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Abstract

About nine million Artisanal and Small-scale Gold Mining (ASGM) workers in Africa and people living near ASGM activi-
ties are highly exposed to geogenic and anthropogenic potentially toxic elements (PTEs). Despite the hazards and risks posed
by ASGM being well characterized, coordinated multidisciplinary environmental characterization with combined public
health studies are limited, with often piecemeal and snapshot studies reported, as highlighted by this review. Furthermore,
studies are often not connected with efforts to minimize hazards holistically. Given this, we systematically reviewed the
scientific literature on human health hazards associated with ASGM in Africa through Google Scholar, Science Direct, and
Pubmed databases. One hundred and seventy-three peer-reviewed papers published between 1996 and June 2023 from 30
African countries were identified. Toxicological environmental hazards were reported in 102 peer-reviewed papers, notably
As, Cd, CN, Cr, Hg, Pb, respirable SiO,-laden dust, and radionuclides. Exposure to PTEs in human biomonitoring matrices
and associated health impacts were documented in 71 papers. Hg was the most reported hazard. Gaps in research robustness,
regulation and policy framework, technology, risk detection, surveillance, and management were found. Despite international
and in-country mitigation efforts, ASGM-related hazards in Africa are worsening. This review paper highlights the need for
coordinated action and multidisciplinary collaborative research to connect dispersed isolated studies to better characterize
the associated disease burden associated with ASGM in Africa and sustainably maximize the wider benefits of ASGM whilst
protecting public health and the environment.
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Introduction

Artisanal and small-scale gold mining (ASGM) presents
serious but preventable hazards (Landrigan et al. 2022;
WHO 2016). It occurs in over 80 low- and middle-income
countries (LMICs), accounts for 20-25% of gold produc-
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tion, and employs 15-20 million people (WGC 2022). The
ASGM communities often work without pollution and safety
controls and live in heavily polluted environments (Allan-
Blitz et al. 2022; Bugmann et al. 2022; Schwartz et al. 2021;
Singo et al. 2022a, b; WGC 2022). Africa produced 677-740
metric tons of gold annually between 2017 and 2021 (Sasu
2023). Burkina-Faso, Democratic Republic of Congo,
Ghana, Madagascar, South Africa, Sudan, and Tanzania
accounted for the most significant production, with 25-100%
attributed to ASGM (Jennings 1999; Schwartz et al. 2021;
Seccatore et al. 2014; Uganda-NEMA 2019). Across Africa,
surface mining, hard rock mining, mechanized cyanida-
tion and hydrometallurgy are the primary techniques used
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in ASGM depending on the location and value of gold
deposits (Table 1). Generally, unsafe working conditions,
crude technology, unskilled labour, and poor waste man-
agement are significant challenges in ASGM (Basu et al.
2015; Stemn et al. 2021) (Fig. 1) and promoting safer and
more sustainable ASGM practices is critical continent wide.
The sector has contributed to economic growth and employ-
ment in many African nations. For instance, in Ghana, the
gold mining industry contributed 7% of the national gross
domestic product (GDP) in 2019, with ASGM accounting
for 35% (Afrifa et al. 2019; Bakia 2014; Macdonald et al.
2014; Spiegel and Viega 2006; Taux et al. 2022). In Uganda,
7.1 t per year, equating to 90% of the annual gold produc-
tion, comes from ASGM (Uganda-NEMA 2019). However,
limited regulation, inappropriate ASGM technologies, and
long gold value chains have resulted in limited economic
benefits (WGC 2022) and significant environmental dam-
age and health burdens at the local level (Basu et al. 2015,
2011; Dooyema et al. 2012a; Landrigan et al. 2022; Plumlee
et al. 2013; Rajaee et al. 2015a; Ralph et al. 2018) as ASGM
activities rapidly expand (WHO 2016).

Detrimental environmental effects, injury, disease, and
premature deaths in ASGM are significant issues in Africa
(Bose-O’Reilly et al. 2008a; Dooyema et al. 2012b; Gibb
and O’Leary 2014; Ismawati 2016; Nyanza et al. 2019;
Steckling et al. 2011), a continent severely affected by cli-
mate change and strained health infrastructure (Landrigan
et al. 2022). The key but neglected hazards to human health
in ASGM are potentially toxic elements (PTEs) and physi-
cal hazards, most notably airborne dust, gaseous emissions,
overexertion, physical injuries and related deaths, excessive
noise, excessive heat, and poor ventilation inside the mines.
Additional hazards include violence, prescription drugs,
alcohol, illicit drug addiction, and a higher risk of infec-
tious diseases, including HIV/AIDS and respiratory ailments
(Basu et al. 2015; Singo et al. 2022a, b; WHO 2016; Mbuya
et al. 2023). Over nine million workers still directly engage
in hazardous ASGM activities in Africa (WGC 2022), put-
ting their lives and those of others at risk. Regulations in
the sector are lacking, evolving, or not enforced continent
wide (Fritz et al. 2018b; Mallo 2012; Plumlee et al. 2013;
Rajaee et al. 2015a; Schwartz et al. 2021; Wireko-Gyebi
et al. 2022), leading to unabated degradation of land, water-
ways, food sources, and air, leading to human exposure to
multiple toxic hazards (Bose-O’Reilly et al. 2020; Dooyema
et al. 2012b; Keita et al. 2018; Nyanza et al. 2019; Plumlee
et al. 2013; WHO 2016).

Multiple toxic hazards, primarily PTEs such as As (arse-
nic), CN (cyanide), Cr (chromium), Cd (cadmium), Hg
(mercury), and Pb (lead); silica (Si0O,); and physical haz-
ards, mainly airborne dust, radionuclides, accidents, and the
high risk of infectious diseases are of great public health
concern in ASGM across the African continent. They affect
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umes of material are processed

quantities are processed

Minimal returns per day as small ore Antabe et al. (2017); Barasa et al.
ing companies

Not economical for large-scale min-
Greater gold returns as larger vol-

Value

dredges, and high-pressure can-

nons
An alkaline CN leaching process

Buckets, pans, shovels, locally made
sluice boxes

Deep risky mineshafts dug
Compressor pumps, backhoes, river

Equipment used

Location of ore deposit
and topsoil in beaches, lakes,
streams, and river banks and chan-
nels
below the earth’s surface

Large rocks are broken using explo-
sives

Alluvial gravels, sands, sediments,
Gold-bearing veins up to 4500 m

Table 1 ASGM techniques across Africa

hydrometallurgy (“cyanide revo-

lution”)

3. Mechanized cyanidation and

Mining method
1. Surface mining
2. Hard rock mining
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Gold ores or tailings
(containing multiple
metal(oid)s, SiO,,
radionuclides etc.)

Crushing, dry milling (large

— dust amounts released across

communities)

Tailings
(containing Hg)

Cyanidation

l Milled ore l

Whole ore amalgamation
(large amounts of Hg added)

Gravity concentration

1. Pre-leaching

2. Leaching with

)

Concentrate

NaCN or KCN
3. Acidation

Tailings (containing Hg,

multiple elements like As, Cd,
Cr, Co, Ni, Pb etc. released to
nearby soils, and waterways)

4. Au recovery

Au-Hg amalgam

|

5 Hg vapour

Burning/ Hg Vaporisation (in
open pans or retorts in homes)

-

“ Amalgamation (small Hg ‘
amounts added)
Tailings
(containing Hg-CN
Hg vapour complexes, As, Cd,
released /’ released Cr, Co, Ni, Pb etc.
released to nearby
L soils and water
Au smelting, Au sources)
refining r

(Abdelaal et al. 2023; Afrifa et al. 2019; Basu et al. 2011; Black et al. 2017; Dooyema et al. 2012b; Gerson et al.
2018a; Lassen et al. 2016; Mambrey et al. 2020; Nsambu et al. 2020; Omara et al. 2019b; Pascal et al. 2020;
Plumlee et al. 2013; Rajaee et al. 2015a; Tomicic et al. 2011).

Fig.1 Summary of ASGM processes across Africa

both ASGM workers and residents living in exposed areas
(Basu et al. 2015; Dooyema et al. 2012a; Ismawati 2016;
Mambrey et al. 2020; Mtetwa and Shava 2003; Rajaee et al.
2015b; Rakete et al. 2022; Sako and Nimi 2018). There-
fore, this review aims to provide a coordinated assessment
of environmental and public health studies associated with
ASGM in Africa, with the following objectives: (1) Evaluate
the documented literature on toxic environmental hazards,
related human exposure and health impacts; (2) Characterize
the toxic health risks; and (3) Identify continent-wide strate-
gies for mitigating hazards that improve the sustainability
of ASGM by reducing the impact on environmental quality
and human health.

Methods

The Google Scholar, Science Direct, and Pubmed data-
bases were used with the following predefined search
terms: Africa; artisanal small-scale gold mining; artisanal
gold mining; environmental pollution; heavy metals; human
exposure; health impacts; and names of African countries

where ASGM is known to occur. One hundred seventy-three
articles that reported multiple toxic environmental hazards
in ASGM, most notably PTEs, like As, Cd, CN, Cr, Hg,
Ni, and Pb, amongst others; respirable SiO,-laden dust and
radionuclides; related human exposures; associated health
effects; and biomarkers and biomonitors of toxic exposures
amongst people working and living in ASGM areas in Africa
were included. Seventy-seven articles that documented
malaria, cholera, and hepatitis; malnutrition; heat stroke;
and traumatic hazards, including cave-ins, burns, animal
attacks, falls, and weapon-inflicted wounds, were excluded
(Moher et al. 2009).

The following variables were extracted from articles and
reports that met the inclusion criteria: date of the publi-
cation; study area and country; report on toxic hazards in
the environment (soil, water, sediment, air, plants, food);
report on the toxic hazards identified by human biomonitor-
ing matrices (blood, hair, nails, urine, breast milk, saliva);
the number of samples; report on study participants/popu-
lation; report on interventions or treatment provided and
outcomes; particular toxic hazard or risk; and documented
health effects.
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Results and Discussion

One hundred seventy-three studies published from 1996
through June 2023 (Supplementary Tables 1-5) across 30
different African countries, as presented in Fig. 2, were
evaluated. The ASGM activities reported in these publica-
tions are spatially concentrated in West, South, East, and
Central Africa (Fig. 2). One hundred and two evaluated
studies reported toxic environmental hazards (Supple-
mentary Tables 1-3). The human biomonitoring matrices
data evaluated in 71 studies present both occupationally
(n=3,749 subjects) and inadvertently (n= 3,815 subjects)
exposed subjects and associated documented health effects

Fig.2 Map of sampling sites

(Table 4; Supplementary Tables 4 and 5). Most residents,
non-ASGM workers, farmers, and fishermen were clas-
sified as non-occupationally or inadvertently exposed.
In contrast, most occupationally exposed subjects were
miners, ore processors, and gold traders, who were antici-
pated to become increasingly exposed due to the nature of
their work. Concentrations of PTEs in the blood (n=2418
samples), breastmilk (n =120 samples), hair (n=1,599
samples), nails (n =329 samples), and urine (n=2,948
samples) were used to estimate exposure. More com-
monly, environmental concentrations of PTEs in soils,
food, water, and air are used to estimate human exposure
through predictive models and the associated hazards to
health, including cancer risk.
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Toxic Environmental Pollution in Artisanal
and Small-Scale Gold Mining in Africa

Artisanal and small-scale gold mining negatively impacts
the environment during ore exploration and mining, ore
processing, gold recovery and purification, and waste
dumping (Basu et al. 2015; Haidula et al. 2011; Ngole-
Jeme and Fantke 2017; Plumlee et al. 2013). One hundred

and two studies reported multiple toxic environmental haz-
ards in ASGM in 30 countries, as presented in Supplemen-
tary Tables 1, 2, and 3 whilst summarized in Table 2 for
selected PTEs. Exceedance of threshold concentrations of
multiple toxic hazards, most notably, potentially toxic met-
als, As, CN, SiO,, and radionuclides are given for African
examples for soils, sediments, surface and ground waters,

Table 2 Concentrations of potentially toxic elements in environmental matrices in artisanal and small-scale gold mining across Africa

Matrix Soils Sediments  Tailings Wild plants ~ Food crops Fish Drinking water
Units mg/kg mg/kg mg/kg mg/kg ugl/g ugl/g ug/L

N samples 1758 810 173 136 95 353 1096

As

n studies 20 12 12 1 8 3 20

Min.—max 0.01-73,497 0.03-5705  0.03-5830 0.5-798 0.03-19,700 20-2370 0.01-32,556
Mean min.—max  0.4-3199 13-3536 37-793 19.1-91 0.1-6843
Threshold 12 (US EPA) 10 (EU) 12 (US EPA) 0.5 (FAO/WHO) 10 (WHO)
cd

n studies 13 3 2 2 1 3 12

Min.—max 0.01-511 ND-25 0.07-9.1 0.1-1.5 1900-10,100 1900-10,100 0.01-4900
Mean min.— max  0.01-24.9 3-14 0.1-54 0.2-0.3 - 0.04-534
Threshold 10 (CCME) 2.3 (EU) 10 (CCME) - 0.2 (FAO/WHO) 3 (WHO)

Cr

n studies 10 7 2 2 5 - 11

Min.—max 0.7-905 27-1550 13-150 5.1-63.7 44.3-287,000 0.03-20,900
Mean min.— max  62-542 69-1614 2.8-85 11.3-21.9 175-129,000 - 0.1-2480
Threshold 64 (CCME) 81 (EU) 64 (CCME) - 50 (WHO)
Hg

n studies 27 10 8 3 22 19 19

Min.—max 0.0002-1830 ND-422 0.001-220 0.1-1920 0.001-355,000 0.01-355,000 0.01-134,000
Mean min.— max  0.02-141 2-5889 0.6-20.5 0.4-0.43 0.003-133 0.1-211,310
Threshold 1 (US EPA) 0.15 (EU) 1 (US EPA) - 0.5 (FAO/WHO) 0.5 (FAO/WHO) 1 (WHO)

Ni

n studies 12 7 3 2 - 8

Min.—max 0.08-11,200 9-1187 7.6-766 6.3-36.3 4-1,212,700
Mean min.— max  3.5-7.3 78-831 3.1-229 9.5-18.1 - 10-2370
Threshold 50 (CCME) 21 (EU) 50 (CCME) 67.9 (FAO/WHO) 20 (WHO)
Pb

n studies 25 13 4 2 4 2 21

Min.—max 0.01-330,000  2-5859 3-11,075 3.2-103 12.4-13,100 400-13,100 0.01-317,000
Mean min.— max  2.4-62,036 29-3220 0.8-1016 24.6-120 16.9-6500 0.05-190,270
Threshold 400 (US EPA) 120 (EU) 400 (US EPA) 0.3 (FAO/WHO) 10 (WHO)

Abdelaal et al. (2023); Achina-Obeng and Aram (2022); Addai-Arhin et al. (2022); Adewumi et al. (2019); Adimado and Baah (2002);
Adounkpe et al. (2021); Agaba et al. (2018); Ali et al. (2017); Asante et al. (2007); Babut et al. (2003); Barasa et al. (2016); Bitala et al. (2009);
Cobbina et al. (2011); Dooyema et al. (2012); Getaneh and Alemayehu (2006); Green et al. (2019); Haidula et al. (2011); Idris et al. (2018a,
2018b); Ikingura and Akagi (1996); Kamunda (2017); Keita et al. (2018); Khafouri et al. (2021); Kortei et al. (2020); Kpan et al. (2014); Lusi-
lao-Makiese et al. (2013); Magodi (2017); Marriott et al. (2023); Meck et al. (2006); Naicker et al. (2003); Ngure et al. (2014, 2015); Nsambu
et al. (2020); Nyanza et al. (2014a); Nyanza et al. (2014b); Odumo et al. (2011, 2014, 2018); Ogola et al. (2002); Ondayo et al. (2023); Pas-
cal et al. (2020); Plumlee et al. (2013); Podolsky et al. (2015); Porgo and Gokyay (2017); Rakotondrabe et al. (2018); Razanamahandry et al.
(2018); Sako and Nimi (2018); Serge et al. (2019); Ssenku et al. (2023); Thiombane et al. (2023); Uriah et al. (2013); Weleabzgi et al. (2021);

Wilson et al. (2017)
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fish, food crops and wild plants, and air (Black et al. 2017,
Gyamfi et al. 2020).

Before ASGM activities commence, trees and vegeta-
tion cover are cleared, and large portions of agricultural
land are often destroyed (Pancrace et al. 2022; Rajaee et al.
2015a). Miners typically use traditional methods, primar-
ily indigenous knowledge, to explore gold deposits and
break ores into smaller pieces. The ores are ground using
locally fabricated ball mills to a fine powder, dispersing
dust onto nearby vegetation, food crops, soils, houses, and
surface waters. Ground ore is wetted and sluiced to con-
centrate gold particles. Sluice cloths are then washed in
water buckets to remove concentrated gold. Panning sepa-
rates gold-associated sediment particles, to which liquid
Hg is added and kneaded to amalgamate gold in order to
separate it from the sediment matrix. Continued panning
and amalgamation may result in loss of Hg into discharged
water or sediments. However, the Hg—Au amalgam is burnt
to vaporize Hg and obtain pure gold, creating a highly
mobile and toxic route of Hg exposure (Fig. 1). Some-
times, the Hg is added to the mined ore before or during
crushing, a process called complete ore or whole ore amal-
gamation (Fig. 1) (Afrifa et al. 2019; Lassen et al. 2016).

Arsenic and Pb mainly occur in gold-sulphide depos-
its as minerals arsenopyrite (FeAsS) and galena (PbS).
Other PTEs, most notably Ag (silver), Be (beryllium), Bi
(bismuth), Cd, Co (cobalt), Cr, Cu, Fe, Hg, Ni, Mn (man-
ganese), Os (osmium), Pd (palladium), Pt (platinum), Re
(rhenium), SiO,, Sn (tin), and Zn, also occur naturally with
gold ores (Doyi et al. 2016; Khafouri et al. 2021; Netshi-
tungulwana 2011; Ondayo et al. 2023; Plumlee et al. 2013;
Thiombane et al. 2023). These minerals are relatively sta-
ble under natural conditions, but mining and other ASGM
activities expose them to oxygen and water, which dissolve
and oxidize the metals to less stable and more reactive spe-
cies (Kaninga et al. 2019; Ogola et al. 2002; Plumlee et al.
2013). Elemental Hg and CN are introduced during ore
processing (Clifford 2017; Kristensen et al. 2014; Nyanza
et al. 2014a, b; Ogola et al. 2002). Mercury released dur-
ing amalgam burning can be inhaled or dispersed more
widely into the environment. Surface run-offs and wind are
important migration routes for Hg and other PTEs from the
ASGM process into nearby waters and soils (Nyanza et al.
2014a; Veiga and Hinton 2002; Veiga and Baker 2004).
Microorganisms biotransform elemental and inorganic Hg
into methyl mercury (MeHg) in waterways. This neuro-
toxin (MeHg) bioaccumulates in fish and other aquatic
animals and often biomagnifies in higher trophic food
chain levels, posing risks to fish-consuming communities
and persons consuming other contaminated animals and
animal products, such as milk, eggs, and meat (Abdelaal
et al. 2023; Adimado and Baah 2002; Gerson et al. 2018b;
Niane et al. 2015; Telmer and Veiga 2009).

@ Springer

Potentially toxic metals (n =102 studies) are the most
studied environmental hazard in ASGM, with few studies
reporting radionuclides (n=5) (Ebongue and Njock 2018;
Kamunda 2017; Kamunda et al. 2016; Klubi et al. 2020;
Rwiza et al. 2022; Wanyama et al. 2020), silica (n=3) (Brat-
veit et al. 2003; Gottesfeld et al. 2015; Moyo et al. 2021),
airborne Hg vapours (n=2) (Black et al. 2017; Gyamlfi et al.
2020), and CN (n=4) (Knoblauch et al. 2020; Obiri et al.
2006; Porgo and Gokyay 2017; Razanamahandry et al.
2018). Subsequently, Hg is the most documented metal pol-
lutant associated with ASGM (Further detail in Supplemen-
tary Tables 1-3).

Across the continent, hazardous wastes generated by
ASGM processes are often poorly managed. Tailings with
residual Hg and other PTEs; exhausted wastes from cyanida-
tion plants; dust laden with SiO, and other PTEs from ore
crushers, inside mine shafts and tunnels; and wastewater
and gases, including volatile Hg, are often released into the
atmosphere, soils, water systems, and food sources untreated
(Black et al. 2017; Ngole-Jeme and Fantke 2017; Omara
et al. 2019a, b; Podolsky et al. 2015; Talla and Moandjim-
Me-Bock 2018; Tibane and Mamba 2022). For instance,
there are increasing concerns about the extensive drinking
water contamination and soil pollution caused by leaching
from waste heaps and spillages from tailings storage areas
and solution ponds (Basu et al. 2015; Bitala et al. 2009; Hil-
son and Monhemius 2006; Khafouri et al. 2021; Pascal et al.
2020). Additionally, occuptional exposure through use of
CN and its complexes present severe hazards CN for workers
and nearby communities (Knoblauch et al. 2020; Porgo and
Gokyay 2017). Whilst CN degrades naturally in the envi-
ronment, high concentrations of CN are acutely injurious to
the environment and human health (Razanamahandry et al.
2018). Chemical properties and toxicity of CN depend on
various factors, including exposure to light, air, and other
metals. In ASGM, Hg-CN complexes formed when Hg-
contaminated tailings are reprocessed with CN pose more
significant health risks exponentially as Hg becomes readily
methylated and more bioavailable (Hilson and Monhemius
2006; Veiga et al. 2009). Thus, the Minamata Convention on
Mercury bans the application of CN to Hg-containing tail-
ings and recommends the legal use of CN in gold mining by
organized and trained miners in compliance with chemical
management protocols (Minamata-Convention-on-Mercury
2021b; Stapper et al. 2021).

Migration Pathways and Routes of Exposure
to Multiple Toxic Hazards Amongst ASGM Workers
and Nearby Populations

The review found that ASGM is a source of constant high-
dose exposure to multiple toxic hazards amongst workers
and populations living nearby. The human biomonitoring



Review: Artisanal Gold Mining in Africa—Environmental Pollution and Human Health Implications

g4 /pIoysalyL
145 6'S1'S 9L=L9 Xl — Ul UelpaN
LS 1l (4 ré 61-6C Xew—"urN
(120T 1810 0S) L1°0 0 0 0 0 C 4 0 0 solpms u
IN
g4 /pIoysaIyL
Xew — UTW URIPIJA
¢'¢—dN Xew—"uIy
0 0 I 0 0 0 0 0 solpms u
SHoW
(120T 1812 0S) 91°0 6’1 (1207 1812 08) 850 (120T 1212 0S) 91°0 6’1 (1202 18 12 0S) 850 d4 /ploysalyr
8'0L-¢8  §¢L0 901-90 I 9¢1—¢ (4l 0 €0 1l 6891—1'1 Xew — Ul UBIp3]A
€6v€—Cc00 6'CC<¢I0 €S—AN §01-0 8vC—0 698-€00  I-100 12100 8¥C-0 0961-C0 XeW—"urN
IC 0 4! I 4! 6 I 01 [ I solpms u
SH
g4 /ploysaIyL
creIe 4 Sr—¢ 91l XeW — U UeIpa]N
9'85-L'S 1€-0¢ 89— €CI-91 XeW—"uiN
C 0 0 0 ! 4 C 0 0 solpms u
4D
(8002
(800T 'Te 10 SAeH) T'1 ‘e 10 sAeH) T'1 d4 /ploysaIyp
900 ¥0 L0100 €0-C0 Xew —"ulu ueIpsjy
Y11-10 ¥'0-€0 €10 9'0-L0°0 XeWw—"urN
C 0 0 0 € 4 C 0 0 SoIpms U
ro
(010t
(010C e 2 seH) +'9 Te 10 seH) 9 g4 /ploysaIyL
09C—89 9¢1—¢ 00c  +¥'0-C0 ¥'0-€0 XeW—"UIW UBIPIJA
00L=L'S -0 81C-0 08c-L'¢  LO0°T0 60-10 XeW—"ulN
L 0 [4 0 4! € 4 4 0 0 solpms u
sy
$8¢ L16 8L 6C6 [43 89 [4% 6871 sordues u
/31 3/3n 3/3n /31 /31 3/3n 3/3n 3/3n /31 /31 sjun
auL S[TeN IIeH Y[iunsearg poorg QuLIn S[TeN. IeH Y[lunsearg poolg XLIBA

amsodxa [euonednodoQ

amsodxa JuajIoApeu]

ad£) amnsodxyg

BOLIJY SSOIOB Sururua p[og o[eds-[[ews pue [BUBSI)IE U SOJLIBW SULIO}UOWOIG UBWNY UT SUOTJEIIUIOUOD SJUSW[S 91X0) A[[erjusjod € d|qeL

pringer

a's



M. A. Ondayo et al.

(0207) ' 10 euRAUBA
(1102) "Te 1 opWO], X(97107) 'Te 3 qeIke], ((8107) T 3 ydiey :(zz07) 'Te 10 a1eey (6107) e 10 niqey (010¢) Te 10 Lnyonred (010¢) ‘Te 30 uezmysoQ (6107) ‘e 10 ezuedN (S107) 'Te 10
QUBIN :(9T07) Te 32 YesudN {(610T ‘0T0T) Te 10 yesuy-esueemy ((9661) ISy pue einSuny[ J(6661) ‘T8 19 epereH :(6107) Te 30 PIajsanoD (¢107) 'Te 12 ewakood «(0Z0T ‘010T *q ‘B800T) T8 19
1119y, 0-9s0g :(1107) ‘e 12 nseq (L00T) ‘Te 12 Auesy (8107) ‘Te 12 BqeSy {(L107) T& 12 BV {(700T) Yeed pue OpEWIPY (6107) ‘T8 19 Inmapy (1107) T8 19 YejeIqy (0Z07) Te 19 Y[oIsy
juareamba [eor3o[o1q 7

(610T &1 (610T e
6ty L109 epo3[eppod) 6t epo3[eppod) L109 g4 /ploysaIyy
8Y9-LEY LSS OvI—8'Ch 96188 Xel — U UeIpajy
680C—19 L69—¢€Ee YIT-LTC 1LT—¢€S XeW—"ulN
[4 0 I 4 4 0 0 selpms u
uz
(SANVHN) 6'1 (SANVHN) 6'1 d4 /ploysaayp
I'v=T'1 SIc-=LCl 81 06-LLI YL—8°6C 989€-801 Xew —"UuIu UeIpaj\
01-¢0 590 Ire-l 9¢e=C8 CLI-T'LT cl19-69¢ XeW—"ulN
[4 0 0 00 € I C ¥ 0 € SeIpms u
qd
$8¢ L16 8L 626 [43 89 [4% 6871 sordues u
/31 3/3n 3/3n /31 /31 3/3n 3/3n 3/3n /31 /31 sy
duL S[TeN IIeH Y[iunsearg poorg duu S[TeN IRy Y[lugsealg poolg XINRIN

amsodxa [euonednodoQ

amsodxa JuajIoApeu]

ad£) aansodxg

(ponunuoo) ¢ 3jqey

pringer

Qs



Review: Artisanal Gold Mining in Africa—Environmental Pollution and Human Health Implications

studies evaluated (n=71) reported significant body bur-
dens of PTEs above thresholds in the blood (n =27 studies),
breast milk (n =2 studies), nails (n =9 studies), hair (n=28
studies), urine (n =30 studies), and inhaled air drawn from
ASGM workers and nearby populations across Africa as
fully detailed in Supplementary Table 4 and summarized
in Table 3. Urine, hair, and blood are the most widely used
biomonitors, whilst Hg is the most studied hazard amongst
ASGM workers and local communities, followed by Pb.

Several critical migration routes and pathways of human
exposure to PTEs in ASGM exist. Firstly, there is a common
occurrence of incidental ingestion of soils, especially by
young children and pregnant women that exhibit pica (Dooy-
ema et al. 2012b; Gottesfeld et al. 2015; Moyo et al. 2021;
Nyanza et al. 2014b; Plumlee et al. 2013). For instance, high
incidences of geophagy were found in 203 out of 340 preg-
nant women aged 15-49 years in ASGM areas in Tanzania.
The consumed soil was heavily contaminated with various
PTEs, including As, Cd, Cr, Hg, Mn, and Ni, posing a severe
risk to foetuses (Supplementary Table 3) (Nyanza et al.
2014b). Secondly, inhalation of airborne pollutants, most
notably metallic Hg vapours during amalgam burning and
respirable crystalline dust containing silica and other PTEs
(Afrifa et al. 2017; Black et al. 2017; Gyamfi et al. 2020;
Moyo et al. 2021; Tayrab 2017), is a significant pathway in
ASGM. The third major exposure route is the ingestion of
contaminated water, fish, and other foods (Addai-Arhin et al.
2022; Asante et al. 2007; Niane et al. 2015; Nyanza et al.
2019, 2014a; Rakete et al. 2022; Rakotondrabe et al. 2018;
Wanyama et al. 2020). Fourth, in addition to utero expo-
sures, children can be further exposed by consuming PTE-
contaminated breast milk from their exposed mothers (Bose-
O’Reilly et al. 2008a, 2008b, 2020; Nyanza et al. 2019). For
example, in a study, young mothers (15-42 years) living and
working in ASGM were found to expose their children to
Hg and MeHg through breastfeeding (Bose-O’Reilly et al.
2008b, 2020). Therefore, pregnant women, new mothers,
and women who might become pregnant should be par-
ticularly aware of the potential dangers of exposure from
ASGM and take precautions by halting their participation
in ASGM, avoiding geophagy, and seeking medical advice
(Bose-O’Reilly et al. 2020; Nyanza et al. 2019). Fifth is the
direct contact with PTEs, notably Hg, CN, and contaminated
ores and wastes from ASGM processes, including tailings
and Au-Hg amalgam washing pond waters (Chetty et al.
2021; Duncan 2020; Laker 2023; Ngole-Jeme and Fantke
2017; Talla and Moandjim-Me-Bock 2018). Detailed inves-
tigations linking specific migration routes and pathways of
human exposure to particular toxic hazards in ASGM are
still limited throughout the African continent.

Human exposure in ASGM varies depending on factors,
such as occupation, Personal Protective Equipment (PPE)
use, gold extraction technologies, geography, geological

characteristics, personal behaviour, and individual biological
characteristics, such as age, sex, immunity, and genetic makeup
amongst others (Abebil et al. 2023; Afrifa et al. 2017; Bose-
O’Reilly et al. 2010; Dooyema et al. 2012b; Godebo et al.
2019; Gottesfeld et al. 2015; Gottesfeld et al. 2019; Tomicic
et al. 2011). A relatively high proportion of African women
(50-60% of the workforce) engage in ASGM compared to the
global average for ASGM (10%). In terms of gender, a high
proportion of women are often responsible for ore processing
(ore crushing, grinding, transport, sluicing, panning, and amal-
gam burning), whilst men traditionally explore, prospect, exca-
vate gold ores, and distribute the income from the sale of gold.
Women also have a role in supplying mine workers with food,
drinks, apparatus, and equipment onsite (Hinton et al. 2003;
Wall 2010) and are indirectly exposed to ASGM activities.
In some ASGM sites, children are involved in all hazardous
ASGM stages: ore extraction, milling, sluicing, amalgama-
tion, and Hg—Au amalgam burning without personal protective
equipment (PPE) (Bose-O’Reilly et al. 2007). The reviewed
studies reported over 3,000 children (0—17.9 years) that were
both occupationally and inadvertently exposed to As, Cd, Hg,
and Pb in ASGM (Afrifa et al. 2017; 2019; Bose-O’Reilly
et al. 2007; Nyanza et al. 2019; Ralph et al. 2018).

The ASGM activities are often not physically segregated
from the communities but rather occur near housing units
and other social and economic activities. Thus, even resi-
dents of ASGM areas that do not participate in the activi-
ties are exposed to similarly significant concentrations of
PTEs as the ASGM workers (Astolfi et al. 2020; Bose-
O’Reilly et al. 2008b; Bose-O’Reilly et al. 2020; Dooyema
et al. 2012b; Niane et al. 2015; Nyanza et al. 2019; Rabiu
et al. 2019; Rakete et al. 2022). This is of particular concern
since it is estimated that for every active ASGM worker,
there are likely to be upwards of ten non-mining family and
community members at risk of exposure to PTEs (Harada
et al. 1999; Kamunda 2017; Ralph et al. 2018; Steckling
et al. 2014b; Tayrab 2017; Tomicic et al. 2011). For exam-
ple, there were generally no significant differences between
recorded exposures for miners and non-miners in a study
comparing Hg in urine drawn from miners (mean 3.6 pg/L;
range 0.5-9.4 pg/L) and non-miners (mean 4.3 pg/L; range
1.1-12 pg/L) living in Takwa-Ghana and non-miners (mean
3.1 pg/L; range 1.4-5.5 pg/L) residing in Accra. Likewise,
in Dunkwa-on-Offin in Ghana, reported mean Hg concentra-
tions in hair drawn from small-scale gold miners (2.1 mg/kg)
and non-small-scale miners (2.4 mg/kg) did not significantly
vary (Kwaansa-Ansah et al. 2010).

Human Health Impacts of Artisanal and Small-Scale
Gold Mining in Africa

Forty-nine studies across Africa have linked premature
mortalities and non-communicable diseases. For example,
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neurological and behavioural disorders, asthma, congenital
disabilities, liver, lung, heart, and kidney diseases, blood
disorders, skeletal disorders, suppressed immunity, stroke,
and cancers in children and adults working or living in
ASGM areas. Exposure to toxic hazards, most notably
heavy metals, As, CN, and respirable crystalline silica,
could be both acute and chronic, as fully detailed for
health implications in Supplementary Table 5 and sum-
marized in Table 4. Health effects associated with heavy
metal exposure are the most widely studied (n =39 stud-
ies) continent wide.

Overall under-studied toxic hazards in ASGM, includ-
ing radionuclides (Kamunda 2017), respirable SiO, (Moyo
et al. 2021; Ross et al. 2010; Steen et al. 1997), airborne
Hg vapours (Black et al. 2017; Gyamfi et al. 2020), and CN
(Knoblauch et al. 2020; Obiri et al. 2006; Porgo and Gokyay
2017) pose significant risks to human health. For instance,
a study found that amalgam burners were exposed to higher
airborne Hg (702,676,857 mg/m?) compared to bystanders
(141,272,870 mg/m?) and the 100-mg/m? Permissible Expo-
sure Limit (PEL). The 8-h time-weighted average (TWA)
readings for 82% of amalgam burners exceeded the PEL,

Table 4 Human health effects of selected toxic hazards in artisanal and small-scale gold mining across Africa

Toxic hazard Health effectss Country

References

As Respiratory infections
Skin infections); wounds); Buruli ulcer

CN Respiratory infections

Burkina Faso, Ghana

Burkina Faso, Ghana

Burkina Faso

Porgo and Gokyay (2017); Cobbina et al.
(2011)

Duker et al. (2006); Porgo and Gokyay
(2017)

Knoblauch et al. (2020); Porgo and
Gokyay (2017)

Skin infections); wounds

Neurological effects

Burkina Faso
Burkina Faso

Burkina Faso, Ethiopia, Ghana, Sudan,

Porgo and Gokyay (2017)
Knoblauch et al. (2020)
Abebil et al. (2023); Afrifa et al. (2017);

Tanzania, Uganda, Zimbabwe

Hg Hg intoxication
Mortalities Burkina Faso, Cameroon
Kidney damage
Respiratory problems
Musculoskeletal problems Ghana, Cameroon
Thyroid dysfunction Sudan
Neurological effects Tanzania, Zimbabwe
Hg, Pb Hypertension Cameroon
MeHg Neurological effects (Minamata disease)  Tanzania
Pb Musculoskeletal problems and hernias Cameroon
Respiratory problems Cameroon, Ghana
Mortalities Cameroon, Nigeria
Neurological effects in over 10,000 Nigeria
children
Pb intoxication Nigeria
SiO, Silicosis, tuberculosis, Chronic lung

diseases, HIV Zimbabwe

Ghana, Tanzania, Zimbabwe, Ethiopia

Ghana, Cameroon, Sudan, Uganda

Botswana, Ghana, Malawi, Tanzania,

Agaba et al. (2018); Mensah et al.
(2016); Tayrab (2017); Tayrab et al.
(2016); Tomicic et al. (2011); Bose-
O’Reilly et al. (2008a, b; 2010, 2017);
Steckling et al. (2014a, b); Porgo and
Gokyay (2017); Harada et al. (1999)

Tomicic et al. (2011); Ralph et al. (2018)

Abebil et al. (2023); Afrifa et al. (2017);
Bose-O’Reilly et al. (2008a, b; 2010,
2017); Steckling et al. (2014a, b)

Afrifa et al. (2017); Agaba et al. (2018);
Mensah et al. (2016); Ralph et al.
(2018); Tayrab et al. (2016); Wanyana
et al. (2020)

Afrifa et al. (2017); Mensah et al. (2016);
Ralph et al. (2018)

Tayrab (2017)

Bose-O’Reilly et al. (2008a, b, 2010,
2017); Steckling et al. (2014a, b);
Harada et al. (1999)

Ralph et al. (2018)

Harada et al. (1999)

Ralph et al. (2018)

Ralph et al. (2018); Cobbina et al. (2011)
Dooyema et al. (2012); Ralph et al. (2018)
Dooyema et al. (2012)

Dooyema et al. (2012)

Abeid et al. (2022); Mbuya et al. (2023);
Moyo et al. (2021, 2022); Ohene et al.
(2021); Steen et al. (1997); Ross et al.
(2010); Rambiki et al. (2020)
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with 11% having TWA values that exceeded the Immediately
Dangerous to Life and Health (IDLH) level of 10,000 mg/
m>. In addition, the TWA in 86% of ASGM workers at
the burn points and 59% of control workers exceeded the
recommended exposure limit. The detectable peak air Hg
concentration was from 0 to 19, 999 mg/m3 (Black et al.
2017). Besides, the risk of silicosis, lung cancer, tuberculo-
sis, autoimmune diseases, and deaths is increasing amongst
ASGM workers and local community members exposed to
respirable crystalline SiO,-ladden dust in Botswana, Ghana,
Malawi, South Africa, Tanzania, and Zimbabwe (Abeid
et al. 2022; Moyo et al. 2021; Ohene et al. 2021; Rambiki
et al. 2020; Ross et al. 2010). However, the data collected do
not accurately reflect the actual burden of the disease since
diseases persist or manifest even after workers quit ASGM
(Steen et al. 1997). Furthermore, predispositions and posi-
tive associations between dust exposure and incidences of
cancer and infectious diseases such as COVID-19, HIV, and
tuberculosis (TB) have been established in ASGM. Silicosis
and HIV infection additively increase the risk of TB infec-
tion more than fifteen times (Moyo et al. 2021; Ross et al.
2010) (Supplementary Tables 5).

Once PTEs reach human bodies, their toxicities and
subsequent health effects depend on the elemental oxida-
tion state, chemical species, dosage consumed, length and
frequency of exposure, age, and behavioural and biological
characteristics of the recipient, amongst others. Through
various mechanisms of action in exposed subjects’ cells,
tissues, and organs, PTEs can induce carcinogenicity, car-
diovascular toxicity, genotoxicity, hepatotoxicity, immu-
notoxicity, nephrotoxicity, neurotoxicity, reproductive and
developmental, and skin toxicities (Mitra et al. 2022). Health
effects occur even at low quantities, acute, and chronic PTE
exposures and are either reversible or largely irreversible,
ranging from subtle, subclinical changes in function to
symptomatic and life-threatening intoxication in the human
body. Generally, susceptible sub-populations that need to
be aware of health protection measures in ASGM areas are
those that are more sensitive to the toxic effects of PTEs
(like the foetus, the newborn, children, and sick individu-
als) and persons exposed to higher PTEs concentrations
(like the Hg—Au amalgam burners and ore millers) (Abadin
et al. 2007; Chou and Harper 2007; Dooyema et al. 2012a;
Fashola et al. 2016; Mitra et al. 2022; Risher 1999; Tayrab
2017). As explicitly discussed in this review, the relative
scales of the short- and long-term effects of various toxic
hazards in ASGM have not been wholly clarified in Africa.

Neurological Health Effects
Studies (n=14) in ASGM across Africa document neurolog-

ical effects associated with As, CN, Hg, MeHg, and Pb expo-
sures (Table 4; Supplementary Table 5). Arsenic is known

for cognitive impairment of the central nervous system as
detailed in Table 5 (Thakur et al. 2021). Studies documented
As exposure levels that are potentially detrimental to ASGM
workers and residents’ health in Ghana (Abrefah et al. 2011;
Asante et al. 2007; Basu et al. 2011; Mensah et al. 2020),
Kenya (Ondayo et al. 2023), and Tanzania (Ikingura and
Akagi 1996; Nyanza et al. 2019, 2014b) (Tables 2 and 3;
Supplementary Tables 1-4). Similarly, a few (n=4) studies
found Cd concentrations that can potentially have adverse
health effects (Adewumi et al. 2019; Asante et al. 2007; Basu
et al. 2011; Rakete et al. 2022). No reported studies investi-
gated shorter- and longer-term neurotoxic health effects or
As and Cd biomarker effects in ASGM in Africa, contrary
to available global evidence (Table 5).

Though limited (n=2), findings of studies on the neuro-
logical health effects of CN use in ASGM in Africa (Kno-
blauch et al. 2020; Porgo and Gokyay 2017) complement
the existing broader literature on neurological health effects
of CN (Table 5) (Isom and Borowitz 2015). Neurologi-
cal health effects due to Hg (n =25 studies) and Pb expo-
sure (n= 14 studies) are the most widely studied in Africa
(Table 4; Supplementary Tables 4 and 5). Mercury (Hg)
is known to damage the brain and the nervous systems as
described in Table 5 (Zhu et al. 2022). The Hg exposures
reported amongst ASGM workers and residents in Burkina
Faso (Tomicic et al. 2011), Ghana (Mensah et al. 2016),
Tanzania (Bose-O’Reilly et al. 2010; Harada et al. 1999),
Uganda (Wanyana et al. 2020), and Zimbabwe (Bose-
O’Reilly et al. 2008a; Steckling et al. 2014b) were statisti-
cally significantly associated with the neuro-psychological
symptoms notably ataxia, dizziness, headaches, excessive
salivation, numbness, thoracic pain, Minamata disease, and
mortalities (Supplementary Table 5; Table 4), corroborating
existing literature.

Besides, poisoning Pb clinically manifests as seizures,
encephalopathy, headaches, cerebral palsy, and confusion
and can be fatal as Pb exposure increases (Table 5) (Axelrad
et al. 2022; Ortega et al. 2021), as reported amongst chil-
dren in Zamafara, Nigeria (Dooyema et al. 2012b). Exist-
ing global literature also links Cu, Cr, Fe, Mn, and Zn to
neurological complications, but these health effects are not
documented in the reviewed ASGM studies across Africa
(Mitra et al. 2022; Tinkov et al. 2021).

Cancer Effects

Clinically Established Carcinogenic Effects

As widely established in the literature (Basu et al. 2015;
Landrigan et al. 2022), various cancers are linked to expo-
sure to As (skin, bladder, lung, liver, and kidney cancers);
Cd (lung, kidney, and prostate cancers); Ni (lung and nasal
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Table 5 (continued)

Mechanism Symptoms/ manifestation References

Hazard(s)

Known health effect

Clarkson et al. (1985); Goutam

Stunted growtth); impaired reproduc-

Various

Ag, Al, As, Cd, Cr, Co, Hg, Pb, U,

and V

Reproductive and develop-

Mukherjee et al. (2022); Mitra et al.

(2022)
Isom and Borowitz (2015); Mitra et al.

tive function); stillbirths); birth

defects in children
CN induces shortness of breath, chest

mental health effects

Various

Al, Be, Cd, CN, Cr, Cu, Fe, Hg, Mn,

Ni, Pb, Ti, and Zn

Respiratory infections

(2022); Nemery (1990); Zhou et al.

(2022)

pain, coughing, and death
As, Cd, and Ni cause lung diseases,

including asthma, COPD, nasal, and

lung cancers

Patrick et al. (2023); Rupani (2023)

Lung diseases, including asthma,

Induces pulmonary toxicity); exacer-

Si02

COPD, nasal, and lung cancers

bates the predisposition to tubercu-

lous infection

Bone and other musculoskeletal Reyes-Hinojosa et al. (2019); Rodriguez

Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Ti,

and Zn

Skeletal health effects

and Mandalunis (2018)

diseases

CNS central nervous system, PNS peripheral nervous system, COPD chronic obstructive pulmonary disease, MHC major histocompatibility complex, NO nitric oxide, ROS reactive oxygen spe-

cies

cancers); SiO? (lungs and upper respiratory cancers); hex-
avalent Cr (lungs and upper respiratory cancers); and Pb
(lung, stomach, and urinary bladder cancers) (Table 5)
(IARC 2021). In the reviewed studies, As, Cd, Ni, and Pb
had the most data available using reliable biomarkers (Sup-
plementary Tables 4 and 5). Further research is critical to
establishing if reported exposures may be causing cancer in
ASGM communities since, to our knowledge, no clinical
data exist on cancer rates in ASGM settings in Africa (Sup-
plementary Tables 1-5).

Overall Risk Assessments of Cancer Hazards
and Non-cancer Health Effects

Studies (n=10) conducted health risk assessments for
cancer and non-cancer hazard indices as results of ASGM
operations amongst ASGM workers and local communities
(Cobbina et al. 2011, 2013; Gyamfi et al. 2021; Kamunda
2017) (Supplementary Table 5). The cancer risk is gener-
ally increasing amongst children from ASGM communities
based on the concentrations of toxic hazards detected, most
notably heavy metals, As, CN, and radionuclides. For exam-
ple, a hazard assessment of environmental radionuclides
and heavy metals in the Westwits ASGM area in Gauteng,
South Africa, found elevated heavy metal concentrations
and radionuclides in soils, edible plants, and drinking water.
Significant mean activity concentrations (Bq/kg) for radio-
active uranium (238U), thorium (232Th), and potassium
(40 K) in soil (238U 574 +39.5; 232 Th 49.4+8.5; and 40 K
425+129), plants (238U 17.4+3.1, 19.7+1.6; and 232Th
147 +9.2), and water (238U 0.7 +0.03, 232Th 0.56 +0.03,
and 40 K 7.4 +0.6) were recorded. It was estimated that the
heavy metals and the radionuclides posed an increased can-
cer risk to communities in the ASGM area (Kamunda 2017).
Furthermore, a study evaluated human health risks from
using CN in gold extraction amongst children and adults
in Bogoso, Ghana and attributed most unexplained deaths
experienced in the communities to accidental ingestion and
dermal contact with CN water (Obiri et al. 2006). From the
findings, about 230 and 43 resident adults were likely to
suffer diseases related to CN intoxication via ingestion and
dermal routes, respectively (Obiri et al. 2006). Findings of
a study in western Kenya revealed an increased risk of non-
cancer health effects (97) and cancer in adults (4.93x 1072)
and children (1.75x 10™") potentially exposed to As, Cd, Cr,
Ni, and Pb in 19 ASGM villages in Kakamega and Vihiga
counties, Kenya (Ondayo et al. 2023).

Respiratory Problems
Few studies which were limited in range and scope reported

respiratory problems linked with exposure to As, Cd, CN,
and Pb (n=2 studies), Hg (n=6 studies), and SiO, dust in
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ASGM in Africa (n=06 studies) (Supplementary Table 5).
High amounts of SiO,-laden dust common in hard rock
ASGM mines and SiO, exposure are risk factors for silico-
sis, lung cancer, Chronic Obstructive Pulmonary Disease
(COPD), asthma, and death. Silica particles in the lung may
trigger tuberculous infection (Patrick et al. 2023; Rupani
2023), as detailed in Table 5. Studies (n=6) reported a
high burden of silicosis, pneumonoconiosis, and tubercu-
losis among ASGM workers despite generally short expo-
sure and latent durations (Supplementary Table 5) (Armah
et al. 2021; Mbuya et al. 2023; Moyo et al. 2022; Ohene
et al. 2021; Ross et al. 2010), augmenting existing litera-
ture (Table 5). Additionally, existing literature strongly and
exhaustively links various respiratory problems to Al, Be,
Cr, Cu, Fe, Mn, Ni, Ti, and Zn exposure (Nemery 1990;
Zhou et al. 2022) (Table 5), which are not widely docu-
mented in ASGM contexts in Africa.

Other Health Effects

Studies found skin and wound infections amongst popu-
lations exposed to As and CN (Table 4; Supplementary
Table 5). Skin and wound infections associated with Cr and
Hg exposure (Mitra et al. 2022) have not been studied in
African ASGM settings (Supplementary Table 5).

Limited studies that documented kidney damage due
to exposure to Hg, Cd, and CN in ASGM continent-wide
(Afrifa et al. 2017; Bose-O’Reilly et al. 2008a, 2010, 2017)
(Supplementary Table 5). They are consistent with the
broader existing literature summarized in Table 5. Health
effects of Cr, Lithium, and Thallium on the kidneys are not
documented in ASGM across Africa (Markowitz et al. 2000;
Mitra et al. 2022).

Tayrab (2017) studied the impact of Hg exposure on
thyroid function in African ASGM workers, augmenting
existing literature (Table 5), although limited to defining an
outcome for thyroid function. These health effects require
further comprehensive evidence to define possible links to
Hg or ASGM activities.

Findings on Hg and Pb and hypertension in ASGM Africa
(Ralph et al. 2018) augment existing literature on health
effects of Pb and Hg (Table 5). However, cardiovascular
health effects associated with Cd, CN, and Co (Mitra et al.
2022; Simdes et al. 2021; Zhang et al. 2022; Zhu et al. 2022)
are not reported in ASGM in Africa.

Reproductive and developmental health effects are
strongly linked with Ag, Al, As, Cd, Co, Cr, Hg, Pb, U,
and V (vanadium) in the broader global literature (Table 5)
(Clarkson et al. 1985; Goutam Mukherjee et al. 2022; Mitra
et al. 2022). These are not widely studied in ASGM in
Africa, except for a few studies (n=10) that reported neu-
rodevelopmental effects of PTEs in ASGM (Supplementary
Table 5). The burden of reproductive and developmental
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health effects associated with toxic exposure in ASGM,
notably in Africa, is not documented.

The broader global literature documents the immune-sup-
pressing effects of Pb and Hg (Table 5) (Mitra et al. 2022;
Pollard et al. 2019; Zhu et al. 2022), not widely and exhaus-
tively studied in ASGM in Africa. A study reported frequent
autoimmune rhinitis in 125 out of 174 Pb- and Hg-exposed
miners in Batouri Gold District, Cameroon. However, rhi-
nitis prevalence was not statistically significantly linked to
Pb and Hg exposure (Ralph et al. 2018) (Supplementary
Table 5).

Documented silica dust and inhaled respirable crystalline
silica in ASGM in Africa (Armah et al. 2021; Gottesfeld
et al. 2015) point to the potential risk of associated autoim-
mune diseases, notably scleroderma, rheumatoid arthritis,
systemic lupus erythematosus, and some of the small vessel
vasculitides with renal involvement (Carneiro et al. 2022;
Hoy et al. 2022; Parks et al. 1999) although there are no
studies to evidence this link. Even though studies on immune
suppression effects are limited in ASGM in Africa, the prev-
alence of HIV (average 2%) amongst ASGM workers diag-
nosed with silicosis and increased tuberculosis (TB) (6766
per 100,000 cases) with the severity of SiO, dust exposure
in Zimbabwe suggested immune suppression (Moyo et al.
2022, 2021). Similar to adverse immune-suppressing effects
of Cr, Be, Cd, and Au (Mitra et al. 2022), links between
high-dose exposure to respirable silica dust and chronic
inflammation, and fibrosis in the lung and other body organs
(Carneiro et al. 2022) (Table 5) have not been explored in
ASGM in Africa. Any further study would require a compre-
hensive inclusion of dietary and nutritional status alongside
lifestyle and work activities.

Only a few studies (n=4) in ASGM in Africa established
musculoskeletal effects, notably low back pains, body pains,
myalgia, severe fatigue, and hernias amongst ASGM work-
ers and residents exposed to Hg and Pb (Afrifa et al. 2017,
Mensah et al. 2016; Ralph et al. 2018; Tayrab et al. 2016)
(Supplementary Table 5).

Risks Characterization of ASGM in Africa

The ASGM risks in Africa are complex and influenced by
scale, techniques, regulatory environment, and PPE usage
(Afrifa et al. 2017; Landrigan et al. 2022). Thus, risks
should be characterized based on context. Reviewed data
revealed similar dynamics of potentially toxic metals, As,
CN, radionuclides, and SiO, contamination in soil, dust,
sediment, water, food, and air, with identical migration
routes in ASGM across Africa (Table 2; Supplementary
Tables 1-3). The ASGM workers and community members
were exposed to significant concentrations of PTEs in the
reviewed countries (Table 3; Supplementary Table 4). Most
studies documented Hg, Pb, and As exposures and related
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health effects at low to moderate concentrations. The health
effects generally included cell, tissue, system and organ
damage, and metabolic disorders amongst exposed indi-
viduals and populations (Table 4; Supplementary Table 5).
Exposures and risks to human health from under-studied
respirable crystalline SiO, dust, radionuclides, inhalation
of airborne Hg vapours, CN, and other critical heavy met-
als in ASGM in Africa were underreported (Supplementary
Tables 1-5). In order to reduce ASGM-related exposures,
wet ore crushing, and milling, mechanization, extended
sluice channels, and non-toxic alternatives, like borax and
retorts, amongst others, have been developed and deployed
in some African countries (Appel and Jonsson 2010; Aslam
et al. 2022; Barasa et al. 2016; Mitchell et al. 2021; Steckling
et al. 2014a; Stoffersen et al. 2019). However, adoption rates
of these alternatives for ASGM in the field is low throughout
the continent. This is attributed to technical issues, such as
development process and complexity, know-how transfer,
and adaptability of new technologies in changing environ-
ments; ASGM workers’ level of organization, responsive-
ness to ASGM workers’ varying needs; and the extent of
supply chain collaboration (Keane et al. 2023).

This review highlights gaps in African literature com-
pared to global evidence.

Gaps in the Representativeness of Exposure
and Health Effects Research in ASGM and Inclusion
of Vulnerable Groups

Less focus is put on exposure and health effects research
in ASGM in Africa (n=173 studies reviewed across 30
countries). Furthermore, limited studies represented foetus
(n=3) and children between 0 and 7 years (n=10) who are
most vulnerable to the toxic effects of various toxic hazards.
The reviewed studies cover other vulnerable groups, notably
young women and highly exposed ASGM workers (Supple-
mentary Tables 4 and 5). Ethical boards, national and local
environmental and health authorities, and all relevant stake-
holders, including ASGM communities, should be involved
in early development and all other research processes and
decision-making phases. Uncertainties around involving vul-
nerable groups should be resolved (von Stackelberg et al.
2022; World-Bank 2020).

Data Availability, Transparency, and Quality Gaps

Similar to past efforts to build secondary data sources
(Steckling et al. 2014b), this review faced data availabil-
ity, transparency, and quality challenges across the African
continent. A defined continent-wide research agenda in the
ASGM context is critical in line with existing global initia-
tives, notably the Global Mercury Partnership (Minamata-
Convention-on-Mercury 2021a) and the World Bank’s

agenda, recognizing the ‘big global data gap’ (Keane et al.
2023; World-Bank 2020). Contrary to Europe (Apel et al.
2017; Cerné et al. 2017; Schmidtkunz et al. 2019) and
North America (Control and Prevention 2015; Haines et al.
2017; Saravanabhavan et al. 2017), amongst other develop-
ing countries, human biomonitoring (HBM) at a national
level that includes PTEs outside of an occupational exposure
environment is uncommon in Africa (Watts et al. 2021). As
there are few or no reference values and biological equiva-
lents for evaluating toxic exposure data in the context of
human health in the African population, it was challenging
to interpret biomonitoring data in recent studies (Nakaona
et al. 2019; Ondayo et al. 2023). Future efforts should be
focused on developing these in Africa. There is also a need
to practically assess and update existing environmental and
biomonitoring limits in order to consider low-level, chronic
toxic exposures in Africa since most PTEs, for example,
Pb, have been shown to have profound effects even in low to
moderate concentrations (Axelrad et al. 2022).

Gaps in Assessing Toxic Hazards and Exposures,
Methods Used, and Study Robustness

Highly diverse exposure assessment approaches notably
sampling and analysing up to 58 PTEs in environmental
(Table 2; Supplementary Table 1-3) and human (Table 3;
Supplementary Table 4) media; use of risk indices; and in
limited studies, use of biomarkers of effects (Abebil et al.
2023; Afrifa et al. 2017; Bose-O’Reilly et al. 2008a, 2010,
2017; Knoblauch et al. 2020; Tomicic et al. 2011). There
is considerable interest in highlighting Hg pollution and its
health effects in the reviewed studies. This can be explained
by adopting the Minamata Convention on Mercury in 2013
(Minamata-Convention-on-Mercury 2021a). From the
reviewed data, it is evident that Hg use in ASGM could
be overshadowing other significant toxic exposures and
health concerns in ASGM, notably other potentially toxic
metals other than Hg, such as As, Cd, Co, Cr, Cu, Mn, Ni,
and Zn, amongst others; CN; SiO, dust; and radionuclides
(Supplementary Table 5). Whilst international literature
reports mobility, bioavailability, and toxicities of various
toxic hazards (Zhang et al. 2022; Zhu et al. 2022), 90% of
ASGM studies in Africa focused on quantifying total PTEs
concentrations in various matrices. Few studies focused on
elemental Hg vapour from amalgam burning and MeHg in
fish, soils, and rice (Black et al. 2017; Gerson et al. 2018a;
Gyamfi et al. 2020; Harada et al. 1999; Odukoya et al. 2022)
and As speciation in soils (Mensah et al. 2020; Ondayo et al.
2023). It is crucial for future research to explore specia-
tion as it reveals the mobility, bioavailability, and toxicity
of elements, ions, and compounds, affecting their reactions
and adverse health effects. For example, metallic elements
are generally inert, but their ionic salts and chelates have
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significant bioavailability and toxicity, for example, the car-
cinogenic potential of various As, Cr, and Ni species (Mitra
et al. 2022; Watts et al. 2008; Zhu et al. 2022). The conver-
sion of metallic elements to organic forms makes them more
lipophilic, enabling them cross-the-blood—brain barrier, like
the case of organic Hg (Zhu et al. 2022).

Studies identifying the contributing role of each PTE
from the myriad of other stressors in ASGM are lacking
in Africa and globally. A few studies investigated expo-
sures to multiple toxic hazards and linked them to various
health effects in ASGM in Africa, but used basic scientific
approaches, like hazard indices (HI) (Kamunda 2017; Olu-
jimi et al. 2015; Ondayo et al. 2023; Rabiu et al. 2019; Ralph
et al. 2018). However, toxicity mechanisms of multiple ele-
ments in a particular human or environmental media can be
antagonistic, additive, synergistic, or potentiating (Zhang
et al. 2022; Zhu et al. 2022). Thus, the combined health
effects of a given mixture depend on individual compo-
nents, the potencies, and proportions in the mixture. This
is a vast knowledge gap both in Africa and globally and
enhancing methods and tools for assessing human health
risks from combined exposure to multiple toxic hazards, as
in the case of most ASGM settings, is critical (Nikolopoulou
et al. 2023). Furthermore, dermal exposure to PTEs is an
essential pathway in ASGM but has not been studied (Sup-
plementary Table 4).

Gaps in the Health Conditions Investigated,
Surveillance, and Associated Burden of Disease
in ASGM in Africa

Overall in ASGM in Africa, only one study calculated the
burden of disease in 2004, whereby ASGM workers in Zim-
babwe experienced 72% chronic Hg intoxication, causing
95,400 Disability-adjusted Life Years (DALYSs) in the whole
Zimbabwean population (Steckling et al. 2014b). One DALY
represents the loss of one year of total health due to prema-
ture mortality and prevalent disease cases in a population
(WHO 2020). Critical health impacts of toxic exposures,
notably genotoxic, hepatotoxic, hepatic, and reproductive
effects (Mitra et al. 2022), are not documented in ASGM in
Africa (Table 4; Supplementary Table 5). Besides, respec-
tive studies did not holistically look at all potential effects of
investigated toxic hazards on health (Table 4; Supplemen-
tary Table 5). Future research should, therefore, focus on
the public health relevance of multiple toxic hazards shown
to co-occur in ASGM (Tables 3 and 4; Supplementary
Tables 1-5) (Gottesfeld et al. 2015; Kamunda 2017; Kno-
blauch et al. 2020; Moyo et al. 2022; Ondayo et al. 2023).
Few studies (n=3 articles) reported communicable diseases,
notably malaria, water-borne diseases, tuberculosis, and
HIV, amongst other sexually transmitted infections, which
are more likely to be prevalent in ASGM given their remote
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contexts with poor local health systems (Moyo et al. 2022,
2021). Future research should cover associated infections
(Moyo et al. 2022, 2021) as these potentially contribute to
the systematic health data gap in the ASGM sector at local,
national, and regional levels. Furthermore, it leads to insuf-
ficient knowledge about the relationship between ASGM
activities and the effect of other toxic exposures on human
health. Broader international literature shows long-term
PTE exposure, chronic disease risks, and spillovers from
unmanaged conditions (Allan-Blitz et al. 2022; Landrigan
et al. 2022; von Stackelberg et al. 2022; WGC 2022). Mostly
in ASGM in Africa, ad hoc surveys reported cancers and
other health outcomes amongst ASGM workers, children,
and women with no evidence of genetic risks and develop-
mental effects (Supplementary Table 5). Additionally, an
evidence gap exists on specific long-term health risks and
consequences of each respective toxic hazard, including
associated fatality levels in ASGM across Africa.

Gaps in Regional Regulation of ASGM in Africa

The widely informal ASGM sector across Africa operates
autonomously without government support (Chupezi et al.
2009), with 70-80% of the sector being illegal (Achina-
Obeng and Aram 2022). The remaining 20-30% are legal
(Mensah et al. 2022) but often improperly overseen, moni-
tored, and evaluated (Hilson et al. 2018; Keane et al. 2023;
World-Bank 2020). For instance, Kenya’s Mining Act of
2016 legalizes ASGM nationwide (Fritz et al. 2018b; GoK
2016) but lacks regulations for health, safety, environmen-
tal surveillance, and cost—benefit evaluation of ASGM.
Considering the evidence of exposures and health effects
(Tables 2—4; Supplementary Tables 1-5) in Africa, preven-
tive measures are needed to reduce and eliminate exposures.
In contrast, Africa’s regional ASGM policies and regula-
tions are critical but lacking (Hilson et al. 2018; Keane et al.
2023; World-Bank 2020). Besides, most ASGM workers and
communities are unaware of exposure risks and compensa-
tion for risks from ASGM. African countries lack updated
compensation criteria for ASGM risks and morbidities. For
example, the Medical Bureau and Compensation Commis-
sion delayed compensating 200,000 and 700,000 eligible
ex-miners in South Africa (World-Bank 2015).

Risk Monitoring and Management Measures
in ASGM in Africa

Toxic exposures in ASGM lead to significant health burden-
related costs, including reduced work performance, intel-
lectual capacity, behavioural and psychosocial loss, and
healthcare costs (Table 4; Supplementary Table 5). These
are transferred to future generations, negatively impacting
individuals, families, societies, and national, regional, and
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global economies (Landrigan and Fuller 2015). Regional
and global multidisciplinary, multi-sector and multi-stake-
holder interventions are crucial for combating Africa’s
ASGM-related environmental and health risks. Global
efforts, including Ramazzini, Minamata Convention, and
Intergovernmental Forum on Mining, Minerals, Metals and
Sustainable Development (IGF) and Collegium Ramazzini,
aim to address these and ensure sustainable development.
The Minamata Convention urges governments to promote
Hg-free gold processing to protect vulnerable populations
(Hilson et al. 2018). The IGF supports sustainable mining
in 60 countries with minimal adverse environmental, eco-
nomic, social, and health impacts (Fritz et al. 2018a; Keane
et al. 2023). Collegium Ramazzini promotes environmental
and occupational hazard reduction in small-scale artisanal
mining (Landrigan et al. 2022). Despite all these global
efforts, there is still the need for respective in-country, inter-
country, and regional multi-sectoral multi-stakeholder inter-
disciplinary policies and preventive interventions to mini-
mize and eliminate ASGM-related hazards in Africa. In the
future, as a region, this paper recommends the following
essential action areas:

Research and Systematic Monitoring

Established gaps in toxic hazards and health effects studies
between African and broader literature require investment
in scientific research and practice improvement across the
continent. This is crucial in ensuring an accurate under-
standing of the environmental and health burdens and risks
of ASGM by researchers, regulators, and policy-makers.
Updated literature and data will aid in developing compre-
hensive policies and interventions. Research should focus
on critical areas, notably investigating the migration routes
and pathways of occupational and non-occupational expo-
sures in ASGM; toxicological studies, including investiga-
tions on multiple exposures, biomonitoring of PTEs, and
regular medical checks for known associated risks amongst
ASGM workers and community members, especially women
and children including foetuses and preventing them from
harm. Additionally, implementing surveillance systems for
ASGM workers, ex-workers, and communities is crucial for
best practices (Keane et al. 2023; Landrigan et al. 2022; von
Stackelberg et al. 2022; WHO 2016; Wireko-Gyebi et al.
2022; World-Bank 2020).

Improving and Strengthening Legislation, Regulation,
and Policy

Governments should acknowledge and provide appropriate
support to ASGM. Developing consistent policies address-
ing poverty alleviation, sustainable rural development,
environmental and health impact reduction, productive

business environment, and government revenue stability
is crucial. These should be consistent for artisanal, small-
scale, and large-scale mechanized gold mining (Fritz et al.
2018a; WGC 2022; WHO 2016; World-Bank 2020). Estab-
lishing appropriate in-country and regional transparent,
non-discriminatory legal and regulatory frameworks for
ASGM workers are crucial whilst improving government
enforcement and compliance, such as mandatory PPE use
and banning child labour, Hg, and other toxic chemical use
in ASGM. Governments should also offer regularization
incentives. For instance, tax allowances, equipment exemp-
tions, finance, and export assistance for ASGM enterprises
(Fritz et al. 2018a; Keane et al. 2023; WGC 2022; WHO
2016; World-Bank 2020). To fully control the ASGM sector,
governments must address ASGM workers’ legal, organisa-
tional, technical, health and safety needs, including coopera-
tives formation, exposure standards, monitoring, coherent
administration, and collaboration with NGOs, donors, and
industry (WGC 2022; World-Bank 2020).

Technology Development and Improvement

The ASGM sector is widely informal and unorganized with
minimum support or intervention from their governments
(Chupezi et al. 2009). Regional multi-sectoral and multi-
disciplinary cooperation is needed for investment, improve-
ment, and adoption of affordable, cleaner, safer, and efficient
alternative ASGM techniques (Appel and Jonsson 2010;
Aslam et al. 2022; Keane et al. 2023; Mitchell et al. 2021;
Steckling et al. 2014a; Stoffersen et al. 2019). This includes
research and exploration of affordable, cleaner, and more
efficient gold recovery alternatives for Hg and NaCN, like
the use of borax and retorts; putting in place engineering
and mechanical controls to reduce/eliminate occupational
and non-occupational dust exposures; and updated technolo-
gies for hazard controls, management of wastes in ASGM,
medical surveillance and remediation. Further improve-
ments should include increasing access to geological infor-
mation, adequate management tools, capacity building, and
increasing access to finances and appropriate technologies
by ASGM workers (Keane et al. 2023; WGC 2022; Zhu-
warara 2023). For instance, collective cash and equipment
loan schemes aimed at encouraging the formation of groups
and the use of required technology in ASGM have been met
with little success in Congo, Kenya, Namibia, Zambia, and
South Africa (IGF 2017; PlanetGOLD 2020; WGC 2022).

Risk Reduction and Subsequent Elimination
Investing in adequate and proper management of the identi-
fied risks is necessary. The first step is identifying and man-

aging risks at the source (Landrigan et al. 2022). This can,
for instance, include eliminating PTEs sources in ASGM
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by substituting Hg, NaCN, and other toxic chemicals used
in gold ore processing with less toxic options such as borax
and upgrading ASGM technologies used in most countries
by adopting the use of retorts and wet milling machines
to reduce dust emissions and Hg losses and safe leach-
ing (Appel and Jonsson 2010; Aslam et al. 2022; Mitchell
et al. 2021; Steckling et al. 2014a; Stoffersen et al. 2019).
Additionally, addressing the low adoption of safer, cleaner
ASGM technologies is critical (Keane et al. 2023). The sec-
ond step is in identifying and managing hazards and risks
along the migration pathways (Landrigan et al. 2022; WHO
2016; World-Bank 2020). For example, eliminating the
various migration routes and exposure pathways of PTEs
through personal protective equipment, traceable mine waste
management, and extensive awareness engagement and
education amongst ASGM workers and local communities.
Informing miners, ore processors, and the community on
ASGM policies, PTEs exposures and health risks are also
vital. Governments should implement mitigation measures
to prevent adverse impacts on public spaces, schools, hospi-
tals, and markets. For example, by resettling communities,
relocating schools, remediating contaminated soils, monitor-
ing, and involving ASGM workers and local communities
in risk assessments (Smith et al. 2016). Thirdly, identifying
and managing risks in ASGM by improving research prac-
tice and enhancing legal procedures are critical. Ensuring
compliance with occupational, health and safety guidelines,
adherence to the recommended limits for respective PTEs
exposures, and systematic monitoring of ASGM workers
and local community members have significantly reduced
and subsequently eliminated risks in developed countries
(Allan-Blitz et al. 2022; Smith et al. 2016; WGC 2022).

Detection, Surveillance, and Management of Health
Outcomes in ASGM in Africa

African countries should invest in diagnostic capabilities,
training, and early disease screening to manage ASGM
health burdens effectively. Enhancing healthcare access for
ASGM workers, ex-workers, and communities; enhancing
surveillance infrastructure; and regionally coordinated health
risk collaborations and data exchanges, including malnutri-
tion, mined gold, and illegal transport and purchase of toxic
chemicals, like Hg, amongst others, are critical (Smith et al.
2016; WHO 2016; World-Bank 2020; Zhuwarara 2023).

Limitations and Strengths of the Review

Whilst a substantive body of literature was found in the
search, this review had limitations; primarily, literature in
English was included. This might under-represent some
Lusophone (Angola, Equatorial Guinea, Guinea-Bissau,
and Mozambique) and Francophone (Burundi, Djibouti,
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and Togo) countries. Grey literature, which is not avail-
able online, was not incorporated. Studies were of variable
quality, sometimes old and concentrated in a few countries
where established gold deposits were more likely to have
been reported widely. The available data in other studies
limited our review. Whereas very few studies provided com-
plete datasets to summarize measures of central tendency
adequately, most studies lacked information on the distribu-
tion and spread of PTEs concentrations or information on
the number of samples and subsamples collected and the
median. Few studies provided adequate information on data
collection and quality assurance checks to provide research
transparency and confidence in the study design and sample
analyses. Besides, the lack of standard terms for investigated
adverse health conditions, such as symptoms of Hg intoxica-
tion and Pb intoxication in included studies (Table 4; Sup-
plementary Table 5), may have caused duplication.
However, this review explores environmental and health
research in African ASGM communities, offering insights
into practices and literature. Additionally, the scientific evi-
dence found for the African continent was adequate to iden-
tify and characterize significant ASGM-related toxic hazards
to the environment, human exposures, and health risks and
allow for comparison with the broader global evidence.

Conclusion

The review reveals extensive ASGM in 30 African countries.
The ASGM sector presents major and complex challenges
as it is a significant source of widespread environmental
pollution and human exposure to toxic hazards, which have
detrimental health effects on the ASGM workers and local
community members, including fatalities. Thus, there are no
quick solutions, as explained in this review. Essentially, there
is a continued need for a collective cost—benefit analysis of
ASGM in Africa using DALYs calculation and review of
legislation, policies, stringent oversight of ASGM operations
in the field, and tangible actions to eliminate environmental
degradation and human exposure to toxic hazards in ASGM.

In contrast, the overall disease burden of ASGM in
Africa remains unknown. This review petitions for coun-
try-specific efforts and properly coordinated collaborative
continent-wide efforts amongst all countries where ASGM
is practised, the World Health Organization, World Bank,
the United Nations agencies (UNEP, UNDP, and UNIDO)
and Non-Governmental Organizations, academia, and the
private sector to identify, design, and implement sustain-
able solutions for the ASGM sector in individual countries
and regionally. The activities are well-documented measures
for identifying, assessing, and managing occupational and
non-occupational hazards and risks arising from ASGM at
the source, along the migration routes and pathways and at
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the receiving environments, individual human beings and
populations as summarized in this review. Similarly, consid-
ering the regional magnitude of ASGM practice in Africa,
the number of health-related studies in ASGM appears low,
with several specific contexts not adequately represented in
the existing literature. For instance, twenty African countries
have developed National Action Plans for ASGM, focus-
ing on eliminating Hg use and use of CN to reprocess Hg-
contaminated tailings. However, apart from Hg and Hg-CN
complexes, other toxic hazards of significant public health
importance, notably potentially toxic metals, As, crystalline
respirable SiO, dust exist in ASGM. With concrete holistic
actions, addressing the highlighted research and “big data
gaps” in ASGM contexts in Africa is possible.
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