
Geophys. J. Int. (2024) 236, 1877–1900 https://doi.org/10.1093/gji/ggae012 
Advance Access publication 2024 January 08 
GJI Geomagnetism and Electromagnetism 

Ensemb le K alman inversion of induced polarization data 

Chak-Hau Michael Tso , 1 , 3 , 4 Marco Iglesias 

2 and Andrew Binley 

3 , 4 

1 Environmental Data Science Group, UK Centre for Ecology and Hydrology, Lancaster LA 1 4 AP, UK 

2 School of Mathematical Sciences, University of Nottingham, Nottingham NG 7 2 RD, UK. E-mail: marco.iglesias@nottingham.ac.uk 
3 Lancaster Environment Centre, Lancaster University, Lancaster LA 1 4 YQ, UK 

4 Centre for Excellence in Environmental Data Science, Lancaster University and UKCEH, Lancaster LA 1 4 YQ, UK 

Accepted 2024 January 5. Received 2023 December 27; in original form 2023 January 17 

S U M M A R Y 

This paper explores the applicability of ensemble Kalman inversion (EKI) with level-set 
parametrization for solving geophysical inverse problems. In particular, we focus on its exten- 
sion to induced polarization (IP) data with uncertainty quantification. IP data may provide rich 

information on characteristics of geological materials due to its sensitivity to characteristics of 
the pore–grain interface. In many IP studies, different geological units are juxtaposed and the 
goal is to delineate these units and obtain estimates of unit properties with uncertainty bounds. 
Con ventional in version of IP data does not resolve well sharp interfaces and tends to reduce 
and smooth resistivity variations, while not readily providing uncertainty estimates. Recently, 
it has been shown for DC resistivity that EKI is an efficient solver for inverse problems which 

provides uncertainty quantification, and its combination with level set parametrization can 

delineate arbitrary interfaces well. In this contribution, we demonstrate the extension of EKI 
to IP data using a sequential approach, where the mean field obtained from DC resistivity 

inversion is used as input for a separate phase angle inversion. We illustrate our w orkflo w 

using a series of synthetic and field examples. Variations with uncertainty bounds in both 

DC resistivity and phase angles are recovered by EKI, which provides useful information for 
hydro geolo gical site characterization. Although phase angles are less well-resolved than DC 

resisti vity, partl y due to their smaller range and higher percentage data errors, it complements 
DC resistivity for site characterization. Overall, EKI with level set parametrization provides a 
practical approach forward for efficient h ydrogeoph ysical imaging under uncertainty. 

Key words: Induced polarization; Ensemble Kalman methods; Inversion; Data assimilation; 
Uncertainty quantification; Level sets. 
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 I N T RO D U C T I O N  

.1 Moti v ation 

he advances of h ydrogeoph ysics have been motivated by a bet-
er quantitative understanding of the subsurface hydrological pa-
ameters inferred from geophysical data (Binley et al. 2015 ). A
ey moti v ation for hydro geophysics is to leverage the high spa-
ial coverage and imaging capabilities to provide insights to de-
cribe subsurface structure and process. Ho wever , con ventional
eophysical inversions naturally yield smooth images due to spa-
ial regularization. The way the inverse problem is posed also
auses the reporting of uncertainty estimates to be frequently
gnored in geophysics. We seek to develop and demonstrate
n efficient and flexible inversion method that is suitable for
ifferent geophysical data and provides some estimates of un-
ertainty. Such understanding of uncertainty is related to the
nalysis of information content (or data worth) (JafarGandomi
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
 Binley 2013 ) and is an emerging field of research in hydro-
eophysical studies. 

.2 Geoph ysical inv ersion 

eophysical inversion is typically posed as an optimization prob-
em: the goal is to update model parameters until the value of an
bjective function decrease to a certain pre-defined threshold. Typ-
call y, the model v alues are the geophysical properties at each point
or grid) of the model domain, while the objective function is the
um of data (inversely weighted by data uncertainty) and regular-
zed model misfits. The relative strength of the two terms are also
ontrolled by a scalar weight, which is usually determined by line
earch. The regularization is needed because this mesh-based inver-
ion is underdetermined and ill-posed. A standard choice of regu-
arization is to apply a roughness filter for neighbouring grid cells
nd this approach is commonly known as smoothness-constrained
nversion (SCI). SCI is an extremely robust and efficient method
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1877 
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and thus is often seen as the default method for inversions of elec- 
trical geophysical data. Ho wever , this typical in version approach 
has two main disadvantages. The first is that the standard choice 
for regularization often yields unrealistic overly smooth estimates 
of geophysical properties that cannot capture sharp discontinuities 
(e.g. from the presence of different geologic properties) that are 
commonly found in real geophysical settings. The second disadvan- 
tage of SCI is that its deter ministic for mulation does not provide 
measures of the uncertainty of the resultant model. Uncertainty in 
model estimates arises not only from the presence of measurement 
errors but also from the inherent non-uniqueness of the solution to 
the inverse problem. 

Many approaches have been developed to circumvent the issues 
of SCI. This includes disconnecting the smoothness constraints at 
known locations (Slater & Binley 2006 ) or rerunning SCI with boot- 
strapping subsets of the data set to provide a measure of uncertainty 
(Yang et al. 2014 ; Fern ández-Mu ̃ niz et al. 2019 ). Ho wever , to date, 
most inversion approaches generally only account for uncertainty 
that arises from measurement errors but not the model parame- 
ter uncertainties (Tso et al. 2017 , 2019 ). Alternative regularization 
approaches that allow enhancements of sharp interfaces within an 
image (e.g. Farquharson & Oldenburg 1998 ), as well as geostatisti- 
cal approaches (Bouchedda et al. 2017 ; Yeh et al. 2002 ), have also 
been explored. 

Other global techniques, such as those discussed in Sen & Stoffa 
( 2013 ), have also been used for geophysical inversions. For ex- 
ample, Bijani et al. ( 2017 ) used a genetic algorithm-based Pareto 
Multi-Objective Global Optimization (PMOGO) method to perform 

joint inversions and showed great flexibility and promising results 
avoiding minimal entrapment. There have also been attempts to im- 
prove SCI from some of its limitations, such as using convolutional 
wavelet transform to perform SCI inversion on the feature space 
(Pang et al. 2020 ), and the use of area-to-point kriging to obtain 
fine-scale geophysical properties fields from resolution-limited SCI 
images (Nussbaumer et al. 2019 ). Finally, complex priors, such as 
those from training images, can be encoded in a low-dimensional 
space to aid inversion (Lopez-Alvis et al. 2022 ). 

1.3 Bayesian inversion 

The Bayesian approach to inverse problems (see e.g. Stuart 2010 ) 
provide us with a framework to quantity uncertainty in the solu- 
tion of an inverse problem which, in turn, can be posed in terms 
of computing the posterior distribution of the unknown model pa- 
rameters giv en observ ed data. Since the posterior is, in general, 
not available in closed form, sampling methods such as Markov 
Chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC) 
are required to approximate statistics of the posterior via Monte 
Carlo estimates computed from samples. Ho wever , in order to com- 
pute accurate statistics via fully Bayesian sampling methods, very 
long chains are often required to obtain a suf ficientl y large num- 
ber of decorrelated samples (Iglesias et al. 2013a , 2018 ). This is 
particularly the case for a wide class of problems in which the pa- 
rameter that we wish to infer (and hence the posterior) is defined 
on a very high-dimensional space that arises from discretizing par- 
tial differential equations (Cotter et al. 2013 ). Unfortunatel y, man y 
geophysical problems fall in the above class, because the property 
value of each grid cell (typically hundred thousands or even mil- 
lions of them) needs to be inferred from the data. Since MCMC 

involves e v aluating the forw ard model at e very step of the chain, 
this method is computationally unfeasible for geophysical settings 
unless these are either 1-D or low-resolution 2-D, or when the geo- 
electrical properties are parametrized in terms of a few (i.e. ≈10) 
parameters. In the context of geophysical inversion, examples of the 
settings in which MCMC has been used to provide a fully Bayesian, 
probabilistic estimate of the resultant model include the works of 
Ramirez et al. ( 2005 ) and Irving & Singha ( 2010 ), with the former 
using v o xel-based proposals, and the latter uses a binary facies- 
based parametrization. 

In order to reduce the computational burden of sampling algo- 
rithms for geophysical inverse problems, recent work (Kang et al. 
2021 ) has used deep learning (e.g. variational autoencoders) to build 
computationall y ef ficient surro gates of the forw ard model that can 
be used within the sampling algorithm. Fur ther more, variational 
inference approaches (Zhang & Curtis 2020 ) can be used to char- 
acterize the functional form of the posterior and to estimate its key 
statistics (e.g. mean and variance), rather than obtaining samples 
from it. Bayesian evidential learning (Scheidt et al. 2018 ) has been 
proposed to reduce the number of dimensions and map the constitu- 
tive statistical relationships between the reduced model parameters 
and the reduced data using canonical correlation analysis (CCA) in 
order to allow fast sampling of the posterior space (e.g. Hermans 
et al. 2016 ; Michel et al. 2020 ; Thibaut et al. 2022 ; Michel et al. 
2022 ). 

The performance of Bayesian methods is highly dependent on 
the prior distribution which plays a role analogous to that of regu- 
larization in deterministic approaches. While Gaussian priors can 
be a computationally convenient choice to characterize geophysical 
properties, the resulting samples from the prior (and hence the pos- 
terior) are overly smooth. More recent approaches have shown the 
use of geostatistics (Aleardi et al. 2021 ), training images (Oware 
et al. 2019 ), adaptive zone boundary delineation (de Pasquale et al. 
2019 ) or Voronoi cells (Galetti & Curtis 2018 ) can provide a more 
flexible approach to generate prior samples of geophysical proper- 
ties that have substantiall y dif ferent v alues on regions with unknown 
geometries. 

1.4 Ensemb le K alman inversion 

Ensemble Kalman inversion (EKI) is a computational framework 
for inverse problems. It comprises a class of algorithms that can be 
seen as deri v ate/Jacobian-free optimization methods (Iglesias et al. 
2013b ; Iglesias 2016 ) as well as sampling schemes that produce a 
Gaussian approximation of the posterior (Iglesias et al. 2018 ; Igle- 
sias & Yang 2021 ). We refer the reader to the papers by Calvello 
et al. ( 2022 ) and Chada et al. ( 2021 ) which include e xtensiv e re-
views with different variants formulations and recent theoretical 
developments. Methods that are similar to EKI include Ensemble 
Smoother with multiple data assimilation (Emerick & Reynolds 
2013 ) and Kalman Ensemble Generator (Bobe et al. 2020 ). Here 
we adopt the Bayesian perspective of EKI and consider the classi- 
cal EKI algorithm of Iglesias & Yang ( 2021 ). This algorithm starts 
with an initial ensemble of samples (often called particles) from 

the prior of model parameters. Then, each of these samples is iter- 
ati vel y updated according to a Kalman-based formula which maps 
the ensemble from the prior into an ensemble from the approximate 
posterior. The number of iterations (usually between 10 and 20 of 
them) is determined adapti vel y to ensure a smooth transition be- 
tween prior and posterior. At each iteration, the main computational 
cost is that of running the forward model multiplied by the num- 
ber of particles (between 10 2 and 10 3 ). Upon convergence, sample 
statistics can be computed from the posterior ensemble. 
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In contrast to fully Bayesian algorithms (e.g. MCMC) which are
esigned to sample from the target (in this context) the posterior
istribution, EKI provides only a Gaussian approximation of the
osterior. Ho wever , EKI does not suffer from the curse of dimen-
ionality inherent to sampling methods while providing good ap-
roximations of the posterior. Indeed, numerical work on tractable
imensions has shown that, for a wide range of inverse problems,
KI provides accurate approximations of the posterior while incur-

ing in a fraction of the cost of fully Bayesian methods (Iglesias
t al. 2013b , 2018 ; Iglesias 2015 ). 

Because of the need to run the forward model for each ensemble
ember, the computational cost of EKI is higher than conventional

ariational optimization methods such as SCI. Ho wever , as men-
ioned earlier, EKI does not require the Jacobian of the forward
ap (i.e. the input–output map that arises from running the for-
ard model). Without the limiting requirement for Jacobians of

he forward map, fresh ways to tackle the ill-posedness of geo-
hysical inverse problems via realistic (often non-differentiable)
arametrizations of the unknown quantities become possible. This
dvantage of EKI was exploited recently (Tso et al. 2021 ) where
KI approach with level set parametrization was used to invert ERT
ata. Instead of directly estimating the geophysical properties every-
here in the model domain, Tso et al. ( 2021 ) introduced a level-set

unction (also defined everywhere) that parametrized the geometry
f different zones. By thresholding the level-set function, we ob-
ained a (non-differentiable) map that acted as a classifier for a set
f unknown zones/regions with different, and also unknown, values
f geophysical properties. The inverse problem was then posed in
erms of estimating the level-set function as well as the resistivity
alues on each zones. Using EKI to solve this inverse problem en-
bled us to delineate the geometry of structures in a geophysical
roperty field. 

One of the main advantages of the level-set parametrization used
n Tso et al. ( 2021 ) is that it can describe a wide range of arbitrary
eometries. Ho wever , this level of generality means that the inverse
roblem is high-dimensional because the level-set at every grid cell
f the computational domain needs to be estimated. Fortunately, as
tated earlier , the EKI framew ork is very robust and can handle very
arge problems as shown in Tso et al. ( 2021 ). 

Using level-set parametrizations within EKI for generic inverse
roblems was first proposed in Iglesias et al. ( 2016 ) and further stud-
ed by Chada et al. ( 2018 ). This framework has also been applied by

uir & Tsai ( 2020 ) and Muir et al. ( 2022 ) in deep-earth geophysics
pplications. The level-set parametrization within EKI was also
sed recently to infer permeability and porosity during resin trans-
er moulding for composite manufacturing (Matveev et al. 2021 ;
glesias et al. 2018 ) as well as to infer elastic properties of biological
issue via magnetic resonance elastography (Iglesias et al. 2022 ). 

.5 Induced polarization 

eoelectrical methods are one of the most commonly used tech-
iques for near-surface geophysical investigations. Electrical resis-
ivity measurements are sensitive to both pore volume and pore
urface area properties, but their utility for permeability ( k ) estima-
ion, for example, is inherently limited because the two contribu-
ions cannot be separated; meanwhile, induced polarization (IP) has
nique sensitivity to interconnected pore surface area (Slater 2007 ;
emna et al. 2012 ). The past two decades has seen a steady growth

n IP applications for subsurface investigations, including hydro-
o gical (e.g. K emna et al. 2004 ; McLachlan et al. 2020 ; Rucker
t al. 2021 ), engineering (e.g. Slater & Binley 2006 ; Revil et al.
020 ), and biogeochemical (Williams et al. 2005 ; Ntarlagiannis
t al. 2005 ; Kessouri et al. 2019 ; Saneiyan et al. 2019 ) applications.
n particular, IP has been used in a number of studies to quantify
he distributions of k , such as delineating k profiles from cross-
orehole IP surv e ys (Binle y et al. 2016 ), mapping k of a riverbed
Benoit et al. 2018 ), identifying the contact of two lithological units
n a river corridor (Slater et al. 2010 ; Mwakanyamale et al. 2012 ),
r assess the variation in soil moisture and textural properties in
tudies of unstable hillslopes (Revil et al. 2020 ). Similarly, IP has
een used to delineate the subsurface hydrocarbon contamination
t a former industrial site (Flores Orozco et al. 2013 ). 

.6 Uncer tainty propag ation 

he full value of the unique sensitivity of IP can only be shown
hen its inversion can provide some measures of uncertainty. Un-

ortunatel y, such anal ysis is rarel y conducted for field-scale studies.
 number of previous works have used Bayesian method such as
CMC to model IP (Chen et al. 2012 ; Madsen et al. 2017 ; B érub é

t al. 2017 ). Few studies have incorporated IP data for Bayesian
 ydrogeoph ysical analysis; ho wever , they tend to use the smooth
nverted resistivity and phase angle images deterministically as in-
ut for subsequent Bayesian analysis. For example, Wainwright
t al. ( 2016 ) use inverted IP data to inform probabilistic mapping
f biogeochemical hotspots using an indicator field approach. The
xtent to which uncertainty in IP imaging propagate to uncertainty
n images of hydrological properties remain largely unknown. Con-
urrently, there is an interest to understand the way in which uncer-
ainties in geophysical images are translated to maps of hydrological
roperties—this would require an understanding of the effects of
ncertainties in the petrophysical relationships that link geophysi-
al and hydrological variables. This can be done both numerically
Day-Lewis et al. 2005 ; Moysey et al. 2005 ; Singha & Moysey
006 ; Tso et al. 2019 ) and empirically, for example using colocated
ata for comparison (Isunza Manrique et al. 2023 ). Brunetti &
inde ( 2018 ) showed that accounting for petrophysical uncertainty

mproves Bayesian h ydrogeoph ysical model selection. Current un-
erstanding is lacking on the impact of uncertainty from inverted
P data on hydrological estimates. It is critical to assess the magni-
ude and sources of uncertainties within images of inferred physical
roperties, such as k , that are generated from IP data. 

.7 P a per overview 

he EKI method outlined in Tso et al. ( 2021 ) has clear advantages
v er e xisting methods for ERT inv ersions of DC resistivity data, es-
ecially for resistivity fields with discontinuous re gions. Howev er,
ts benefits for IP data and for generating maps of hydrological prop-
rties have yet to be illustrated. The principal aim of this work is to
pply and demonstrate the use of EKI with level set parametriza-
ion for IP imaging, and to advance the use of EKI in geophysics
y investigating the effects of different prior formulations and data
oise levels. The outcomes of this inversion can then be used in
 w orkflo w that we propose to estimate the spatial distribution of
ydrological properties with uncertainty bounds from IP imaging.
n section 2 we introduce the methods we use for which, in addition
o the single level-set parametrization used in Tso et al. ( 2021 ), we
onsider a parametrization in terms of multiple level-sets which can
llow us to parametrize (and hence infer) a larger range of geophys-
cal scenarios. We report results from our example applications in
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Section 3 . Finally, we discuss our findings in Section 4 and provide 
our conclusions in Section 5 . 

2  M E T H O D S  

In this section, we introduce the EKI framework for IP which relies 
on a level-set parametrization. First, we introduce the forward model 
for IP in Section 2.1 as well as the SCI method. The Bayesian inver- 
sion approach is discussed in Section 2.2 . The parametrization of 
geophysical properties in terms of level-sets is presented in Section 
2.3 and the EKI approach to address the re-parametrized problem 

is developed in Section 2.4 . Finally, in Section 2.5 we present im- 
plementation details. 

2.1 Forw ard pr oblem and SCI 

In the frequency domain, IP can be represented as a frequency- 
dependent complex resistivity ρ∗. For a generalized 2-D or 3-D 

IP problem with a heterogeneous ρ∗ field, the measured (complex) 
potential V 

∗ due to current injection at electrode locations x A and x B , 
with strength I , can be described by the following partial differential 
equation: 

− ∇ ·
(

1 

ρ∗( x ) 
∇V 

∗( x ) 

)
= I ( δ( x − x A ) − δ( x − x B )) , (1) 

with appropriate boundary conditions (e.g. Binley & Slater 2020 ). 
To infer the field ρ∗, a conventional SCI can be used. This pro- 

cedure uses the Gauss–Newton method to minimizes the combined 
observed data, d ∗ [which is the log-transformed complex impedance 
log ( V 

∗/ I ) in this study], and the model misfit by minimizing the fol- 
lowing objective function (e.g. Binley & Slater 2020 ): 

1 

2 
‖ W d ∗ ( d ∗ − F( ρ∗)) ‖ 2 + 

β

2 

∥∥W ρ∗ρ∗∥∥2 
, (2) 

where F is the forward (or parameter-to-output) map that predicts 
potentials (e.g. via eq. 1 ) for a given ρ∗, W d ∗ is a matrix that assigns 
weights (accuracy) to the data, β is a tuning regularization parameter 
and W ρ∗ , often referred to as the model roughness matrix, is usually 
a differential operator that enforces smoothness in a minimizer of 
eq. ( 2 ) (e.g. gradient/Laplacian filters). The second term in eq. ( 2 ) 
can be seen as a form of Tikhonov regularization that stabilizes the 
inversion. 

2.2 The Bayesian approach 

Let us use the representation of the complex resistivity ρ∗( x ) in 
terms of its magnitude and phase angle denoted by ρ( x ) and ϕ( x ), 
respecti vel y. We note that ρ( x ) is equi v alent to the DC resistivity 
since, for most h ydrogeoph ysics problems, we expect the phase 
angle to be small (typically a few tens of milliradians). For compu- 
tational convenience, the complex vector of measured potential d ∗

is rewritten as a real vector of the form d ∗ = [ d , ξ ], where d and ξ
denote the magnitude and phase angle of d ∗, respecti vel y. 

We assume that the data and the unknown are related via 

d = F d ( ρ, ϕ) + ηd (3) 

ξ = F ξ ( ρ, ϕ) + ηξ , (4) 

where ηd and ηξ are independent random measurement errors that 
follow Gaussian distributions with zero mean and covariance � d and 
� ξ , respecti vel y. Here F d and F ξ denote the two components of the 
forward map (magnitude and phase angle of potential’s prediction). 
A complete formulation of the inverse problem for IP data will 
consist of jointly inferring ρ( x ) and ϕ( x ) given both d and ξ . Here 
we adopt a more practical approach in which we first invoke the 
assumption that ϕ is small and compute, as in standard ERT, the DC 

resistivity from measurements d . Then, we use our estimate of DC 

resistivity to infer phase angle ϕ given ξ . Since the imaginary com- 
ponent of complex resistivity is so small, the phase angle estimation 
can be seen as a final correction after DC resistivity is estimated. 

We formulate both inverse problems from our two-step method 
via the Bayesian approach (Stuart 2010 ) in which we assume that 
ρ( x ) and φ( x ) are random functions. We put a prior distribution 
for ( ρ, ϕ), denoted by P ( ρ, ϕ) and, for simplicity, we assume inde- 
pendence (under the prior) so that P ( ρ, ϕ) = P ( ρ) P ( ϕ) . The prior
comprises our knowledge of the unknown functions ρ and ϕ prior 
to the data. 

The solution of the first Bayesian inverse problem (inferring ρ
given d ) is the posterior on the DC resistivity P ( ρ| d) which, from 

Bayes’s rule the is given by 

P ( ρ| d) ∝ P ( d| ρ, ϕ = 0) P ( ρ) , (5) 

where P ( d| ρ, ϕ = 0) is the likelihood of d e v aluated at phase angle
ϕ = 0. 

For the second step we compute the marginal posterior of ϕ given 
ξ . This is defined by 

P ( ϕ| ξ ) = 

∫ 
P ( ϕ, ρ| ξ ) d ρ, (6) 

where P ( ϕ, ρ| ξ ) is the joint posterior which, again from Bayes rule, 
is given by 

P ( ϕ, ρ| ξ ) ∝ P ( ξ | ρ, ϕ ) P ( ϕ ) P ( ρ) , (7) 

where P ( ξ | ρ, ϕ) is the likelihood of ξ . In order to further simplify the 
problem, we propose to approximate P ( ξ | ρ, ϕ) ≈ P ( ξ | ρ = ρ, ϕ) , 
where ρ denotes the mean of DC resistivity posterior P ( ρ| d) defined 
via eq. ( 5 ). In other words, we build ( eq. 7 ) with the likelihood of
ξ e v aluated at the mean of the DC resistivity posterior. Using this 
approximation in eq. ( 6 ) we find 

P ( ϕ| ξ ) ∝ 

∫ 
P ( ξ | ρ = ρ, ϕ ) P ( ϕ ) P ( ρ) d ρ = P ( ξ | ρ = ρ, ϕ ) P ( ϕ ) . (8) 

From our Gaussian assumptions on ηd and ηξ and expressions 
( 3 ) and ( 4 ), it follows that 

P ( ρ| d) ∝ exp 

[ 

− 1 

2 

∥∥∥� 

−1 / 2 
d ( d − F d ( ρ, 0)) 

∥∥∥2 
] 

P ( ρ) (9) 

and 

P ( ϕ| ξ ) ∝ exp 

[ 

− 1 

2 

∥∥∥� 

−1 / 2 
ξ ( ξ − F ξ ( ρ, ϕ)) 

∥∥∥2 
] 

P ( ϕ) . (10) 

Algorithmically, the proposed approximations amount to com- 
puting the marginal posterior of the DC resistivity (given d ) while 
keeping the phase angle fixed ϕ = 0 in the likelihood. Then, the 
posterior marginal for the phase angle (given ξ ) is computed using 
the mean of DC resistivity posterior marginal as a fixed estimate 
within the likelihood function. Our objective now is to use the EKI 
framework to produce samples from the approximate posterior from 

eqs ( 9 ) and ( 10 ). To this end, in the following subsection we intro- 
duce suitable parametrizations of the resistivity and the phase angle 
that will enable us to infer discontinuous properties. 
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.3 Parametrization of spatial fields 

s discussed in the introduction, the selection of the prior in
ayesian algorithms is crucial for their estimation performance.
his is particularly challenging for subsurface properties with dis-
ontinuities, which makes common techniques to prescribe priors
uch as stationary Gaussian random fields not applicable. To tackle
his challenge, this work utilizes two level-set parametrizations that
nable us to delineate arbitrarily shaped zones of different perme-
bility and to infer the values of the DC resistivity and phase angle
ithin each of those zones. Note that through the paper, for sim-
licity, we refer to DC resistivity, or complex resistivity magnitude,
s ‘resistivity’. 

The first level-set parametrization that we use is the one used
n Tso et al. ( 2021 ) to invert ERT data via EKI. This parametriza-
ion requires only one level-set function and several thresholds to
arametrize multiple zones. For completeness we include the de-
cription in Appendix B . By construction, this single level-set for-
ulation does not allow more than two zones to intersect which
ay be a disadvantage in some geologic settings. To overcome this

isadvantage, here we also consider a level-set approach that uses
ultiple level-set functions to allow the parametrization (and hence

nference) of regions that can all intersect. This level-set approach
 as initiall y proposed in Litman ( 2005 ) for inverse scattering, and
e introduce it below in the context of both DC and IP inversion.
hile this approach with multiple level-sets can handle more geo-

hysical settings compared to the one used in Tso et al. ( 2021 ), it
ncreases the number of unknowns and hence the dimension of the
nput space. Therefore, more samples may be needed within the in-
ersion algorithm with the corresponding increase in computational
ost. Hence, we recommend using the single level-set approach in
so et al. ( 2021 ) as long as there is strong prior evidence (e.g. from
reliminar y stratig raphic anal ysis) suggesting that the underl ying
eophysical can be described with the single level-set parametriza-
ion. 

.3.1 Parametrization with multiple level-sets 

et us adapt the approach of Litman ( 2005 ) for our inverse problem
ith IP data. For brevity we describe only the parametrization of

esistivity ρ( x ) while we use the analogous parametrization for the
hase angle ϕ( x ). Also, for simplicity we consider a simple four-
one parametrization that relies on the assumption that the unknown
esistivity takes only four (unknown) resistivity values ρ1 , ρ2 , ρ3 

nd ρ4 on (unknown) regions denoted by 
1 , 
2 , 
3 and 
4 , re-
pecti vel y. These regions are, in turn, parametrized via thresholding
wo level-set functions, denoted by ξ 1 ( x ) and ξ 2 ( x ). In more detail,
e assume those regions are defined by 


1 = { x : ξ1 ( x ) ≤ α1 , ξ2 ( x ) ≤ α2 } , 

2 = { x : ξ1 ( x ) > α1 , ξ2 ( x ) ≤ α2 } , 

3 = { x : ξ1 ( x ) ≤ α1 , ξ2 ( x ) > α2 } 

4 = { x : ξ1 ( x ) > α1 , ξ2 ( x ) > α2 } , 

(11) 

here α1 and α2 are user defined parameters. In summary, the 4-
one characterization of the unknown resistivity is given by 

( x ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ρ1 , ξ1 ( x ) ≤ α1 , ξ2 ( x ) ≤ α2 

ρ2 , ξ1 ( x ) > α1 , ξ2 ( x ) ≤ α2 

ρ3 , ξ1 ( x ) ≤ α1 , ξ2 ( x ) > α2 

ρ4 , ξ1 ( x ) > α1 , ξ2 ( x ) > α2 . 

(12) 
The level-set parametrization above can be used to parametrize
 

N zones ( N > 1) in terms N level-set functions. If the number of
ones is not a power of two we can simply split one of the zones.
or example, in the case where we know that only three zones exist,
e can use the 4-zone parametrization above with ρ3 = ρ4 and the

hird zone given by 
3 ∪ 
4 . 
In principle, this multiple level-set parametrization requires us

o know, a priori , the number of zones on which the geoelectric
roperties take different values. Ho wever , it is worth noticing that
he value, ρn , that the property takes on the n th zone is also an
nknown that we infer alongside the level-set functions. Therefore,
s long as we choose N to be the largest number of zones that
e could expect, and provided the measurements are suf ficientl y

nformati ve, the EKI frame work should infer the correct number
f zones even if this is smaller than the original N . Nonetheless,
he inference of the number of zones will be achieved indirectly
y identifying the same (or very close) value of ρn ’s on different
ones. 

With the aid of the parametrization in ( 12 ), the posterior for
he DC resistivity can be rewritten in terms of the joint posterior
f ρ1 , ρ2 , ρ3 , ρ4 and the level-set functions ξ 1 ( x ) and ξ 2 ( x ) that
etermine the regions defined in eq. ( 11 ). Our aim is to choose a
rior of Gaussian random fields (GRF) for ξ 1 ( x ) and ξ 2 ( x ) and then
pproximate the reparametrized marginal posteriors via EKI. 

.3.2 Parametrization of random fields 

glesias ( 2016 ) and Chada et al. ( 2018 ) have shown that an accu-
ate EKI implementation of a level-set parametrization requires to
urther parametrize the GRF (for the level-set function) in terms
f hyperparameters which should be inferred within the EKI algo-
ithm. To this end we take a further step and parametrize both ξ 1 ( x )
nd ξ 2 ( x ) (or more when more than four regions are considered)
y using the stochastic partial differential equations (SPDE) frame-
ork in which 2-D realizations of GRFs can be obtained by solving

he following fractional SPDE: [ (
1 0 
0 1 

)
− ∇ ·

(
L 

2 
1 ,α 0 
0 L 

2 
2 ,α

)
∇ 

] ( να+ 1) / 2 

ξα( x ) 

= 

[ 

τ 2 
α 2 π 1 / 2 �( να + 1 / 2) 

�( να) 
L 1 ,α L 2 ,α

] 1 / 2 

ω α( x ) (13) 

ith α = 1, 2 and where να controls smoothness of the realization,
 1, α and L 2, α are intrinsic length scales along the horizontal and
 ertical direction, respectiv ely, τα is an amplitude scale, � denotes
he gamma function and ω α( x ) is Gaussian white noise. Imposing
ppropriate boundary conditions for eq. ( 13 ) (Roininen et al. 2014 )
eads to solutions which are GRFs with Mat érn isotropic covariance
unction (Lindgren et al. 2011 ). This parametrization of GRFs can
e modified to include a degree of anisotropy along some prefer-
ntial direction (Roininen et al. 2014 ). Other parametrizations of
RFs that can alternati vel y be used are those defined on simple
omains, and for which the eigenfunctions and eigenvalues of prior
ovariance can be obtained closed-form (Dunlop et al. 2017 ). 

Since the level-set functions ξα( x ) are merely artificial functions
i.e. with no direct physical interpretation) that we use to parametrize
he unknown geometry of the zones, we consider a fixed amplitude
cale τα = 1 which means that, at every point of the domain x ,
α( x ) is a standard normal. Based on this selection, we can select

hreshold values α1 and α2 in ( 11 ) and ( 12 ) to ensure that, a priori ,
t every x there is a specific value for the probability of this point to
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belong to each zone. For example, taking values α1 = α2 = 0 will 
ensure that there is a (prior) probability equal to 0.25 that any given 
point x belongs to any of the four zones. 

We recall that the parameter να defines the smoothness of the 
level-set function ξα( x ) and, thus, the smoothness (or roughness) 
of the interface between zones. Although we could include this 
parameter as part of the unknown input parameters that we wish to 
infer, for simplicity here we keep the parameter να = 2.0 fixed. For 
the 2-D experiments that we present in the following section, our 
selection of να provides a sufficient degree of smoothness of the 
level-set function in order to capture well-defined zones. 

Given those considerations let us now write the parametrizations 
above in a more compact form by noticing that eq. ( 13 ) defines an 
operator P 

G RF that takes the hyperparameters, L 1, α , L 2, α of the 
GRF (recall τα = 1 and να = 2 are now fixed) together with the 
white noise ω α( x ) in the right-hand side of eq. ( 13 ), into a realization 
of the GRF ξα( x ), that is 

ξα = P 

G RF ( L 1 ,α, L 2 ,α, ω α) . (14) 

On the other hand, note that eq. ( 12 ) defines a mapping of the form 

ρ = P 

L S ( ρ1 , ρ2 , ρ3 , ρ4 , ξ1 , ξ2 ) . (15) 

We can thus compose these two functions to finall y arri ve at ρ = 

P( u ρ) where 

u ρ( x ) = 

( 

ρ1 , ρ2 , ρ3 , ρ4 , 
{

L 1 ,α, L 2 ,α, ω α( x ) 
}2 

α= 1 

) 

(16) 

and 

P( u ρ) = P 

L S 
(
ρ1 , ρ2 , ρ3 , ρ4 , P 

G RF ( L 1 , 1 , L 2 , 1 , ω 1 ) , P 

G RF 

( L 1 , 2 , L 2 , 2 , ω 2 ) ) . (17) 

We may use the same four-zone parametrization for the phase angle 
ϕ = P( u ϕ ) , with parameters comprised in u ϕ , analogous to those 
in eq. ( 16 ). Note that the parameters L 1 α , L 2 α , ω α( x ), and hence
the corresponding level-set functions ξα( x ) that we inferred for 
the DC resistivity will be, in general, different from those for the 
phase angle. Consequently, the inferred geometry of the four zones 
obtained for the DC resistivity may not necessarily coincide with 
the geometry of the zones determined by the inferring phase angle. 

Finally, it is worth mentioning that the proposed parametrization 
can be easily extended for a 3-D geometry and also to account for 
the case in which the unknown property (e.g. resistivity or phase 
angle) is spatially variable within each of the different regions (see 
ERT examples in Tso et al. 2021 ). 

2.4 Solving the reparametrized Bayesian inverse problem 

via EKI 

In this section, we use the parametrizations of the DC resistivity and 
phase angle to approximate the posteriors from eq. ( 9 ) and eq. ( 10 ). 
Let us define 

G d ( u ρ) : = F d ( ρ, 0) = F d ( P( u ρ) , 0) , 

where we have used the parametrization ρ = P( u ρ) from the pre- 
vious subsection. We now wish to approximate the posterior on the 
parameter u ρ which from eq. ( 3 ) follows: 

d = G d ( u ρ) + ηd , with ηd ∼ N (0 , � d ) , (18) 

F rom Bay es’ rule w e ha ve that the sought posterior is 

P ( u ρ | d) ∝ exp 
[ 

− 1 

2 

∥∥∥� 

−1 / 2 
d ( d − G d ( u ρ)) 

∥∥∥2 ] 
P ( u ρ) , (19) 
where P ( u ρ) denotes the prior on u ρ . Once this prior is specified 
(see Section 2.4.1 ), the prior P ( ρ) on the original physical property 
ρ can be defined as the push-forward measure of P ( u ρ) under the 
map P . This is denoted by P 

# 
P ( u ρ) . In simple words this means 

that samples, ρ( j ) , of P ( ρ) can be obtained by sampling from P ( u ρ) 
and mapping those samples, say u 

( j) 
ρ , into the physical property via 

ρ( j) = P( u 

( j) 
ρ ) . 

It can be shown that the above selection of the prior on ρ as 
P ( ρ) = P 

# 
P ( u ρ) implies P ( ρ| d) = P 

# 
P ( u ρ | d) , that is the sought

marginal posterior on the DC resistivity can be obtained by pushing 
forward the posterior on the parameters u ρ . Again, in terms of 
samples which are provided by the EKI discussed below, this simply 
means that once we obtain posterior samples for the parameter u ρ , 
e v aluating P( u ρ) gives us samples from the posterior DC resistivity. 

Similarl y, b y defining G ξ ( u ϕ ) : = F ξ ( ρ, ϕ) we can formulate the
posterior on the phase angle parameters 

P ( u ϕ | ξ ) ∝ exp 
[ 

− 1 

2 

∥∥∥� 

−1 / 2 
ξ ( ξ − G ξ ( u ϕ )) 

∥∥∥2 ] 
P ( u ϕ ) , (20) 

where P ( u ϕ ) denotes the prior on u ϕ which we assume have analo- 
gous form to that in eq. ( 23 ). 

We reiterate that G ξ depends on the mean of the approximate 
marginal posterior P ( ρ| d) . Nonetheless, both eqs ( 19 ) and ( 20 ) can 
be written as: 

P ( u | w) ∝ exp 
[ 

− 1 

2 

∥∥� 

−1 / 2 ( w − G( u )) 
∥∥2 

] 
P ( u ) , (21) 

where 

( u, w, G, �, P ( u )) = 

{
( u ρ, d, G d , � d , P ( u ρ)) to approx. (19) 
( u ϕ , ξ, G ξ , � ξ , P ( u ϕ )) to approx. (20) . 

Therefore we can use a generic solver for Bayesian inverse problems 
to first approximate ( 19 ) and then eq. ( 20 ) as discussed earlier. To 
this end, here we apply the EKI framework from Iglesias et al. ( 2018 ) 
and Iglesias & Yang ( 2021 ) that we summarize in Algorithm 1 in 
Appendix A . The EKI algorithm is presented to approximate the 
posterior P ( u | w) from eq. ( 21 ) in which observed/measured data 
is w , the unknown parameter is u , the forward map is G( u ) and 
the noise covariance is �. As discussed in Section 1.4 , the EKI 
algorithm defines a transition between the prior and the posterior 
via constructing a sequence of q intermediate Gaussian measures: 

P ( u ) = P 0 ( u ) → ... → P q+ 1 ( u ) = P ( u | w) . (22) 

Each intermediate distribution P m 

( u ) ( m = 1, . . . , q ) is approxi-
mated with an ensemble of particles, { u 

( j) 
m 

} J j= 1 . The EKI algorithm 

(Iglesias et al. 2018 ) consists of iterati vel y updating each particle 
according to an update formula that, at the iteration level n , can 
be derived from (i) linearizing the forward map around the mean 
of P m 

( u ) , (ii) applying Bayes rule to the linearized problem in- 
voking the Gaussian approximation of P m 

( u ) and finally (iii) using 
covariance approximations for the deri v ati ves from the linearized 
problem. 

We follow the approach from Iglesias & Yang ( 2021 ) to com- 
pute the number of intermediate distributions, q , adapti vel y. Con- 
vergence of Algorithm 1 is controlled by the parameter s m . The 
algorithm stops once s m + 1 = 1, that is we set q = m + 1 and 
the corresponding particles { u 

( j) 
m + 1 } J j= 1 provide a Gaussian approx- 

imation to the posterior P ( u | w) . The computational cost of EKI is 
gi ven b y J × q simulations which scales well with respect to the 
number of particles J . Hence, the computational burden of EKI can 
be amortized via the use of parallel computing since the prediction 
step Algorithm 1 is perfectly parallelizable. 
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Despite the large amount of recent progress in developing theory
or EKI (see Calvello et al. 2022 ), the convergence of any existing
ariant of EKI algorithms can only be rigorously proved in the case
hen the forward map is linear and when the prior and the noise dis-

ributions are Gaussian. In particular, the seminal work of Schillings
 Stuart ( 2017 ) introduced the continuous-time formulation of EKI
hich, in turn, lead to convergence proofs in the mean-limit settings

lbeit restricted to the case of linear forward models (which is not
he case for ERT or IP). Notwithstanding, the EKI algorithm can be
pplied for non-linear forward models as well as any choice of dis-
ribution for the prior and the noise, and although further theory that
nsures convergence of EKI for the non-linear and non-Gaussian
ases is lacking, a large body of numerical evidence suggests that,
or a broad range of problems, EKI can provide robust/stable esti-
ates with the same accuracy of optimizer and/or fully-Bayesian

amplers (such as MCMC or SMC) when the computational budget
oes not allow for large number of forward model solves (Iglesias
t al. 2013a , 2018 ; Iglesias 2015 ). It is thus clear that EKI is a suit-
ble choice for high-dimensional Bayesian inverse problems which
annot be solved via fully Bayesian samplers. 

.4.1 The prior 

e assume that, under the prior, the components of u ρ [i.e. eq. ( 16 )
or the 4-zone case] are independent. Thus, can write the prior, for
he general case of 2 N -zones and N level-set functions, as 

 ( u ρ) = 

2 N ∏ 

n = 1 
P ( ρn ) 

N ∏ 

α= 1 
P ( L 1 ,α) P ( L 2 ,α) P ( ω α) , (23) 

here the terms in the right-hand side of eq. ( 23 ) are the priors
f each component of u ρ . As discussed earlier, here we choose the
rior on the function ω α( x ) (i.e. P ( ω α) in eq. 23 ) as Gaussian white
oise, so that the corresponding samples of each level-set function,

α( x ), are realizations of GRFs. 
Before we introduce the prior of the length scales of the level-set

unctions L 1, α and L 2, α , let us first notice that these hyperparame-
ers of the level-set function ξα( x ) determine how rapid this function
hanges along each of the two spatial directions. For example, func-
ions with large L 2, α and small L 1, α will enable to describe zones
hat are long along the vertical direction while shorter in the hor-
zontal direction. When the geometry of the zones is completely
nknown a priori , we suggest placing a uniform prior over a do-
ain that covers both small and relati vel y long length scales. If we

ssume that the 2-D domain consist of the rectangular region [0,
 1 ] × [0, D 2 ], our numerical experiments show that the following
niform priors 

 ( L 1 ,α) = P ( L 2 ,α) = U 

[ 

D α

15 
, 

D α

5 

] 

, α = 1 , . . . , N (24) 

over a wide range of length scales (relative to the size of the do-
ain) that can be used to characterize zonal geometries of different

izes. As shown in previous work on level-set parametrization for
ayesian inversion (Dunlop et al. 2017 ; Chada et al. 2018 ), if we
o not infer these length scales within the EKI (i.e. if we keep
hem fixed) there is a high risk that the geometric features of the
nknown may not be accurately captured with the inferred level-set
arametrization. 

For the priors of the values of the zones resistivities, that is ρn s
e also select uniform priors 

 ( ρn ) = U 

[ 
ρn ∗, ρ∗

n 

] 
, n = 1 , 2 , . . . , 2 N , (25) 
here the lower and upper values ρn ∗ and upper values ρ∗
n are

pecified according to each specific example that we discuss in the
ollowing section. These limit values may be informed with our
rior knowledge of each zone’s resistivity, but in the absence of this
nowledge, we can simply use the same prior on each zone. 

Fur ther more, even though the priors are defined on specific in-

ervals (e.g. 
[ 
ρn ∗, ρ∗

n 

] 
for resistivity) the posterior ensemble can

ake values outside these intervals since we do not impose any
onstraints on the updated particles (strictly speaking, this violates
ayes’ formulation and we recommend re-running the inversion
ith larger prior intervals). Therefore, one can expect (as we con-
rm in our synthetic experiments) that when the prior interval is
ot well specified, measurements will be suf ficientl y informati ve to
roduce posteriors that are centred around the truth. 

Finally, we make the choice of uniform priors for simplicity.
onetheless, prior information on the site could suggest that dif-

erent distributions are more suitable priors. There is, again, no
estriction in terms of the type of distribution which can be used
ithin the EKI algorithm. 

.4.2 Measures of performance and posterior estimates 

he performance of the EKI algorithm can be monitored in terms of
arious quantities related to the data misfit as proposed in Iglesias
 Yang ( 2021 ). More specifically, we consider: 

 m 

= 

1 

M 

∥∥∥∥∥∥
1 

J 

J ∑ 

j= 1 

[ 
� 

−1 / 2 
(
w − G( u 

( j) 
m 

)] ∥∥∥∥∥∥
2 

, (26) 

here M is the size of the vector, w , that is the observed data. To the
rst order, it is not difficult to see (e.g. from Iglesias & Yang 2021 )

hat 

D m 

= 

1 

M 

∥∥∥∥∥∥� 

−1 / 2 
[ 
w − 1 

J 

J ∑ 

j= 1 
G( u 

( j) 
m 

) 
] ∥∥∥∥∥∥

2 

≈ 1 

M 

∥∥∥� 

−1 / 2 
[ 
w − G( u m 

) 
] ∥∥∥2 

, 

(27) 

here u m 

denotes the ensemble mean at the iteration m . On the other
and, since our underlying observational model is of the form w =
( u ) + η, where η ∈ R 

M is Gaussian with zero mean and covariance
. It then follows that ∥∥� 

−1 / 2 ( w − G( u )) 
∥∥2 = 

∥∥� 

−1 / 2 η
∥∥2 ∼ χM 

, 

here χM 

is the chi-squared distribution with M degrees of freedom.
hus, 

 

[ ∥∥� 

−1 / 2 η
∥∥2 

] 
= M. 

herefore, if the converged posterior ensemble yields output values
lose to the measurement error (or noise level), we should expect
hat the data misfit from eq. ( 26 ) achieve values close to one. 

Upon convergence, we compute the means of the parameters’
arginals posterior transformed into physical space. More specifi-

ally, we compute 

 ρ = 

1 

J 

J ∑ 

j= 1 
u 

( j) 
ρ , and u ϕ = 

1 

J 

J ∑ 

j= 1 
u 

( j) 
ϕ , (28) 

here { u 

( j) 
ρ } J j= 1 and { u 

( j) 
ϕ } J j= 1 denote the converged samples from the

osteriors (i.e. eqs 19 and 20 ) obtained via EKI. Then, we compute
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Figure 1. The flowchart of our sequential EKI algorithm for IP data inver- 
sion. Note that the parameters in the resistivity and phase angle inversions 
are independent from each other. 
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and display the transformed posterior means defined by 

ρ� = P( u ρ) , and ϕ 

� = P( u ϕ ) . (29) 

As discussed earlier, given the above converged samples of the 
parameters, samples from the marginal posteriors of DC resistivity 
and phase angle are obtained via 

ρ( j) = P 

(
u 

( j) 
ρ

)
, and ϕ 

( j) = P 

(
u 

( j) 
ϕ 

)
. (30) 

Note that the sample means computed from the individual posterior 
samples in eq. ( 30 ) do not coincide with the transformed means 
computed via eq. ( 29 ). Here we consider both quantities but for 
visualization and geological interpretation the latter provide us with 
a clear delineation of the interfaces between the zones. Indeed, by 
definition of the map P in eq. ( 17 ) (see also eqs 15 and 12 ) the 
estimates ρ� and ϕ 

� will display a sharp discontinuity at the zone 
interfaces due to the thresholding of the corresponding mean level- 
set function. In contrast, the posterior mean from samples (eq. 30 ), 
will not show such a clear delineation because of the uncertainty 
associated with the location of these interfaces. To quantify this 
uncertainty, ho wever , we compute the sample standard deviation 
(STD) from the posterior samples in eq. ( 30 ). 

Additional measures of the uncertainty in the geometry of the 
zones are given by zonal probabilities, namely the probability that, 
under the posterior, any given point x belongs to one of the zones. 
The computations of zone probabilities are described below for the 
case of the DC resistivity and analo gousl y for the phase angle. Given 
an EKI-converged posterior parameter sample 

u 

( j) 
ρ ( x ) = 

( 

ρ
( j) 
1 , ρ

( j) 
2 , ρ

( j) 
3 , ρ

( j) 
4 , 

{
L 

( j) 
1 ,α, L 

( j) 
2 ,α, ω 

( j) 
α ( x ) 

}2 

α= 1 

) 

we use the corresponding level-set functions ξ ( j) 
α = 

P 

G RF ( L 

( j) 
1 ,α, L 

( j) 
2 ,α, ω 

( j) 
α ) (computed via solving eq. 13 ). Then, 

from eq. ( 11 ), zone 1 probability can be defined via: 

P 1 ( x ) = P ( ξ1 ( x ) ≤ α1 , ξ2 ( x ) ≤ α2 ) = 

∫ α1 

−∞ 

∫ α2 

−∞ 

πξ1 ,ξ2 ( y 1 , y 2 ) d y, 

(31) 

where πξ1 ,ξ2 ( y 1 , y 2 ) denotes the posterior density of the random 

variable ( ξ 1 ( x ), ξ 2 ( x )) (for the fixed x ). It is not difficult to see that
P 1 ( x ) can be approximated from the ensemble of posterior level-set 
functions as follows: 

P 1 ( x ) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

I R ( y 1 , y 2 ) πξ ( y 1 , y 2 ) d y 1 d y 2 ≈ 1 

J 

J ∑ 

j= 1 
I R ( ξ

( j) 
1 ( x ) , ξ ( j) 

2 ( x )) , 

(32) 

where R = ( − ∞ , α1 ] × ( − ∞ , α2 ] and I R ( y 1 , y 2 ) = 1 if ( y 1 , y 2 ) ∈
R while I R ( y 1 , y 2 ) = 0 otherwise). We use analogous definitions for 
probabilities of zones 2, 3 and 4, as well as the zone probabilities 
for phase angle. 

It is important to note that the posterior zonal probabilities de- 
fined in eq. ( 32 ) depend on our choice of thresholds α1 and α2 . As 
discussed in Section 2.3.2 , one can choose these thresholds so that 
prior zonal probabilities take specific values that we select accord- 
ing to our prior knowledge, if available, of the likelihood of each 
zone. In the example given in Section 2.3.2 , we noted that α1 = 

α2 = 0 (the choice for our 4-zone formulation) yields constant and 
equal prior zonal probability for each zone, but a different choice of 
α1 and α2 may assign higher probability to one of the zones under 
the prior. Hence, the interpretation of posterior zonal probabilities 
should be made within the context of our selection of prior zonal 
probabilities. This is par ticularly impor tant when we compute zonal 
probabilities for the single level-set parametrization (for 3 zones) 
described in Appendix B and first used in Tso et al. ( 2021 ). For 
that case, since the prior of the level-set function has zero mean 
function, a choice of, for example α1 = −α2 with α2 > 0 will re- 
sult in prior zonal probabilities equal to one (for all x ) for zone 2 
while zero for zone 1 and zone 3, which represents a prior field that 
everywhere (including those outside the imaging domain) belongs 
to the background zone (typically with the intermediate resistivity 
or phase angle ranges) with a probability of one. 

2.5 Implementation details 

As stated earlier, in our approach to EKI inversion of IP data we 
first use EKI to estimate the DC resistivity while keeping the phase 
angle fixed. After convergence, we fix the DC resistivity as the mean 
of the posterior resistivity obtained in the previous step and run EKI 
to infer phase angle only. See Fig. 1 for a flowchart that summarizes 
our IP inversion algorithm. 

An alternative implementation of IP EKI inversion would be to 
jointly invert resistivity and phase angle. In other words, use EKI 
to iterati vel y update both properties simultaneousl y. In the joint ap- 
proach, ho wever , the number of unknown parameters doubles which 
results in substantially slower convergence of the EKI scheme. This 
sequential approach is more flexible than a joint inversion approach 
as it allows potential differences in the patterns of the resistivity and 
phase angle fields. 

As in the EKI implementation of Tso et al. ( 2021 ) for ERT data, 
we use a forward modelling grid that extends laterall y se veral times 
the dimension of the IP imaging area to simulate an infinite earth 
in field studies. For convenience, here we discretize the parameter 
grid used for inversion as a grid consisting of squares covering the 
entirety of the imaging area. At each iteration, the parameter grid 
is interpolated to the forward modelling grid to obtain simulated 
IP data. For this paper, we have implemented the EKI method in 
MATLAB 

R ©). 
One of the zones is assigned to be the background zones such 

that its mean value is assigned for cells that are outside the param- 
eter estimation grid. This is necessary to satisfy the infinite earth 
assumption in the modelling of most field geophysical problems. 
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In all the examples, we compare the inversion results from EKI to
CI (see e.g. Binley & Slater 2020 ). cR2 ( https://www.es.lancs.ac.
k/people/amb/Free w are/cR2/cR2.htm ) is used for forward mod-
lling runs in EKI and SCI. Note that while the EKI runs invert
esistivity and phase angles sequentially, the SCI r uns inver ts jointly
he real and imaginary conductivities by solving the IP problem in
he complex number domain. Where suitable, we also compare the
esults of using SCI with regularization disconnect. 

 E X A M P L E  A P P L I C AT I O N S  

e report the application of EKI for IP data in four example appli-
ations. In all cases, unless otherwise specified, we use the single
evel-set formulation outlined in Appendix B . We report the con-
ergence statistics in Table 1 . We also report the prior and posterior
onal resistivity/phase angle histograms and show the plots of a few
xample samples for each example case in the Supporting Infor-
ation. Note that zone numbering for EKI, in general, is arbitrary.
ince we invert DC resistivity and IP data sequentially, they have

ndependent zone memberships. When results are reported in the
ollowing, zones are arranged in descending resistivity/ (ne gativ e)
hase angle order. For brevity, we do not report results on the pos-
erior estimates on the hyperparameters (i.e. length scales) but we
mphasize that these were used to generate the plots of the poste-
ior estimates for the spatial fields (resistivity and phase-angle). In
ddition, the plots of some of the samples shown in the Support-
ng Information show that our estimates of hyperparameters lead
o physically consistent estimates of the geophysical properties that
e infer. 

.1 Synthetic example (inclusions) 

.1.1 Model setup 

he synthetic surv e y contains 298 dipole–dipole measurements col-
ected by 24 surface electrodes at 0.5 m separations. The background
esistivity and phase angle for the true model (Figs 2 a and b) are 100
m and −10 mrad, respecti vel y and a rectangular anomaly (1 m ×

.7 m) for both resistivity (10 
m) and phase angle ( −15 mrad) near
he surface. An additional rectangular phase angle anomaly (2 m ×
 m) of −20 mrad is at the lower right of the domain. Random noise
f 2 per cent for resistivity and 2.0 mrad for phase angle (typical
eld data noise levels) are added to the synthetic data. The same

evel of measurement errors is assumed in the inversions. 

.1.2 EKI IP inversion 

e first perform IP inversion with EKI using a 2 and 3 zone formu-
ation for resistivity and phase angle, respectively. The choice of 2
r 3 zones are based on the conceptualization of the site, as done in
ther geometry-based inversions (e.g. Bijani et al. 2017 ). Priors for
he zonal resistivity ranges are as follows: 

 ( ρ1 ) = U 

[
80 
m , 300 
m 

]
, 

P ( ρ2 ) = U 

[
0 . 5 
m , 50 
m 

]
(33) 

hile those for phase angles are 

P ( ϕ 1 ) = U 

[ − 12 mrad , −5 mrad 
]
, 

 ( ϕ 2 ) = U 

[ − 17 mrad , −13 mrad 
]
, 

P ( ϕ 3 ) = U 

[ − 25 mrad , −19 mrad 
]

(34) 
n practice, the ranges for these priors are selected based on a
riori knowledge of the site. We reiterate that in the absence of
rior knowledge we can assign the same prior to all zonal resistivi-
ies/phase angles but defined on a wider interval to account for large
rior uncertainty . Conversely , we could choose different priors that
ssign higher probability to specific values if these were informed
y prior knowledge. 

Note that since the phase angle inversion is performed after the
C resistivity inv ersion, the y can hav e different numbers of zones.
he EKI results are compared with conventional SCI (Figs 2 c and
). SCI recovered smooth targets, especially for phase angle; the
ower target ( −20 mrad) is not recovered at all. The posterior zonal
esisti vity v alues computed b y EKI (from zone 1 to 2) are 99.39
nd 5.06 
m; while those for phase angles (from zone 1 to 3) are
20.44, −14.15 and −6.15 mrad. The posterior mean for the re-

istivity field and phase angle computed from the samples given
y eq. ( 30 ) are shown in Figs 2 (e) and (f), while the correspond-
ng estimates obtained via mapping the posterior mean of input
arameters into resistivity and phase angle (i.e. via eq. 29 ) are
isplay ed in F igs 2 (g) and (h). We note that the target resistivity
nomaly from the truth is at the correct location and the width
nd top boundary are almost exactly correct, although it appears to
e not as deep as the true one. The recovered phase angle targets
ave geometries that roughly agree with the true ones, ho wever ,
he upper left zone is much smaller while the lower right inclusion
 −20 mrad) is much larger. In particular, the lower right target is
ess well resolved because of the sensitivity pattern of the surface
easurements. 
Uncertainty analysis of the posterior distribution is provided by

one 2 probability (Figs 2 i–j) and standard deviation maps. For
esistivity, the probability for (correctly) belonging to zone 1 and
 is high. The most uncertain zone membership is observed near
he lower boundary of the inclusion. In addition, slightly higher
ncertainty is also observed near the lower left and lower right cor-
ers. For phase angle, note that a 3-zone formulation is used, with
one 2 being the background. High zonal probabilities (i.e. zone 2
robability close to 0 or 1) are observed in the top 5 m, correctly as-
ociating with the background and inclusion zone. Elsewhere there
re regions where zones are poorly resolved (i.e. zone 2 probability
round 0.5). These observations are reflected in the standard devia-
ion maps (Figs 2 k and l). For resistivity, standard deviation ( STD )
alues are low ev erywhere e xcept around the lower parts of the esti-
ated inclusion. For phase angle, ho wever , the STD pattern is more

omple x. With the e xception of the top 2–3 m and the part of the
ower right region, STD is high everywhere. The lower left corner
egion has STD values of up to 5 mrad. Such results highlight the
stimation of phase angles is more challenging than that of resistiv-
ties due to their low signal-to-noise ratio, which is illustrated well
y the greater variability in the phase angle posterior samples (see
uppor ting Infor mation). 

.2 Synthetic example (3 layers) 

.2.1 Model setup 

he true model in this example is conceptualized as a 3-layer system
ith inclinations and pinch-out. All layers are assumed to extend

aterally. From top to bottom, the three zones have resistivity (and
hase angle) values of 250 
m ( −10 mrad), 10 
m ( −20 mrad)
nd 100 
m ( −15 mrad) as shown in Figs 3 (a) and (b). Random
oise of 2 per cent for resistivity and 2.0 mrad for phase angle are

https://www.es.lancs.ac.uk/people/amb/Freeware/cR2/cR2.htm
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Table 1. Convergence performance of all EKI test cases presented in this paper in terms of the 
squared norm of the average residual, D m 

from eq. ( 26 ). We report the values for the prior m 

= 0 and converged m = q + 1 ensemble. 300 forward model runs were used in all test cases in 
each iteration. 

Resistivity Phase angle 
D 0 D q+ 1 Iterations q D 0 D q+ 1 Iterations q 

Fig. 2 242.37 0.97 15 47.33 18.15 5 
Fig. 3 576.78 1.02 13 3.24 1.06 4 
Fig. 4 711.93 1.08 15 3.14 1.04 5 
Fig. 5 857.28 1.05 17 8.26 0.96 5 
Fig. 6 1719.21 1.22 16 8.61 1.39 4 
Fig. 7 1724.21 1.50 22 8.26 1.62 4 
Fig. 9 2.5 × 10 4 21.82 54 2.33 1.31 3 
Fig. 10 7.7 × 10 4 2.80 27 8.72 1.10 4 
Fig. 11 2.8 × 10 4 3.73 31 6.34 2.43 5 
Fig. 12 3.1 × 10 5 9.99 53 106.24 1.25 7 
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added to the synthetic data. The same level of measurement errors 
is assumed in the inversions. 

3.2.2 EKI IP inversion 

SCI provides a satisfactory estimate of the top la yer; how ever, it 
shows no differentiation of the bottom two zones (Fig. 3 c). They 
are depicted as a large smooth low-resisti vity anomal y. For EKI, the 
priors for zonal resistivity values are 

P ( ρ1 ) = U 

[
0 . 5 
m , 50 
m 

]
, 

P ( ρ2 ) = U 

[
80 
m , 180 
m 

]
, 

P ( ρ3 ) = U 

[
200 
m , 300 
m 

]
while those for phase angles are the same as those in eq. ( 34 ). The 
estimated zonal resisti vity v alues computed by EKI (from zone 1 
to 3) are 249.5, 246.9 and 5.5 
m. Posterior mean resistivity and 
phase angle fields are shown in (Figs 3 e and f). Resistivity and phase 
angle computed from mapping posterior mean for input parameters 
can be found in (Figs 3 g and h). We notice that the topmost and 
bottommost zones are estimated as almost identical. Taking that into 
consideration, EKI recovers the geometry of the middle pinch-out 
zone very well. 

Because of the close proximity in values for zone 2 and 3, the 
zonal probability map shows very low zone 2 probability in the 
middle pinch-out zone, but only a very small fraction of the area 
with a probability close to 1. Again, this is because the zone 2 
and 3 resisti vity v alues are too close to each other. For the STD 

map (Fig. 3 i), zone 1 has very low uncertainty, while that for the 
bottommost zone and the boundary of the middle pinch-out zone is 
quite low too. The STD at the lower right corner is relati vel y high, 
highlighting it is the most difficult region to resolve. 

SCI returns a smooth phase angle image with the upper half of 
the domain having less ne gativ e phase angles than the lower half 
(Fig. 3 d). For EKI, three zones are clearly recovered, with zonal 
phase angles (from zone 1 to 3) equalling −19.6 mrad (pinch-out), 
−13.0 and −6.7 mrad (top), respecti vel y (Fig. 3 h). The top zone 
is recovered (although not as deep as the true one and the phase 
angle is less ne gativ e than the true one), while the pinch-out zone 
is wider and extends deeper than the estimated value. It is also 
noteworthy that there is a small strip of intermediate phase angle 
between the top and pinch-out zone. This is partly attributed to the 
implicit assumption that by using a single level set for three zones, 
the transition from the minimum to the maximum zone must include 

the intermediate zone. 
Notab ly, F ig. 3 (j) shows high zone 2 probability only on this 
strip of transitional values, while everywhere else has a low zone 
2 probability. Together with the mean map, it shows the lower left 
corner (or most of the bottom zone in the domain) is not well 
resolved. For the STD map (Fig. 3 l), the uncertainties in the top two 
layers are low, while that for the lower layer is high. 

3.2.3 Effect of different level set formulations 

3.2.4 Two level sets for three zones 

An issue we observe in Fig. 3 is that since we are using a single level 
set to represent three zones, the zone with the lowest value cannot 
‘jump’ to the zone with the highest value (e.g. Fig. 4 h, and samples 
in the Suppor ting Infor mation). In this particular example case, this 
is problematic since the pinch-out represents an intersection of the 
3 zones. We circumvent this issue by repeating the inversion using 
the parametrization in terms of the two-level set functions that we 
introduced in Section 2.3.1 with three zones. The results shown in 
(Fig. 4 ) are much improved and the three distinctive zones for both 
DC resistivity and phase angle are better recovered. A useful feature 
that can be observed in Fig. 4 (a) is that the top layer is estimated 
as an almost discrete value, while the second and third layers are 
relati vel y smooth. This shows that there is lower uncertainty on the 
value of the top layer. The posterior zonal resistivities obtained from 

the mean level sets returned (from zone 1 to 3) are 249.8, 187.0 and 
7.3 
m; while those for phase angles are −20.1, −13.8 and −6.4 
mrad. 

3.2.5 Four zones formulation 

Another issue that is worth investigating is the effect of incorrectly 
specifying the number of zones. In Fig. 5 , we repeat EKI for this ex- 
ample with four zones, that is we allow the four values for resistivity 
(and the four values for phase angle) to be inferred. The priors for 
the fourth zone are specified as non-informative priors, spanning 
the range of the other three zones. The posterior zonal resistivities 
obtained from the mean level sets (c, d) returned (from zone 1 to 4) 
are 249.4, 123.4, 8.1 and 1.1 
m; while those for phase angles are 
−20.4, −14.0, −6.7 and −6.1 mrad. For resistivity, the middle layer 
does not extend as deep as the true field. For phase angles, the top 
zone is largely being identified correctly and the posterior is shown 
as four zones. Ho wever , it did not identify the bottommost, less 
ne gativ e phase angle zone at all. Instead, the middle zone extends 
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Figure 2. (a, b) True resistivity and phase angle models for the 2-D surface example, which comprises of an inclusion of identical geometry in both models 
and an additional inclusion in the phase angle model. (c, d) The resistivity model estimated by smoothness-constrained inversion. (e, f) The mean resistivity 
and phase angle model estimated by EKI across samples. (g, h) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (i, 
j) The prior estimated probability of zone 2 (i.e. not the background) (k, l) The posterior standard deviation for resistivity and phase angle. 
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o the bottom of the domain. The mean results (a, b) do, ho wever ,
orrectly show some indication that the resistivity and phase angle
alues in the lower left part of the domain lie somewhere between
hose in the top two zones. 
i  
.2.6 Effect of non-informative priors 

hile in many cases informative first guesses of priors for each zone
an be provided, it is worth considering the effects of using non-
nformative priors that are identical for each zone. Therefore, we
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Figure 3. (a, b) True resistivity and phase angle models for the 2-D 3-layer example, comprises of three collocated non-horizontal layers. (c, d) The resistivity 
model estimated by smoothness-constrained inversion. (e, f) The mean resistivity and phase angle model estimated by EKI across samples. (g, h) The resistivity 
and phase angle model obtained from the mean level sets estimated by EKI. (i, j) The prior estimated probability of zone 2 (i.e. not the background) (k, l) The 
posterior standard deviation for resistivity and phase angle. 
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have repeated the r uns repor ted in Figs 4 and 5 using the following 
priors for all zones: 

P ( ρ) = U 

[
0 . 5 
m , 300 
m 

]
, 

P ( ϕ 1 ) = U 

[ − 25 mrad , −5 mrad 
]
, 
The switch to non-informative priors certainly have caused has led 
to some deterioration of EKI results (Figs 6 and 7 ). For resistivity, 
the results are no worse than that in Fig. 3 , generally identifying a 
low resistivity pinch-out in a resistive background. In both cases, the 
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Figure 4. A repeat of Fig. 3 but with two level sets functions, thus allowing jumps from the lowest to the highest-value zones in a three-zone formulation. (a, 
b) The mean resistivity and phase angle model estimated by EKI across samples. (c, d) The resistivity and phase angle model obtained from the mean level 
sets estimated by EKI. (e, f) The prior estimated probability of zone 2 (i.e. not the background) (g, h) The posterior standard deviation for resistivity and phase 
angle. 
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op layer is clearly and accurately identified as a discrete, resistive
one. In Fig. 6 , the shape of the bottom of the pinch-out was not
learly identifiable but Fig. 6 (a) indicates the bottom zone is likely
o be less resistive than the top zone. The posterior zonal resistivities
btained from the mean level sets returned (from zone 1 to 3) are
50.4, 241.8 and 17.4 
m. Fig. 7 shows clearly the shape of the
inch-out, although the middle zone extends deeper than the true
eometry. The posterior zonal resistivities obtained from the mean
evel sets returned (from zone 1 to 4) are 249.4, 12.8, 12.8 and 8.0
m. 
For phase angles, in both cases all zones estimated by the mean

evel sets are close to −10.0 mrad (i.e. −12.18, −9.56, −7.68 mrad
or Fig. 6 , and −11.84, −10.66, −9.51 and −8.67 mrad for Fig. 7 ),
hus not returning very useful results for this problem. This is likely
o be caused by more uncertain DC resistivity as input, as well as
he greater dependence on informative priors of phase angles due
o their lower signal-to-noise ratio. 

.3 Pow Beck subcatchment 

.3.1 Site and data description 

he P o w Beck subcatchment is located within the Eden Valley in
orthwest England (south of Carlisle). Mejus ( 2014 ) used multiple
eophysical methods for hydro geolo gical characterization. Among
hem, four surface IP surv e ys were conducted at the site. In this
aper, we focus on the data for the surv e y IP09 of Mejus ( 2014 ),
hich consists of 48 electrodes at 2 m separation and 338 pairs
f transfer resistances and phase angles after data filtering. After
haracterization of data errors, data errors of 0.5 per cent are as-
umed for resistivity and while that for phase angle is based on a
urve-fitting, with the resultant formula being 0.0343 ϕ 

2 − 0.1397 ϕ 

 1.0 mrad. 
The geology at the site is dominated by Quater nar y superficial

eposits and glacial till dominates the Quater nar y cover. Borehole
ecords (1995–2006) from the British Geological Surv e y (BGS)
ith borehole log records showing that the thickness of superficial
eposits varies ranging from 0 to 25 m. The Quater nar y co ver o ver-
ies a bedrock belonging to the Sherwood Sandstone group, which
s comprised of cemented consolidated sediments. A percussive di-
ect penetration test was also conducted at one location along the IP
urv e y transect to reveal the vertical variation in material properties
see Fig. 8 a). We also include the classification of lithological units
ased on field-based electrical properties by Mejus ( 2014 ) (Fig. 8 b).
ejus ( 2014 ) also measured IP properties on laboratory samples

f lithologies at the site and noted a rank in polarization (given by
he imaginary component of electrical conductivity) of overburden
low est); cla yey till; sandstone (highest). 
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Figure 5. A repeat of Fig. 4 but using a four-zone formulation. (a, b) The mean resistivity and phase angle model estimated by EKI across samples. (c, d) 
The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (e, f) The prior estimated probability of zone 2 (g, h) The posterior 
standard deviation for resistivity and phase angle. 
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3.3.2 EKI IP inversion 

We perform IP inversion with EKI using a 3 zone formulation for 
both resistivity and IP and compare its results with conventional 
SCI (Fig. 9 ). Prior zonal values are 

P ( ρ1 ) = U 

[
10 
m , 100 
m 

]
, 

P ( ρ2 ) = U 

[
150 
m , 250 
m 

]
, 

P ( ρ3 ) = U 

[
250 
m , 1000 
m 

]
(35) 

while those for phase angles are 

P ( ϕ 1 ) = U 

[ − 2 mrad , 0 mrad 
]
, 

P ( ϕ 2 ) = U 

[ − 4 . 5 mrad , −2 . 5 mrad 
]
, 

P ( ϕ 3 ) = U 

[ − 15 mrad , −5 mrad 
]

(36) 

Fig. 9 shows the IP inversion results. The SCI result shows a 
relati vel y resisti ve surface soil la yer overla ying a fairly conductive 
zone extended to a depth of about 10 m, which overlies a slightly 
more resistive background. The mean estimate of EKI, while also 
showing a resistive upper layer, suggests that the underlying con- 
ductive layer extends to a greater depth and is variable horizontally. 
This may be a result of greater depth resolution in EKI than SCI, 
as pre viousl y reported in Tso et al. ( 2021 ). It is, ho wever , important 
to emphasize here that our EKI approach benefits from the 3-zone 
parametrization (via the level-set function) and the corresponding 
priors of resistivity on each zone. Since this prior information is 
not encoded in SCI, it comes as expected that the resulting overly 
smooth field has limited depth resolution. 

For phase angle, the SCI results show an area of less ne gativ e 
phase angle than the background above a depth of 10 m, which is in 
agreement with the EKI results. Ho wever , this zone is more laterally 
e xtensiv e in the latter. The posterior zonal resistivities obtained from 

the mean level sets returned by EKI (from zone 1 to 3) are 344.3, 
275.1 and 55.9 
m; while those for phase angles are −8.7, −3.7 and 
−0.3 mrad. The lack of DC resistivity contrast in the EKI results is 
almost certainly due to a lack of contrast in this property between the 
superficial sediments and the upper zone of the sandstone. Ho wever , 
the phase angle does show a contrast, suggesting a variation in 
electrical capacitive properties, which illustrates the potential value 
of IP in this example. 

Uncertainty analysis of the posterior distribution is provided by 
zonal probabilities and standard deviation maps. Zonal probabilities 
in most of the domain are near 0 or 1, which provide us an indication 
of how likely (under the posterior) it is for a point x to belong to 
each zone. It is worth reiterating that zonal probabilities depend on 
the threshold α1 and α2 in the level-set function parametrization. 
For the 3-zone formulation that we use here (see Appendix B ) the 
values for these thresholds are α1 = −0.1 and α2 = 0.1 and, thus, one 
should expect that, under the prior, all points will likely to belong 
to zone 2 (since the prior mean of the level-set is zero). Given the 

art/ggae012_f5.eps


Ensemble Kalman inversion for IP 1891 

Figure 6. A repeat of Fig. 4 but with non-informative priors. (a, b) The mean resistivity and phase angle model estimated by EKI across samples. (c, d) The 
resistivity and phase angle model obtained from the mean level sets estimated by EKI. (e, f) The prior estimated probability of zone 2 (g, h) The posterior 
standard deviation for resistivity and phase angle. 
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ow depth-resolution intrinsic to ERT, it comes as no surprise that
he deeper part of the domain either remains to be zone 2 and zone
 (given the proximity in resistivity values between zone 2 and with
one 3). Ho wever , it is remarkable that zone 1 (the low resistivity
egion) which is unlikely under the prior, is present in the central
egion with high probability under the posterior. 

Zonal probabilities are also useful to quantity uncertain near the
ransition between zones, which in this case is quite noticeable
t around 10 m depth for phase angle. The standard deviation for
esistivity is low, with higher values observed near zonal boundaries.
he standard deviation for phase angle are quite high in most areas
ince the range of estimated values are small. The EKI results agree
ell with percussive penetration test results (Fig. 8 ), that is a clear
istinction in electrical properties (in particular the phase angle) at
he lithological boundaries. 

.4 Permeab le r eacti ve barrier 

 permeable reactive barrier (PRB) is an in situ technology for
he remediation of a range of groundwater contaminants (chlori-
ated hydrocarbons, heavy metals, nitrate, etc.). The barrier is in-
talled downgradient of the contaminant plume; in situ treatment is
chie ved b y geochemical or bio geochemical reactions. Zero-v alent
ron PRBs are the most common type of such technology, and
re used for remediating chlorinated hydrocarbon contaminated
roundwater. PRBs are typically installed using trenching, although
ore recently injection type installation has also been adopted. En-

uring adequate emplacement of the barrier at installation is im-
or tant. Fur ther more, gi ven that an y PRB must retain its enhanced
ermeability relative to the host aquifer, it is necessary to monitor
he efficiency of the PRB over time to ensure satisfactory perfor-
ance. Slater & Binley ( 2006 , 2003 ) reported the use of electrical

maging to characterize the integrity and monitor the geochemical
lteration of a zero-valent iron PRB over time at the US Department
f Energy Kansas City Plant in Missouri, USA. 

.4.1 Site and data description 

ere, we re-invert the field data collected by Slater & Binley ( 2006 ).
he cross-borehole ERT and IP surv e y was conducted using 63
lectrodes distributed in three boreholes (see Fig. 6 for location of
he electrodes). In total, 2223 quadrupoles are used after filtering.
 5 per cent data error is assumed for DC resistivity, while a 2.0
rad data error is assumed for phase angle. 
The site includes a conducti ve, L-shaped, zero-v alent iron PRB.

he extent of the PRB is assumed known since it is an engineered
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Figure 7. A repeat of Fig. 5 but using non-informative priors. (a, b) The mean resistivity and phase angle model estimated by EKI across samples. (c, d) The 
resistivity and phase angle model obtained from the mean level sets estimated by EKI. (e, f) The prior estimated probability of zone 2 (g, h) The posterior 
standard deviation for resistivity and phase angle. 

Figure 8. Direct penetration test (DPT) data from the P o w subcatchment 
taken at approximately X = 42 m along the IP surv e y line and a simplified 
profile of the lithological units. (source: Mejus 2014 ). 
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structure. In Slater & Binley ( 2006 ), the regularization at the bound- 
ary between the PRB and the background is disconnected, meaning 
there is no smoothing applied across the boundary of the two ma- 
terials. In contrast, for the EKI inversions reported below, we have 
not supplied any prior information on the boundary. 

3.4.2 EKI IP inversion 

For EKI runs in this section, priors for zonal resistivity are 

P ( ρ1 ) = U 

[
80 
m , 300 
m 

]
, 

P ( ρ2 ) = U 

[
0 . 5 
m , 50 
m 

]
(37) 

while those for phase angles are 

P ( ϕ 1 ) = U 

[ − 7 mrad , −1 mrad 
]
, 

P ( ϕ 2 ) = U 

[ − 20 mrad , −12 mrad 
]

(38) 

Our initial inversion shows that, unlike previous examples, setting 
homogeneous length scales for priors yield better results. Therefore, 
for all PRB examples we set the length scales in x-direction to be 
identical to that in the z -direction after running eq. ( 24 ). 

To assess the utility of EKI, we first conduct inversions using 
a synthetic model, with a background resistivity of 100 
m and 
phase angle of −2.5 mrad; as well as a PRB resistivity and phase 
angle, respecti vel y, of 0.1 
m and −15 mrad (Fig. 10 a-b). Random 

noise of the same amount as the assumed data error levels are added 
to the synthetic data. In Slater & Binley ( 2006 ), the inversion is 
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Figure 9. P o w Beck subcatchment: (a, b) The resistivity model estimated by smoothness-constrained inversion. (c, d) The mean resistivity and phase angle 
model estimated by EKI across samples. (e, f) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (g, h) The posterior 
Zone 2 probabilities for resistivity and phase angle. (i, j) The posterior standard deviation. 
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erformed using SCI with regularization disconnect at the known
oundary of the PRB. Therefore, we consider SCI results with
nd without the regularization disconnect. The SCI IP inversion
Figs 10 c and d) recovers an ‘L-shape’ conductive anomaly that
s consistent with the true PRB position, ho wever , the phase angle
ecovery of the barrier region is weak (Fig. 10 d). In contrast, SCI
ith regularization disconnect return the ‘L-shape’ zone perfectly

Figs 10 e and f). 
The posterior zonal resistivity values recovered by EKI from

he mean level sets are 22.61 
m (zone 2) and 0.25 
m (zone 1)
Fig. 10 i). The estimated PRB zone overlap with the true region very
ell, except its top part is slightly thinner. The estimated bottom

xtent of the PRB is lower the expected, and it includes a fine,
iscontinuous, v ertical feature. Howev er, these slight artefacts are
nlikely to affect assessment of PRB integrity. The phase angle
 alues recovered b y EKI from the mean le vel sets are −2.49 (zone
) and −13.5 (zone 1) mrad (Fig. 10 j). As observed in the EKI
eld inversion, only the low part of the ‘L-shaped’, more ne gativ e
hase angle feature associated with the PRB is recovered, but not
he upper part. The zone 2 probability and STD maps also show the
onal uncertainty is low ev erywhere, e xcept slightly higher along
he estimated boundaries. 

For the inversion of field data, the SCI results with and with-
ut regularization disconnect are shown in Figs 11 (a)–(d). Without
he disconnect approach, the inverted resistivity and phase angle
mages does not resemble a PRB. The smooth images have high
esistivities and highly ne gativ e phase angles in the middle of the
odel domain. With the disconnect applied, very high resistivities

nd highl y negati ve phase angles are observed within the L-shaped
oundary. Ho wever , smooth, higher resistivities and highly nega-
ive phase angles zones are still observed in the middle of the model
omain. This may suggest the PRB extent may be slightly different
han assumed, or the impact of non-Gaussian noise (which is most
ikely due to modelling errors not being fully taken into account). 

The EKI results are reported in Figs 11 (e)–(l). Without using
ny prior knowledge of the PRB boundaries, the returned resistivity
atterns shows roughly the ‘L’ geometry, although the ‘L’ extends
ower and its top part is wider than assumed. The recovered phase
ngle map shows a highly ne gativ e phase angle zone with a roughly
ound structure dipping to the right. Note that its left boundary is
lmost identical as assumed and the groundwater flow gradient is
eft to right. The zone 2 probability and STD maps also show the
onal uncertainty is low ev erywhere, e xcept slightly higher along
he estimated boundaries. The posterior zonal resistivity from the
ean level sets (from zone 1 to 2) are 0.4 and 73.7 
m, while for

hase angles they are (from zone 1 to 2) −21.0 and −2.5 mrad. 
Based on our finding in this example, geoelectrical imaging with

KI may be a useful tool for probabilistic PRB integrity assess-
ents. While SCI returns deterministic, overly smooth images that
ay limit the interpretation of PRB-related features, regularization
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Figure 10. (a, b) True resistivity and phase angle models for the 2-D PRB example, which comprises of an L-shaped target that represents the PRB. (c, d) 
The resistivity and phase angle model estimated by smoothness-constrained inversion (without regularization disconnect). (e, f) The resistivity and phase angle 
model estimated by smoothness-constrained inversion (with regularization disconnect). (g, h) The mean resistivity and phase angle model estimated by EKI 
across samples. (i, j) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (k, l) The prior estimated probability of zone 
2 (i.e. not the background) (m, n) The posterior standard deviation for resistivity and phase angle. The red lines denotes the true PRB boundary. The three 
vertical arrays of black dots indicate the borehole electrode positions. 

Figure 11. (a, b) The resistivity model estimated by smoothness-constrained inversion for the PRB field example (without regularization disconnect). (c, d) 
The resistivity model estimated by smoothness-constrained inversion for the PRB field example(with regularization disconnect). (e, f) The mean resistivity and 
phase angle model estimated by EKI across samples. (g, h) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (i, j) 
The prior estimated probability of zone 2 (i.e. not the background) (k, l) The posterior standard deviation for resistivity and phase angle. The red lines denotes 
the assumed true PRB boundary. The three vertical arrays of black dots indicate the borehole electrode positions. 
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disconnect relies on very strong assumptions on the location of the 
PRB. Such an assumption may not be desirable because the PRB 

may not be constructed exactly as planned, or ma y ha v e e xperienced 
transformation o ver time. EKI pro vides an additional way to invert 
ERT and IP data and it relaxes this assumption and returns a map of 
mean zonal resistivity together with estimates of the posterior zonal 
probability that can be useful to monitor the shape and integrity 
of the PRB non-inv asi vel y over time. Although we recognize that 
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easures of uncertainty in terms of zonal probabilities are highly
eliant on the choice of the level-set parametrization and the thresh-
lds that we selected a priori , our work can be extended to infer
ore optimal thresholds from the ERT and IP data to better inform

he uncertainty in the estimates that we produce. 

.4.3 Effect of data noise 

e repeat the inversion of the synthetic PRB case by lowering the
ata noise levels to half of the original or more (Fig. 12 ). Specifically,
he noise levels are 2 per cent for DC resistivity and 0.5 mrad for
hase angle. 

The number of iterations required to converge has about dou-
led. This is expected as data is assumed to be of higher quality
nd are given more weight. The DC resistivity inversion improves
rom Fig. 12 . In particular, there is an increased number of cor-
ectl y identified low-resisti vity PRB pixels, and fe wer misidentified
nes outside the PRB. The EKI posterior resistivity from the mean
evel sets is estimated to be 29.33 and 0.28 
m. Phase angle results
lso show improvements. While Fig. 10 phase angle estimates do
ot show the PRB to resemble an ‘L’ shape, here it shows some
ndication that the feature is wider at lower depths. The posterior
onal phase angle is −14.45 −2.51 mrad. While there have been
mprovements in resolving features with lower data noise, the bot-
om of the ‘L’ shape PRB remains difficult to resolve clearly. The
ow resolution in this region may be mitigated by using a deeper
orehole electrode array. 

.5 Summary of conver g ence performance 

able 1 shows the convergence performance of the example cases in
erms of, D m , the square norm of the average residuals from eq. ( 26 ).
s discussed in Section 2.4.2 we expect this measure D m to achieve
alues close to one for the converged (posterior) ensemble (i.e.
hen m = q + 1). All cases show a large reduction from the initial
alue D 0 computed from the prior ensemb le, w hich confirms that
ur prior is rather uninformative and displays large uncertainty. In
lmost all of the reported cases, D m converges close to the value 1.0
hich, again, is indicative that the data can be explained, up to noise

evel (measurement errors) by the predictions made by the posterior
nsemb le. Cases w here D q + 1 achieves value substantially larger
han one could represent an underestimation of the variance of the

easurement error (e.g. Figs 7 and 11 for resistivity) which we use
n eq. ( 26 ) to weight the residual. Although we considered realistic
easurement errors for both the magnitude and phase angle com-

onents of the potential’s measurements, phase angle measurement
rrors were larger (relative to the size of the measurements) than
he magnitude’s errors used for resistivity inversions. It comes as
o surprise that w ay fe wer iterations were required for phase angle
nversion since larger errors (and so large variance) means the data
an be easier explained, albeit with larger uncertainty, with these
arger measurement errors. 

We also report the fraction of cells with their zone membership
eing correctly identified in Table 2 in cases where the true zone
eometry is known (1.0 implies perfect identification). Zone mem-
ership is obtained from the mean level sets by EKI. Note that this
easure is highly dependent on the geometry of the problem and

roblems with simple geometry and clear background region tend
o have high scores. This measure is particularly useful to e v aluate
eruns of the same problem. For instance, it shows an improvement
ith (i) using two level sets functions (higher score from Fig. 4
han Fig. 3 ) and (ii) with lower data noise levels (higher score from
ig. 12 than Fig. 10 ). Generally, in all cases the zone membership

s correctly identified for a large fraction of cells (i.e. > 0.7, with
he exception of phase in Fig. 7 , which is due to the effect of using
on-informative priors on phase angles) and the score for resistivity
s better than phase angle. 

 D I S C U S S I O N  

e have demonstrated the extension of EKI with level set
arametrization from ERT to IP data. This confirms the poten-
ial to extend the method to different geophysical modalities (Tso
t al. 2021 ), alongside with concurrent developments in its appli-
ation in seismic studies (Muir & Tsai 2020 ; Muir et al. 2022 ). In
eneral, this method is a highly flexible framework that is suitable
or a wide range of subsurface applications that has sharp changes
n properties and its advantage to solve the inverse problem using
nl y e v aluations of the forw ard solver (and not its Jacobian) means
t can be readily applied to new problems and even coupled or joint
odels. 
EKI is a robust approach for solving large-scale high-dimensional

ay esian inverse prob lems for w hich fully Bay esian sampling meth-
ds such as MCMC are computationall y unfeasible. Howe ver, it is
mportant to reiterate that EKI relies on Gaussian approximations
s well as the use of a small number of realizations. Hence, the
stimated uncertainty may be underestimated and, thus, care should
e taken to interpret the images (and their uncertainties) returned
y EKI and the underlying assumptions should be taken into con-
ideration (e.g. surv e y geometry, prior ranges, conceptual model).
or instance, when considering the uncertainty maps, the resolution
attern of the measurement array (e.g. lower resolution at greater
epths for a surface array) and prior formulation (e.g. choice of
evel-set thresholds α in Section 2.4.2 and Appendix B ) should
e taken into account. Meanwhile, we have shown that since the
ange of values for phase angles are small as well as their lower
ignal-to-noise ratio, their percentage uncertainty can be very high.
sers should consider these caveats when interpreting the resultant
ncertainty estimates. 

We have adopted a sequential approach to invert IP data in which
e first infer resistivity, then we infer phase angle. While a joint

nversion via EKI can also be performed, the dimension of the
nput space increases substantially. Thus a larger ensemble size may
e needed which, in turn, increases the computational cost of the
nversion algorithm. Also, for joint inversions both the magnitude
nd phase angle of the potential measurements need to be jointly
nv erted. Giv en that the phase angle measurements are smaller than
he magnitude measurements, there is a high risk that the former will
e overshadowed by the latter, and hence not significantly contribute
o the estimation of the geophysical properties. 

We also note the misfit improvements for phase angles tend to be
ignificantly smaller than resistivity, and the posterior zonal proba-
ility patterns are less clear. This does not imply a lack of value for
ncorporating IP data. Rather, it highlights an independent phase
ngle inversion requires good estimates of resistivity values as in-
uts. 

Based on the issues arisen in Fig. 3 , we have performed an in-
epth investigation on using alternative level-set formulations for
KI, such as using two level-set functions for three zones and
sing a four-zone formulation. We find that using two level-sets
nd thus allowing jumps from the lowest-value zone to the highest-
 alue zone greatl y improv e results in that e xample. We also find
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Figure 12. Repeat of Fig. 10 with lower data noise. (a, b) The mean resistivity and phase angle model estimated by EKI across samples. (c, d) The resistivity 
and phase angle model obtained from the mean level sets estimated by EKI. (e, f) The prior estimated probability of zone 2 (i.e. not the background) (g, h) The 
posterior standard deviation for resistivity and phase angle. The red lines denotes the true PRB boundary. The three vertical arrays of black dots indicate the 
borehole electrode positions. 

Tab le 2. F raction of cells being correctly identified for their zone membership based on the mean level 
set. The corrected values are obtained by manually adjusting for zone membership in the estimated 
field to the true field. This is to account for cases where two or more estimated zonal values are close 
to each other. 

Resistivity (corrected) Phase (corrected) 
Fig. 2 (inclusions) 0.98 0.82 
Fig. 3 (3 layers) 0.53 (0.87) 0.51 
Fig. 4 (3 layers, 2 level sets) 0.83 (0.91) 0.83 
Fig. 5 (3 layers, 4 zones) 0.15 (0.72) 0.38 (0.63) 
Fig. 6 (3 layers, 2 level sets, non-uniform priors) 0.67 0.29 
Fig. 7 (3 layers, 4 zones, non-uniform priors) 0.02 (0.74) 0.18 
Fig. 10 (PRB synthetic) 0.86 0.80 
Fig. 11 (PRB field) 0.81 0.68 
Fig. 12 (PRB synthetic low noise) 0.89 0.81 
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that incorrectly specifying a three-zone problem with four zones 
onl y slightl y af fected EKI results. Using non-informati ve priors 
that are identical for all zones somewhat impacted DC resistivity 
results, but had a very large impact on phase angle results. Finally, 
we note that each of these alterations to the level set formulation 
increases the prior uncertainty of the EKI problem, as indicated by 
the increases in the prior residuals D 0 (relative to that in Fig. 3 ) in 
Table 1 . Therefore, we recommend starting with a more basic, more 
infor mative prior for mulation w hen encountering new prob lems 
and considering whether EKI results can be improved by these 
alter native for mulations incrementally. 

As discussed earlier, since IP measures the electrical polariz- 
ability of subsurface materials, it provides additional information 
on, for example, hydraulic properties that cannot be obtained from 
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RT. Ho wever , since phase angle variations are generally small,
t is perhaps even more important to interpret phase angle esti-
ates alongside its uncertainty estimates. EKI provides an ef fecti ve
ethod for geophysical inversion for both resistivity and phase an-

les, especially if they are in arbitrarily shaped zones and there is
n abrupt jump in property values. Joint interpretation of resistivity
nd IP images, alongside their uncertainty estimates, can provide
seful and reliable information to delineate the spatial distribution
f hydraulic properties. 

In addition to visual inspection, EKI for IP results can also be
sed to obtain probabilistic maps of properties of interest, for ex-
mple permeability, given a suitable petrophysical model, such as
he Weller et al. ( 2015 ) model. In the Supporting Information, we
ave provided an example to use the results from this paper and
ncertainty propagation methods (Tso et al. 2019 ) to obtain maps
f mean and standard deviation of permeability, k . An advantage of
his method is that a breakdown for each of the petrophysical and
eophysical parameters can be obtained. For IP inversion, despite
he existence of petrophysical relationships between k and IP for
ecades, this is one of the first work to invert field IP data and
onvert it to k fields with uncertainty bounds. It represents a step
owards making more meaningful hydrological predictions from IP
ata. R ömhild et al. ( 2022 ) has recently used cross-hole IP data to
omplement hydraulic test to image near-surface aquifer. In the-
ry, the EKI level set approach demonstrated herein can be further
xtended for similar applications. 

 C O N C LU S I O N S  

e have demonstrated the use of EKI with level set parametrization
or IP data. Unlike commonly used SCI, it can effectively estimate
esistivity and phase angle structure with arbitrarily shaped zones.
mportantly, it also provides estimation of uncertainty in terms of
one membership and standard deviation. These uncertainty esti-
ates can be propagated to obtain uncertainty bounds of hydrolog-

cal properties of interest (e.g. via petrophysical relationships). Our
ndings highlight the added value of using the EKI approach to in-
ert ERT and IP data, not only for recovering geophysical structures
ut also for making probabilistic assessment of hydrological prop-
rties. We have also provided in-depth investigation on the effects
f more advanced level set formulations, the use of non-informative
riors, and data noise on EKI performance. Percentage uncertain-
ies for phase angles also tend to be higher than that for resistivity.
verall, EKI provides highl y v aluable information to delineate the

uxtaposition of contrasting material properties. 

U P P O RT I N G  I N F O R M AT I O N  

upplementary data are available at GJI online. 
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P P E N D I X  A :  E K I  A L G O R I T H M  

lgorithm 1 Ensemble Kalman inversion algorithm for a generic
nverse problem. 

Inputs: (1) w: measurements; (2) � measurements’ error co-
ariance; (3) { u 

( j) 
0 } J j= 1 : initial ensemble from the prior P ( u ); (4)

orward map G. 
Output: { u 

( j) } J j= 1 : posterior ensemble (ensemble from the ap-
roximate posterior P ( u | d). 

Set s 0 = 0 
while s n < 1 do 

(1) Prediction step. Evaluate 

G 

( j) 
n = G( u 

( j) 
n ) , j ∈ { 1 , . . . , J } , 

and define G n = 

1 
J 

∑ J 
j= 1 G 

( j) 
n . 

(2) Compute regularisation parameter αn : 
Compute α∗

n = 

1 
M 

1 
J 

∑ J 
j= 1 || � 

−1 / 2 ( w − G 

( j) 
n ) || 2 

if s n + 

1 
α∗

n 
≥ 1 then Set αn = 

1 
1 −s n 

, s n + 1 = 1; 

else ∼Set αn = α∗
n , s n + 1 = s n + 

1 
αn 

. 
end if 
(3) Analysis step. Define C 

u G 
n , C 

GG 
n by 

C 

GG 
n = 

1 

J − 1 

J ∑ 

j= 1 
( G( u 

( j) 
n ) − G n )( G( u 

( j) 
n ) − G n ) 

T , 

C 

u G 
n = 

1 

J − 1 

J ∑ 

j= 1 
( u 

( j) 
n − u n )( G( u 

( j) 
n ) − G n ) 

T . 

Update each ensemble member: 

u 

( j) 
n + 1 = u 

( j) 
n + C 

u G 
n ( C 

GG 
n + αn �) −1 ( w − G 

( j) 
n + η( j) 

n ) , 

where j ∈ { 1 , . . . , J } and η( j) 
n ∼ N (0 , �). 

n + 1 → n 

end while 

P P E N D I X  B :  S I N G L E  L E V E L - S E T  

A R A M E T R I Z AT I O N  

s for the two-level-set case, we describe only the formulation for
he parametrization of resistivity ρ( x ). For simplicity we consider
 simple three-zone parametrization that relies on the assumption
hat the unknown resistivity takes only three (unknown) resistivity
alues ρ1 , ρ2 and ρ3 on (unknown) regions denoted by 
1 , 
2 

nd 
3 , respecti vel y. These regions are, in turn, parametrized via
hresholding the level-set function, denoted by ξ ( x ). In other words,
e assume those regions are defined by 


1 = { x : ξ ( x ) ≤ α1 } , 

2 = { x : α1 < ξ ( x ) ≤ α2 } , 

3 = { x : ξ ( x ) > α2 } 

(B1) 
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where α1 and α2 are user defined parameters. In summary, the 3- 
zone characterization of the unknown resistivity is given by 

ρ( x ) = 

⎧ ⎨ 

⎩ 

ρ1 , ξ ( x ) ≤ α1 

ρ2 , α1 < ξ ( x ) ≤ α2 

ρ3 , ξ ( x ) > α2 

(B2) 

where for the results presented here we choose α1 = −0.1 and α2 

= 0.1. It is worth noticing that the interface between 
1 and 
2 

corresponds to the α1 -level-set of ξ ( x ) (i.e. { x : ξ ( x) = α1 } ) while 
the interface between 
2 and 
3 is defined by the α2 -level-set 
of ξ ( x ). The implicit requirement that α1 < α2 in ( 11 ) means that, 
C © The Author(s) 2024. Published by Oxford University P
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under these modelling assumptions, 
1 and 
3 cannot intersect. The 
modelling framework here is suitable, for example, in the case where 

2 corresponds to a background media with medium resistivity 
while 
1 and 
3 consist of non-overlapping regions of high and 
low resisti vity, respecti vel y. This limitations is addressed by the 
two-level set formulation discussed in Section 2.3 . However, with 
the increase flexibility comes an increase of dimension of the input 
space and, thus, potential increase in computational cost for the EKI 
algorithm. 
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