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Abstract: Although many medium-to-large terrestrial vertebrates are still counted by ground or
aerial surveys, remote-sensing technologies and image analysis have developed rapidly in recent
decades, offering improved accuracy and repeatability, lower costs, speed, expanded spatial coverage
and increased potential for public involvement. This review provides an introduction for wildlife
biologists and managers relatively new to the field on how to implement remote-sensing techniques
(satellite and unoccupied aircraft systems) for counting large vertebrates on land, including marine
predators that return to land to breed, haul out or roost, to encourage wider application of these
technological solutions. We outline the entire process, including the selection of the most appropriate
technology, indicative costs, procedures for image acquisition and processing, observer training and
annotation, automation, and citizen science campaigns. The review considers both the potential and
the challenges associated with different approaches to remote surveys of vertebrates and outlines
promising avenues for future research and method development.

Keywords: aerial counts; drone; ground counts; remote sensing; unmanned aerial vehicle; wildlife
research

1. Introduction

Remote sensing refers to the study of objects or physical characteristics at a distance by
measuring the energy reflected and emitted from the Earth’s surface by sensors on board
high-flying aircraft or satellites [1,2]. The development of efficient unoccupied aircraft
systems (UAS) (commonly referred to as remotely piloted aircraft (RPA), an unmanned
aerial vehicle (UAV), or a drone [3]) and new methods for satellite remote sensing (SRS)
of wildlife has allowed animals to be counted in remote or inaccessible locations and
over large geographical areas, greatly increasing our ability to document effects of natural
variation and anthropogenic impacts on the environment [4,5]. UAS have existed for more
than a century—the first pilotless vehicles were trialled for military purposes in World War
I [6]. Improvements in the spatial resolution of Earth Observation (EO) satellites from 80 m
in 1972 (Landsat-1) [7] to less than 1 m in 1999 (IKONOS) [8] have provided extensive new
opportunities to study wildlife [9–11]. Surveys by UAS and SRS are now being used to
detect and count individual animals for game or conservation management (Figure 1). The
key benefit is that large and remote areas can often be surveyed at a fraction of the time and
expense of traditional field-based methods and with less disturbance [12]. UAS and SRS
allow the generation of near-real-time data for rapid assessment of population status and
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threats. Predictive models can explore likely responses to management actions or future
changes in the environment and repeated UAS or SRS surveys allow for the monitoring of
long-term trends [13].
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Figure 1. Examples of wildlife detected in satellite and UAS imagery. (a) VHR satellites can be used to
count individual animals provided that they meet key detection criteria: in an open habitat, of suitable
size, and of contrasting colour to the background. For instance, African elephants are visible in open
savannahs using 31 cm resolution WorldView-3 imagery [14]. (b) Indirect counts can be performed
for species which are not directly detectable; for example, colony sizes of emperor penguins can
be estimated from the colony area or the extent of guano staining using 10 m resolution Sentinel-2
satellite imagery [15]. (c) Spectral imagery collected by UAS is typically of higher resolution than
that of satellite sensors, enabling counts of smaller animals, such as black-browed albatrosses, in
open habitats [16]. (d) For species in closed-cover habitats, for instance, koalas in tree canopy (shown
in yellow box), thermal cameras mounted on UAS can aid detection [17]. All panels are cropped
versions of the originals and are reproduced under CC BY 4.0 licenses.

UAS and SRS offer different advantages and disadvantages for counting wildlife [18,19].
UAS are more suitable for collecting imagery at extremely fine spatial and temporal resolutions;
the counts can be more accurate than those conducted in the field by human observers [13]
and can be used to estimate animal size or body condition [20,21]. However, studies using
UAS often focus on relatively small areas, which can be a limitation for species with large
ranges [18,19,22]. Many UAS have limited flight endurance, and tight regulations in some
countries restrict operations to within the visual line of sight of the pilot [23] or prohibit
their use in certain areas [19]. Satellites overcome several of these logistical limitations, as
they collect imagery passively and without disturbance, reducing the need for fieldwork
other than initial ground truthing. Although imagery is often available free of charge at
30 m or 60 m resolution, depending on the spectral bands, commercial very high resolution
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(VHR, <1 m [24]) imagery can be expensive. Image acquisition is affected by cloud cover
and revisit time, which can be problematic for certain regions or species or if there is
some time sensitivity, for example, associated with the annual breeding cycle. Overall, the
advantages of UAS over SRS include the opportunity to work in regions with consistent
cloud cover, to collect high-resolution data with greater immediacy, and in some cases, to
provide greater detail on study subjects (e.g., age classes or size).

There are numerous reviews of the use of SRS and UAS for animal surveys [4,5,13,18,19,
22,25–28]. However, few offer specific guidance on selecting the appropriate methodology
and survey design [5]. Despite the huge potential for expanding such studies and for
developing automated or semi-automated methods [26], SRS and UAS remain underused
and undervalued [28]. Here, we provide a comprehensive overview of how to select and
implement appropriate SRS and UAS techniques to monitor wildlife. We focus on large
vertebrates, including birds, mammals and reptiles, that can be counted individually or the
number estimated from occupied areas (assuming a consistent density) at predictable times
and places (breeding, haul-out or roosting sites). We do not include marine mammals or
seabirds at sea, which tend to be less aggregated and are harder to detect because of water
turbidity or diving behaviour [29]. Nor have we specifically included photography from
occupied aircraft, although many of the same principles apply. We compare remote-sensing
methods, including a comparison of current costs of satellite imagery from commercial
suppliers, to help readers make an informed decision about possible applications to their
target species or area and outline considerations regarding survey design.

2. Materials and Methods

A survey of available literature in which animals were detected and counted using
remote-sensing techniques was conducted using Scopus, Google Scholar and Web of
Science. The keywords ‘unoccupied aircraft system’, ‘unmanned aerial vehicle’, ‘remotely
piloted aircraft’, ‘UAS’, ‘UAV’, ‘RPA’, ‘drone’, ‘satellite’, ‘detection’, ‘count’, ‘wildlife’,
‘monitoring’, ‘automated’, ‘census’ and ‘crowdsourced’ were used to search these databases.
The documentation was reviewed between April 2022 and November 2023, and no date
limit was set. Conference articles and theses were included, but unpublished reports were
not. Information on the costings of commercially available satellite imagery was obtained
directly through correspondence with suppliers.

The decision tree in Figure 2 can be used to assess the suitability of alternative remote-
sensing methods—SRS or UAS—for counting vertebrate species on land. This involves
trade-offs between resolution, coverage area, cost and acquisition time [30]. Several criteria
need to be satisfied to be applicable to SRS surveys (see below).

2.1. Detectability

For a target species to be counted in remote-sensing imagery, the animal needs to
contrast with the background colour or other characteristics of the local habitat, be large
enough to cover several pixels, and occupy open areas (e.g., not under vegetation) (see [27]
for further details) (Figure 1a). The higher resolution of UAS enables species as small as
a gull to be identified [31], whereas SRS is limited to detecting much larger individuals
or groups of animals [30]. Adult emperor penguins Aptenodytes forsteri [32] and wander-
ing albatrosses Diomedea exulans [33,34] can be counted individually in 30 cm resolution
satellite imagery, but chicks would be harder to detect, and unlike UAS, it is impossible
to distinguish between pair members standing close together (Figure 3a,b). In contrast,
southern giant petrel Macronectes giganteus adults and chicks can be distinguished in UAS
imagery [33]. Counts of individual polar bears Urus maritimus using 50 cm WorldView-2
and 65 cm QuickBird imagery have produced an estimate similar to aerial surveys con-
ducted a few days earlier [25]. Similarly, counts of zebra Equus quagga burchelliim and
wildebeest Connochaetes taurinus in open savannah using 50 cm GeoEye-1 imagery have
produced accurate population estimates [34].
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Figure 2. Decision tree describing the process involved in selecting an appropriate remote-sensing
methodology to detect and count wildlife—information primarily from [5,27,35] and references
therein. The decision tree starts at the red box. Key questions and subheadings are in each diamond
box. Yellow boxes (1) describe criteria (based on imagery, species life-history and landscape) required
for the focal species to be eligible for each remote sensing method (i.e., VHR satellite imagery or
UAS), and (2) list requirements for carrying out UAS surveys. The green boxes provide further details
for each corresponding yellow box, while the blue boxes state the decision or outcome.

Figure 2. Decision tree describing the process involved in selecting an appropriate remote-sensing
methodology to detect and count wildlife—information primarily from [5,27,35] and references
therein. The decision tree starts at the red box. Key questions and subheadings are in each diamond
box. Yellow boxes (1) describe criteria (based on imagery, species life-history and landscape) required
for the focal species to be eligible for each remote sensing method (i.e., VHR satellite imagery or
UAS), and (2) list requirements for carrying out UAS surveys. The green boxes provide further details
for each corresponding yellow box, while the blue boxes state the decision or outcome.
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Figure 3. Comparison of SRS and UAS imagery of wildlife in remote locations. (a,b) Three wandering
albatrosses in the same area on Prion Island, South Georgia. (a) Individual albatrosses appear as
several white-cream coloured pixels in 31 cm resolution satellite imagery, whereas (b) UAS provide
finer details, including body shape and whether the birds are sitting on a nest or displaying. UAS
image taken with AgEgle eBee X fixed-wing UAS using the Aeria X RGB sensor © 2023 Nathan Fenney.
(c) Hauled-out walruses in a 200 × 200 m image chip from the Walrus From Space crowdsourced
campaign. This campaign used 31 cm to 46 cm resolution satellite images. (d) UAS imagery of
walruses taken using a Mavic 3 from 55 m elevation © 2023 Hannah Cubaynes. (e) Weddell seals
appear as long, dark features in 31 cm resolution satellite imagery (WorldView-3) and can be identified
because of their habitat preference (fast ice) and behaviour (they are usually solitary and tend to
stay near the ice edge or breathing hole, as shown here). (f) The higher image resolution of UAS
allows sympatric phocid species to be identified individually. This example shows a Weddell seal
on fast ice taken from 30 m elevation using a DJI Mavic 2 Pro. Credit for satellite images © 2023
Maxar Technologies.

High-resolution imagery (e.g., 30 cm instead of 50 cm) is preferable for larger animals,
as more diagnosable species characteristics will be apparent. For instance, the tail of
a stranded whale is a conspicuous characteristic that helps it to be distinguished from
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beached wood of a similar size and colour [13]. Without clear diagnostic features, southern
elephant seals Mirounga leonina can be difficult to discern from similarly sized rocks and
shading due to sun angle and from animals casting shadows onto adjacent seals in tightly
packed harems [36]. Female and male elephant seals can be identified in 30 cm resolution
satellite imagery due to the clear size dimorphism, whereas pups are much harder to count
because of the large variation in body size and the lack of contrast with the substrate [37].

2.2. Species Differentiation

It is often essential to distinguish the target species from other taxa [38]. Colour
and size may be diagnostic, e.g., walrus Odobenus rosmarus tend to be grey to cinnamon
brown (Figure 3c,d) and are larger than the other pinnipeds in the Arctic [39]. Similar
species may segregate spatially or temporally; therefore, prior knowledge about life history,
distribution, and ecology can be useful. Crabeater seals Lobodon carcinophaga and Weddell
seals Leptonychotes weddellii look similar in VHR satellite imagery but can be distinguished
readily because they segregate by habitat (pack ice versus fast ice) and differ in behaviour
(crabeater seals congregate in large groups, whereas Weddell seals are usually found alone
near the ice edge or breathing hole) [40,41] (Figure 3e,f). VHR imagery is preferable to
lower-resolution satellite imagery for species differentiation (see Supplementary Material
Table S1 for satellite providers and resolutions).

2.3. Indirect Assessment of Population Size

For species that do not meet detection criteria for distinguishing individuals, it may be
possible to estimate numbers indirectly using proxies, particularly if they form large aggre-
gations, such as emperor penguins at breeding colonies (Figure 1b) or walrus at haul-outs
(Figure 3c), which are detectable using lower-resolution satellite imagery [15,39,42]. The
number of individuals may be inferred from the area of the aggregation using a regression
approach if suitable ground-truthing data exist [32]. Some animals have signatures de-
tectable by lower-resolution satellites, such as faecal stains or nests of seabirds [15,43] and
warren systems of southern hairy-nosed wombats Lasiorhinus latifrons [44] and Tarbagan
marmots Marmota sibirica [45]. Suitability criteria for indirect counts are similar to those
used for VHR imagery, i.e., the aggregation or signature is large enough to be detectable,
contrasts with the background, and is in open habitat.

2.4. Use of Spectral Imagery

Many studies use multiband satellite and UAS data to map vegetation, habitats or ge-
ology, measure marine productivity or detect wildlife aggregations [28,46]. The techniques
are usually based on normalised indices or algorithms that detect particular spectral targets
using the ratio of values across different bands within single pixels [47,48]. Several criteria
must be met: (1) the animal aggregation, or associated features, needs to be sufficiently
large to be detectable at the available image resolution, (2) the spectra should be spatially
homogenous, and (3) analysis should account for possible changes in spectra over time,
e.g., in the colour of guano because of degradation or a change in diet (and associated
pigments) or moisture content [49], or of pelage in pinnipeds which dries after they haul
out [50]. Discrimination can involve the direct detection of the focal species (e.g., [32])
or associated environmental features, such as guano [23,51–53]. The critical requirement
is that the spectral profile of the animals differ enough from the surrounding environ-
ment to enable automatic discrimination. This may involve contrasting colours in the
visible or infrared spectrum. Automatic identification can be confounded by other features
with similar spectral profiles [14], such as hydrothermally altered clays mistaken for bird
guano [49]. Information on behavioural or geographical context may allow the exclusion of
confounding features, but this is often a manual process and species-dependent. Another
solution is change-detection, as animals move, whereas the surrounding environment is
generally static; this has been used to count polar bears using SRS [4,25].
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2.5. Use of Thermal Imagery

Thermal imagery is often used to detect homeothermic animals based on the tempera-
ture difference between their bodies and the surrounding environment using wavelengths
of 0.75 to 15 µm, although some poikilothermic animals can also be detected during periods
of intense activity (e.g., nesting sea turtles [54]). Most successful thermal surveys of animals
to date are by UAS or occupied aircraft [34], as the spatial resolution of thermal sensors on
satellites lacks the spatial accuracy to identify even large aggregations. Although red-green-
blue (RGB) images are the most common type of data acquired by UAS, the development
of thermal sensing technology and reduction in sensor prices [55] has allowed researchers
to apply this new technology to detect various birds [56] and mammals (e.g., cattle [57],
deer [58], hippopotamuses Hippopotamus amphibius [59], seals [60], and koalas Phascolarctos
cinereus [17]) (Figure 1d). The infrared radiation feature in thermal sensors is particularly
useful in situations where visual-spectrum cameras struggle (e.g., low-light [61] and where
animals are camouflaged or partially obscured by vegetation [55]).

Thermal imagery can be used as the primary mode of detection and enumeration
or as a tool to augment surveys conducted with RGB and other spectral imagery [34,35].
Using thermal and RGB images simultaneously often results in higher detectability of the
target species (e.g., white-tailed deer Odocoileus virginianus [62] and Arctic birds [56]) than
using thermal images alone. For canopy-dwelling species, Wich and Piel [24] recommend
that a correction is applied to account for individuals hidden under vegetation that are
missed on thermal and RGB images [55]. Traditionally, thermal cameras were swapped
interchangeably with the existing camera, flown on separate aircraft synoptically (e.g., [63])
or mounted as an additional payload on UAS [64]. However, some newer payloads
have multiple sensors that collect RGB imagery at the same time as thermal IR data are
acquired [65]. The main disadvantages of combining RGB and thermal images are the
larger data storage requirements and the greater time needed to complete additional
preprocessing steps to co-register the data before analysis [64].

2.6. Correction Factors: From Counts to Population Sizes and Trends

Survey design should consider whether the goal is to estimate population size or
trends and the spatial scale (local, regional or global), and requires consideration of the
accuracy and representativeness of the sample data [66,67]. Trends can be established by
regular monitoring of representative sites at the same time of year [68], taking account
of potential density dependence and environmental variation in growth rates, without
the need to survey the entire population. The objective will often be to estimate the total
number of individuals or pairs that breed in a given year. As such, surveys of breeding
birds should be timed so that all or nearly all nests are occupied and eggs laid, and few
nests have failed (usually resulting in reduced attendance) [66]. Animal status needs to be
determined in order to estimate breeding population size, and so correction factors derived
from intensive study of a much smaller area are often applied that account for previous
breeding failures (or later breeding, which is harder to predict) and diurnal and seasonal
changes in attendance of partners (which could result in double counting), prebreeders (too
young to breed), deferring breeders (animals with breeding experience that skip breeding
that season) and failed breeders, just as for counts on the ground (e.g., [68,69]). Turnover
rates can be very high, particularly for land-based marine predators, in which case the best
index of relative abundance for a pinniped may be the number of animals of all ages in
haul-outs during the moulting period or of pups during the breeding season accounting
for factors such as topography and vegetation cover that determine detectability.

3. Availability of Imagery and Processing
3.1. Satellite Imagery
3.1.1. Availability and Cost

Free VHR satellite imagery is available (up to 500 km2 per month with a yearly
subscription) from Planet as part of their Education and Research Program [70]. Commercial
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hyperspectral and multispectral data with global coverage at up to 30 cm resolution are
available from several suppliers (Table S1), and additional satellites to be launched in
the next 1–3 years by Maxar, Airbus and Planet will provide more data and synthetic-
aperture radar (SAR) imagery. Currently, several commercial SAR satellite sensors can
detect objects with a ground-sampling distance of 25 cm (Table S2) (though see Section 5
for commercial access to <25 cm/pixel SAR imagery). Costings for commercial sub-meter
SAR imagery are detailed in Table S3. Online archives are free to search prior to purchase,
including Maxar Archive Search and Discovery (https://discover.maxar.com/, accessed
on 3 January 2024), Airbus OneAtlas portal (https://www.intelligence-airbusds.com/
imagery/oneatlas/, accessed on 3 January 2024), GeoSAT catalogue (http://extcat.deimos-
imaging.com/cscda/extcat/, accessed on 3 January 2024), and ESA’s Earth Observation
catalogue (https://eocat.esa.int/sec/#data-services-area, accessed on 3 January 2024). The
price of VHR satellite imagery is USD 5.14 to USD 24.00 per km2 for archived and USD
7.87 to USD 51.00 per km2 for tasked imagery, depending on spectral resolution and area
(Table S4). VHR satellites must be specifically tasked for image collection over target areas
and do not easily accommodate regular repeated surveys over large contiguous areas (e.g.,
the maximum area collected by WorldView satellites in a single pass is 67 km × 112 km [53]).
A guarantee of largely cloud-free imagery increases costs by 25–50% [5]. High-definition
(HD) uplifted imagery (from raw 30 cm to 15 cm) is available for Maxar products, which
involves the application of a mathematical model to increase the number of pixels. As far
as we are aware, there have been no direct tests of whether this improves the reliability
of wildlife counts. Until recently, researchers with limited budgets were unable to obtain
imagery for large areas, but this has changed with the advent of crowdsourcing platforms.
Maxar offers imagery at ~USD 2 per km2 for the GeoHIVE platform. VHR data remain
largely in the commercial domain, but companies are being encouraged to allow researchers
free or cheaper access [5,13].

3.1.2. Preprocessing and Accuracy

Raw VHR imagery is usually collected as two separate components: a high-resolution
panchromatic image and a lower-resolution multispectral image. Generally, the first step is
to pan-sharpen, where these two components are combined to form a single high-resolution
colour image using algorithms that are easily implemented in software such as ArcMap,
ArcGIS Pro and ENVI, with trade-offs in terms of preserving spectral or spatial fidelity.
The Gram–Schmidt algorithm provided the highest spectral and spatial fidelity for the
identification of seals and penguins [71], whereas the Brovey transform algorithm gave the
clearest output for the detection of beluga whales Delphinapterus leucas [72]. We recommend
testing to determine which algorithm provides the best results for each target species.

Images should be orthorectified if precise geolocation is required, for instance, to
validate satellite observations by comparing them to GPS markers on the ground [73].
Orthorectification corrects for topographic and optical distortion introduced by the terrain
and sensor. A digital elevation model (DEM) is required for orthorectification and should
be of sufficient spatial resolution for VHR imagery. More advanced processing tools may
improve the detectability of wildlife. Dehazing algorithms can reduce the effect of haze and
cloud, which are common problems shown to limit the detection of albatrosses [74]. The
contrast between animals and the environment may be enhanced by adjusting brightness
and saturation or altering the weighting or combination of multispectral bands [72,73].
Maxar applies a proprietary method (HD Technology) to artificially sharpen imagery (see
above), but this increases costs by ~10–20%.

3.2. UAS Imagery
3.2.1. Operational Frameworks

The diversity of UAS platforms and sensors and their ease of use for different applica-
tions requires establishing an operational framework for researchers to help guide decisions
throughout all project stages. We have included one possible framework in Table 1. In many

https://discover.maxar.com/
https://www.intelligence-airbusds.com/imagery/oneatlas/
https://www.intelligence-airbusds.com/imagery/oneatlas/
http://extcat.deimos-imaging.com/cscda/extcat/
http://extcat.deimos-imaging.com/cscda/extcat/
https://eocat.esa.int/sec/#data-services-area
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cases, the initial steps in a UAS workflow focus on identifying the species-specific traits
that ultimately govern likely success. Identifying key natural history states, behavioural
complexities and an initial understanding of detection probabilities and availability are ex-
amples of these factors. Researchers can then establish the key metrics associated with their
project, defining exactly what is to be measured or collected (e.g., abundance, distribution,
morphometric details). This sets the stage for subsequent steps, including platform and
sensor selection (e.g., multicopter versus fixed wing systems), mission planning and exe-
cution (launch and recovery sites etc.), and appropriate data processing and management
(quality control, error estimation).

Table 1. Workflow elements for consideration of employing unoccupied aircraft systems (UAS) in
projects focused on detecting and counting wildlife.

1. Species/Habitat
Specific Traits 2. Key Metrics 3. Platform/Sensor

Selection
4. Mission
Planning/Execution

5. Data
Management/Processing

• Availability
• Detection

probability
• Natural history

complexities
• Behavioural

complexities
• Reaction to drones
• Potential effects on

non-target species of
habitats

• Human dimensions

• Abundance
• Distribution
• Habitat relationships
• Behavioural

sampling, groups
and individuals

• Biological sampling
• Morphological data
• Individual

identification

• Fixed-wing,
multirotor, or
transitional

• Airframe
configuration

• Flight profiles
• Electromagnetic

spectrum
considerations (RGB,
multispectral,
thermal, etc.)

• Resolution, accuracy,
precision, sensitivity

• Location
• Habitat type
• Time of day, season,

and other temporal
factors

• Launch and
recovery

• Flight
profile—altitude,
speed, transect
spacing, camera
parameters

• Appropriate failsafe

• Short and long-term
storage

• File naming
conventions

• Sensor fusion and
flight log data
integration

• QA/QC
• Processing pipeline
• Uncertainty
• Commitment to

open science

3.2.2. Image Acquisition

In contrast with SRS, there are no online portals that provide commercial access to
global-scale UAS imagery, although efforts to develop publicly searchable online archives
(and a variety of processing services) are underway (e.g., GeoNadir—https://geonadir.
com/, accessed on 3 January 2024). The resolution of UAS imagery and its ease of acquisi-
tion can result in legal and ethical issues (e.g., privacy, security, animal disturbance) [75]
that rarely apply to commercial SRS imagery [76]. The potential disturbance caused by UAS
must be assessed for each target species; some animals show little behavioural response to
UAS [33], whereas other species need several weeks to become habituated [77]. To date,
few, if any, UAS disturbance studies explicitly declare the stimuli to which animals may be
reacting (e.g., the sound, silhouette or shadow on the surrounding substrate). Care should
be taken when relying on studies that do not present appropriate operational and statistical
approaches to assessing disturbance, as many do not meet the requirements to provide
strong inference (e.g., Bevan et al. [78] claim to establish ethical thresholds for approaching
some wildlife with drones, but without appropriate experimental design).

There are essentially two modes of UAS imagery collection. (1) A typical UAS mapping
exercise, where UAS are programmed to acquire images of a focal area with a relatively
high level (70–90%) of along and across-track overlap [19] which are subsequently stitched
together, often using Structure from Motion (SfM) photogrammetry to create a georectified
map [79]. This is best suited for organisms that move very little during a typical 20–40 min
UAS survey (e.g., birds on nests [80], breeding or moulting pinnipeds). If substantial
movement occurs, the SfM process will generate artefacts, often referred to as ghosts, which
need to be fixed manually to avoid double counting. Flight planning can help alleviate
the generation of ghosts, e.g., the elapsed time between image captures that span transect
lines (referred to as tracklines) can be reduced by creating short flight lines perpendicular
to the long-axis of the focal areas, minimising the likelihood of an animal having changed
positions. (2) Tracklines are flown to sample a region of interest, similar to established
strip and point transect sampling methods, and used to estimate or model population

https://geonadir.com/
https://geonadir.com/
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density [81,82]. Trackline sampling allows cost-effective surveys of large regions as it
does not require all objects to be detected. Counts from tracklines are most suitable for
species that occur in low densities [83], are detectable for only a proportion of the time (e.g.,
marine mammals above the water surface) and have the potential to travel long distances
quickly [84]. The UAS flies a preprogrammed set of tracklines and collects still imagery at
specific times or distance intervals or records video. For still imagery, animals are counted
in individual images along the trackline (as opposed to stitching images together), taking
care to avoid counting animals detected in more than one image. For video-based sampling,
animals are counted during the video replay, often using annotation software that may
also extract locations if geocoded tracklines are available [19]. The use of video cameras in
trackline surveys remains limited (but see [85–88]) as they produce lower quality images
than still cameras and can suffer from time lags, sporadic dropouts in transmission and
positioning, and blurred images when paused [85,86]. Higher-resolution videos are needed
to survey larger areas and improve species detectability.

3.2.3. Platforms, Sensors, and Data Management

Three main types of UAS platforms are used, depending on budget, geographic
location, habitat type, logistical constraints, and regulatory limitations [89]; these are
fixed-wing, multirotor and transitional systems that combine the efficiency of fixed-wing
aircraft with the vertical take-off and landing capabilities of multirotors (see Table 2 for
summary). For many population assessments, researchers rely on fixed-wing platforms
due to their greater endurance, flight performance, and mechanical simplicity [90]. Many
have a single motor and simple control surface configuration, resulting in lower power
requirements to generate lift and fewer failures. They are usually more stable in higher
winds, providing a greater weather envelope for field activities, and are often chosen for
large-scale assessments. For example, Pfeifer et al. [90] used a fixed-wing UAS to estimate
the number of breeding pairs at 14 chinstrap penguin Pygoscelis antarcticus colonies along a
30 km coastline; it could be released by hand from any open space and land on a variety of
surfaces, from gravel beaches to flat patches of ice, snow or dirt. Multirotors are also used,
particularly where fixed-wing aircraft are difficult or impossible to launch and recover (e.g.,
working from constrained locations where typical linear or circular landings by fixed-wing
UAS are impossible). Multirotors are generally easier to fly and more affordable than
research-grade fixed-wing systems, making them popular for small-scale projects [89].
Transitional platforms bridge the logistical convenience of multirotor systems and the
efficiency and flight performance of fixed-wing UAS; these can take off and land vertically
in tight spaces but transition to horizontal flight for survey purposes.

Table 2. Capabilities of battery-powered fixed-wing, multirotor and transitional UAS platforms,
adapted from Wich & Koh [91] (Table 2.1) and Wich & Piel [24] (Table 3.1).

Fixed Wing Multirotor Transitional

Launch area Large Small Small
Flight duration >1 h <1 h 30–60 min

Payload Light (<1 kg) Heavy (several kg) Light (<1 kg)

Piolet experience Substantial training
Minimal, however,
larger systems may
need more training

Intermediate

Launch area Large Small Small

Most wildlife surveys using UAS rely on high-resolution EO RGB cameras, although
in some cases, thermal infrared sensors can greatly enhance detection. This is especially
true when seeking to detect mammals and other homeothermic species, as well as some
poikilotherms that generate heat during physical activity or change their thermal context
through digging [54]. Many affordable UAS platforms have integrated RGB sensor systems,
which are frequently optimised for video collection under a wide range of conditions.



Remote Sens. 2024, 16, 627 11 of 23

However, wildlife surveys may benefit from specific shutter speed, aperture, and ISO
settings that can be tailored to specific environmental conditions. If funds are available,
greater control of parameter values or collection of RAW imagery—which is more amenable
to post-processing—is provided by more expensive UAS with modular camera systems or
second-party cameras (e.g., high-resolution mirrorless cameras).

3.3. Spectral Imagery

Many satellites collect multispectral or hyperspectral imagery, which can be invaluable
for differentiating animals from the surrounding environment. The MAXAR WorldView-3
satellite samples in eight spectral bands in the visible near-infrared spectrum (coastal blue
(400–450 nm) to near-infrared (860–1040 nm)). The characteristic spectral signature of guano
allows seabird colonies to be detected (see Figure 1b), and if assumptions are made about
bird density, population size can be estimated from the area extent [92]. Some species may
be indistinguishable from the landscape when viewed in low spatial and spectral detail, e.g.,
polar bears and snow in panchromatic satellite imagery [93]; however, high-resolution UAS
imagery can resolve these spectral characteristics in more detail, improving detection [94].
Spectral classifiers, principal component analysis or spectral angle mappers are useful tools
if the spectral information is the primary discerning feature. If the target has a distinct
shape, an Object-Based Image Analysis (OBIA) or a convolutional neural network (CNN)
may be more appropriate [95,96]. As mentioned above, colour and spectra may change
over time. Rigorous atmospheric correction must be applied in spectral analyses to ensure
the comparability of results.

4. Annotating and Analysing Remote-Sensing Data

The steps involved in processing remote-sensing data to count wildlife are summarised
in Figure 4. The most common approach for identifying individual animals in VHR satellite
imagery involves manual counts [26]. This is also the first step to produce a training dataset
in most studies involving automated detection [14]. The number and level of experience of
observers and annotation methodology differ markedly among studies, likely dependent
on resources (e.g., funding), varying expertise in annotation methods and software, and
suitability for the target species [36,73]. We strongly advise the use of a standardised
annotation and classification methodology for a given focal species so that datasets can be
compared and combined, establishing continuity for wider-scale analyses. Open-access
libraries containing annotations of target species in remote-sensing images (e.g., [97]) will
assist in training and testing automatic detection systems. An open-access decision-support
tool containing all publicly available (published and unpublished) count data has been
developed for four penguin species in Antarctica (MAPPPD [98]), allowing abundance
estimates to be obtained for any user-defined area of interest. This platform encourages
data sharing and model testing of species distribution and abundance, and efforts are
currently underway to include population forecasts.

4.1. Selection of Observers

In general, multiple observers should be recruited to achieve consensus or to establish
an average and associated error statistics [25]. There is no agreed minimum, and most stud-
ies recruit between one and five observers ([4,14,35,36,40,99–102], but see [12,39]). Where
resources and image availability allow, supplementing observer number and expertise with
image differencing (where observers use a reference image to detect change or features)
could increase confidence in counts [25]. Successive changes in observer identity over
time (e.g., annual counts) can reduce the precision of population estimates, which can be
overcome by using one observer to count all sites or many observers across different sites.
By adopting the latter approach, the poor abilities of one observer are less likely to bias the
overall results, reducing uncertainty [103].



Remote Sens. 2024, 16, 627 12 of 23

Remote Sens. 2024, 16, x FOR PEER REVIEW  12  of  24 
 

 

data has been developed for four penguin species in Antarctica (MAPPPD [98]), allowing 

abundance estimates to be obtained for any user-defined area of interest. This platform 

encourages data sharing and model testing of species distribution and abundance, and 

efforts are currently underway to include population forecasts. 

 

Figure 4. Flowchart describes the steps involved in using remote-sensing technologies to detect and 

count individuals of a given species. The steps are divided into four categories: image acquisition 

(blue), image processing (yellow), wildlife classification (green) and experimental design (purple). 

See Sections 2–4 for further details. 

4.1. Selection of Observers 

In general, multiple observers should be recruited to achieve consensus or to estab-

lish an average and associated error statistics [25]. There is no agreed minimum, and most 

studies  recruit between one and five observers  ([4,14,35,36,40,99–102], but  see  [12,39]). 

Where resources and image availability allow, supplementing observer number and ex-

pertise with image differencing (where observers use a reference image to detect change 

or  features)  could  increase  confidence  in  counts  [25].  Successive  changes  in  observer 

Figure 4. Flowchart describes the steps involved in using remote-sensing technologies to detect and
count individuals of a given species. The steps are divided into four categories: image acquisition
(blue), image processing (yellow), wildlife classification (green) and experimental design (purple).
See Sections 2–4 for further details.

Studies often recruit observers who are experienced in reviewing satellite imagery
or in carrying out ground or aerial surveys on the target species [34]. Although field
experts are generally better at detecting wildlife from SRS imagery than remote-sensing
specialists [25,72], lack of experience per se may not be a problem. McMahon et al. [36] used
a naive observer to assess the abundance of southern elephant seals from satellites to avoid
bias introduced by prior knowledge, and there was a close correspondence between their
counts and those collected in the field. Other studies rely solely on experienced wildlife
researchers to perform counts [4,34]. It is also apparent that for colonial animals, the larger
the colony or subcolony, the greater the variability amongst counts [104]. Performance
and perception bias varies between observers and typically coincides with complex or
challenging environments or poor image quality [72,73,105]. We recommend recruiting
observers with field experience of the target species and, where possible, with additional
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experience in remote sensing, and that training, calibration, and standardised workflows
are implemented to reduce among-observer variation [25].

4.2. Annotation Methodologies

There are three types of annotation tools: points, polygons, or bounding boxes. Point
shapefiles are useful for identifying and counting individual animals and providing precise
coordinates for animal locations [73,74]. Points are also suitable for reviewing spectral
details and for automation techniques that require values for points, such as Spectral Angle
Mapping [92]. Polygon shapefiles are valuable for delineating large aggregations, assessing
presence-absence, and when individual animals are too close to differentiate [43]. Bounding
boxes allow the identification and counting of individual features but are most appropriate
for annotating data for integration into CNNs [51,56].

To ensure no features are missed during manual analysis, imagery should be scanned
systematically at an appropriate scale dictated by the size of the target species. A grid
should be overlaid on the imagery, and each cell should be searched in turn [72]. Certainty
of detection refers to confidence in the identification of a feature. Assigning a certainty
value (e.g., definite/probable/possible) using set criteria is important for assessing accuracy
and quantifying the agreement among multiple observers [39,74]. We encourage the
use of multiple observers and the retention of definite and probable features when all
observers agree.

4.3. Annotation Software

Many studies use Esri ArcGIS [106] to preprocess and pan-sharpen imagery, cus-
tomise attribute tables and apply the built-in tools for systematic scanning and image
annotation [107]. There are also several open-source software options to complete manual
counts, including QGIS [108] and GRASS [109], which can be used to geo-reference satellite
imagery, enhance images for better visualisation, and build customisable geographical
reference scales [110]. Recent studies have used freely accessible tools within GitHub
(LabelImg) [111] and Oxford University (Visual Geometry Group, VGG) [14,112]. Free
alternatives to ArcGIS are limited by their ability to preprocess data. A pan-sharpening
tool is missing from VGG and is only available in QGIS through a plugin, Orfeo Toolbox.
There is, therefore, considerable potential for further development of open-source software
to enable researchers with limited financial resources to apply it wider.

4.4. Challenges

The main challenges associated with the manual detection of animals on land in
remote-sensing imagery are (1) the time required to scan imagery [4,72], (2) landscape fea-
tures and environmental characteristics that complicate detection [25], and (3) performance
bias, variation in counts and certainty between observers [14]. Variability among observers
in manual counts of colonial animals (and automated approaches) may increase with colony
size [68]. In addition, the human eye can only see in the visible range of the electromagnetic
spectrum, whereas satellites capture considerably more information [113,114]. Some of
these limitations can be overcome by automation or the use of a large pool of observers (see
Sections 4.5 and 4.6). However, manual detection may still be the best method for small
survey areas, new target species, or the development of training datasets for automation.

Many studies provide insufficient methodological detail, for example, omitting the
name of the software [34], the number and experience of observers [32,115], criteria for
assigning certainty [114], or the scan and annotation methodology [73,116]. We encourage
authors to publish all methods in detail, including freely accessible process flows, and
provide image catalogue IDs where applicable (see [97] as an example). Integration of
open-source practices and transparency in methodology will promote greater collaboration,
inclusivity, replicability, and scalability. This is also true for operational aspects of research.
For UAS studies, existing protocol reviews (e.g., [117]) should be consulted, and the use
of reporting frameworks (e.g., [118]) can help standardise the transmission of crucial
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methodological details as supplementary documents without compromising the brevity or
readability of scientific studies.

Widespread use of remote-sensing technologies is constrained by costs to purchase,
store and process vast quantities of high-resolution imagery, lack of expertise, and limited
access to high-speed internet in remote regions [24]. This can be overcome through col-
laboration with institutions that have appropriate expertise and resources and the release
of new satellite constellations (e.g., StarLink https://www.stalink.com, accessed on 3 Jan-
uary 2024) that provide high-speed internet. Misuse of remote-sensing data or derived
information about endangered species by poachers or illegal loggers can be minimised by
ensuring that individuals in academia and private sectors are aware of the issues and take
full responsibility for how they choose to disseminate data and results [119].

4.5. Citizen Science and Crowdsourcing

Satellites collect millions of square kilometres of imagery every day, whilst UAS
can provide detailed imagery over thousands of targets. Complex cognitive tasks can be
difficult to automate using machine algorithms, and the latter require training data that
have been manually labelled for development. An alternative for speeding up the manual
analysis of large volumes of satellite and UAS images is to recruit a massive human network
working in synchrony. This approach, known as ‘crowdsourcing’, relies on the internet,
social media, and purpose-built platforms to have tasks completed by the public. The first
global census of Weddell seals was achieved by a crowd review of VHR satellite imagery
using the Tomnod platform (now rebranded GeoHIVE) by Maxar [41]. In the future, other
satellite providers may develop their own platforms or enable the imagery to be used more
broadly by other crowdsourcing applications. Other crowdsourcing platforms are freely
accessible, including Zooniverse.org, DotDotGoose [120] and VGG [112], although they are
less suited to importing commercial satellite imagery.

Several factors determine the success of remote-sensing crowdsourcing projects for
detecting wildlife. The scale of the image chips (also known as tiles, formed by cutting the
remote sensing image into smaller square segments using a grid. The larger image can be
recreated when the image chips are stitched together) needs careful consideration to limit
the number for review while allowing the target species to be detected with confidence
without having to zoom in (although a zoom-in option can be helpful). A training session
is required to familiarise observers with the target species and possible confounding
features before they access the live campaign. A test at the end of the training should be
implemented, with a minimum score to pass. Each image chip should be reviewed by
various observers to ensure accuracy. The optimal number of observers per image chip
will depend on the project. As a minimum, we recommend three observers per image
chip based on Bowler et al. [74]. Requirements for a detection campaign—where only
image chips with the target species are retained—are a threshold for agreement between
observers and expert review of the image chips that the crowd identified as having the
target species to prevent misidentification of confounding features. Ultimately, the success
of a crowdsourcing campaign relies on sufficient participants; therefore, ways to attract
and retain engagement are crucial, such as “fun fact” messages, the award of badges after
review of a threshold number of image chips, and regular updates on the progress of the
campaign. Links to successful crowdsourcing campaigns involving wildlife remote sensing
are given in Table S5. Other components to consider are the minimum age of observers and
whether minors require consent from an adult to participate. Crowdsourcing campaigns
can be kept private by limiting access to specific users.

4.6. Automated Methods

Automated wildlife detection is evolving rapidly, involving the development of meth-
ods that overcome labour-intensive aspects of manual and crowdsourced analysis to gen-
erate fast, repeatable and standardised results. Automated methods can be very effective
for counting animals in dense aggregations [16] or for locating sparsely distributed species

https://www.stalink.com
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over large ranges [93,121] and will likely become essential as remote-sensing surveys are
extended over larger areas and at increased frequency. Most automated image analyses
identify patterns in pixel reflectance values and object shapes and can be applied to both
SRS and UAS imagery. Hollings et al. [26] review the costs and benefits of semi- and
fully-automated methods for wildlife detection in remote-sensing imagery, including spec-
tral thresholding, supervised and unsupervised classification, image differencing, and
OBIA. Most are available in software such as ArcMap and ENVI (Exelis Visual Information
Solutions, Boulder, Colorado) and are relatively easy to implement for researchers without
a background in automated detection. Automated methods using UAS imagery have
primarily been used to detect birds and arboreal, marine and terrestrial mammals [35].
The body size of species automatically detected in UAS imagery ranges from 0.34 kg
(greater crested tern Thalasseus bergii) [12] to 1500 kg (hippopotamus) [59]. Thus far, most
studies are small-scale and proof-of-concept, covering small areas (usually a few square
km), and transferability to larger scales remains largely untested [26,73]. In many cases,
errors arise because features in the background (e.g., rocks and shadows) have similar
reflectance values to the target species, which is more problematic in VHR satellite images
because there is often little shape information for the animal, especially if the landscape is
heterogeneous [14,26].

Deep learning methods have become the predominant automated approach for the
detection of wildlife using UAS [35,116]. These can achieve state-of-the-art performance in
tasks such as image classification and object detection [122]. Deep learning architectures
(networks) learn feature extraction and classification end-to-end, providing a more general
framework than previous computer-vision methods [123]. A supervised training scheme is
applied, with labelled examples to teach the network how to recognise target species. As
such, image annotations should be collected as an initial step when testing deep learning
approaches—either through manual or crowd-sourced analysis. Classification networks
can be trained to identify the presence or absence of an animal in an image. For this
approach, larger images should be split into small image chips, and presence-absence labels
should be used accordingly. Classification networks have been successful in filtering large
areas of empty oceans to detect whales [121] and turtles [124]. However, this approach is
rarely suitable for dense animal aggregations, as it only provides presence-absence and
not a count. On the other hand, object detection methods localise and classify animals
simultaneously; a popular example is Faster-RCNN [125], which has been used to detect
animals in thermal UAS and SRS imagery [14,17]. The standard form for object detection
labels is a bounding box, where an axes-orientated box is drawn around each animal in the
dataset. Segmentation methods act in a similar way to object detection, except that every
pixel belonging to the target species should be labelled to produce a segmentation mask
and have been applied to VHR imagery [74,126]. Finally, regression networks (e.g., [127])
can be trained using the total count of animals in the image. Regression networks indirectly
infer the features of interest needed to obtain the full count and are useful if the point
or bounding-box annotations are non-existent for each individual animal or are too time-
consuming to produce.

Training and testing of automated methods involve a similar process, whether using
deep learning or more traditional machine learning approaches. Initially, the dataset should
be divided into a training, validation, and test set [128]. Training images are used to guide
the algorithm to learn the features (e.g., pixel reflectance values and shape) associated
with the target animal. Training and test images should be completely separate to avoid
introducing bias. In VHR satellite surveys, only a single large image is often obtained
(usually covering several km2), which is then split into smaller image chips to enable
computer processing. Although image chips from the same image can be split into non-
overlapping training and test sets, we recommend collecting more than one VHR satellite
image to assess whether the approach works for different locations, lighting, and weather
conditions. The chosen algorithm should then be trained using the annotated training
images. Progress for many supervised training schemes (including deep learning methods)
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can be tracked and assessed using a small validation set to (i) determine when training is
complete and (ii) select any hyper-parameters associated with the chosen algorithm. The
trained algorithm can then be applied to the test images to assess accuracy using metrics
such as recall (the fraction of animals that are correctly detected) and precision (the fraction
of detection that is correct) [80]. Since supervised training relies on the use of manual
labelling, human error and any uncertainty will feed into the final accuracy assessment.
The success of an automated method should always be gauged in terms of how well it
compares to human performance on the dataset, the accuracy of which will be much lower
than 100%, particularly for satellite surveys [14,74].

In most studies, researchers must address risks associated with both Type I and
Type II errors. While traditional statistical analyses often prioritise diminishing Type I
errors to bolster confidence in rejecting null hypotheses, studies with a conservation focus
must also address the repercussions of committing Type II errors [129] and, in many
cases, adopt strategies to minimise their occurrence. When utilising a machine learning
approach, researchers have the flexibility to refine their system to minimise either Type I or
Type II errors. This refinement requires a balance between recall (the ratio of true positives
predicted by the model to the total true positives in the data) and precision (the ratio of
true positives predicted by the model to the overall detections made by the model). For
instance, Gray et al. [124] tuned their detection model towards minimising the likelihood
of Type II errors (i.e., failing to detect an animal in a frame when it was present), accepting
the increased financial cost of allocating more time for reviewing detections that may have
been false positives.

5. Recommendations and Future Directions

Studies of wildlife using remote sensing will continue to increase as techniques are
tested and applied to more species. The preferred platform depends upon particular
requirements, locations, species being surveyed, etc. (Figure 2). Satellite technology is
especially useful in open landscapes that are remote and difficult to access or for estimates
over very large regions. UAS provide more detailed data with higher spatial accuracy,
potentially more control, and greater survey frequency. One of the limiting factors at
present for SRS is the number of the highest-resolution satellites available. Until 2021,
there was only one 30 cm satellite in orbit, the Maxar WorldView-3, but Airbus launched
two of four 30 cm Neo Pleaides satellites in late 2021, and MAXAR will follow in 2024
with the launch of up to six further 30 cm satellites. When operational, Pelican will be
Planet’s next-generation satellite constellation to replenish and upgrade the ~20 SkySats
in orbit today [130]. This escalation of capacity should greatly increase the chance of
successfully tasking imagery that is time-dependent (e.g., some arctic areas are almost in
continuous darkness through parts of the year [24]) or in areas with high cloud cover (e.g.,
humid tropics [131]). Tasking SRS imagery depends on several factors: location, access,
tasking parameters, time of year, and competition. A feasibility request must be submitted
for approval, and delivery of tasked images after the last collection date is not always
instantaneous. In the future, useful advances will be more streamlined ordering systems
and semi-automated pipelines to facilitate near-real-time image acquisition and delivery to
the user.

The United States (US) currently restricts super-high-resolution (<25 cm/pixel) satel-
lite imaging to government use. However, in 2020, the NOAA eased commercial imag-
ing restrictions, allowing some companies to make super-high-resolution SAR imagery
commercially available, thereby providing new opportunities for global environmental
monitoring. Super-high-resolution SAR imagery is now restricted for 1 year and can be
extended annually by the US government for up to 3 years (with further extensions al-
lowed if there is sufficient “burden of proof” preventing its release) before it is eligible for
commercial use. On 7 August 2023, Umbra released a 16 cm/pixel SAR image, making it
the highest-resolution commercial satellite image so far [132].
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For marine work, the use of automated algorithms that consider sea state to ensure
that imagery is only taken over relatively calm seas would be extremely useful. Satellite
providers already use this type of assessment to avoid taking images if cloud cover is
predicted to be high by global weather models. These models also estimate wind speed,
which could be used as a proxy for sea state. As surveys expand in scope and area,
automation and artificial intelligence (AI) will become key to successful and efficient
satellite and UAS imagery analyses. One of the most time-consuming tasks is often the
collection of enough test data to facilitate AI models. International collaboration and
pooling of test data in open-access databases should help ensure rapid progress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16040627/s1, Table S1: Commercial high-resolution satellites
that can detect objects less than one metre. Image resolution is measured as ground sampling
distance (GSD), the distance between two consecutive pixel centres measured on the ground in
metres. The information was collated in November 2023 using the ESA eoPortal [133], CEOS
database [134], OSCAR database [135], Satellite Imaging Corporation database [136] or through
direct correspondence with the provider. The launch date, mission status in 2023, and expected end
of life (EOL) are reported, including EOL to be determined (TBD). Mission status is classified as
planned (upcoming launch planned), operational (all systems fully working), and decommissioned
(no longer functional); Table S2: Commercial synthetic-aperture radar (SAR) satellites that can detect
objects smaller than one metre. The information was collated in November 2023 from multiple
sources [133,134,137–143]. Image resolution is measured as ground sampling distance (GSD), the
distance between two consecutive pixel centres measured on the ground in metres. Capella Space
is the first US company to launch and operate SAR satellites. ICEYE is currently a constellation
of 21 satellites, with plans for expansion to 48 satellites by 2024. The Italian Space Agency (ASI)’s
constellation of small satellites for mediterranean basin observation (COSMO-SkyMed) is part of The
European Space Agency (ESA) Third Party Missions Programme, in which ESA has an agreement
with ASI to distribute data products from the mission. The first-generation COSMO-SkyMED (CSK)
satellites consist of four satellites, and the second Generation of COSMO-SkyMed (CSG) satellites
consist of two satellites (CSG-1 and CSG-2) with sub-1 m resolution capabilities and are in the same
orbit. The KOMPSAT (Korean Multi-Purpose Satellite) program is part of the Korean government’s
space development program. Umbra’s constellation currently includes eight satellites with additional
constellation growth planned; Table S3: Comparison of costs between commercial synthetic-aperture
radar (SAR) satellites that can detect objects smaller than one metre. The order requirements for
tasked and archival imagery differ for each company. Costing is dependent on multiple parameters,
including minimum area and archival/tasked imagery. Image resolution is measured as ground
sampling distance (GSD) for square pixels (i.e., the distance between two consecutive pixel centres
measured on the ground in metres) or maximum ground resolution (MGR) for rectangular pixels
(measured as azimuth × range). SAR satellites can image in different modes; spotlight and sliding
spotlight modes produce higher-resolution images. Spotlight imaging is when a beam is focused on a
single point of Earth through the acquisition, whereas in a sliding spotlight, the acquisition angle
is slowly varied to slide the illumination point along the ground to cover a larger area. The Italian
Space Agency has the Cosmo-Skymed (CSK) and Cosmo Second Generation (CSG) SAR satellites.
The UMBRA single-looked product offers shorter dwell times, optimised for very efficient and dense
collection, whereas the multi-looked product has longer dwell times to reduce speckle and aid
visual interpretation. Umbra SAR satellite constellations are Umbra SAR-2001, Umbra-02, Umbra-03,
Umbra-04, Umbra-05 and Umbra-06. Capella Space satellite imagery products are available for
purchase from Cloud Earth Observation Services (CLEOS) [144]. ICEYE archive and new tasking
products is freely available for scientific research and development activities (see [145] for eligibility
requirements and proposal submission); Table S4: Comparison of costs between commercial satellite
companies that provide imagery per square km for a minimum order. Planet provides imagery based
on annual subscriptions (see main text for details). Each company has different order requirements for
tasked and archival imagery, with the costs dependent on multiple parameters, including minimum
area. Image resolution is measured as ground sampling distance (GSD), the distance between
two consecutive pixel centres measured on the ground in metres; Table S5: Examples of successful
crowdsourcing campaigns to estimate population size of wildlife on land using VHR satellite remote
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sensing (SRS) and unoccupied aircraft systems (UAS). The campaigns are listed in order of release
date, with references (see [40,146–154]) in a separate column. The platform Tomnod has been replaced
by GeoHIVE.
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