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Abstract:  97 

Madagascar’s unique biota is heavily impacted by human activity and under intense threat. Here, 98 

we review the current state of knowledge on the conservation status of Madagascar’s terrestrial 99 

and freshwater biodiversity by presenting data and analyses on documented and predicted species-100 

level conservation status, the most prevalent and relevant threats, ex situ collections and programs, 101 

and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area 102 
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network in Madagascar covers 10.4% of its land area and includes at least part of the range of the 103 

majority of described native species of vertebrates with known distributions (97.1% of freshwater 104 

fishes, amphibians, reptiles, birds and mammals combined) and plants (67.7%). The overall figures 105 

are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants 106 

occurring within at least one protected area). IUCN Red List assessments and Bayesian neural 107 

network analyses for plants identify overexploitation of biological resources and unsustainable 108 

agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action 109 

at multiple levels to ensure that conservation and ecological restoration objectives, programs and 110 

activities take account of complex underlying and interacting factors and produce tangible benefits 111 

for the biodiversity and people of Madagascar.  112 

 113 

One Sentence Summary: Current knowledge on Madagascar’s biodiversity and its decline 114 

indicates an urgent need for inclusive actions. 115 
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Main text: 116 

Madagascar’s biota, the result of millions of years of evolution in relative isolation, is both unique 117 

and under threat. At the same time as the scientific description of new species is accelerating (1), 118 

so is the overall rate of extinction (2), and many species may be disappearing before they are even 119 

documented. In this review, we aim to consolidate information on the conservation status of some 120 

of the main elements of Madagascar’s biodiversity, evaluate the many and varied threats faced by 121 

species assessed under the criteria for the International Union for Conservation of Nature (IUCN) 122 

Red List of Threatened Species, and provide some perspectives on future opportunities to ensure 123 

the future of this hyperdiverse and unique biota.   124 

 125 

Threats to Madagascar’s biodiversity  126 

Madagascar’s biodiversity is in decline, with some groups more threatened than others (Fig. 1). In 127 

our review of threatened species, we follow the IUCN Red List data (3) and threat categories (4), 128 

unless otherwise specified. Threatened species are those listed as Critically Endangered (CR), 129 

Endangered (EN) or Vulnerable (VU). At one extreme, 22% (35 species) of assessed birds are 130 

threatened, while, at the other end of the scale, approximately 73% (66 species) of freshwater 131 

fishes and 75% (173 species) of magnoliid plants are threatened. Trees are particularly important 132 

in terms of their broad ecological functions and human uses, and 63% of the 3,118 assessed tree 133 

species in Madagascar are threatened (5). Humans have impacted the environment since arrival on 134 

Madagascar, not only in recent years. To avoid a shifting baseline effect, it is necessary to view 135 

changes in light of human settlement beginning hundreds or even thousands of years ago (1). For 136 

example, despite the relatively low proportion of bird species currently threatened with extinction, 137 
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Madagascar has already lost at least 14 species (7% of all species) that were present when humans 138 

first settled the island (Fig. 1). The rate of anthropogenic extinction is even higher in mammals, 139 

with 23 species (10%) extirpated since first human settlement. Vertebrate extinctions include the 140 

loss of lineages representing millions of years of evolution – e.g., the sloth-, koala- and monkey-141 

lemurs (families Palaeopropithecidae, Megaladapidae, and Archaeolemuridae) and two species of 142 

hippopotamus (family Hippopotamidae). The extinction of four species of elephant birds (order 143 

Aepyornithiformes) represents the global loss of a functionally unique clade (6, 7). Extinctions, 144 

especially those of megafauna such as these, have broad scale implications for ecosystem 145 

functioning (6-8).  146 

In total, 13 endemic animal species are listed as Extinct (EX), defined as extinctions after 1500 147 

AD, and an additional 33 are listed as Extinct Prehistorically [EP], defined as anthropogenic 148 

extinctions prior to 1500 AD  (see (9) for a full list of documented anthropogenic extinctions before 149 

1500 AD). A further nine have been categorized as Critically Endangered (Possibly Extinct) – 150 

CR(PE).  For plants, no species has been assessed as Extinct, and only one species (Aloe silicicola) 151 

is categorized as Extinct in the Wild (EW). A further 118 plant species are listed by IUCN as 152 

CR(PE) (111 spp.) or Critically Endangered (Possibly Extinct in the Wild) – CR(PEW) (7 spp.). 153 

Of those currently listed as CR(PE), five species are present in ex situ living collections, and their 154 

status should therefore be updated to CR(PEW) (3, 10). 155 

Malagasy species feature prominently among animal groups that have been considered by the 156 

EDGE of Existence program (11-13), which ranks species according to their evolutionary 157 

distinctiveness and the level of threat they face (EDGE = Evolutionary Distinct and Globally 158 

Endangered). Almost one in five species of amphibians (18 spp.), reptiles (17 spp.), and mammals 159 
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(17 spp.) in the top 100 EDGE species of each group are found in Madagascar (13). Yet only one 160 

in 20 (4 spp.) of the top 100 EDGE species of birds are found on the island.  161 

Given the narrow geographic range of many Malagasy species (e.g., (14)), numerous undetected 162 

anthropogenic extinctions are likely to have taken place (15), such as CR Aloe species, which may 163 

have become extinct in the wild since they were last recorded. This may be especially pronounced 164 

in groups with high levels of micro-endemism, for example freshwater fishes and amphibians (16). 165 

Ascertaining extinction events is difficult due to sampling biases, insufficient taxonomic 166 

knowledge regarding the morphological features of extant species, and the challenges of 167 

comparisons with fossil and subfossil remnants in certain groups, such as frogs (e.g., (17)).  168 

 169 

Reliability of species conservation assessments  170 

Conservation assessments rely on taxonomic classification, and different opinions on species 171 

limits and numbers may influence the proportion of threatened species (e.g., (18)). This proportion 172 

may also be biased by an over-assessment of well-known and widespread taxa, or, alternatively, 173 

range-restricted species that are more likely to be threatened. To investigate indications of bias, 174 

we calculated the fraction of threatened species across different plant groups based on two sets of 175 

species: taxa with full threat-status assessments in the Red List compiled by the IUCN and their 176 

partners (19); and those estimated with a Bayesian neural network approach (Fig. 1; (9, 20)), which 177 

inferred the threat status for all remaining species. Using this method, we predicted the threat status 178 

of 8,821 species with an estimated test accuracy of >65%. All taxa with a full threat-status 179 

assessment were included, although some assessments may be out of date and could underestimate 180 

threat levels.  181 
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The neural network approach combined with current IUCN assessments revealed a similar fraction 182 

of species inferred to be threatened across most taxonomic groups (Fig. 1). Large deviations from 183 

the proportion of threatened species in the current IUCN assessments occur in the ferns and 184 

lycophytes, and to a lesser extent the magnoliids. The neural network results combined with the 185 

known IUCN categories predicted a far higher proportion of threatened ferns and lycophytes (146 186 

of 306 spp; 47.7% [95%CI: 38.5-56.7%]) than reflected in published IUCN assessments (1 of 33 187 

spp; 3.0%), suggesting a bias towards assessing more common species. In the magnoliids, the 188 

combined results predict a lower proportion of threatened species (211 of 294 spp; 71.8% [95%CI: 189 

68.0-75.9%]) compared to published IUCN assessments alone (173 of 225 spp; 76.9%), 190 

suggesting a bias towards assessing rare species in that group.  191 

 192 

Genetic erosion 193 

The reduction of genetic diversity within species resulting from the extirpation of 194 

subpopulations is a crucial, yet easily overlooked, facet of biodiversity loss that is often a precursor 195 

to extinction. Genetic erosion has negative effects on the individual fitness, the health of 196 

populations, and a species’ ability to adapt to changing environments, reducing their resilience to 197 

further change, and potentially incurring extinction debt (21, 22). In practice, genetic factors are 198 

not directly incorporated into IUCN assessments, which are based on measures of the probability 199 

of extinction due to population declines, restricted geographic ranges, and small population sizes 200 

(23).  201 

The reduction in population sizes of wild plants and animals, together with their fragmentation and 202 

isolation, is generally expected to increase inbreeding and genetic load, reducing genetic diversity 203 



Madagascar’s extraordinary biodiversity: Threats and opportunities 

 

9 

 

and fitness over time (22, 24). The few studies of intraspecific diversity in Malagasy species to 204 

date reveal that some species have maintained high genetic diversity in spite of habitat 205 

fragmentation (e.g., (25, 26)), whereas others have relatively low diversity, possibly as a result of 206 

anthropogenic effects (e.g., (25, 27-29)). Results differ even within species, such as in the palm 207 

Beccariophoenix madagascariensis, in which only some populations show strong signals of 208 

inbreeding, reflected by an excess of homozygotes (30). It is important to note that under some 209 

circumstances, population decline may outstrip the speed with which genetic diversity is eroded 210 

due to inbreeding. Estimates of heterozygosity may therefore not indicate the true genetic health 211 

and long-term prospects of populations when considered in isolation (31, 32).  212 

A more powerful, although less explored, approach is to use coalescence-based demographic 213 

modeling, which uses genome-wide data to estimate the longer-term trends in population size, 214 

providing more information than metrics of contemporary genetic diversity alone (25, 33). In 215 

Cheirogaleus dwarf lemurs, genomic analysis suggests that four species have experienced 216 

population size declines in the last 50,000 years, with one decline (C. cf. medius) starting as long 217 

as 300,000 years ago – all clearly in pre-human times and resulting in lower genetic diversity (29). 218 

In contrast, another genomic study shows that five out of ten analyzed plant species with varying 219 

extinction risk have experienced substantial population declines since human colonization of 220 

Madagascar (25). In the golden-crowned sifaka (Propithecus tattersalli) (26), mouse lemurs 221 

(Microcebus spp.) (28), Mantella frogs (34), and the Milne-Edwards’ sportive lemur (Lepilemur 222 

edwardsi) (35) demographic declines also appear to have taken place after the arrival of humans 223 

on the island (although the inherent uncertainties of mutation rates in the microsatellite data used 224 

makes the timing of these declines less certain).  225 
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The risks of inbreeding and increased genetic load may represent substantial and likely 226 

underestimated longer-term threats to the survival of Malagasy species. This is especially relevant 227 

considering the high level of fragmentation of native habitats in some vegetation types, such as the 228 

humid forests, and is worthy of further investigation. 229 

 230 

Predicting future extinction: direct drivers of loss 231 

Identifying direct threats is part of the IUCN Red List Assessment process, and even species that 232 

are not explicitly threatened (i.e., those that are Least Concern [LC], Near Threatened [NT], or 233 

Data Deficient [DD]) can still have threats listed. Here we discuss these threats and how they apply 234 

to all species. Our analysis of IUCN assessments indicates that overexploitation and agriculture 235 

are the most frequently listed threats to Malagasy fauna (excluding invertebrates) and flora (Fig. 236 

2), mirroring global findings (36). Overexploitation is unsustainable biological resource use as 237 

defined by the IUCN (37), including hunting and collecting for subsistence use or 238 

national/international trade. Overexploitation is linked in some cases to illegal harvesting – for 239 

example, the illegal logging of rosewood for trade (Dalbergia spp.) – which is banned under the 240 

Convention on International Trade in Endangered Species of Wild Fauna and Flora since 2013 and 241 

under Malagasy law since 2010.  242 

We estimated that 62.1% of vertebrates and 87.1% of plants are threatened by overexploitation 243 

and that 56.8% of vertebrates and 87.8% of plants are threatened by agriculture. These two major 244 

threats, almost equal in magnitude (Fig. 2), have different modes of impact – overexploitation is 245 

more targeted and tends to occur over relatively restricted areas compared to the broad effects of 246 

land clearance for agriculture.  247 
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Agriculture, and to a lesser extent overexploitation, are also the primary causes of deforestation in 248 

Madagascar. Approximately 44% of the land area covered by native forest in 1953 was deforested 249 

by 2014 (38). The rate of deforestation has steadily increased, reaching 99.0 kha/yr between 2010 250 

and 2014 (38), and according to Global Forest Watch remains very high at 72.9 kha/yr (2014–251 

2020) (39). Deforestation in Madagascar reflects global patterns (40) and is primarily driven by 252 

the small-scale but widespread practice of swidden agriculture (also known as shifting cultivation; 253 

in Madagascar referred to as tavy for rice cultivation in humid and subhumid areas, and hatsake 254 

for cassava and maize in dry and subarid areas). Additionally, cash crop production, particularly 255 

maize and peanut, has become a major driver of deforestation (41), alongside the production of 256 

products for international markets, such as forest-derived vanilla (42). The most frequent threats 257 

listed for plants and vertebrates suggest that this trend of increasing deforestation rates will 258 

continue, with forest loss and degradation a consequence of clearance of land for agriculture, 259 

potentially associated with small-scale fire activity (43) and overexploitation through selective 260 

logging and highly targeted activities such as the collection of palm hearts. Additionally, natural 261 

system modifications (threats from actions that convert or degrade habitat, e.g., anthropogenic fire 262 

in forests or changes in water management; Fig. 2), adds to deforestation and threatens 23.2% of 263 

vertebrates and is estimated to threaten 68.9% of plants. Some predictions indicate that in the 264 

absence of an effective strategy against deforestation, 38–93% of forest present in 2000 will be no 265 

longer present in 2050 (41).   266 

For vertebrates, the greatest threat after overexploitation and agriculture is ‘invasive and 267 

problematic species and emerging infectious diseases’ (referred to as invasives/diseases in Fig. 2), 268 

which impacts 27% of all species (360 spp.; Fig. 2). This category includes non-native invasive 269 

species, as well as problematic native species and diseases of any origin. Changes in habitat due 270 
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to the spread of non-native plant species can have a large effect, and one study reports that of a 271 

total of 546 naturalized non-native plants in Madagascar, 101 have been found to display invasive 272 

characteristics (44). Many non-native plants, such as the Mexican yellow pine (Pinus patula) in 273 

terrestrial systems (45), and common water hyacinth (Pontederia crassipes) in freshwater systems 274 

(46), are aggressively invasive and transformative in semi-natural habitats, and are clearly 275 

impacting native fauna and flora. Even within reserves and protected areas, the issue can be 276 

pronounced. For example, three species of invasive/problematic plants – strawberry guava 277 

(Psidium cattleyanum), Molucca raspberry (Rubus moluccanus), and wild cardamom (Aframomum 278 

angustifolium) – together occupy 17.6% of the Betampona Nature Reserve (47) and are also 279 

widespread in Ranomafana National Park and other protected areas.  280 

Not all impacts are negative, however, and there is some evidence to suggest that, due to their 281 

potential for faster growth, some non-native plants are better able to combat the rapid 282 

fragmentation of native vegetation, and may be beneficial for endemic vertebrates, providing 283 

refuge, food, and vegetation corridors, while also improving human livelihoods (48). The potential 284 

for such species to become invasive or readily burn must however be fully considered before 285 

embarking on any planting initiatives (49). In addition, effects must be considered at different 286 

scales. For examples, the presence of strawberry guava has been reported to locally increase 287 

species richness in frugivores, but as they are primary dispersers of the seed this further contributes 288 

to the spread and to associated changes in floral and faunal community structure and reduction in 289 

taxonomic richness (50).  290 

Non-native vertebrates have also had marked and diverse impacts, which we also here illustrate 291 

with some examples. Introduced rats (Rattus rattus; present since at least the 14th century) are 292 

now ubiquitous, even in remote areas, and there is evidence that their presence is associated with 293 
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declines in native small mammals (51). In freshwater habitats, competition and predation by exotic 294 

fish species is considered a major factor in the decline of native freshwater fish (52), which have 295 

been completely replaced by non-native species across much of the Central Highlands and western 296 

areas (53). While not yet listed in current assessments, the recent invasion of the toxic Asian 297 

common toad (Duttaphrynus melanostictus), along with the predicted vulnerability of most native 298 

vertebrates to its toxins (54), is expected to represent a new threat to many nocturnal carnivores. 299 

The effects of other introduced and naturalized animals on native biodiversity are not well studied; 300 

this includes widely occurring species such as dogs (Canis familiaris), cats (Felis catus), the 301 

common myna (Acridotheres tristis), and the marbled crayfish (Procambarus virginalis). The 302 

threat of emerging infectious diseases is primarily driven by the occurrence of the chytrid fungus 303 

Batrachochytrium dendrobatidis, widely documented across Madagascar over the last decade and 304 

a potential threat to all amphibians, although no mass mortalities associated with chytridiomycosis 305 

have been reported in the country (55). Species often face multiple threats at the same time, 306 

although the impact of each threat can vary between species (Fig. 2).  307 

Among vertebrates, amphibians have the highest number of IUCN-identified threats per species 308 

(Fig. 2A), with a mean of 4.8 threats per species, followed by mammals (mean 2.5 threats/species), 309 

and reptiles (mean 2.2 threats/species). For plants (Fig. 2B), magnoliids have the most threats per 310 

species (mean 2.9 threats/species), followed by rosids (mean 2.8 threats/species), and other 311 

eudicots (mean 2.8 threats/species). Although there might be some variation in the perception and 312 

documentation of threats between the specialists carrying out assessments, all follow the same 313 

protocols (4).  314 

The number and relative impact of these threats may change in coming decades. The impact of 315 

climate change on Malagasy biodiversity remains understudied and it is not currently indicated in 316 
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IUCN assessments as a major threat. However, this impact is expected to increase in the future 317 

(56-59), and could potentially result in synergistic negative effects with unsustainable agriculture 318 

associated with land clearance, invasive alien species, and inappropriate management of fire 319 

regimes that can increase future fire risk (43, 56, 57, 60).  Extinctions in one group could also have 320 

effects on others that depend on them, such as in cases of strong plant–animal mutualisms (61, 62). 321 

Although coextinction is hard to quantify, with substantial knowledge and data gaps (63), models 322 

suggest that the effects of extinction can be amplified as a result of the interactions between species 323 

within and between trophic levels, with the potential to lead to secondary and even cascading 324 

extinctions (64, 65).   325 

 326 

 327 
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Fig. 1. Madagascar’s threatened and lost biodiversity. IUCN Red List assessment categories 328 

of major groups of plants and animals from Madagascar. Assessment categories and coloration 329 

follow the standards used by the IUCN Red List. Category distributions for animal groups 330 

include ray-finned fishes, (Actinopterygii, freshwater species only, N=91), mammals 331 

(Mammalia, N=231 species), amphibians (Amphibia, N=296), mollusks (Mollusca, N=67), 332 

reptiles (Reptilia, N=340), arthropods (Arthropoda, N=374), and birds (Aves, N=209). Category 333 

distributions for plants, indicated with saturated, wider bars, include magnoliids (N=225), 334 

gymnosperms (N=6), rosids (N=1,704), monocots (N=822), asterids (N=1,105 species), other 335 

eudicots (N=81), and ferns & lycophytes (N=33). Thinner, unsaturated bars indicate the relative 336 

proportion of plant taxa in each threat category for IUCN Red List assessments combined with 337 

the taxa where the threat category was predicted in a Bayesian neural network analysis: asterids 338 

(N=2,924 species), rosids (N=2,990), other eudicots (N=312), magnoliids (N=294), monocots 339 

(N=1,965), and ferns & lycophytes (N=306). The number indicated above each bar with “+” is 340 

the number of taxa for which the threat category was predicted using the neural network analysis. 341 

IUCN Red List Assessment categories include Least Concern (LC) and Near Threatened (NT), 342 

together making up the “not threatened” category; while Vulnerable (VU); Endangered (EN); 343 

Critically Endangered (CR); Critically Endangered, Possibly Extinct (CR(PE)); Extinct in the 344 

Wild (EW); Extinct (EX; i.e., extinct after 1500 CE), and Extinct Prehistorically (EP; sensu (66), 345 

i.e., extinct before 1500 CE but with dated records within the last 130,000 years) make up the 346 

group “threatened and extinct.” Silhouettes below the bars depict taxonomic orders with EP, EX, 347 

EW, and CR(PE) species, with the number of species in each category per order. For some plant 348 

groups, additional orders with single CR(PE) species are indicated with a star. Depicted orders 349 

are, from left to right and top to bottom: Perciformes, Cyprinodontiformes, Cetartiodactyla, 350 

Carnivora, Rodentia, Primates, Afrosoricida, Venerida, Unionoida, Perciformes, 351 
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Cyprinodontiformes, Squamata, Testudines, Crocodilia, Orthoptera, Spirobolida, Araneae, 352 

Calanoida, Cyclopoida, Podicipediformes, Cuculiformes, Coraciiformes, Charadriiformes, 353 

Gruiformes, Anseriformes, Aepyornithiformes, Accipitriformes, Laurales, Magnoliales, Pinales, 354 

Oxalidales, Sapindales, Myrtales, Malvales, Malpighiales, Fabales, Asparagales, Poales, 355 

Ericales, Boraginales, Gentianales, Asterales, Saxifragales. 356 

 357 

 358 
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Fig. 2. Threats to Malagasy biodiversity. Alluvial plots showing threats, as defined by the IUCN, 359 

and their associations with major groups of terrestrial and freshwater (A) vertebrates (1,332 species 360 

with IUCN assessments, of which 993 species have at least one listed threat) and (B) plants (9,268 361 

species with IUCN assessments or predictions, all of which have at least one listed threat; includes 362 

gymnosperms [6 species], which could not be visualized). Widths of the boxes/lines reflect the 363 

number of species impacted by each threat. Threats for vertebrates are further divided into sub-364 

threats, whereas only the highest threat classification was available for assessed plants. The 365 

estimates for plants include predictions for unassessed species based on a Bayesian neural network 366 

analysis (9). The color scheme is consistent across panels. The “Other” threat class includes 367 

Pollution, Climate change, Transportation, and Human disturbance, plus Invasives/diseases for 368 

plants. Some threat classes have been renamed for brevity/clarity, including the IUCN category 369 

“biological resource use”, which is labeled “overexploitation” here and in the text, for brevity and 370 

in line with IPBES terminology (36).  371 

 372 

Conservation efforts and effectiveness  373 

Protected Areas 374 

Protected areas (PAs) are the central political and scientific accomplishment of Madagascar’s 375 

conservation strategy. The network has been continuously developed since the first PA was 376 

established in 1927 (67-71). Our data compilation shows that the network now encompasses 10.4% 377 

of the land area of Madagascar, having grown by more than a third over the last two decades (Fig. 378 

3). This recent and extensive designation of new PAs was carried out via a multi-stakeholder 379 

consultative process, in combination with data and literature analyses, through the Durban Vision 380 
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initiative conceived in 2003. In addition to preserving diverse ecosystems and landscapes, the 381 

focus has been on species groups for which sufficient diversity and distribution data were 382 

available, primarily vertebrates (including birds, mammals, amphibians, and reptiles), and some 383 

plant groups. Despite the production of considerable new data since the Durban Vision began (e.g., 384 

many newly described species; (1), the network designed during that process remains highly 385 

taxonomically comprehensive. From a global perspective, the PA network also excels at capturing 386 

the vast majority of Madagascar’s many EDGE species: 14 out of 18 amphibians, 15 out of 17 387 

reptiles, 16 out of 17 mammals, and all four birds (13). 388 

As of November 2020, there were 110 terrestrial PAs with permanent protected status in 389 

Madagascar, covering 61,300 km2 across the country (Fig. 3) (70, 72, 73). Eleven of these are 390 

“orphan PAs” – sites abandoned by their former managers with responsibility reverting to the 391 

Ministry of Environment and Sustainable Development (70). An additional 89 sites (15,200 km2), 392 

predominantly comprising Key Biodiversity Areas (KBAs), are not under formal protection (70, 393 

72, 74, 75).  394 

The long-term security and effective management of Madagascar’s PAs is therefore crucial to 395 

addressing the country’s biodiversity challenges. Providing evidence of their effectiveness and co-396 

benefits, such as ecosystem service provision, will be critical to securing ongoing support and 397 

management from local communities, as well as from local and national governments. However, 398 

measuring PA effectiveness is challenging (e.g., at avoiding deforestation, or providing alternative 399 

livelihoods) while accounting for numerous covariates (76), particularly in Madagascar with 400 

comparatively little long-term biodiversity monitoring data (77). Recent counterfactual analyses 401 

(78) have sought to address this question by identifying protected and non-protected sites that are 402 

similar across multiple social and environmental variables, and then comparing indicators of 403 
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conservation effectiveness, such as deforestation rate. These analyses indicate that PAs have a 404 

small, but significant, effect at reducing deforestation (9).  405 

We show that since 1990, human impacts have measurably increased across all terrestrial PAs 406 

(Table S8 (9)), a trend documented worldwide (76). Human activity by local communities inside 407 

PAs is not necessarily detrimental to biodiversity, and land use and conservation are therefore not 408 

mutually exclusive. Nevertheless, land conversion and unsustainable exploitation remain major 409 

drivers of biodiversity loss. This suggests that protecting and realizing the potential of 410 

Madagascar’s comprehensive PA network will require the application of rigorous monitoring and 411 

evaluation strategies, matched with extensive community collaboration, to understand co-benefits 412 

and minimize detrimental human impacts. 413 

Scores for deforestation and management effectiveness – for example, from the self-reported 414 

Management Effectiveness Tracking Tool (79) – have been the main metrics used to monitor 415 

effectiveness to date. However, these are not always reliable indicators of management 416 

effectiveness (77). New and expanded capacity of variables such as remote-sensed fire and stable 417 

night lights, with increased temporal resolution, offer promising new monitoring opportunities. 418 

How fire is associated with land transformation in Madagascar has been discussed in the literature 419 

but only recently quantitatively assessed (43), demonstrating that tree loss anomalies are highest 420 

in environments where landscapes-scale fire (>21 ha) does not occur, and where the role of small-421 

scale fires (<21 ha) requires close and urgent investigation. We show that trends in anthropogenic 422 

fire are variable, increasing in some areas of forest vegetation in the north, east, and west but 423 

decreasing in grassland-woodland mosaic vegetation across central Madagascar (Fig. 4A, B). 424 

Forest loss also reflects this pattern, primarily occurring in the humid forest biome in the east, but 425 

also in dry forest and spiny forest in the west (Fig. 4C, D). Deforestation and land use conversion 426 
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remain key challenges to conservation in Madagascar, and improved remote-sensing will 427 

accelerate monitoring and developing understanding on the effectiveness of PAs and other 428 

conservation measures. 429 

 430 

Ex situ conservation and restoration 431 

Living plant collections in botanic gardens and seed banks represent invaluable sources of 432 

taxonomic and genetic diversity for immediate conservation and research, and should continue to 433 

support restoration efforts. Globally, 29.6% of all known native Malagasy plant species (23.1% of 434 

endemic species and 23.1% of native threatened species) are held in botanic gardens, with 15.5% 435 

held in Madagascar (10), where their cultivation is sometimes linked to educational programs and 436 

community engagement, essential to raising awareness of biodiversity and conservation issues. 437 

The Millennium Seed Bank Partnership in Madagascar, initiated in 1996, hosts collections of an 438 

estimated 3,500 native Malagasy species, including members of four of the five endemic plant 439 

families and all seven of the iconic baobab species (Adansonia spp.). The single Malagasy plant 440 

species listed as Extinct in the Wild, Aloe silicicola, now only survives in one living collection 441 

outside Madagascar.  442 

For native terrestrial and freshwater vertebrates, 9% of amphibians, 17% of mammals, 20% of 443 

reptiles, 21% of freshwater fishes, and 33% of birds are currently held in zoological collections 444 

(18% overall) (9, 80). Many are part of active breeding programs: a subset of these (3% of 445 

amphibians, 7% of reptiles, 11% of freshwater fishes, 13% of mammals, and 23% of birds) were 446 

successfully bred during 2020 (9). Unsurprisingly, the species held in captive breeding facilities 447 

are biased towards the more charismatic, well-known taxa (81). For example, among amphibians, 448 
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13 of the 34 species in zoos belong to the genus Mantella, a group of strikingly colored diurnal 449 

frogs, even though Mantella contains only 4% of Madagascar’s amphibian fauna. Freshwater 450 

fishes, amphibians, and reptiles are highly suitable for targeted ex situ breeding and reintroduction 451 

programs (82-85). For species in these groups and others with high levels of micro-endemism, 452 

such conservation programs continue to represent a major safeguard against extinction (86). This 453 

complies with the One Plan Approach to species conservation proposed by the IUCN SSC 454 

Conservation Planning Specialist Group, which supports the development of conservation and 455 

management plans for all populations of a species, even outside of their natural range (87). It 456 

should be noted that the success of reintroduction relies also on the maintenance of natural habitat 457 

and functional diversity at potential reintroduction sites, along with minimizing risks associated 458 

with invasive species and infectious diseases. In addition, particularly for mammals, vulnerability 459 

of captive-bred populations to predation can also jeopardize the success of reintroductions (88). 460 

Progress towards international conservation commitments  461 

Madagascar continues to make progress towards Convention on Biological Diversity targets, but 462 

like most countries falls short of meeting them in full (89). Of particular relevance here is that 463 

Madagascar did not formally meet Aichi Target 11 to protect at least 17% of its total land area 464 

(Fig. 3) – as was the case for 48% of the parties reporting their progress (89). If areas designated 465 

as important for biodiversity but not currently under formal protection were also given protection, 466 

the total percentage of PA coverage would rise from the current 10.4% to 13% (Fig. 3B). However, 467 

given that even the existing network is widely considered to be chronically under-resourced, this 468 

action is not a priority for the near future (90, 91).  469 
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Target 4 of the Global Strategy for Plant Conservation seeks to protect 15% of each vegetation 470 

type. This has been achieved for mangrove (currently at 29.4%), spiny forest (21.5%), humid forest 471 

(18.5%), and tapia (17.9%), but not for dry forest (13.3%), subhumid forest (5.7%), and grassland-472 

woodland mosaic (1.8%) (Table S6 (9)). However, expansion of the areas of those vegetation types 473 

under protection may not be feasible due to limited financial resources, the large degree of 474 

fragmentation and geographical spread of habitats, and the long administrative process involved 475 

in extending PAs or designating additional areas, as well as a lack of political will. It also may not 476 

be desirable until it can be demonstrated that the existing PAs are well-resourced, achieving 477 

conservation objectives and providing benefits to communities. Restoration within currently 478 

protected areas may provide a longer-term pathway to meeting this goal, particularly where there 479 

are rapidly realizable socio-economic benefits such as sustainable silk production from wild native 480 

silkworms (Borocera cajani) associated with tapia (Uapaca bojeri) in the Itremo Massif PA and 481 

Ambatofinandrahana KBA. Other targets are more difficult to assess due to lack of data. For 482 

example, there is very little evidence to assess success in the control of invasive alien species, with 483 

some exceptions such as the ongoing but promising house crow (Corvus splendens) eradication 484 

(92). 485 

Although most of the Aichi and GSPC targets were either not achieved or cannot be assessed, a 486 

marked success is that Madagascar has comfortably achieved GSPC Target 7 (at least 75% of 487 

known threatened plant species conserved in situ), with our analyses indicating this percentage is 488 

currently at 80%. 489 

 490 

Realizing benefits of biodiversity for people 491 
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The majority of Madagascar’s over 28 million inhabitants live outside of, but often very close to, 492 

PAs (93) (Figs. 3A; S1). These communities face challenges connected to widespread poverty, 493 

which itself is related to degradation of natural capital in the landscape, limited access to formal 494 

education and health care, crime, corruption, weak governance, and regulatory issues including 495 

land tenure (15, 94, 95). For example, southern Madagascar is severely affected by food and water 496 

insecurity, which catalyzes political and social instability, exacerbates economic insecurity, and 497 

has led to large-scale migration within the country (96). This instability likewise hampers the 498 

operations of local, national, and international conservation organizations, which could be 499 

compounded further by adverse effects from climate change (59). As the human population in the 500 

country is expected to reach 42–105 million by the end of this century, of which half will be under 501 

15 years of age, and with the majority under the poverty threshold (97), the conservation success 502 

of PAs will be inextricably linked to the effective provision of livelihoods, food security, and 503 

natural capital – a situation echoed across all Malagasy ecosystems and the world over (98).  504 
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  505 

Fig. 3. Madagascar’s terrestrial protected areas (PAs) in the context of human population 506 

density and changes in coverage of vegetation type over time. (A) PAs with IUCN protected 507 

status (99), “orphan” status, or no formal protection status (e.g., unprotected Key Biodiversity 508 

Areas [KBAs]), shown in the context of nearby marine PAs, surrounding bathymetry (100), coral 509 

reefs (101), cities, roads, and population density (102). (B) The evolution of PA coverage over 510 

time, showing the potential increase in area protected that could be gained if the designated areas 511 

(those identified as important for biodiversity but not currently under formal protection, mostly 512 

KBAs) were protected in the future (74, 75).  513 
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 514 

Fig 4. Recent changes and patterns in burned area and tree cover in Madagascar. (A) 515 

Average burned area in the period 2003–2019. (B) Statistically significant trends in burned area 516 

(MODIS) (103) from 2006–2016, not explained by precipitation change (TRMM) (104), dates 517 

chosen for comparison with Goodman et al. (72). Red indicates an increasing trend; blue indicates 518 

a decreasing trend.  (C) Change in tree cover from 2000–2012 (105). (D) Vegetation map, inferred 519 
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and simplified from Moat & Smith (106). The legend indicates the percentage of each vegetation 520 

category currently covered by the protected area network. 521 

 522 

Looking back, moving forward 523 

Despite decades of research and applied conservation programs supported through substantial 524 

financial investments (95, 107), Madagascar’s remarkable biodiversity continues to face severe 525 

challenges (Figs. 1, 2). It is reasonable to ask whether more of the same – even if better resourced 526 

and underpinned with greater scientific understanding and technology – is likely to deliver a 527 

tangible reversal in Madagascar’s trajectory of biodiversity loss, or whether new approaches are 528 

required to bring transformative change (108), including greater emphasis on monitoring 529 

interventions and addressing underlying drivers through key leverage points. The responsibility 530 

for averting humanitarian and biodiversity crises is a shared global challenge (36, 109), with 531 

solutions needed at all societal levels – including via local communities, engagement of the private 532 

sector, sound leadership and policy from regional and national government, steady international 533 

support for conservation, and increased recognition of how historic and ongoing global and 534 

national inequalities have contributed to the current situation. Scientific data and evidence will 535 

continue to make a vital contribution, but it is crucial that this is done in an interdisciplinary 536 

context, with open communication channels to relevant government departments and third sector 537 

organizations.     538 

 539 

Decades of progress in biodiversity science and conservation  540 
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We now have a clearer and more detailed understanding than ever before of the past and present 541 

diversity and distribution of Madagascar’s biodiversity, and the threats it faces (1) (Fig. 1). The 542 

underlying data are the product of decades of research – with an increasing number of Malagasy 543 

biologists involved. This body of research and the evidence we have collated and presented here 544 

makes a clear case for Madagascar as one of the world’s foremost conservation priorities. 545 

Despite multiple competing demands on land, the Malagasy government, in collaboration with a 546 

broad group of conservation organizations and donors, has succeeded in designating 10.4% of the 547 

country as terrestrial PAs in a network that is largely representative of Madagascar’s diverse 548 

biomes (Fig. 3, 4). Most terrestrial and freshwater vertebrate species with known distributions have 549 

ranges that overlap with least one PA (94.7% of reptiles, 97.2% of amphibians, 98.1% of 550 

mammals, 98.9% of freshwater fishes, 100% of birds, and 97.1% for all groups combined), as do 551 

the majority of plants, but to a lesser extent (67.7%) (9). For threatened species with known 552 

distributions, the percentages are similar for vertebrates (94.3% of reptiles, 99.3% of amphibians, 553 

97.7% of mammals, 100% of freshwater fishes, 100% of birds, and 97.7% for all groups combined) 554 

and markedly higher for plants (79.6%). Nonetheless, there are still many threatened species with 555 

ranges that do not overlap with existing PA network, including one amphibian, three mammals, 556 

seven reptiles, and 559 plants (9), and many more that have not yet been assessed but may be 557 

threatened. The ranges of all birds overlapped with at least one PA; this was also true when we 558 

filtered the analysis to only include resident and breeding areas (9).  559 

Since the loss of Madagascar’s terrestrial megafauna (here defined as vertebrates above 10 kg), 560 

there have been few documented modern extinctions, but many species have perilously reduced 561 

population sizes. The continued increase in new species descriptions suggests there may be 562 

undocumented extinctions, especially in poorly studied taxa (1). Despite this, with limited 563 
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resources and/or capacity, Madagascar has made important progress towards achieving 564 

international climate, biodiversity, and sustainable development goals, providing a foundation on 565 

which to build in the coming decades.  566 

Success stories for individual species highlight how positive collaborative efforts can avert 567 

extinction. Examples include work on the Madagascar pochard (Aythya innotata) (110), which 568 

shows a 30% probability that extinction was prevented due to conservation action, the success 569 

story of the community-based protection of the tahina palm or dimaka (Tahina spectabilis) where 570 

local communities were involved in propagation and population reinforcement (111), and the work 571 

to prevent the extinction of the ploughshare tortoise (Astrochelys yniphora) through a captive 572 

breeding program (112).  573 

Other notable successes have come from Madagascar’s “biodiversity conservation boom”, which 574 

started in the 1980s, including a growth in the number of students pursuing university-level 575 

education in environmental sciences, biodiversity conservation and management, and related 576 

fields, at both public and private universities. The result is an increasingly robust national capacity 577 

for the conservation and management of biodiversity that extends to international conservation 578 

organizations, which have been able to actively recruit Malagasy professionals to the highest 579 

administrative and executive positions. Going beyond this, the gap in scientific leadership that 580 

underpins conservation evidence is being incrementally filled by Malagasy biodiversity scientists. 581 

Researchers from outside Madagascar are increasingly collaborating with Malagasy researchers 582 

for mutual benefit. The requirement for international collaborators to provide financial and 583 

technical support for Malagasy researchers and their research infrastructure via collaboration 584 

protocols, set out in the national strategy for scientific research in Madagascar (113), reinforces 585 

the importance of this.  586 
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As in many low-income countries, insufficient public funding means that the number of Malagasy 587 

professionals is still insufficient to serve the country’s needs, there are relatively few PhD positions 588 

available to students, and those that are trained at higher levels often move away from academia 589 

and into the private sector. Access to up-to-date biodiversity data has also been a limiting factor 590 

(15). A further challenge is how to successfully engage multiple parts of society in conservation. 591 

Efforts that are genuinely socially integrated have been shown to produce more effective and 592 

resilient practices, policies, and decision-making, especially in the face of unstable environmental, 593 

political, and health situations (114). The Madagascar Fauna and Flora Group, the Lemur 594 

Conservation Foundation, Durrell Wildlife Conservation Trust, The Peregrine Fund Madagascar, 595 

Madagascar Biodiversity Center, and Madagasikara Voakajy, as well as the work of the Royal 596 

Botanic Gardens, Kew, and Missouri Botanical Garden, are all examples of successful 597 

collaborations involving researchers, conservation partners and local communities to protect 598 

biodiversity and empower local people.  599 

The future of biodiversity in Madagascar 600 

Meeting the Convention on Biological Diversity’s Post-2020 Global Biodiversity Framework 601 

2030 targets and milestones and achieving the 2050 goals (115) will be challenging – in 602 

Madagascar and globally. Evaluating successes and failures over previous decades and learning 603 

from these to prioritize effective conservation investment will be particularly important. To 604 

embrace diverse views and promote inclusivity in the identification of future directions, we 605 

discussed our results and current literature among our co-authors and consulted with Malagasy and 606 

external researchers, conservation leaders, and politicians, to arrive at five main opportunities for 607 

the future, which we now present.  608 
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1) Investment in conservation and restoration must be based on evidence, effectiveness, and future 609 

challenges. Since the 1980s, billions of US dollars from international donors and conservation 610 

organizations, in cooperation with the Malagasy government, have been dedicated to protecting 611 

the country’s biodiversity and creating today’s network of PAs (107, 116). However, the 612 

effectiveness of many interventions is poorly understood because impact evaluations are absent or 613 

lacking rigor. Evaluating the effectiveness of conservation activities is challenging, but the subject 614 

of increasingly sophisticated research efforts (76, 78, 117). Nevertheless, it is imperative 615 

investments reinforce evidence-based and regularly evaluated interventions, requiring greater 616 

collaboration and co-design between local communities, regional and national authorities, 617 

researchers, the private sector, and other stakeholders. A particular opportunity is to frame these 618 

evaluations around community-based conservation interventions that address challenges faced by 619 

people and nature in unison. For example, nature-based solutions (118) for diversified, locally 620 

adapted and sustainable agriculture can help address livelihood needs, while more efficient stoves 621 

can substantially decrease the demand on charcoal from native forests for cooking and heating, 622 

and further may reduce the health hazards of smoke inhalation. Such initiatives increase food and 623 

energy security (119) while providing resilience to climate stochasticity (120). Similarly, 624 

coordinated, community-based fire management and awareness raising can be used to help 625 

mitigate risk to fire-sensitive forests. On-site management is especially important for fire 626 

mitigation, as a study during the COVID 19 pandemic has shown (121). Fire management also 627 

presents the opportunity to mitigate the impact of exotic species by targeting the removal of 628 

flammable invasives (e.g., Pinus), and guide appropriate tree-planting initiatives to avoid fire-629 

prone plantations near areas of particular biological importance. Such measures can improve the 630 

quality of grazing land for livestock, while reducing carbon emissions from fire and helping to 631 

protect biodiverse habitats.   632 
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 633 

2) Expanded biodiversity monitoring is key to safeguarding Madagascar’s most valuable natural 634 

assets. Existing biodiversity data are sufficient to characterize major conservation challenges and 635 

robustly support the orientation of conservation efforts in Madagascar. Calling for the collection 636 

of additional data risks delivering diminished returns on investment for conservation planning 637 

(122). Nevertheless, from collating the information for this review, we acknowledge a clear need 638 

to address gaps in understudied ecosystems, taxa, and genetically distinct populations, noting that 639 

many newly described species are already threatened (123) and in need of immediate protection. 640 

Monitoring is also crucial for the detection of new non-native and potentially invasive species, as 641 

well as providing important data for the management of those that have already taken hold. 642 

Increasing connections with international trading partners without concurrent improvements in 643 

capacity for biosecurity increases Madagascar’s vulnerability to such species (124), and strategies 644 

to monitor and mitigate these risks while delivering near-term benefits are needed.  645 

Although there are initiatives that provide broad overviews of conservation effectiveness (e.g. 646 

(117)), many conservation interventions lack impact evaluations, in part due to a lack of robust, 647 

long-term monitoring data for biodiversity and social outcomes. The major gap is a lack of capacity 648 

for robust biodiversity monitoring. An example of the increasing value of data and coherency in 649 

conservation efforts is the development of the Madagascar Protected Areas website (125), which 650 

consolidates much of the information about Madagascar’s extensive network of PAs. But as with 651 

many initiatives, the key is in long-term financing and maintenance of these portals and ensuring 652 

that data flows freely and openly to similar, global initiatives like Protected Planet (73).  653 

Biological monitoring needs to be based on consistent, repeatable methodologies, with shared data. 654 

This information provides the science-based evidence needed to leverage international funding 655 
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and government policy support. Monitoring is one area where new technologies will play a key 656 

role, such as through the increasing availability of near real-time satellite images and small and 657 

cost-effective unmanned aerial vehicles, which can increase visual access to remote areas (126). 658 

Similarly, DNA-based biodiversity surveys, including environmental sampling, can greatly 659 

improve the speed of site-inventories and identification of unknown and understudied taxa. 660 

Advances in monitoring must be delivered with improved and centralized management. This 661 

should include open-source and transdisciplinary data on biodiversity, social and conservation 662 

governance and performance. These data should be in formats that are accessible and useful to 663 

practitioners, to identify relevant baselines, and support evidence-based decisions for conservation 664 

and restoration.  665 

3) Improving the effectiveness of existing PAs is more important than creating new ones. 666 

Madagascar has an extensive, evidence-based, and highly representative network of terrestrial PAs 667 

(Fig. 3, 4). Madagascar’s existing PAs already include at least partial ranges of a substantial 668 

proportion of Malagasy taxa, including most Malagasy EDGE species. Focusing on improving 669 

their quality and effectiveness will likely lead to positive biodiversity outcomes (127), further 670 

increasing the already measurable impact that PAs have had on biodiversity. By strengthening 671 

PAs, biodiversity can be conserved across ecosystem, species, and genetic levels, all of which are 672 

integral in long-term conservation, as discussed above. Investment in restoration of degraded areas 673 

within and beyond the existing network (see Opportunity 4 below) will provide multiple benefits 674 

for biodiversity and people. This could help increase the resilience of habitats to future drivers of 675 

biodiversity loss including climate change, while increasing potential ranges of many species in 676 

parallel. Demonstrating the benefits of strengthened PAs to people is a likely prerequisite for 677 

societal support to maintain and improve upon the existing network, while mitigating risk of future 678 
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downgrading, downsizing, or degazettement (legal removal of conservation status) (128). 679 

Financial benefits that come with strengthened PAs must be distributed appropriately and 680 

equitably within the country’s political and social contexts, with the full inclusion of local 681 

communities at all stages (127, 129).  682 

 683 

4) Conservation and restoration should not focus solely on the PA network. Madagascar’s PAs are 684 

islands of natural capital in a landscape of degraded natural resources (130) and therefore provide 685 

vital resources for communities living adjacent to them. Traditional “fortress conservation” 686 

– seeking to protect areas by limiting access – is therefore both undesirable and unlikely to be 687 

effective. To further reduce the detrimental human impacts that exist in all PAs (107) (Table S8 688 

(9)), we argue for strategies to enhance the natural capital of the surrounding landscapes, to reduce 689 

pressure on PAs as providers of basic resources, and to increase buffer zones for the species that 690 

live in and around them. This could include increasing ecosystem provision, such as productive 691 

soils, food, fibers, and other materials and services such as water flow regulation and carbon 692 

capture. Such measures would serve to address some of the largest threats to species, including the 693 

expansion of agriculture and overexploitation (Fig. 2).   694 

In particular, ecological restoration could benefit people and biodiversity, particularly when 695 

targeted to the 89.6% of the country that is not protected. It offers potential to provide new 696 

livelihood opportunities that are far from, and independent of, the resources within PAs, further 697 

reducing pressure on the system (131). Importantly, restoration should not only target those 698 

ecosystems that traditionally receive the most conservation attention because they hold the greatest 699 

biodiversity, for example forests. Other vegetation types such as grasslands, where most 700 

agriculture takes place, are equally vital.  Restoration should be carried out following best practice 701 
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and in places where people will benefit most, not necessarily only adjacent to PAs. Further, 702 

restoration should include maximizing biodiversity recovery to meet multiple goals, using resilient 703 

species, and working together with local communities (49, 132).  704 

For the species and their inherent genetic diversity not covered by the PA network, particularly 705 

those that are challenging to conserve, such as freshwater fishes and palms, ex situ conservation in 706 

zoological and botanical gardens is a vital tool to support conservation and restoration. For plants, 707 

efforts should especially focus on the 32.3% of plant species that fall outside of the PA network, 708 

and the species that have cultural or economic value for people (e.g., crop wild relatives). 709 

Promoting biobanking for animals and intensifying it for seeds, spores, and fungi will not only 710 

support conservation but also contribute material and knowledge to restoration and research (88).  711 

 712 

5) Conservation actions must address the root causes of biodiversity loss. Our analysis showed 713 

that the most frequently listed threats to Madagascar’s biodiversity come from overexploitation 714 

and agriculture, predominantly a result of forest loss and potentially tied to increases in small-scale 715 

anthropogenic fire in forests (Fig. 4A, B; see also (43)), significantly affecting humid forest areas 716 

in the east and dry forest and spiny forest in the west (Fig. 4C, D).  This trend is likely to continue 717 

unless the root causes of this forest loss are addressed. Conservationists and their funders must 718 

recognize that food, social security, health, and well-being are the utmost priorities for rural 719 

communities, and that PAs will always be vulnerable when surrounded by impoverished people 720 

living in landscapes with eroded natural capital (133). Politicians and economists must recognize 721 

that sustainable and equitable development in Madagascar is inextricably linked to, and dependent 722 

on, the maintenance of ecosystem function and the goods and services they provide. Initiatives that 723 

address these issues by working with local communities to identify tailored solutions in health, 724 
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education, and green entrepreneurship are increasingly successful and should be expanded, but 725 

generally lack data and evidence from monitoring (see Opportunity 2). Promising approaches 726 

include voluntary savings and loans; inclusive, sustainable agricultural development schemes that 727 

promote stable land ownership and build – rather than destroy – natural capital and the ecosystem 728 

services it provides; implementation of conservation interventions, including research and 729 

monitoring; and PA management that maximizes local employment (107, 132).  Such efforts will 730 

facilitate improved livelihoods for many, while reducing pressure on the PAs themselves, bringing 731 

tangible benefits to communities, and contributing to sustainable management (107, 134). 732 

 733 

Conclusions 734 

The alarming status of Madagascar’s biodiversity is the result of multifaceted, unsustainable 735 

practices including historic and contemporary exploitation. In the eyes of much of the world, 736 

Madagascar’s biodiversity is a unique global asset that needs “saving”; in the daily lives of many 737 

of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. 738 

Achieving a sustainable future that benefits people and biodiversity is possible by building on, and 739 

expanding, integrated, inclusive conservation efforts. Biodiversity is the greatest opportunity and 740 

most valuable asset for Madagascar’s future development. 741 
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