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The terrestrial sediments of the Petrockstowe and Bovey basins inDevon, UKwere examined. Their age is consid-
ered to be Eocene and Oligocene. The sediments (kaolinitic clays, silts, sands, gravels, and lignites) from both ba-
sins were analysed for carbon isotopes of organic material, in conjunction with total organic carbon and
palynological analyses used to unravel the type of and provenance of organic matter present. Within the
Petrockstowe Basin, the lowermost interval examined shows a palynological distribution dominated by
phytoclasts, whilst the upper part of the core is dominated by higher concentrations of palynomorphs (up to
90 %) and an increase in amorphous organicmatter consistent (up to 37 %)with a change from sand-filled fluvial
channels followed by an ephemeral lake or lakemargin setting. Our palynological data from the South JohnAcres
Lane Quarry section, Bovey Basin, show that within the lignites palynomorphs are high again (up to 95 %) consis-
tent with them representingmore ephemeral lakes or lakemargins periodically exposedwithmires. Our palyno-
logical data set further allows us to determine that isotope trends are not overly determined by the source of
carbon in the basins. Our study suggests that the observed patterns were primarily produced by variations of
the isotope ratios of terrestrial atmospheric carbon reservoirs. Even with our less than well constrained
biostratigraphical control, the data indicate that the carbon isotope excursions seen in the Eocene and Oligocene
could be associatedwith several transient carbon isotopic shifts (associated with the Paleocene–Eocene Thermal
Maximum). Our findings therefore appear to lend support to the surface ocean and atmosphere behaving as
coupled reservoirs at this time.
© 2023 The Geologists' Association. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The terrestrial sediments of the Petrockstowe and Bovey basins in
Devon, UK offer an opportunity to examine the carbon cycle during the
Eocene–Oligocene transition (∼33.9 million years ago), an interval, that
saw a climate shift from a largely ice-free greenhouse conditions to an
icehouse world (Miller et al., 2009; Coxall and Wilson, 2011;
Hutchinson et al., 2021). At this timemajor changes in fauna andflora re-
cord a shift toward more cold-climate-adapted species (e.g., Sun et al.,
2014). For this pivotal interval in Earth's climate, our understanding of
the role of the carbon cycle, is much more limited (Coxall and Wilson,
2011; Armstrong McKay et al., 2016). Across the Eocene–Oligocene
boundary a positive carbon isotope (δ13C) excursion of ~1.0 ‰ is
typically recorded in the marine record followed by a decline to pre-
excursion values (~0.7 ‰) in the Oligocene (e.g., Nilsen et al., 2003;
Armstrong McKay et al., 2016). This well-documented perturbation
by Elsevier Ltd. This is an open access
may be used to correlate marine and terrestrial sections from around
the globe as previous studies have shown that δ13C obtained from terres-
trial organic material such as wood and lignites typically records a global
signal (e.g., Heimhofer et al., 2003; Collinson et al., 2003; Gröcke et al.,
2005; Bechtel et al., 2008; Hodgson et al., 2011; Jerrett et al., 2015;
Lenz et al., 2022).

The Petrockstowe and Bovey basins lie on the Sticklepath–
Lustleigh Fault and owe their origin to subsidence within this zone
(Blyth, 1962; Dearman, 1963). About 600 m of Eocene–Oligocene
sediments are present in the Petrockstowe Basin (Freshney et al.,
1979) and ~1200 m in the Bovey Basin (Edwards, 1976). In this
study, we present new organic δ13C data from terrestrial Eocene–
Oligocene aged sediments from these basins. Our data is used to
improve age constraints on the succession via comparison of our ter-
restrial δ13C record with that of the extensively described time-
equivalent marine sections. The similarity and magnitude of the
δ13C excursions between terrestrial and marine records can also be
used to assess whether these archives behaved as coupled reservoirs
during this time.
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
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2. Location and geological setting

The Petrockstowe Basin, nr Newton Abbott, Devon, UK (Fig. 1), lies
on the Sticklepath–Lustleigh Fault (Dearman, 1963; Holloway and
Chadwick, 1986). The fault became active during the Paleogene and
most activity ceased before deposition of the upper part of the Bovey
Formation (Blyth, 1962). Bristow and Robson (1994) proposed a struc-
turalmodel for the development of the basin – a pull–pushmodel – and
suggested that the development was in two phases: an early, transi-
tional phase, during which much of the sedimentation occurred, and a
subsequent transpressional phase in which boundary thrust faults de-
veloped. Geophysical measurements, confirmed by a British Geological
Survey (BGS) borehole from the centre of the basin proved a basin fill
of 660 m of sands and silts (Freshney et al., 1979). The sediments, kao-
linitic clays, silts, sands, gravels, and lignite, were likely to have been de-
rived from weathering granite under warm temperate or sub-tropical
conditions of the early Paleogene (Bristow, 1968; Edwards, 1976). The
succession consists of fining-upwards cycles comprising of one or
more of a gravel lag, gravelly sands, and silty sands, and is probably rep-
resentative of point bar and swale-fill deposits of a river system. These
interstratify with clays and silts of lacustrine origin (Freshney, 1970;
Freshney et al., 1979). Based on palynological evidence, Turner (cited
by Freshney et al., 1979) suggested these were deposited in a subtropi-
cal climate with palms, ferns and heathers and many plants with
swamp affinities.

The Bovey Basin is located between Newton Abbot, Kingsteignton
and Bovey Tracey, Devon UK (Fig. 2) and is 45 km southeast of the
Petrockstowe Basin. The Bovey Basin lies southeast of the Dartmoor
granite and is approximately 7 km from east to west and 5 km from
north to south. In the northern and eastern boundaries of the basin
there are sedimentary contacts between the Dartmoor granite and the
Upper Greensand and Aller Gravel. The bulk of the basin is filled by a
thick (~1200 m) succession of Paleogene kaolinitic clays, silty clays,
silts, lignites and sands, referred to as the Bovey Formation (Edwards,
1976). Edwards (1976) proposed a morphological sub-division of the
basin into two parts, lying to the north and to the south of Newton
Abbot. The part between Bovey Tracey and Newton Abbot is considered
as themain basin; the second part lies south of Newton Abbot and is re-
ferred to as Decoy Basin (Fig. 2). Edwards and Freshney (1982) pro-
posed an informal sub-division of the Bovey Formation into ‘lower’,
‘middle’ and ‘upper’. The ‘lower’ is not exposed and the ‘middle’ and
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Fig. 1. A. Map showing the southern part of the UK and location of inset. B. General
(Modified from Bristow and Robson (1994).)
‘upper’ Bovey Formation includes 14members, some of uncertain strat-
igraphical position or lateral equivalents and are described in detail by
Edwards and Freshney (1982) and Selwood et al. (1984). Of the top
350 exposed at the surface (Edwards, 1976), 48 m of the Abbrook Clay
and Sand and Southacre Clay and Lignite members of the ‘middle’
Bovey Formation were examined in the exposed working section at
the South John Acre Lane Quarry. Chandler (1957) and Edwards
(1976), suggest that during the Oligocene the lignites accumulated in
swamps with associated fluvial sands and plant debris swept in from a
warm hinterland into a lake basin lying on Paleozoic strata (see also
Selwood et al., 1984). The lake was surrounded by marshland tree
covered slopes (Chandler, 1957).

3. Age of the Petrockstowe and Bovey basins

The age of the Bovey lignites has for a long time been debated
(Chandler, 1964). Based upon the macroflora in the lignite beds of the
Bovey Formation, these were originally regarded as Miocene, but later
assigned to the Oligocene (Chandler, 1957, 1964). Likewise, Wilkinson
(1979) cited by Selwood et al. (1984) noted that pollen froma borehole,
near Heathfield penetrated 185 m of Blatchford Sand (upper Bovey
Formation), 69 m of South Acre Clay and Lignite and 51 m of Abbrook
Clay and Sand and from below 290 m depth, Eocene indicators like
Anacolosidites and Pompeckjoidaepollenites were observed (Fig. 3). It is
also important to note that the Blatchford Sand is an obsolete unit
name and has been replaced by the Woolley Grit Member. The South
Acre Clay and Lignite Member is therefore likely to be early to middle
Oligocene in age (Selwood et al., 1984) and the Abbrook Clay and
Sand Member would contain the Eocene–Oligocene boundary.
Freshney et al. (1982) also suggested that the lowermost ~700–800 m
of the Bovey Formation could probably be assigned to Eocene (see
also Wilkinson et al., 1980; Wilkinson and Boulter, 1981). For the
Petrockstowe Basin, Turner (cited by Freshney et al., 1979) reported
that pollen data indicate a boundary between the Oligocene and Eocene
at ~120 m depth in BGS Borehole No. 1 (Fig. 3).

4. Methods

From Petrockstowe 2 borehole cores (Petrockstowe 1A and 1B) held
in the core repository at the BGS, Keyworth, Nottingham, UK were
logged, and sub sampled. The sampled section was 640 m long, and
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Fig. 2. A. Map showing the location of Petrockstowe and Bovey basins (modified from Bristow and Robson, 1994). B. Geological map of the Petrockstowe Basin showing the location of
Borehole 1 (cores 1A and 1B) and the relative positions of the axial trough and the marginal shelves with their dividing fault (modified from Freshney, 1970; Freshney et al., 1979). C.
Geological map of the Bovey Basin showing the location of the South John Acres Lane Quarry (modified from Selwood et al., 1984).
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samples were collected, on average, every 6m.Within the region of the
Eocene Oligocene boundary as proposed by Turner (cited by Freshney
et al., 1979), as well as the early Eocene of Core 1B higher resolution
sampling was undertaken. In the Bovey Basin, the Abbrook Clay and
Sand and Southacre Clay and Lignite members of the Bovey Formation
from the accessible exposed working section at South John Acre Lane
Quarry (Grid Reference SX 858758)were sampled. The sampled section
was 48 m and samples were collected, on average, every 0.6 m. It was
necessary to excavate the sediment surface by up to 0.5 m before sam-
pling with a trowel to ensure fresh samples. All sediment types were
sampled.

For the determination of the carbon isotope composition of total or-
ganic carbon (δ13CTOC), samples were ground to a fine powder using an
agate pestle andmortar. Powdered sampleswere decarbonated by plac-
ing each sample in a 50 ml polypropylene centrifuge tube and treating
with 10 % HCl for 1 h until any carbonate had reacted. Samples were
then rinsed with deionised water, centrifuged, and rinsed again until
neutrality was reached (using universal indicator paper). For δ13CTOC
analysis, samples were weighed, to achieve ~0.5 mg TOC, into a tin cap-
sule and placed into a Carlo Erba 1500 EA for analysis using an onlineVG
Triple Trap Mass Spectrometer. The δ13CTOC results were calibrated
against Vienna PeeDee Belemnite (V-PDB) through laboratory
(BROC1) and International Standards (NBS19, NBS22, CH6). Standards
were evenly distributed throughout the individual isotope runs to cor-
rect for daily drift. The mean standard deviation on replicate δ13CTOC

analyses of laboratory standard (BROC1) and soil (SOILB) was between
±0.1 ‰ and 0.5 ‰ (1 standard deviation, σ) for δ13CTOC. Replicate
analyses showed an average precision of ±0.1 %. TOC content for each
sample was measured using a Carlo Erba 1500 elemental analyser
with acetanilide used as the calibration standard.

Palynological analyseswere used to unravel the type of organicmat-
ter associated with the sediments and as a means of determining the
source of the carbon reservoir in the basins. Samples were processed
using standard palynological processing (Brown, 2008) (hydrochloric

Image of Fig. 2


Fig. 3. Summary stratigraphical logs (and correlation) of the Bovey succession with data derived from Edwards (1976) and Wilkinson (1979) cited by Selwood et al. (1984) and
Petrockstowe with age data from Turner (cited by Freshney et al., 1979).
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acid followed by hydrofluoric acid for demineralisation). Slides were
studied using a Zeiss standard microscope, normally using standard
transmitted light. This is the first time such a method was used in
both Petrockstowe andBovey basins. To achieve this, counts of>300or-
ganic matter types from each sample were made. There are several
schemes to classify different components of the particulate organicmat-
ter (e.g., Tyson, 1995; Aggarwal et al., 2019). Fourmain categories of pal-
ynological matter were identified in this study (Fig. 4): (1) Non-opaque
phytoclasts include woody remains, tracheid material, poorly lignified,
tissue fragments derived from higher plants, and yellowish-brown or-
ganic remains; (2) opaque phytoclast includes palynodebris with irreg-
ular shapes and charcoal; (3) palynomorphs in this study include
pollen, spores and undifferentiated forms; and (4) amorphous organic
matter (AOM) and other palynodebris which appears grey, pale yellow
or brown in colour, partly translucent masses of variable thickness and
with no cellular detail. The AOM group probably originates from bacte-
ria, phytoplankton and degraded organic aggregates. Their size varies
from <5 to about 45 μm in diameter.

5. Results

5.1. Total organic carbon (%TOC)

The sediments from the Petrockstowe core have highly varying wt%
TOC values ranging from 0.02 to 42.7 wt% TOC (Fig. 5). Unsurprisingly,
the highest %TOC values coincide with the lignitic clays and lignites.

Image of Fig. 3


Fig. 4. Phytoclasts from the Petrockstowe and Bovey basins. (A) Opaque lath-shaped phytoclast, sample MC95 Petrockstowe Basin; (B) large opaque lath shaped phytoclast; sample MC3
Petrockstowe; (C) multicellular fungal ‘fruiting body’, sample MC19 Petrockstowe; (D) mass of melanised fungal hyphae; sample MC58, Petrockstowe. (E) Multicellular fungal ‘fruiting
body’ sample MC19, Petrockstowe. (F) Well preserved, pale brown in colour, partly translucent AOM sample SJAL029, Bovey Basin. (G) Well preserved pale yellow AOM seen in
transmitted white light; sample SJAL002, Bovey Basin. (H) A cross section of plant fragment sample SJAL013, Bovey Basin; (I) phytoclast (biostructured) composed of gymnosperm
tracheids; sample MC76 Petrockstowe Basin.
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These lignitic clays and lignites are seen in themiddle and upper parts of
the core (core 1A). The lower part (core 1B) consists mostly of gravels,
sands, and clays with very low wt% TOC contents. The wt% TOC values
from the South John Acres Lane Quarry section, Bovey Basin, range
from 0.1 to 61.8 % (Fig. 6). As for the Petrockstowe Basin, the highest
wt% TOC values coincide with either lignitic clays or the lignites. These
sediments are seen within the Southacre Clay and Lignite Member
whereas the underlying Abbrook Clay and Sand Member is dominated
by sands and silty clays with fewer lignitic clay beds.
5.2. Palynology

Within the cores of the Petrockstowe Basin, the lowermost interval
shows a palynological distribution dominated by phytoclasts with at
certain intervals nearly 100 % and low palynomorphs and AOM. The
upper part of the core is dominated by much higher concentrations of
palynomorphs and an increase in AOM (up to 37 %) and low concentra-
tions of phytoclasts.

With respect to the South John Acres Lane Quarry section, Bovey
Basin, phytoclasts are highest in the Abbrook Clay and Sand Member.
When phytoclasts are high (opaque phytoclasts reach 91 %), the
palynomorphs show the lowest concentrations and vice versa. High
AOM concentrations (up to 66 %) are seen at the base of the Abbrook
Clay and SandMember and decline upwards. In the overlying Southacre
Clay and Lignite Member, dominated by lignites, opaque phytoclast
concentrations are low, and palynomorphs consistently high (spore-
pollen and non-opaque phytoclasts reach 95 %: Fig. 6).

5.3. Carbon isotopes (δ13CTOC)

The δ13CTOC values of samples in the Petrockstowe cores range
from −28.5 ‰ to −23.5 ‰ with a mean value of −26.5 ‰. As can be
seen in Figure 5, values at the base of core 1B begin with a δ13CTOC value

Image of Fig. 4
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of ~−26.1 ‰ at 645 m. A carbon isotope excursion with a magnitude of
~2.5‰ can be seen at ~586 m depth with δ13CTOC values reaching a min-
imum of−28.6‰. The entire excursion occurs over a thickness of ~19m,
from 586 to 605 m. The data then shows a return to more positive values
of−26.2‰ at 585m. Thereafter, the δ13CTOC values remain relatively con-
sistent between 584 m and 540 mwith δ13CTOC in the range of−27.0‰
and−26.3‰. There is a lack of core (because of poor recovery) between
513.59mand 431.60m. In the upper part of the Petrockstowe 1A core, the
δ13CTOC values generally vary around−26.0‰. In the uppermost (Oligo-
cene) part of the core the most positive δ13CTOC values are seen.

At the South John Acres Lane Quarry section, Bovey Basin the δ13CTOC
values range between −27.8 ‰ and −22.5 ‰ with a mean value of
−26.0‰ (Fig. 6). In this succession, δ13CTOC values show limited variabil-
ity. In the uppermost (Oligocene) part of the section within the lignitic
clays and lignites the most positive δ13CTOC values (−22.5‰) are found.

6. Discussion

6.1. Palynological interpretation

In the Petrockstowe 1A and 1B cores, close to the base of the succes-
sion the high opaque phytoclast content, together with low TOC values
(down to 0.1 wt%), and low AOM and non-opaque phytoclast contents
may be related to local oxidation of organicmatter (Figs. 5, 7) or diagen-
esis. Opaque phytoclasts are typically derived from the oxidation of
structured organic matters (translucent brownwood, tracheids, cuticle,
etc.) and along with a low proportion of the other organic matter
types have been documented in oxic swamps and river sediments
(e.g., Martín-Closas et al., 2005; Pieñkowski and Waksmundzka, 2009).
In the upper part of the Petrockstowe section (Fig. 5) palynomorphs
dominate which could indicate suboxic/anoxic waters (Tyson, 1995).
Consequently, a restriction ofwater circulation rather than productivity,
may serve as the controlling factor for the organic rich sediment accu-
mulation. Also, the fluctuating, but relatively high percentages of
palynomorphs and AOM (up to 37 %), could suggest diverse source of
areas of the organic matter (e.g., Martín-Closas et al., 2005) with depo-
sition within an ephemeral lake or lake margin. These observations
agree with the Petrockstowe 1A and 1B cores, representing a succession
of sand-filled fluvial channels followed by an ephemeral lake or lake
margin setting (Fig. 5, see Freshney et al., 1979). This represents an
overall deepening-up sequence.

In the Abbrook Clay and Sand and Southacre Clay and Lignite mem-
bers, the base sees a diversity in palynological types (Fig. 6) with high
percentage of AOM and phytoclasts potentially reflecting enhanced
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preservation in a low energy, stagnant, oxygen depleted environment
(Tyson, 1995, Fig. 7). Only a single high opaque phytoclast level is
seen, possibly associated with deposition within an oxidising environ-
ment. In the overlying Southacre Clay and Lignite Member, dominated
by lignites, palynomorph concentrations are consistently high and as
such suggest a depositional environment associated with a swamp or
ephemeral lake or marginal lake. These observations are in agreement
that the Abbrook Clay and Sand and Southacre Clay and Lignite mem-
bers of the Bovey Formation, represent a long-lived lake followed by
sediments representing more ephemeral lakes or lake margins periodi-
cally exposed with mires (see Chandler, 1964; Edwards, 1976).

Our palynological data set further allows us to determine whether
isotope trends are carbon source related. For example, within the
Abbrook Clay and Sand Member, when phytoclasts are high, the
palynomorphs show the lowest concentrations and vice versa. High,
but variable, AOM concentrations are also seen. No correspondence is
seen here with fluctuations in carbon isotopes, suggesting organic mat-
ter associated with the sediments is not overly determining the source
of the carbon reservoir in the basins. Nevertheless, changes in the dom-
inance of gymnosperms, angiosperms or pteridophytes/bryophytes
within the vegetation could be of importance.

6.2. Carbon isotope trends

Carbon isotopic ratios from terrestrial organic materials have been
previously used to study global carbon-isotope excursions in the Ceno-
zoic (Collinson et al., 2003; Bechtel et al., 2008; Holdgate et al., 2009;
Hodgson et al., 2011; Fang et al., 2013; Jerrett et al., 2015; Garel et al.,
2020; Lenz et al., 2022). These studies (which use discrete plant frag-
ments, lignites or disseminated organic matter) identify reproducible
patterns in atmospheric carbon isotopic compositions. There are just a
few terrestrially sourced high-resolution carbon isotope stratigraphies
to compare our Eocene and Oligocene data to (e.g., Holdgate et al.,
2009; Garel et al., 2020). Nevertheless, our δ13CTOC data are, consistent
with terrestrially sourced δ13C values of the Eocene (e.g., Collinson
et al., 2003; Bechtel et al., 2008; Hodgson et al., 2011). Considering the
carbon isotope excursion of −2.5 ‰ from the lower part of
Petrockstowe core 1B (Fig. 5), the magnitude of this excursion falls
within the lower limit of that associated with the Paleocene–Eocene
Thermal Maximum (PETM), which ranges from −2.4 to −6.3 ‰ (see
summary of McInerney and Wing, 2011). This suggests it could be re-
lated to this event. However, biostratigraphically there is limited data
from the Petrockstowe core (see Turner cited by Freshney et al.,
1979). The biostratigraphical constraints allow the carbon isotope
excursion to also be associated with one of the other transient carbon
isotopic shifts that occurred after the Paleocene–Eocene Thermal Maxi-
mum i.e., the Eocene Thermal Maximum (ETM-2). For example, the
magnitude of the ETM-2 carbon isotope excursion documented in the
continental succession of the McCullough peaks, Bighorn Basin,
Wyoming, USA, using palaeosol carbonate is −3.8 ‰ (Abels et al.,
2012).

The presence of the Eocene–Oligocene boundary in Petrockstowe
core 1A has been proposed, based on pollen data, by Turner (cited by
Freshney et al., 1979). The Abbrook Clay and SandMember is also likely
to contain the Eocene–Oligocene boundary (Selwood et al., 1984) but
because of the limited biostratigraphical data the exact positioning of
the boundary is less certain. The Eocene–Oligocene boundary is one of
the most prominent abrupt climatic events in the Cenozoic and is con-
sidered to represent the initiation of major permanent Paleogene ice
sheets on Antarctica (Miller et al., 2009; Coxall and Wilson, 2011;
Hutchinson et al., 2021). The glaciation of Antarctica is thought to result
from the tectonic opening of Southern Ocean gateways, which enabled
the formation of the Antarctic Circumpolar Current and the subsequent
thermal isolation of the Antarctic continent (e.g., Zachos et al., 2001)
Modelling studies implicate low atmospheric CO2 also as an important
factor (DeConto and Pollard, 2003). The carbon isotope changes across
this boundary are, however, less pronounced, and certainly less well
documented in the terrestrial system. This is perhaps due to the lack
of suitable terrestrial sections to study.

Nevertheless, the marine records (Zachos et al., 2001; Coxall and
Wilson, 2011) show a δ13C excursion of ~1.0‰ in benthic foraminif-
era, peaking in the earliest Oligocene and followed by a decline to
~0.5 ‰, 1 million years after the boundary. The Petrockstowe and
Bovey δ13CTOC data do show some correspondence with this marine re-
cord whereby for the Eocene stable but the most negative carbon values
are observed, whereas the most positive carbon isotope values are
present in the Oligocene. More positive δ13CTOC values have been linked
to increased organic carbon burial (Coxall and Wilson, 2011). Our study
therefore supports the notion that the surface ocean and atmosphere
behaved as coupled reservoirs at this time, similar to other times in the
Cenozoic (Jerrett et al., 2015; Cui et al., 2021; Lenz et al., 2022), as opposed
to a decoupled system (cf., Holdgate et al., 2009; Fang et al., 2013), but
more data is required to fully test this possibility.

7. Conclusions

In conclusion, and in agreementwith Freshney et al. (1979), our pal-
ynological observations show that the Petrockstowe 1A and 1B cores,
represent a succession of sand-filled fluvial channels followed by an
ephemeral lake or lake margin setting. The Abbrook Clay and Sand
and Southacre Clay and Lignite members of the Bovey Formation,
represent a long-lived lake followed by sediments representing more
ephemeral lakes or lake margins periodically exposed with mires (see
Chandler, 1964; Edwards, 1976). Our palynological data set further al-
lows us to determine that isotope trends are not overly determined by
the source of carbon in the basins.

Our study suggests that the observed δ13CTOC trends in the Eocene–
Oligocene of the Petrockstowe andBovey basinswere primarily produced
by variations of the carbon isotope ratios of terrestrial atmospheric carbon
reservoirs. Even with our less than well constrained biostratigraphical
control, the data indicate that the carbon isotope excursions seen in the
Eocene and Oligocene could be associated with a number of transient
global carbon isotopic shifts (e.g., the PETM). Our findings therefore ap-
pear to lend support to the surface ocean and atmosphere behaving as
coupled reservoirs at this time.
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