

The evolution of long-term groundwater storage in the north-western IGB aquifer

20/01/2024 DONALD JOHN MACALLISTER, BGS, UK GOPAL KRISHAN, NIH, INDIA MUHAMMED BASHARAT, ISWARI, WAPDA, PAKISTAN ALAN MACDONALD, BGS, UK

- Introduction to BGS and our groundwater work
- BGS work in India
- Groundwater in the IGB
- Long-term changes in groundwater in the north-western IGB aquifer
- Quantifying the relative influence of recharge sources in the north-western IGB aquifer

 A world-leading independent research organisation providing objective, expert geoscientific data, information and knowledge.

• www.bgs.ac.uk

BGS Global Groundwater Science

BGS Groundwater projects in India

1.

2. 3.

4

5

6.

7.

- Hydrogeological typologies
- Mapping
- Modelling
- GW/SW interactions
- Recharge and residence times
- Water quality
- Long term GW levels

Improving understanding of the IGB aquifer

Groundwater in the Indo-Gangetic Basin (IGB)

Data collation and review – from the four countries: > 500 reports and datasets reviewed

New basin-scale data maps of key groundwater parameters: alluvial geology, abstraction, groundwater quality, water level trends, aquifer properties

Delineation into 7 main typologies and 3 minor: 3D characterisation related to the resilience to change

- 2. Yields > 20 l/s
- 3. Large systematic variations in aquifer: permeability, storage and anisotropy

IGB hydrogeology

Bonsor et al. 2018 Hydrogeol J.

Groundwater depletion in the IGB

Groundwater salinity and arsenic

Salinity or arsenic impacts up to 60% of the aquifer area

Salinity is both natural and man made

Arsenic natural and associated with Holocene deposits and organic soils

Other quality problems poorly constrained

A century of groundwater level change

Long-term groundwater level change in the IGB

- Groundwater depletion is a major concern.
- Groundwater used for > 100 years.
- Groundwater level change since 1900?
- 4028 observation wells from 1900 - 2010

MacDonald et. al. 2016, Nat Geoscience

A century of water resource development

Compilation of historic groundwater data

- > 100 hydrographs scans:
 - old reports
 - books

1040.0

- government archives
- digital and hard copy

Tubewell numbers and groundwater levels

Groundwater level decadal trend

Groundwater level and precipitation trend

Regional groundwater level trends

Influence of canals and tubewells on decadal trend

A century of accumulation

- 1900 1960:
 - Rainfall below period mean.
 - 125,000 km² of canal area added.
 - Net groundwater accumulation:
 350 km³ (range: 150-450 km³)
- 1960 1990:
 - Rainfall above period mean.
 - Little additional canal area added.
 - Tubewell development began.
 - Groundwater stabilised.
- 1990 2010:
 - Rainfall below period mean.
 - Groundwater depletion
 75 km³ (range: 25-100 km³)

Long-term groundwater level change in north-western IGB

- For the majority of the last century groundwater levels were rising, net groundwater accumulation was c.350 km³.
- Large scale irrigation development via canal construction played a defining role in groundwater accumulation.
- More recent groundwater depletion was driven by the superimposed effects of low average rainfall and large scale tubewell development.
- Human activity in the early 20th century increased the total volume of groundwater available prior to large scale exploitation in the late 20th century.

Quantifying relative importance of recharge sources

Quantifying recharge sources in the IGB

- Quantified recharge contributions using a spatially correlated linear model.
- **Tubewell effects**: the increasing importance of tubewell abstraction as more and more wells were drilled for irrigation
- **Canal irrigation effects**: The effect of high or low river/canal flows, decreasing with distance from each canal
- Groundwater capture effects: Increasing groundwater capture due to the slightly lower premonsoon water levels in 2000's than 1990's and in 1990's than 1980's.
- **River inflow effects**: decreasing effects with distance from rivers

Wrapping up

25

Summary and conclusions

- The IGB aquifer is an excellent buffer to human and climatic change
- It has been changing for more than 150 years
- Groundwater is more vulnerable to abstraction than climate change
- Degradation in groundwater quality is arguably a greater concern than depletion
- The aquifer properties and status vary considerably and need targeted governance
- Groundwater and surface water are linked one resource

THANK YOU

Any questions?

