiance 
conditions, do not always confirm their superiority with respect to empirical models. Moreover, their complexity 
and heavy computational burden prevent their use for operational applications (e.g., collision avoidance).

In addition, to improve the thermospheric density estimation problem, several researchers have discussed and 
investigated the inclusion of more geomagnetic and/or solar irradiance data in both physics-based and empirical 
models, for better modeling the Sun-Earth interaction, and provide better models. While some have proposed new 
solar irradiance and geomagnetic proxies (Bowman et al., 2008), others have advocated the necessity of including 
EUV irradiance inputs (instead of proxies) in the prediction models (Vourlidas & Bruinsma, 2018).

While semi-empirical approaches combine empirical mathematical equations with fitting data, machine learning 
(ML) models use very few prior assumptions about data to form relationships between variables. The hypoth-
esis is that ML models, given enough data, can learn a representation of the thermospheric system without any 
physics-based assumptions and might be able to outperform semi-empirical existing models. Starting from a 
preliminary study performed by the authors (Bonasera et al., 2021), and with the aim to test this hypothesis, 
this  paper develops ML models that can accurately predict thermospheric density variations. Furthermore, it also 
proposes and releases an open-source framework to train and analyze the performances of ML-based thermo-
spheric density models and benchmark them against empirical models. The main findings and contributions of 
this study are:

1.  ML models show a remarkable 60% reduction in mean absolute percentage error (MAPE) compared to exist-
ing semi-empirical models, showcasing their superior performance despite the absence of physics-based 
assumptions;

2.  the release of Karman-ML Thermospheric Neutral Density Model (KML) (Acciarini, Brown, & Baydin, 2023). 
This model uses the same inputs as the JB08 model but with a significant performance improvement; combin-
ing multiple inputs into ML-ready data (or similar to this)

3.  the release of a pipeline for combining multiple inputs from different sources, producing ML-ready data 
encompassing thermospheric density inputs, solar irradiance, and geomagnetic inputs. Through our work, 
researchers and operators now have a framework to handle solar irradiance and geomagnetic data (both raw 
measurements and proxies/indices), as well as empirical model predictions and precise orbit determination 
(POD)-derived thermospheric density from SWARM-A, SWARM-B, GRACE, GOCE, CHAMP satellites. 
This framework empowers the research community to develop new models by leveraging the same software 
infrastructure (as we showed with our proposed KML). A schematic illustration of our proposed workflow is 
shown in Figure 1. Furthermore, we have designed this framework in a modular fashion to encourage expan-
sion and improvements by the open-source community, facilitating advancements through the inclusion of 
additional data sources;

4.  the release of a benchmarking framework, where users can test their own models, as well as the provided ones, 
against POD-derived and empirical models of thermospheric density. This can be done at different geomag-
netic storm conditions and altitudes, facilitating in-depth analysis of the results.

The concept of benchmarking physics-based, empirical, and ML models is not new and has been employed 
in several works (S. Bruinsma, 2015; S. L. Bruinsma et al., 2012; Jackson et al., 2020; Oliveira et al., 2020; 
Tobiska et al., 2021). However, none of these studies has focused on building an ML representation of the ther-
mospheric density in low-Earth orbit from only accelerometer-derived density data, without the use of empirical 
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models as training data, thereby providing an alternative model that can outperform state-of-the-art techniques. 
Furthermore, none has provided an open-source platform or shared data pipeline that facilitates the comparison 
of different models on the same data sets. Additionally, it remains hard to investigate the potential performance 
improvements that can be achieved by incorporating additional data into these models, due to the lack of a shared 
and open-source framework. As a result, progress in this field has been fragmented and lacks a unified approach. 
Our framework aims to address this gap by providing a centralized platform, enabling the research community to 
align their efforts and work toward common objectives.

In terms of ML models applied to the thermospheric density prediction task, several works have been published 
in recent years. Some have used artificial neural networks for predicting long-term thermospheric density 
trends (Weng et al., 2020), while others have produced ML models that use principal component analysis or 
reduced order modeling, together with density data from HASDM and JB-08 empirical models to produce 
an ML surrogate model for the thermospheric density (Licata & Mehta,  2022; Licata, Mehta, Tobiska, & 
Huzurbazar, 2022; Licata, Mehta, Weimer, et al., 2022; Mehta et al., 2018; Mehta & Linares, 2017; Turner 
et al., 2020). These works were not the only ones: there have been several attempts in both predicting short 
and long-term variations using ML (Chen et al., 2014; W. Li et al., 2023; Pérez & Bevilacqua, 2015; Pérez 
et al., 2014; Y. Wang & Bai, 2023; P. Wang et al., 2022, 2023; Zhang et al., 2021). All these works, however, 
have never included direct solar irradiance measurements (instead of proxies) and geomagnetic activity meas-
urements besides the Ap index, Dst, and SYM-H: their only considered inputs were either proxies and/or 
indices, as also happens in empirical density models. Instead, it is believed that more information on the 
Sun and geomagnetic activity, from actual measurements of satellites and ground stations, could enhance 
our understanding and prediction of the Sun's influence on the thermosphere (Emmert, 2015; Vourlidas & 
Bruinsma, 2018).

One of the goals of this work is to propose a software framework that can help bridge the discussed gap and 
enable the community to devise ML-based thermospheric density models using geomagnetic and EUV irradiance 
measurements. This paper is organized as follows: in Section 2, we introduce the data pipeline and the supported 
data sources, which constitute the backbone on which ML models can be trained and evaluated, as well as the 
ML methodology and benchmarking framework. While in Section 3, we discuss the results of our analysis both 
globally, and at different altitude and geomagnetic storm conditions. Finally, in Section 4, we discuss the conclu-
sions of our work.

Figure 1. Schematic illustration of Karman machine learning workflow. Supported inputs and the expected output are 
shown.
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2. Methods
2.1. Data Pipeline

One of the outcomes of this work is a pipeline to produce a unified data set that supports data from several differ-
ent sources. These include high frequency (every 30 or 10 s) POD-derived thermospheric density data from five 
space missions (CHAMP, GOCE, GRACE, SWARM-A, SWARM-B), processed by the TU Delft precise orbit 
determination group (Doornbos, 2012; Siemes et al., 2016, 2023), as well as other data related to satellites' state 
and time (i.e., latitude, longitude, date). For more details on the thermospheric density data used in this work we 
refer the interested reader to the other publication of the authors (Bonasera et al., 2021). Empirical density data 
from NRLMSISE-00 and JB-08, as well as the needed inputs to run these models (e.g., sun declination and ascen-
sion, sidereal time, geomagnetic and irradiance indices). Geomagnetic inputs both in the form of measurements 
(from NASA's OmniWeb data service (King & Papitashvili, 2005; NASA, 2023), and indices [from Celestrack 
(Kelso & Sean, 2010)] and Space Environment Technologies, SET (Kent, 2023)). Some examples of geomagnetic 
measurements are interplanetary magnetic field magnitude, X, Y, Z-components of the magnetic field vector 
in GSM and GSE coordinates, SYM/D, SYM/H, ASY/D, ASY/H indices, also including some derived values 
such as the X, Y, Z-components of the bow shock nose, and many others (a full description of all the supported 
inputs can be found in the OMNI website). Solar irradiance inputs both in the form of measurements (from the 
Laboratory of Atmospheric and Space Physics, LASP, of CU Boulder (LASP, 2023)) and indices (from both the 
LASP datacenter as well as Space Environment Technologies [SET]). In particular, two different solar irradiance 
data products are supported. First, the daily (with 1-day cadence) and flare (with 1-min cadence) “stan bands” 
from FISM2 empirical model: this is an empirical model of the solar spectral irradiance from 0.01 to 190 nm at 
0.1 nm spectral bins. It is derived from SORCE XPS L4, SDO-EVE, and SORCE SOLSTICE data, but it allows a 
continuous time and spectral coverage of solar irradiance data, which is very appealing for thermospheric density 
modeling purposes (Chamberlin et al., 2020). The “stan bands” are a set of 23 bands derived with a wavelength 
binning scheme covering the UV from 0.01 to 121 nm, that are used as inputs into Earth ionospheric and ther-
mospheric models (Solomon & Qian, 2005). Second, a set of solar irradiance proxies that are commonly used in 
empirical thermospheric density models: these include F10.7, M10.7, S10.7, and Y10.7 (Tobiska et al., 2008).

Upon inputting the data into the aforementioned pipeline, a unified data set is generated, allowing for targeted 
queries at specific time points. This data set encompasses all or specific components of the aforementioned inputs 
at the desired time, accompanied by the corresponding POD-derived thermospheric density, serving as ground 
truth data. Additionally, users also have the option to access the temporal history of FISM2 and OMNIWeb data, 
at any given date (if these data are provided). In this way, temporal relationships between space weather and 
thermospheric density variations can be studied. In our experiments, in order to train our ML model, we used 
a data set of approximately 38 million POD-derived thermospheric density data points, where we only trained 
using the same inputs as the empirical models, in order to have a fair comparison. In Figure 2, we show an exam-
ple of how four solar indices (F10.7, S10.7, M10.7, Y10.7) and two geomagnetic inputs (dDst/dT, Ap) varied 
during the 2015 St. Patrick Storm, and the resulting thermospheric density behavior, derived from SWARM-B 
satellite (shown in the fourth row in the figure). As can be seen, the severe geomagnetic storm (i.e., G4 class) that 
happened between 17 and 19 March 2015 has caused a steep increase in the thermospheric density. As it can be 
observed, while both geomagnetic indices reached a maximum in that period, however, not all the solar irradiance 
proxies have reflected this behavior (since they capture different regions of the EUV spectrum).

2.2. Machine Learning Methodology

2.2.1. Machine Learning Architecture

The study utilizes two distinct types of neural network models: NRLMSISE/JB08 inputs and JB08 + OMNI 
inputs. The NRLMSISE/JB08 input model comprises four layers, each containing 500 nodes. It takes empirical 
model inputs as its input and maps them to the outputted density. In particular, we use the following inputs for 
the NRLMSISE-00 ML model: day of the year, year, seconds in a day, right ascension and declination of the Sun, 
sidereal time, altitude, longitude, latitude, local solar time, Ap daily index, Ap 3-hourly index, F10.7 observed 
and F10.7 averaged. While for the ML model using the same inputs as JB-08, the same inputs as NRLMSISE-00 
are used but instead of Ap indices, dDst/dT values (i.e., variations of the Dst index as a function of temperature 
variations) are used, and the solar proxies are F10.7, S10.7, M10.7 and Y10.7 (both observed and averaged). In 
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Figure 2. Solar irradiance proxies (i.e., F10.7, S10.7, M10.7, Y10.7), geomagnetic inputs (i.e., dDst/dT, Ap average), and 
thermospheric density variations during the 2015 St. Patrick's Day geomagnetic storm.
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the case in which OMNIWeb data is used, the following features are considered: the three Cartesian coordinates 
of the magnetic field in GSE and GSM frame, the three Cartesian coordinates of the plasma flow velocity in GSE 
coordinates, the three Cartesian coordinates of the bow shock nose in GSE coordinates, the AE, AL, AU, SYM/D, 
SYM/H, ASY/D, ASY/H, PCN indexes.

The JB08 + OMNI input model processes the NRLMSISE/JB08 inputs through a sequence of four layers with 
500, 500, 500, and 175 nodes, respectively, resulting in 175 outputted features. In a similar manner, the OMNI 
inputs are also processed through four layers with 500, 500, 500, and 175 nodes, generating 175 additional 
outputted features. These 350 features (175  +  175) are concatenated and passed through a final processing 
four-layer network consisting of 500 nodes. This network maps all the inputs to the outputted density.

The NRLMSISE/JB08 inputs model architecture was chosen due to its ability to maintain a rather simple network, 
without sacrificing too much accuracy. As we will discuss in Section 3, we have compared this architecture with 
simpler ones (e.g., without hidden layers) and established the most performing one that was still maintaining a 
low level of complexity. This study is more concerned with demonstrating that a large volume of thermospheric 
density data allows data-driven methods to build accurate models of thermospheric density. The accurate study 
of the best architecture to perform thermospheric density prediction was not the main goal of this study, and it is 
therefore postponed for future studies. Second, concerning the JB08 + OMNI model, the reason why the above-
mentioned architecture was chosen is modularity. This study looks at the effect of including extra input features, 
OMNI data, into the model to see how much model performance can be improved. The method of creating a sepa-
rate network to process and encode different data sources was therefore employed where the processed features 
are simply concatenated and further processed in a final network. This allows the modularity to add new data 
sources without significantly increasing the model complexity.

Concerning the ML model training, we use mean squared error as a loss function, normalizing the output (i.e., 
target density) by taking the natural logarithm of its value multiplied by 10 12, which results in the following 
expression

MSE =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(

𝑦𝑦 − log
(

𝜌𝜌𝑡𝑡𝑡𝑖𝑖10
12
))2

𝑡 (1)

where y is the neural network output, while ρt is the target thermospheric density value. To transform the neural 
network output into the desired predicted density, one can simply do:

𝜌𝜌𝑝𝑝 =
𝑒𝑒𝑦𝑦

1012
. (2)

This is helpful during training because it has been observed that the logarithm of the empirical density and true 
density ratio is typically Gaussian (Bezděk, 2007; Doornbos, 2012). Hence, in our case, we are defining the loss 
as a function of the logarithm of the ratio of the predicted and true density (as it can be easily demonstrated via 
the properties of the logarithm): this gives the neural network an easier time learning the thermospheric density. 
Adam is used as the stochastic gradient descent optimization algorithm (Kingma & Ba, 2014), and Pytorch as 
ML framework (Paszke et al., 2019). We also performed Bayesian parameter search for the weight decay and 
learning rate and established a value of 1.37 × 10 −8 for the weight decay parameter, and 5 × 10 −5 for the learning 
rate parameter. Furthermore, due to the inherent randomness of the stochastic gradient descent algorithm, each 
run of the training process produces different weight initializations, leading to the optimization algorithm reach-
ing different points of minimum loss in the neural network. To address this, we conducted each experiment five 
times, with five different seeds, and calculated the average of the metric score over those runs. Therefore, the 
reported model performance is always based on the average MAPE across these five runs.

2.2.2. Data Set Partitioning, Metrics, and Benchmarking Framework

The data set was divided into training, validation, and test sets. The partitioning algorithm organized the data set 
into months and allocated them to the respective sets. Each year was arranged into months, with the test month 
cyclically permuting by 2 for each year. The same process was applied to the validation set. The remaining 
months were added to the training set. This ensured that the ML models were trained on non-consecutive data, 
which would highly bias the model, and that the months used for training were not always the same, as this might 
cause the model to overlook seasonality events.
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In terms of metrics, due to variations of thermospheric density values in the low-Earth orbit environment (which 
ranges from values of about 10 −12 kg/m 3 to values of about 10 −16 kg/m 3), reporting root mean squared error does 
not provide a useful metric to evaluate the models across different altitude ranges. Instead, we use the MAPE: 
this not only gives a more intuitive interpretation of the loss (since it represents the average percentage difference 
between predicted and actual values), but it is also a relative error metric, which makes it a scale-invariant. This 
latter property is very desirable for data sets like the thermospheric density one, where the magnitude of the 
predicted values can vary by several orders of magnitude.

To compare thermospheric density models, the proposed evaluation includes the following categories. Due to 
the significant variation in density at different altitudes, the data set is divided into 50 km increments, enabling 
a fair comparison between models. Additionally, the density can be greatly influenced by different geomagnetic 
conditions. Consequently, the overall performance of the model across the entire data set can vary based on 
these conditions. Hence, the model's performance is reported across various subcategories of the test data set. 
These subcategories are determined by altitude ranges: 200–250 km, 250–300 km, 300–350 km, 350–400 km, 
400–450 km, 450–500 km, and 500–550 km. They are also categorized based on geomagnetic conditions, meas-
ured by the Ap index: Quiet (Ap 0–15), Mild (Ap 15–30), Minor storm (Ap 30–50), and Major storm (Ap 50+).

3. Results
Table 1 shows the MAPE from several density models for different subcategories of the test set, split by altitude 
and storm conditions based on the Ap index. The significance of the results is described below.

•  NRLMSISE. The MAPE for the NRLMSISE model.
•  JB08. The MAPE for the JB08 model. Notably, overall there is a significant reduction in MAPE versus the 

NRLMSISE model (40.71 vs. 63.18). This is not always the case, as the NRLMSISE model outperforms at 
the lowest altitude bracket for example, (200–250 km).

•  ML(NRLMSISE). This is a two-hidden layer neural network, with 500 nodes for each hidden layer, that is 
trained on exactly the same inputs as NRLMSISE. This model significantly outperforms the NRLMSISE 
model. Overall, the MAPE improves by 61% (24.63 compared to 63.18). This massive reduction in error is the 
first important result of the study. It shows that data-driven ML models can widely outperform semi-empirical 
physics-based model, even on exactly the same inputs. The drag on satellites is proportional to the density 
of the thermosphere, through which they travel. Therefore an improvement of 61% in the MAPE represents 
a 61% improvement in the calculation of the drag on the satellite, which is important for satellite operations. 

Category NRLMSISE JB08

ML 
(NRLMSISE 

inputs)

ML (JB08 
inputs, single 
linear layer)

ML (JB08 
inputs, 1 
hidden 
layer)

ML (JB08 
inputs, 2 
hidden 
layers)

ML (JB08 
inputs + OMNI)

Overall 63.18 40.71 24.63 54.20 28.92 24.81 21.32

200–250 km 10.24 14.75 8.17 18.21 8.50 7.60 6.36

250–300 km 26.22 22.30 11.00 25.53 10.65 9.32 7.01

300–350 km 65.61 29.72 11.38 26.42 14.44 12.53 10.43

350–400 km 35.07 30.38 14.05 42.29 15.57 13.36 11.09

400–450 km 69.33 39.99 22.24 76.30 27.38 24.19 21.27

450–500 km 48.99 27.14 19.06 44.08 22.07 18.20 15.17

500–550 km 150.48 97.29 65.01 122.36 78.63 67.94 60.27

Quiet (Ap 0–15) 69.77 43.47 25.84 57.35 31.15 26.60 23.01

Mild (Ap 15–30) 25.20 24.61 16.19 33.72 15.56 14.14 11.22

Minor (Ap 30–50) 20.97 23.81 19.38 34.95 15.37 13.94 11.33

Major (Ap 50+) 14.32 20.42 23.92 52.55 15.26 13.45 10.13

Table 1 
Final Benchmarking Results, Expressed as Average Mean Absolute Percentage Error Over Five Runs
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The only case where the NRLMSISE model outperforms the ML(NRLMSISE) model is in the Major storm 
category (Ap > 50). This is likely due to the relatively small amount of extreme storm data points.

•  ML(JB08 inputs, single linear layer). This model is a simple model for a point of comparison. It is essentially 
a linear regression with linear combinations of the JB08 inputs. Unsurprisingly the model does not outperform 
the JB08 model.

•  ML(JB08, 1 hidden layer). This model includes a hidden layer of 500 nodes with a rectilinear activation for 
each transformation except the final layer. This simple model is able to outperform the JB08 model in every 
single sub-category. Again to reiterate- this is on exactly the same inputs as the JB08 model. It outperforms 
the ML(JB08 inputs, single linear layer) model significantly. This is because it has access to second order 
polynomial combinations of the JB08 inputs and so is much better able to model the density.

•  ML(JB08 inputs, 2 hidden layers). This model is a two-hidden layer model, of 500 nodes each, with rectilinear 
activations. It is trained on exactly the same inputs as JB08. Importantly, it significantly outperforms the JB08 
model at all subcategories, with a reduction in overall MAPE of 39% (24.81 compared to 40.71). Similarly to the 
ML(NRLMSISE) analysis, this drop in the error on the density has significant implications for users of the JB08 
model, because this model can widely outperform it on exactly the same inputs. Notably, it is slightly outperformed 
by the NRLMSISE model overall, but it has much lower errors in the higher storm categories. Compared to the 
previous two ML(JB08) models, it improves in all subcategories. Despite still being a fairly basic model, this shows 
that the mapping from the JB08 inputs to density is made more accurate by including increasingly non-linear 
transformations. It was noted during training that this improvement disappears once moving to 3 hidden layers or 
more. It is fully expected that there are better modeling choices for this task, but this is reserved for future studies.

•  ML(JB08 inputs + OMNI). The architecture for this model is described in Section 2.2.1. The idea is to add 
more measurements related to geomagnetic activity to see the improvement in model performance using this 
fuller picture. The inclusion of 48 hr (at 1-hr resolution) of these values results in further accuracy across all 
sub-categories compared to the ML(JB08 inputs, 2 hidden layers) model. This is an important result since it 
motivates the use of these measurements in future models. However, the overhead from having to use a signif-
icantly larger input data size might make this particular model less appealing. Obviously, learning exactly 
which extra geomagnetic parameters and at what time window back in time improves the density modeling 
will be a significant result, but this is saved for future studies.

An alternative way of comparing models is by looking at how the ratio between the observed and model density 
is distributed. As was observed in past works, this has typically a log-normal distribution, with values generally 
ranging from 0.5 to 2.0, and with varying variance, depending on the error made by the model (Doornbos, 2012). 
For a perfect model, one would expect this distribution to have zero variance and to be centered in one. However, 
this will not be the case, and any empirical, ML, or physics-based model will deviate from this behavior. In 
Figure 3, we display the distribution for the ML-based Karman model (KML), against NRLMSISE-00 and JB-08 
(on the test set). As for the previous experiments, we ran the ML models with five different seeds and constructed 
a model ensemble, which we refer to as KML. The quantitative results of this model compared to NRLMSISE-00 
and JB-08 are shown in Table 1. As can be observed, the ML model has the closest mean and mode to one, and 
it  also has the smallest variance: both these characteristics confirm that the model is the most accurate and precise 
to predict the ground truth thermospheric density. Furthermore, between the empirical models, we see that JB-08 
has a smaller variance than NRLMSISE-00, and it also more closely captures the average ground truth density, 
compared to the other empirical model. We report all quantitative data of the mean and standard deviation of 
these models for different altitude bands and geomagnetic storm conditions in Table 2.

Due to the significant results in terms of performance improvements over NRLMSISE-00 and JB-08 empirical 
models, as an outcome of this work, we release the KML model trained using JB-08 inputs. Furthermore, we also 
release Karman (Acciarini, Brown, & Baydin, 2023; Acciarini, Brown, Bridges, et al., 2023): an open-source 
Python package for data-driven thermospheric density modeling. This has been used to collect the data, train 
the ML models, and benchmark them against empirical models: our hope is that the framework can become a 
test bench for data-driven thermospheric density modeling, with shared data, metrics, and models. In Figure 4, 
we show a typical example of an output from the software. As we see from the plots of the first row, the model 
can return both the mean and standard deviation of the thermospheric density value, thereby providing a tool for 
quantifying the uncertainty of the prediction. This is achieved by combining an ensemble of neural networks (in 
our case five), trained with different weight initialization: more details on uncertainty quantification using an 
ensemble of models and their comparison with Monte Carlo dropout techniques were discussed by the authors in 
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a previous publication (Bonasera et al., 2021). On the left plots, we display the thermospheric density data associ-
ated with CHAMP satellite, while on the right with GOCE. As we observe, three models are compared against the 
POD-derived thermospheric density: JB-08, NRLMSISE-00, and KML model with JB-08 inputs. As displayed in 
the plots in the second row, the KML model is able to maintain the lowest MAPE over the tested period of time.

4. Conclusions and Future Work
Thermospheric density variations are the main source of uncertainty for the determination of resident space objects' 
position and velocity in low Earth orbit. Since the Sun is the main driver of changes in the atmosphere's upper 
levels, it is important to better model the Sun-Earth system to aid this issue. Traditionally, models based on empir-
ical laws and fitted through data have been used in operational settings. Empirical models use solar proxies and 
geomagnetic indices to model the Sun's influence, due to the difficulties of obtaining EUV measurements across 

the spectral bands that affect the atmosphere, which can only be captured from 
orbit. However, it is well known that these proxies do not fully capture solar 
activity (Vourlidas & Bruinsma, 2018). In the last 20 years, there has been 
a growing amount of space missions that have gathered the Sun's EUV irra-
diance data from orbit (e.g., TIME/d, SOHO, SDO, GOES, etc.). Moreover, 
advances in ML have allowed the development of neural network models that 
can very well capture the nonlinear relationships between data, in a black-box 
and data-driven fashion.

Motivated by the above-mentioned aspects, in this work we develop Karman: 
an open-source ML and benchmarking framework for data-driven thermo-
spheric density modeling. In our proposed software package, we enable users 
to develop and train thermospheric density ML models and benchmark their 
outputs against empirical models (e.g., JB-08 and NRLMSISE-00). In particu-
lar, we devise the library in order to support the ingestion of data from disparate 
sources, ranging from geomagnetic data of NASA OMNIWeb high-resolution 
service, to irradiance data from solar proxies (e.g., F10.7, M10.7, S10.7, 
Y10.7) and EUV irradiance empirical models (e.g., FISM2). The data can be 
queried with an associated temporal history and can be fed into ML models 
for forecasting the corresponding thermospheric density variations, where 
the POD-derived density from several satellites (e.g., CHAMP, SWARM-A, 
SWARM-B, GOCE, GRACE) is used as a target. We show that simple ML 

Figure 3. Ratio of Observed Density to Model Density for the KML, NRLMSISE-00, and JB08 thermospheric neutral density models.

Category

NRLMSISE-00 JB08 KML

Mean S.D. Mean S.D. Mean S.D.

Overall 0.82 0.27 0.90 0.28 1.01 0.25

200–250 km 0.97 0.11 0.88 0.08 1.00 0.08

250–300 km 0.82 0.12 0.83 0.10 0.97 0.10

300–350 km 0.63 0.12 0.80 0.14 0.99 0.14

350–400 km 0.79 0.18 0.80 0.15 0.97 0.15

400–450 km 0.70 0.24 0.85 0.25 1.00 0.24

450–500 km 0.83 0.29 0.94 0.25 1.01 0.21

500–550 km 0.89 0.40 1.05 0.49 1.07 0.44

Quiet (Ap 0–15) 0.80 0.27 0.90 0.29 1.00 0.25

Mild (Ap 15–30) 0.92 0.24 0.90 0.22 1.04 0.20

Minor (Ap 30–50) 0.97 0.27 0.90 0.23 1.08 0.20

Major (Ap 50+) 1.01 0.17 0.87 0.14 0.98 0.14

Table 2 
Mean and Standard Deviation of Ratio Between Observed and Model 
Densities
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models can easily outperform empirical models, using the same inputs, at different altitude ranges and geomagnetic 
storm conditions. However, it is crucial to ensure that the statistical properties of the training data closely resemble 
those of the validation and test data for the ML model to generalize successfully. In instances where this condition is 
not met, our analysis in the Appendix reveals that the ML method may experience a decline in performance. We also 
release one of these models, which uses the same inputs as JB-08 and nearly halves its accuracy, in terms of MAPE. 
Moreover, we also highlight that the ingestion of further data (in our case OMNIWeb data) can further reduce the 
error by a few percentage points, corroborating that a modular framework to support data from different sources 
such as the proposed one, can become an essential tool for the community.

In the future, we plan to use Karman for the direct ingestion of EUV spectral irradiance data and for investigating 
whether these data can significantly benefit the neutral density prediction task at high altitudes. Moreover, we 
also plan to use the framework to investigate the temporal relationship between the Sun activity and the Earth's 
thermosphere, to better clarify the open questions on how far back in time each phenomenon from the Sun affects 
the Earth's thermosphere.

Appendix A: Model Inference on Unseen Satellite Data
During the development of neural network models, it is crucial to have a train/validation/test split that avoids 
the model simplify learns to interpolate data, and to overfit to them. In order to avoid that the model simply 
learns to interpolate the underlying data (which is acquired along satellites' orbit), in our work we used held-out 
months of data as test and validation. At the same time, we also permuted the held-out months across different 
years, to make sure that seasonal effects are well represented during training. In this appendix, the objective is 
to explore a different train/validation/test split, where the model is trained on four satellites, and then tested in a 
different and unseen satellite. While this is an interesting case to study, we believe that it is not ideal (and hence 
its inclusion in the appendix), since it will test the model on a set of data that might be sampled from a different 

Figure 4. KML, JB08, and NRLMSISE-00 output for 1 March 2011 (GOCE) and 1 March 2004 (CHAMP).
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underlying statistical distribution, and neural networks are well known to perform poorly in out-of-distribution 
data. In fact, the held-out satellite might be at a completely different altitude regime, or it might observe the solar 
cycle in a different period or during a particular geomagnetic storm, which is not well or at all represented during 
training. Nonetheless, we decided to perform this experiment, carefully choosing the held-out satellite to avoid 
out-of-distribution testing: thus, we used SWARM-A data as a test satellite. The choice of SWARM-A was mostly 
driven by the fact that its density observations are at an altitude range that is covered by the other satellite data. 
We employ a similar training setup as the one used for the KML model. In Table A1 we show the MAPE results 
for the SWARM-A satellite, while Figure A1 shows a normalized histogram for the ratio between the observed 
density and the model density for the ML model (yellow), the JB08 model (blue) and their NRLMSISE-00 model 
(red). Furthermore, in Table A2, we also present the quantitative data for the density ratio results, in terms of both 
overall performance, as well as by different altitude and geomagnetic storm bins, reporting mean and standard 
deviation of the results. The ML model used was using the same inputs as JB-08. We display in the figure the 
distribution of the ratio of the modeled and observed data (on the test set). As it can be confirmed both qual-
itatively and quantitatively, the learned model still manages to outperform both empirical models. The overall 
MAPE achieved was about 31%, against 38% of JB-08 and 61.89% of NRLMSISE-00. This confirms that even 
in this train, validation, and test split setup, the ML-based model still manages to have an edge over the empirical 
models, even when the train, validation, and test split is made using a held-out satellite.

Category NRLMSISE JB08 ML(JB08)

Overall 61.89 37.84 30.97

400–450 km 93.66 55.87 41.43

450–500 km 43.00 27.21 24.91

500–550 km 31.36 17.20 15.57

1. (0–15) Quiet 65.59 39.73 32.58

2. (15–30) Mild 42.65 27.65 22.01

3. (30–50) Minor 35.14 24.42 20.85

4. (50+) Major 34.47 30.27 24.76

Table A1 
Mean Absolute Percentage Error Results for the NRLMSISE, JB08, and ML(JB08) Models While Using SWARM A Density 
Observations as a Held-Out Test Set

Figure A1. Ratio of Observed Density to Model Density for an machine learning (ML) model trained on JB08 inputs, NRLMSISE-00, and JB08 thermospheric neutral 
density models.
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Data Availability Statement
The space weather indices used as inputs for NRLMSISE-00 empirical model are available through Celestrack 
(Kelso & Sean,  2010), while those used as inputs for JB-08 empirical model are available through SET 
(Kent,  2023). The authors have used CCMC software and ATMOS to retrieve the empirical model's densi-
ties  (Drob et al., 2023; C. Li, 2023). The thermospheric density satellite data is available online through TU 
Delft thermosphere group (Siemes et al., 2023). The OMNIWeb high-resolution data is available online through 
NASA Goddard Space Flight Center (NASA, 2023). The code used to process all the inputs, train ML models, 
and benchmark their performances was developed during this study, and it is available through our open-source 
repository Karman (Acciarini, Brown, & Baydin, 2023).
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