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Abstract: Ocean reflectance inversion algorithms provide many products used in ecological and
biogeochemical models. While a number of different inversion approaches exist, they all use only
spectral remote-sensing reflectances (Rrs(λ)) as input to derive inherent optical properties (IOPs)
in optically deep oceanic waters. However, information content in Rrs(λ) is limited, so spectral
inversion algorithms may benefit from additional inputs. Here, we test the simplest possible
case of ingesting optical data (‘seeding’) within an inversion scheme (the Generalized Inherent
Optical Property algorithm framework default configuration (GIOP-DC)) with both simulated
and satellite datasets of an independently known or estimated IOP, the particulate backscattering
coefficient at 532 nm (bbp(532)). We find that the seeded-inversion absorption products are
substantially different and more accurate than those generated by the standard implementation.
On global scales, seasonal patterns in seeded-inversion absorption products vary by more than
50% compared to absorption from the GIOP-DC. This study proposes one framework in which
to consider the next generation of ocean color inversion schemes by highlighting the possibility
of adding information collected with an independent sensor.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Since the launch of the NASA Coastal Zone Color Scanner in 1978, ocean color inversion algo-
rithms have been used to link the primary product available from ocean color satellite instruments,
spectral remote-sensing reflectances (Rrs(λ); sr−1), with biogeochemically relevant information
(e.g., [1]). Derived inherent optical properties (IOPs) are used to quantify phytoplankton biomass
and metrics of community structure [2–4], concentrations of particulate organic and inorganic
carbon [5–6], and metrics of detrital and dissolved material [7–8]. However, there are limits to the
information provided from Rrs(λ) alone [9–11]. The addition of ancillary information (including
prior information, [12]) within an inversion scheme invites new pathways for improving the
utility of such approaches and has been historically underutilized in the ocean color community.
Indeed, the use of ancillary data to inform inversions has improved aerosol models for decades
[13–15] and, more recently, independent environmental and hydrographic information has been
used to improve satellite algorithms to retrieve chlorophyll-a concentrations [16], IOPs [17]. and
to detect the presence of diatoms [18] and Synechococcus [19].

Spectral Rrs(λ) inversion algorithms solve for spectral absorption and backscattering. It follows,
then, that substituting either unknown parameter (or one of its subcomponents) with a known
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quantity of high quality could improve the other. Recently, we performed an evaluation of satellite
retrieved particulate backscattering (bbp(λ); m−1) from two satellite instruments that both fly
in the A-train constellation: the Moderate Resolution Imaging Spectrometer (MODIS onboard
the Aqua spacecraft) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission
[20,21]. MODIS-Aqua is a passive radiometer designed specifically for ocean applications,
whereas CALIOP is a polarized lidar optimized for atmospheric studies. MODIS-Aqua observes
large swaths of the ocean and provides global coverage every ∼2 days, whereas CALIOP
produces lines of data with a footprint of ∼ 100 m and a global repeat cycle of 16 days [22].
Despite shortcomings of CALIOP’s construction and coverage, CALIOP bbp(532) was found to
outperform MODIS-Aqua bbp(532) in a pointwise comparison with in situ Argo float data [20],
as well as in a follow-on study assessing different matchup scales [23]. MODIS-Aqua bbp(532)
data were also found to exhibit a seasonal bias when compared with Argo floats [21]. This bias
is not observed in CALIOP bbp(532) data and was ultimately proposed to be due to a seasonal
bias in ocean color Rrs(λ) [21]. Compared to MODIS-Aqua, CALIOP bbp(532) is retrieved from
a constant viewing angle and has substantially less atmospheric concerns in its retrieval [22],
which may contribute to its higher performance.

In the future, we envision realization of a satellite-borne ocean optimized lidar (e.g., [24–25]),
which will provide even better bbp(λ) coverage and accuracy than CALIOP. In preparation
for such data, we consider here how active and passive satellites might be used in tandem to
advance our understanding of ocean ecosystems. At the time of writing, the ideal dataset for
validating inversion-based global products from merged ocean color and lidar data does not exist
because, unlike backscattering sensors, arrays of absorption meters are not yet widely deployed
in situ. Several validation schemes were considered for this study but found to be premature due
to the lack of global co-located observations across the two satellite sensors and in situ data.
Nevertheless, we can still strategically test different datasets across theoretical and observational
cases to anticipate the magnitude of improvement that might be expected from such approaches
in the future.

Here, we offer two case studies that use simulated and satellite datasets of IOPs and Rrs(λ) to
evaluate the inclusion (or ‘seeding’) of independently measured bbp (single wavelength) within a
commonly-used inversion algorithm, namely the Generalized Inherent Optical Property (GIOP)
algorithm framework [26], which is suited to optically deep waters. The GIOP was also chosen
because it is a flexible framework that can be configured for future enhancements, including
Bayesian approaches [12], which is a natural extension to the work herein. The seeding approach,
in practice, can either reduce the number of free parameters to be retrieved from an inversion
algorithm or can offer an opportunity to replace one free parameter with another variable
of interest (Fig. 1). We use simulated data constructed for inversion algorithm development
[27], as well as bbp(532) data from the Ice, Cloud, and land Elevation Satellite (ICESat-2) and
CALIPSO missions as input to the seeded-inversion scheme. Our study adds to a growing body
of knowledge on how simple adjustments to ocean reflectance inversion schemes can significantly
affect outcomes (e.g., [26,28–31]), which in turn may enable insightful biogeochemical and
ecological interpretations in the future.

In essence, our analysis represents an exploration of an alternative inversion parameterization
to retrieve the total spectral absorption coefficient (a(λ); m−1). Extracting information about
absorbing constituents in seawater from ocean color remains challenging and yet is critical
for quantifying phytoplankton abundance, composition, and physiology (e.g., [32–38,9]). If
consideration of independent bbp(λ) datasets shows promise for seeding ocean color inversions,
alternative retrievals of absorption coefficients may be formulated. If these alternative absorption
coefficients are of improved quality relative to retrievals from current algorithms, they could
inform new understanding of phytoplankton ecology, biodiversity, and environmental stressors.
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Fig. 1. Illustration of workflow for the two inversion schemes from primary data products
(Rrs, λ) to output total absorption (a, λ). [Path 1]= default pathway. [Path 2]= seeded-
inversion pathway. Seeded products are compared to the simulated dataset ‘true’ absorption
values (for case study 1) and to satellite values (GIOP absorption described in [1], case study
2).

In the following sections, we begin with a description of the ancillary bbp(532) and Rrs(λ)
datasets used for our analysis (§2.1), the methodology for adapting the default configuration
of GIOP (GIOP-DC) to ingest bbp at a single wavelength (§2.2), and an uncertainty procedure
to perturb Rrs(λ) realistically with both random and systematic noise (§2.3). We then explore
how seeded-inversions can affect downstream products from point-by-point to global scales and,
finally, close with some recommendations for improving the next generation of ocean color
algorithms and opportunities for expanding upon the work presented herein.

2. Methods

2.1. Datasets

We acquired synthesized spectral Rrs(λ), bbp(λ), a(λ), and chlorophyll-a concentrations (Chl;
mg m−3) from the IOCCG Ocean Colour Algorithms Working Group synthetic data set [27].
This dataset defines IOPs across four orders of magnitude variation in Chl (20 values within the
range 0.03 to 30 mg m−3, N= 500). Rrs(λ) spectra are modeled from these IOPs using Hydrolight
radiative transfer code [39], with outputs defined in 10 nm spectral steps from 400-800 nm.
Given this use of a forward radiative transfer model, we consider the resultant Rrs(λ) to be
relatively free of errors, although we note that model assumptions regarding the sky model, the
volume scattering function, the state of the air-water interface, and inelastic scattering will affect
generated Rrs(λ). We interpolate simulated Rrs(λ) at the same wavelengths as MODIS-Aqua (412,
443, 488, 531, 547, and 667 nm) for consistent calculations across all datasets. Accordingly, a
single wavelength of simulated bbp is used (532 nm) as our seeded GIOP input.

To assess the extent of changes in seeded GIOP a(λ) on regional and global scales, we used
level-3 MODIS-Aqua Rrs(λ) observations (R2022 reprocessing) in tandem with satellite lidar
data. MODIS-Aqua data were acquired from the NASA Ocean Biology Processing Group
(https://oceancolor.gsfc.nasa.gov). Details of MODIS-Aqua IOP processing can be found at
https://oceancolor.gsfc.nasa.gov/atbd/giop/ and are described below. For the lidar data, we first

https://oceancolor.gsfc.nasa.gov
https://oceancolor.gsfc.nasa.gov/atbd/giop/
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explore a satellite lidar dataset from ICESat-2 collected in December 2018 (processing details
in [40]). ICESat-2 derived bbp(532) come from the ATL03 geotagged photon height product
(https://nsidc.org/data/atl03/versions/5). While these data have not been formally validated, they
were considered by [40] to exhibit general agreement with MODIS-Aqua bbp(532) retrievals.
The product continues to be developed and refined [41]. We acquired Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) bbp(532) daytime products from the Oregon State University
Ocean Productivity group (http://orca.science.oregonstate.edu/lidar.data.php). These data are
collected at nearly the same time as MODIS-Aqua because the two platforms are in the same
satellite constellation. Details of CALIOP processing are in [22]. For climatological comparisons,
MODIS-Aqua and CALIOP data are spatially binned and averaged to a 2-degree by 2-degree
global grid and temporally averaged to monthly resolutions over the shared time period of
2002-2017. The broad space/time averaging for the climatologies ensures sufficient observations
per grid box, provides representative coverage for broad global comparisons, and accommodates
differences in coverage and revisit times between CALIOP and MODIS-Aqua. As noted above,
CALIOP bbp(532) was previously found to be more accurate than MODIS-Aqua bbp(531) based
on both point-by-point comparisons with in situ data and using monthly averaged data over large
spatial bbp scales [20–21]. We therefore consider it suitable for the current exploratory study. In
Section 5 below, we also consider alternative ‘seeding’ schemes for lidar data.

All datasets described above were intended to be globally representative. The simulated dataset
is constructed across a large dynamic range of observed chlorophyll-a concentrations, whereas
ICESat-2, CALIOP, and MODIS-Aqua all have global spatial coverage. The datasets generally
have good agreement between measured and inverted (λ) [20,26–27,40], so their use in this study
likely represents a conservative estimate for average absorption changes due to seeding, while
also representing a fuller range of outcomes on a point-by-point basis given their global coverage.
It should go without saying that the use of lower quality estimates of bbp(λ) inversion products
may cause more dramatic changes in absorption retrievals. That is, seeding an ocean reflectance
inversion algorithm with ‘known’ bbp(λ) of any quality does not necessarily mean the retrieved
products will be of higher quality, nor that they will be significantly different from the non-seeded
retrievals, so it is important to explore the plausible range of outcomes across scales in order to
direct future work.

2.2. Ocean reflectance inversion model

The GIOP framework adopted for this study uses the following general form in its default
configuration (see [26] for additional details). After converting from above-surface Rrs to
subsurface rrs

(︂
rrs(λ) =

Rrs (λ)
0.52+1.7Rrs (λ)

, [43]
)︂

, the rrs(λ)-IOP relationship is defined as:

rrs(λ) = g1u(λ) + g2u(λ)2, (1a)

u(λ) =
bb(λ)

bb(λ) + a(λ)
(1b)

where g1 and g2 are spectrally fixed at 0.0949 and 0.0794, respectively, as in [42]. Both bb(λ)
and a(λ) can be further expanded as the sums of multiple components:

a(λ) = aw(λ) + aph(λ) + adg(λ), aph(λ) (2a)

a(λ) = aw(λ) + Mpha∗ph(λ) + Mdga∗dg(λ), (2b)

bb(λ) = bbw(λ) + bbp(λ) (3a)

bb(λ) = bbw(λ) + Mbpb∗bp(λ), (3b)

where aw(λ), adg(λ), and are respectively absorption by seawater (ranging from 0.0046 at 412 nm
to 0.43 at 667 nm), colored dissolved organic matter (CDOM) plus detritus, and phytoplankton.

https://nsidc.org/data/atl03/versions/5
http://orca.science.oregonstate.edu/lidar.data.php
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Similarly, bbw(λ) and bbp(λ) are respectively backscattering by seawater and particles. Note that
adg(λ), aph(λ), and bbp(λ) are also presented as the product of a magnitude (M) and spectral
shape (denoted with an asterisk, *). In the default configuration of GIOP (GIOP-DC), the three
free parameters are given by M, with the assumed spectral shapes informed from various studies
applied over the b∗bp(λ) wavelength range considered herein. Currently, GIOP-DC adopts a
power-law expression for with a dynamically-assigned spectral exponent as an empirical function
of Rrs ratios calculated following [43], an exponential expression for a∗dg(λ) with a fixed decay
exponent of 0.018 nm−1, and a dynamically-assigned, concentration-specific a∗ph(λ) calculated
following [34] that requires an estimate of Chl as input. Both aw(λ) and bbw(λ) are considered
known (e.g., [28,30] and references therein) and a Raman correction is applied [29]. Using Rrs
from 400-700 nm and the spectral shape assumptions as input, GIOP-DC estimates values for
the magnitudes (i.e., M terms) using nonlinear least squares inversion of Eqs. 1–3. Additional
algorithm metrics and quality control practices are described in [26].

For the current study, GIOP-DC was first run as described above and then rerun with Mbp
provided as input (‘seeded GIOP’). For this latter case, we considered Mbp provided as part of the
synthetic dataset and Mbp from ICESat-2 or CALIOP. In all cases, we report and evaluate a(λ) at
412, 443, 488, 531, 547, and 667 nm rather than the absorption coefficient of any given constituent
to minimize additional uncertainty introduced by partitioning a(λ) into its phytoplankton, detrital,
and/or dissolved contributions.

2.3. Uncertainty propagation and comparative statistics

While the simulated Rrs(λ) dataset is designed to have no radiometric errors, real datasets have
uncertainty and error associated with them. As such, we perturb the Rrs(λ) data with both random
noise and systematic error to explore how a(λ) retrievals are affected by realistic uncertainties. We
simulate random noise by perturbing Rrs(λ) values with 5% random (i.e., varying in magnitude
and direction per band) Gaussian noise. We add systematic error to simulated Rrs(λ) to emulate the
behavior of a recently documented systematic bias in ocean color data [21]. Relative systematic
error values (10% at 412, 443, and 488 nm, 20% at 531 and 547 nm, and 50% at 667 nm) were
based on observations at the Marine Optical BuoY (MOBY) site near Hawaii, which may not
fully reflect biases at all locations and times but are sufficient as a simple case study to explore
how systematic errors potentially affect outcomes. Systematic error is not added to the satellite
data because MODIS-Aqua data already contain this bias [21]. To test how error in bbp(532)
affects the performance of seeded GIOP, we add 20% random Gaussian noise to both simulated
and satellite input (seed) bbp(532) data.

For all datasets, we calculate median relative bias (given by the ratio between two products
minus 1, where a value of 0 indicates equivalence), Spearman’s rank correlation (a non-parametric
assessment of correlation, ρ), median absolute error (MAE, in the case of simulated data), and
median absolute difference (MAD, for the satellite data comparisons). Statistics are reported
relative to GIOP-DC a(λ) retrievals except for the simulated data case, in which statistics are
reported relative to simulated a(λ). Spearman’s rank correlation is a generally more conservative
measure of the strength and direction existing between two datasets compared to Pearson’s
correlation, as it is not affected by the range and variability in absolute data values. We use the
two-sample Kolmogorov-Smirnov (K-S) test for statistically significant differences among the
different GIOP configurations.

3. Case study results

3.1. Case study 1: IOCCG simulated algorithm development data

Seeded a(λ) values from the simulated dataset were retrieved by ingesting a single value of
simulated bbp(532) as Mbp within the inversion scheme. Results show visual improvement
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(less scatter around the 1:1 line) in the seeded GIOP a(λ) compared to the GIOP-DC results
(Fig. 2) that are confirmed by both lower error (Fig. 3) and higher correlations (Spearman’s
rank correlation, Fig. S1). Note that the seeded GIOP a(λ) values are slightly biased above the
1:1 line (Fig. 2,3, S1), which could result from the synthetic bbp(λ) dataset that also exhibits
slight documented biases (Fig. 5.1, Table 5.2 in IOCCG, 2006). When random or systematic
error are not added to Rrs(λ) (Fig. 3(a), b), the seeded GIOP results outperform the GIOP-DC
for the green and red wavelengths but generally not the blue. Seeded GIOP results outperform
GIOP-DC at all wavelengths except 412 nm when 5% random error is added to Rrs(λ) (Fig. 3(b)).
This performance improvement is especially pronounced after systematic error is added to Rrs(λ)
(Fig. 3(c)). Modifying bbp(532) values used to seed the GIOP with 5% or 20% random error
(Fig. 3(d)) results in negligible performance differences, with seeded GIOP results still generally
outperforming GIOP-DC at the green and red wavelengths (especially in terms of ρ, Fig. S1).

Fig. 2. [Case study 1] Comparison of GIOP-DC (blue circles) and seeded GIOP (orange
circles) predictions of a(m−1) versus known values across different wavelengths (nm, 6
different subplots). Black line= 1:1 relationship.

One reason for the general close correspondence between GIOP-DC and seeded GIOP a(λ) is
that both configurations are derived from the same Rrs(λ) and using the same assumed spectral
shapes of absorption components. The only difference between GIOP-DC and seeded GIOP
a(λ) is the method used to define or retrieve Mbp – that is, the former has three free parameters,
whereas the latter has only two. Despite similarities in the construction and data products used
herein, Kolmogrov-Smirnov (K-S) testing (N= 500) reveals that the seeded GIOP results are
significantly different from GIOP-DC results at the 5% significance level across all perturbations.
Altogether, the simulated data suggest that improvements to GIOP-DC products can come by
incorporating known values of bbp(532), even in the most conservative case when Rrs(λ) is
assumed to have no error.
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Fig. 3. [Case study 1] Median absolute error (MAE) in a(λ, m−1) for the GIOP-DC (blue)
and seeded GIOP (orange) under conditions of A) no error added, B) 5% random noise
added to Rrs(λ), C) systematic error added to Rrs(λ), D) 5% random noise added to bbp, E)
20% random noise added to bbp. Bar graphs are grouped by wavelength (nm) along the
x-axis. Error bars are standard error.

3.2. Case study 2: satellite data from IbbpCESat-2 and CALIOP

Seeding GIOP with ICESat-2 data results in a(λ) values that are broadly comparable (ρ> 0.9
for most wavelengths) to those derived from GIOP-DC (Fig. 4). Obvious deviations appear for
larger MODIS-Aqua a(λ) values, where the corresponding derived a(λ) values from seeding
with ICESat-2 data are much higher and biased positive. As with the simulated dataset, the
MAD between ICESat-2 seeded GIOP and GIOP-DC run with MODIS-Aqua data are relatively
small (on the order of 0.001-0.01m−1), but a clear clustering emerges among the seeded GIOP
configurations with ICESat-2 (right bars compared to left bar, Fig. 5, S2). All of the seeded GIOP
configurations are significantly different from GIOP-DC or GIOP-DC+ 5% Rrs(λ) noise cases
at the 5% significance level. In essence, adding random noise to Rrs(λ) does not significantly
change the a(λ) distribution, whereas seeding does. Compared to the simulated dataset, we see
large differences in a(λ) values (which can be nearly a factor of 2), particularly for larger a(λ)
values. These large differences provide evidence that seeding the GIOP with bbp(532) can create
substantial differences in absorption for certain places and times, ultimately indicating the need
to use products with low error and high fidelity across space and time so as to not confound
interpretation of these differences. Future performance assessments of ICESat-2 bbp(532) are
warranted, especially with consideration to higher attenuating waters and before ICESat-2 data
are distributed on global scales.

GIOP-DC a(λ) and CALIOP bbp(532) seeded GIOP fall along the 1:1 line (Fig. 6) and have
generally low median differences (Fig. 7). Similar to results with ICESat-2 (Fig. 5), the seeded
GIOP configurations group together (right three bars, Fig. 7) compared to the GIOP-DC with
random noise (left bar). K-S tests for differences (N= 51,048) again confirm that the seeded GIOP
results are significantly different from GIOP-DC at the 5% significance level. Taken together,
seeding the GIOP with bbp(532) produces significantly different a(λ) results for all wavelengths.
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Fig. 4. [Case study 2] a(λ) from the seeded GIOP via ICESat-2 bbp (y-axis) and MODIS-
Aqua a (x-axis) from the GIOP-DC, grouped by wavelength (nm). Black line= 1:1 relationship
between data across the two sensors.

We note that the large sample size in this case may favor statistically significant differences. The
low absolute magnitude differences between different configurations above led to the question:
are there important differences in global patterns between seeded and GIOP-DC a(λ)?

We find spatial differences between GIOP-DC and seeded GIOP that vary in magnitude
depending on location and time of year (Fig. 8). In particular, GIOP-DC total absorption (at
443 nm, see Fig. S4-S8 for other wavelengths) is enhanced relative to the seeded GIOP in most of
the world’s ocean (blue areas are where GIOP-DC> seeded GIOP). Exceptions are along North
America’s Pacific Coast, the Indian Ocean, the North Atlantic, the west coast of Africa, and
waters near Japan, where the seeded GIOP exceeds GIOP-DC total absorption by more than 50%
during certain months. Looking ahead, differences between GIOP-DC and seeded GIOP total
absorption, both spatially and seasonally, could be used to re-cast interpretations of absorption in
particular regions and times if they are found to improve upon GIOP-DC absorption values.
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Fig. 5. [Case study 2] Median absolute difference in a(λ) from different GIOP configurations
(different bars) and wavelengths (nm, subplots), all relative to a(λ) from GIOP-DC. Seeded
GIOP products are based on ICESat-2 bbp. Error bars are standard error.
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Fig. 6. [Case study 2] Scatter graphs of a(λ) from the GIOP seeded with CALIOP bbp
data (y-axis) and MODIS-Aqua a(λ) (x-axis) from GIOP-DC. Panels correspond to different
wavelength (nm; indicated at top). Black line= 1:1 relationship between data across the two
sensors.
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Fig. 7. [Case study 2] Median absolute difference in a(λ) from different GIOP configurations
(different bars) and wavelengths (nm, subplots), all relative to a(λ) from GIOP-DC. Seeded
GIOP products are based on CALIOP bbp. Error bars are standard error.
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Fig. 8. [Case study 2] Monthly (indicated at top of each panel) global maps of relative
a(443 nm) differences defined as the seeded GIOP value minus GIOP-DC value. Note
that while color bar is restricted to a range of -0.5 to 0.5 (i.e., -50% to 50%), some cases
exceeded these values. Seeded GIOP products are based on CALIOP bbp (532 nm). Note
the north-south stripe of missing data in the Pacific is due to a gap in ancillary data used in
CALIOP processing [22].
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4. Summary

In this study, we explore how GIOP products differ after seeding GIOP with known observations
of particulate backscattering, which also reduced the number of free parameters in the inversion
of Rrs(λ) from three to two. While we did not directly validate retrieved absorption quantities
between the seeded or non-seeded case, we performed the exercise of demonstrating improved
bbp(532) with satellite lidar [20,21] and by default, if we can seed with improved bbp(532) then
we might expect improvement in absorption. This analysis used a simulated dataset that was
created to test Rrs(λ) inversion algorithms (arguably providing a ‘best case’ testbed for the idea
of adding ancillary data to the GIOP) and found varied performance results across different
metrics and through the addition of either random noise or systematic error. Seeding the GIOP
with independent bbp(532) improved performance of derived a(λ) values even when the input
Rrs(λ) observations were assumed to be error free. Therefore, direct substitution of bbp(λ) within
an inversion can generate improved absorption products. Altogether, improvements to GIOP
retrievals can come by seeding the model directly with independent data.

We used satellite data to explore differences in datasets with varied errors and uncertainties.
We found broadly consistent qualitative results using both ICESat-2 and CALIOP, as was seen
with the simulated dataset. Compared to the simulated data findings, the satellite case study shows
that differences in bbp(532) values used to seed the GIOP can result in substantial point-wise
differences in a(λ). While differences in the absolute magnitude of absorption may seem small on
average (on the order of 1× 10−3 m−1), global patterns in these differences can be relatively large,
exceeding 50% in some regions and times (Fig. 8). Finally, although satellite lidars currently
only provide bbp(λ) at a single wavelength and thus rely on Rrs(λ) to inform spectral bbp, we still
find statistically significant differences in absorption products after seeding the GIOP with bbp
at a single wavelength. Improved approaches may come through incorporating additional bbp
wavelengths either through an ocean-optimized lidar or in situ datasets.

5. Recommendations for future work

Satellite sensors available for ocean research continue to diversify, presenting new opportunities
to advance scientific understanding. For example, the complement of the hyperspectral ultraviolet-
to-near infrared ocean color instrument (OCI) and multi-wavelength, muti-spectral polarimeters
on the upcoming Plankton, Aerosol, Cloud, ocean Ecosystem mission (PACE, [44]) is expected
to improve both atmospheric corrections of OCI data and characterizations of upper ocean
plankton and particle assemblages. Achieving these goals will require the remote sensing science
community to reconcile viewing angle and spatial coverage differences between the PACE
instruments. From the current study, we propose that coincident global lidar data can similarly
complement ocean color measurements, improving inversion products and increasing information
content.

While the CALIOP and ICESat-2 sensors have provided proof-of-concept demonstrations of
ocean retrievals with satellite lidar, our study was particularly motivated by the potential of future
satellite lidar to employ advanced technologies and yield even more accurate bbp retrievals than
heritage lidar [45]. In anticipation of such missions, it is prudent now to investigate advantages
proffered through merged active and passive remote sensing data and to develop strategies
addressing differences between lidar (narrow field of view, single viewing angle) and ocean color
(continuous swaths) data coverage (akin to the above noted issues regarding merged multi-sensor
PACE data). With respect to lidar data, perhaps the simplest approach is to utilize it much
like current in situ data are used for tuning ocean color algorithms and validating products, by
considering appropriate space/time matchup scales [46]. The tremendous advantage here of the
lidar data is that it provides spatially unbiased, global test data on a monthly basis that dwarfs the
coverage over in situ ship-based measurements. Alternatively, it may be possible to directly seed
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satellite Rrs(λ) inversion algorithms with spatially-extrapolated lidar data. Specifically, evaluation
of results presented in Fig. 8 indicates that differences between seeded GIOP and GIOP-DC
exhibit broadly coherent but temporally-varying global patterns, potentially suggesting regional
and seasonal biases in the standalone global algorithm. In such a case, a global lidar product
without sampling gaps could first be created through machine learning or interpolation methods
and then used at different scales directly within an inversion scheme. Irrespective of details, the
overarching message is that the time is ripe to think creatively about how to synergistically use
multiple space assets (radiometers, polarimeters, lidar, etc.) that each observe the ocean from a
different perspective and present different strengths and weaknesses.

With respect to follow-on analyses, the current study employed the GIOP algorithm because it
was specifically designed as a test bed with adaptations for other schemes (e.g., changing both
IOP and AOP assumptions, [26]). Different inversion algorithm parameterizations, and different
inversion techniques for solutions, should be considered when testing performance changes across
seeded and unseeded products, particularly when an assumed backscattering spectral slope is
used (see [47]). We found that choosing either a static (as in GSM, [48]) or dynamic bbp slope
(as a function of Rrs, [43]) did not change our primary finding that seeded-inversion absorption
products are possibly more accurate (evinced by the simulated data) than those generated by the
standard implementation. Also, in GIOP-DC, the mismatch between measured and modeled
Rrs(λ) is determined by minimizing a cost function, namely

∑︁
(Rrs, meas − Rrs, GIOP)

2. The
greatest cost occurs for absolute Rrs(λ) differences in the blue wavelengths, which typically have
larger magnitude differences than those in the green and red in open ocean environments. Future
cost functions could weigh the Rrs(λ) wavelengths by their uncertainties, signal-to-noise ratios,
or relative differences, which would adjust both GIOP-DC and seeded GIOP performance of
absorption across all wavelengths rather than preferentially adjusting the blue. Another approach
to eliminate the influence of outliers is using absolute values or the square root in a cost function,
rather than magnifying large differences as is done presently.

We performed our analysis using a simulated dataset and available satellite data. The range
in optical water bodies considered in this study is vast and the focus is on general statistical
differences between seeded and GIOP-DC outcomes. In addition to the lidar-based products
used in the present study, additional ancillary data might include temperature, salinity (beyond
their contribution to sea-water absorption and scattering, which is already included), mixed-layer
depth, or other variates (e.g., [17–18]), which in turn may inform derived products by not treating
Rrs(λ) observations in isolation [10].

Finally, we seeded the GIOP in the simplest possible case by considering the known bbp(532)
product to be ‘truth’ and conducted sensitivity tests with varied uncertainty of bbp(λ) values from
theoretical or satellite datasets. Future work should consider implementing a Bayesian framework
where bbp(λ) is treated as ‘prior’ information and has an assigned likelihood distribution that
considers both its uncertainty and possible bias [12,31]. Machine learning methods that
incorporate bbp(λ) and other ancillary data, besides the direct replacement scheme we explore
here, should also be investigated. In this study, we replaced an unknown parameter with a direct
observation, which reduces the unknown parameters in GIOP by one. In addition to asking how
seeding the GIOP may improve performance and change biogeochemical interpretation of water
bodies, one may also ask, ‘What can be done with the extra free parameter we have now?’
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