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Abstract
Motivated by the need for rapid and robust monitoring of phytoplankton in inland waters, this article introduces

a protocol based on a mobile spectral imager for assessing phytoplankton pigments from water samples. The proto-
col includes (1) sample concentrating; (2) spectral imaging; and (3) convolutional neural networks (CNNs) to resolve
concentrations of chlorophyll a (Chl a), carotenoids, and phycocyanin. The protocol was demonstrated with sam-
ples from 20 lakes across Scotland, with special emphasis on Loch Leven where blooms of cyanobacteria are fre-
quent. In parallel, samples were prepared for reference observations of Chl a and carotenoids by high-performance
liquid chromatography and of phycocyanin by spectrophotometry. Robustness of the CNNs were investigated by
excluding each lake from model trainings one at a time and using the excluded data as independent test data. For
Loch Leven, median absolute percentage difference (MAPD) was 15% for Chl a and 36% for carotenoids. MAPD in
estimated phycocyanin concentration was high (102%); however, the system was able to indicate the possibility of a
cyanobacteria bloom. In the leave-one-out tests with the other lakes, MAPD was 26% for Chl a, 27% for carotenoids,
and 75% for phycocyanin. The higher error for phycocyanin was likely due to variation in the data distribution and
reference observations. It was concluded that this protocol could support phytoplankton monitoring by using Chl a
and carotenoids as proxies for biomass. Greater focus on the distribution and volume of the training data would
improve the phycocyanin estimates.

Seasonal development of phytoplankton is of central
interest because phytoplankton are principal primary pro-
ducers in water bodies and have a major role in cycling of
nutrients and energy in aquatic food webs. Phytoplankton
exploit photosynthetically active radiation (PAR), and in var-
iable light environments different light-harvesting strategies
are favored (Kirk 2011; Reynolds 2006). Chlorophylls,

especially Chl a, are the most abundant light-harvesting pig-
ments in eukaryotic phytoplankton. In contrast, carotenoid
pigments of phytoplankton have a significant effect on their
optical properties (Hoepffner and Sathyendranath 1991; Nair
et al. 2008; Brito et al. 2015). In addition to chlorophylls
and carotenoids, cyanobacteria and cryptophytes have light-
harvesting complexes that consist of phycobiliproteins. Phy-
cocyanin is an essential phycobiliprotein in almost all cya-
nobacteria, and is, therefore, referred as c-phycocyanin
(Watanabe and Ikeuchi 2013; Stadnichuk et al. 2015).
Broadly, the pigment combinations of phytoplankton con-
firm the taxonomic composition, although the taxonomic
resolution of pigment analysis remains often at the level of
phylum or in some cases non-phyletic group (Irigoien
et al. 2004; Reynolds 2006; Wright and Jeffrey 2006). How-
ever, concentrations and ratios of total chlorophylls or Chl
a, total or major carotenoids and c-phycocyanin could be
informative enough to indicate the rough structure of phyto-
plankton and occurrence of a harmful algae bloom (Millie
et al. 1992; Sathyendranath et al. 2005). This strategy is a
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potential tool for monitoring that could help to detect harm-
ful algae blooms in their initial stages enabling rapid man-
agement actions.

Microscopy is a routinely used and standardized method
for monitoring phytoplankton composition and biomass
(EN 15204 2006) and spectrophotometry to assess Chl a biomass
(ISO 10260 1992), but spectroscopic methods, targeted to resolve
the pigment-related signals, have also been developed as impor-
tant on-site tools for aquatic monitoring (Brient et al. 2008; Rode
et al. 2016; Möller et al. 2019). Recent technological develop-
ments have enabled sensors to be developed for higher spectral
resolution; in addition to single-channel fluorometers,
multiexciters, and spectroradiometers yield robust estimates
of the occurrences of phytoplankton pigment groups
(Möller et al. 2019). In addition to on-site methods, satel-
lites carrying hyperspectral imagers are currently being
launched (Giardino et al. 2019; Chabrillat et al. 2020). A
hyperspectral imager produces a dataset, also called a data
cube, in which each point on the imaged surface contains
information about its reflectance or transmittance across a vari-
ety of wavelengths. The functional principle and practical size
of spectral imagers offer a possibility for laboratory use, too
(Legleiter et al. 2022). Spectral imagers yield information of the
target’s spatial distribution, and the measurement geometry is
adjustable to different sample sizes from individual samples to
the Earth’s orbit (Legleiter et al. 2022). This, together with a
capability of estimating both phytoplankton composition and
biomass with low effort compared to the standardized methods,
makes spectral imagers attractive as new tools for providing
environmental monitoring solutions.

Laboratory-based biomolecule or microscopy techniques are
laborious and require special expertise, leading to low spatial
and temporal coverage. Especially microscopy-based assess-
ments could be biased based on the person conducing the anal-
ysis (Vuorio et al. 2007) or have wide confidence intervals even
when conducted by one person (Salonen et al. 2021). On-site
sensors require frequent maintenance, calibration, and protec-
tion against vandalism (Rode et al. 2016). Remote sensing of
inland waters has limitations due spatial, temporal, and spectral
resolutions; and although these are currently being developed
(Mouw et al. 2015; Giardino et al. 2019), weather conditions
may still limit observations. Therefore, there is a niche for new,
rapid, and robust monitoring methods that are applicable year-
round in a variety of water bodies.

All spectroscopic methods, from laboratory to the field
and remote sensing, involve the challenge of resolving
phytoplankton-related signals from the measurements
when each pixel includes information from several different
sources. Light propagates non-linearly through a phytoplank-
ton community, as it scatters from particle to particle, and is
refracted and absorbed by different substances, including dis-
solved compounds (Kirk 2011). Therefore, physical models to
resolve, for example, cell or pigment concentrations, have been
described as being simplifications of complex phytoplankton

communities (Bricaud et al. 2007; Pyo et al. 2019; Werther
et al. 2022). Machine learning algorithms, in contrast, are com-
putational models that make predictions or generate new data
based on the data that they have been trained with. Among
machine learning algorithms, convolutional neural networks
(CNNs) have potential application for resolving information
from spectral images because the convolution filters separate
the irrelevant information when trained successfully
(Goodfellow et al. 2016). The filtered data are then fed into a
neural network that consist of nodes arranged in layers, with
the output layer being the final predictions. During model
training, optimization algorithms try to minimize the error
between the model estimates and the observed values. CNNs
are widely used to classify phytoplankton from images
(Henrichs et al. 2021; Kraft et al. 2022) but have also been used
to establish calibrations between reflectance spectra and Chl
a (Aptoula and Ariman 2021) or phycocyanin (Pyo et al. 2019).
The combination of a spectral imager and machine learning are
becoming the direction of development in monitoring culti-
vated microalgae (Solovchenko 2023); however, this approach
could be beneficial for environmental motoring, too.

This paper introduces and evaluates the use of a commercial
hyperspectral imager in the laboratory to image water samples
that had been concentrated by centrifugation. Three separate
one-dimensional (1D) CNNs were trained and tested to resolve
concentrations of Chl a, carotenoids and phycocyanin from the
spectral data. The protocol developed was demonstrated and
tested by sampling 20 Scottish lakes across a variety of water
colors and trophic states, with special emphasis on monitoring
the development of early summer phytoplankton in Loch
Leven, Scotland. Loch Leven is an important loch in many
respects, including the natural habitats and recreational opportu-
nities that it provides (Spears et al. 2022). Therefore, protecting
the lake and mitigating reoccurring cyanobacteria blooms is a
priority around Loch Leven. The protocol described here could
support the current microscopy and on-site monitoring, and
remote sensing practices by offering a robust, fast, and taxonom-
ically informative method with minimal, and non-destructive,
sample processing or need for instrument maintenance.
High-performance liquid chromatography (HPLC) that yields
information on composition and concentrations of carotenoids
and Chl a in the most detailed level of the current analysis
methods (Wright and Jeffrey 2006) was used as the reference
method for chlorophyll and carotenoids. Phycocyanin is typi-
cally assessed with spectroscopic methods from extracts
(Horv�ath et al. 2013; Sobiechowska-Sasim et al. 2014), and it
was chosen as the reference method for c-phycocyanin.

Materials and procedures
Sampling sites

Water samples were collected from 20 lochs in Scotland
by grab sampling from the surface water layers between May
and June 2022 (Supplementary Table 1, sampling times and
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locations). Sampling sites were located along the lake shores,
except at Loch Leven, where boats were used to collect sam-
ples from the open water. From one to three 2-liter con-
tainers were submerged until full, being careful not to disturb
the lake bottom. Samples were stored at +4�C and processed
in the laboratory within 48 h of collection. Samples from sepa-
rate containers were combined and mixed carefully before
being sub-sampled for imaging or reference pigment assess-
ments. Each lake was sampled once, apart from Airthrey Loch
and Gartmorn Dam Reservoir, which were sampled twice,
and Loch Leven which was sampled at one to three different
sampling sites (Harbour basin, Harbour Jetty, Pelagial, Kirkgate
Park, Reed Bower, Sluices) on five different sampling occasions.

Sample concentrating and spectral imaging
Samples for hyperspectral imaging were concentrated by

centrifuging 30–480 mL of lake water (3500 g, 10 min, room
temperature) in 15-mL centrifuge tubes using a swing out
rotor to ensure formation of a pellet at the bottom of the tube.
The pellet was suspended in 2 mL of the supernatant and up
to three replicates of each lake water sample was pipetted onto
a 24-well plate (Sarstedt) for the hyperspectral imaging. One
replicate of supernatant from each sampling occasion was
placed similarly in a sample well as a background to represent
the substances that did not settle during the centrifugation.

Spectral images were taken of the 24-well plates under trans-
mission light with Specim IQ imager (Specim, Finland). Specim
IQ is a mobile spectral camera for VNIR 400–1000 nm range with

204 spectral bands and spectral resolution of 7 nm full width at
half maximum (FWHM). The imaging arrangement (Fig. 1)
included a broadband halogen light source (Fiber-Lite, DC-950,
Dolan-Jenner) with a diffusor plate (Dolan-Jenner). Light setup
was 50% of the halogen’s maximum and imager’s exposure time
12 ms. The distance between the imager and the diffusor plate
was 15 cm, producing a spatial pixel size of approximately
0.2 mm � 0.2 mm.

Raw images were normalized between the imager’s internal
dark reference and a spectral image of the illuminated diffusor
plate, alone. The lower and upper ends of the spectra contained
higher levels of radiometric noise; therefore, the spectral data
were truncated to between 420 and 800 nm resulting to
150 spectral bands. Absorbance (A) was calculated from trans-
mittance (T) in accordance with Eq. 1:

A¼� logT ð1Þ

A region of interest (ROI) of 50 � 50 pixels was cropped
from each sample, taking care not to include the edges of the
wells (Fig. 2A).

Observed pigment concentrations
Chlorophylls and carotenoids were assessed with HPLC.

Three replicate samples of each lake (or six from Westfield
Power Plant Reservoir) were collected on glass fiber filters (GF/F
Whatman or Fisherbrand MF300) so that the filters were not
clogged but were notably colored. The filters were folded to
enclose the samples and wrapped in aluminum foil before
flash-freezing them by submerging them in liquid nitrogen and
then storing them at �80�C. Samples were shipped on dry-ice
to the analysis laboratory (DHI, Denmark), where they were
stored at �80�C and analyzed withing 4–6 months of collec-
tion. In the analysis laboratory, the filters were transferred to
vials containing 6 mL of 95% acetone with an internal standard
(Vitamin E) added. The samples were mixed on a vortex mixer,
sonicated on ice, extracted at 4�C for 20 h, and then mixed
again. The samples were then filtered through 0.2-μm Teflon
syringe filter into HPLC vials and placed in the cooling rack of
the HPLC. Buffer and extract were injected into the HPLC
(Shimadzu LC-10A HPLC system with LC Solution software) in
the ratio 5 : 2 using a pretreatment program and mixing before
injection. The HPLC method used was according to Van
Heukelem and Thomas (2005). The analysis included the fol-
lowing pigments: chlorophyll c2, chlorophyll c1, chlorophyllide
a, pheophorbide a, peridinin, ocillaxanthin, fucoxanthin, neo-
xanthin, aphanizophyll, violaxanthin, astaxanthin, dia-
dinoxanthin, dinoxanthin, myxoxanthophyll, antheraxanthin,
alloxanthin, diatoxanthin, zeaxanthin, lutein, canthaxanthin,
chlorophyll b (Chl b), Chl a, pheophytin a, α-carotene, and
β-carotene. After these initial analyses, Chl a was assessed sepa-
rately because it is used widely as a proxy for phytoplankton
biomass. Other carotenoids analyzed were pooled together and
referred as carotenoids; these exclude other chlorophylls,

Fig. 1. The imaging arrangement: a—spectral imager, b—sample plate,
c—diffusor plate, d—light impermeable hood.
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chlorophyllide a, pheophorbide a and pheophytin a because
their absorbance spectra are similar to Chl a in the visual
wavebands (Clementson and Wojtasiewicz 2019).

Phycocyanin concentration was analyzed spectrophoto-
metrically from extracts following protocol “E” of Horv�ath
et al. (2013). Samples for phycocyanin were collected on
glass fiber filters (GF/F Whatman or Fisherbrand MF300) and
stored at �20�C before shipping on dry ice to the analysis
laboratory; here they were again stored at �20�C and
analyzed within 3–6 months of collection. The stock solutions
for the extraction buffers were made by weighing 15.7 g of
monobasic NaH2PO4 • 2H2O and filling to 500 mL with ultrapure
H2O, and by adding 26.825 g of dibasic Na2HPO4 • 7H2O to a
separate flask filled to 500 mL with ultrapure H2O.
The extraction buffer was made by combining 306 mL of
the monobasic stock and 294 mL of the dibasic stock
resulting in a pH of 6.7–6.8. Fresh stock solutions and
extraction buffer were prepared for each day when phyco-
cyanin was extracted from the samples. Each frozen sample
filter was chopped in a mortar, then immersed in the buffer
and ground to a pulp with a pestle. After that grinding was
continued for 1 min. The mortar was rinsed with the buffer
so that the total extraction volume became 9–18 mL.
Samples were frozen at �20�C and thawed. Immediately
after thawing, the samples were sonicated in a water bath
(VWR Utrasonic Cleaner) for 10 min. Crushed ice was
added to the sonicator to keep the samples cool. Sonicated
samples were centrifuged for 10 min in a centrifuge with a
3500g with swing out rotor. The supernatant containing
the extracted pigments was decanted into a 10-mL syringe

with a syringe filter of 0.2 μm pore size. The first nine sam-
ples were filtered without centrifugation; however, it was
found that centrifugation was a practical of preventing the
syringe filters from becoming clogged. The samples were
injected directly in a quartz cuvette with 1 or 5 cm diame-
ter. Absorbance (A) was measured at 615, 652 and 750 nm
against the extraction buffer using a Shimadzu UV-1800
spectrophotometer. Phycocyanin concentration (Ce) in the
sample cuvette was calculated according to the equation of
Bennett and Bogorad (1973):

Ce ¼ A615 –A750ð Þ –0:474� A652 –A750ð Þ½ �=5:32 ð2Þ

Data augmentation for modeling
The samplings yielded 1–3 imaged replicate sample wells.

Image data were augmented by subsampling and simulating
more data by using a spectral mixture model, similar to that
used by Salmi et al. (2022), to train the 1D CNN efficiently. The
50 � 50-pixel ROIs were constrained to smaller, 10 � 10 pixel,
ROIs so that each 50 � 50-pixel ROI resulted to 25 smaller
ROIs. Samples of the supernatants were included in the data,
with the corresponding pigment concentrations being zero.
This resulted in 2225 samples. Mean absorbance spectra were
calculated across the smaller ROIs. A spectral mixture model
was created to randomly sum two mean spectra (xi + xj, where
i, j ϵ [0, 2224]) and the corresponding ground truths (mi + mj,
where i, j ϵ [0, 2224]). The mixture model resulted in groups of
spectra (Xsim) and ground truths (Msim). The sizes of Xsim and
Msim were 10,000 samples. Generating data this way is possible

Fig. 2. An example of a sample plate visualized by combining a red, blue, and green wavebands to form an RGB image (A) and mean spectra calculated across
the region of interest (B). The black rectangles in panel A illustrate the region of interest. The example shows three replicate centrifuged samples (a–c) and the super-
natant (s) from a Loch Leven sample. The volumes in panel B are the initial sample volume that was concentrated into the 2 mL sub-samples in the sample wells.
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because absorbance is additive; the created data contain the
same sources of variation as the original data, although the
new combinations might not always be ecologically likely.

Pigment estimation using 1D CNN
Modeling was done with Python version 3.8.8, Jupyter note-

books, Keras 2.4.0 library, and Tensorflow 2.4.1 backend. Nvidia
Tesla V100-SXM2 16 GB GPU units were used for computing.
The modeling demonstrations of this study consisted of (1) model
hyperparameter validation and (2) tests using the L-O-O method.
All of the spectral data were min-max normalized using the mini-
mum and maximum of the Xsim to facilitate learning.

1. Hyperparameter validation: Hyperparameter validations were
done using the Xsim and Msim that were divided so that
80% were used for training and 20% for validation. Differ-
ent model architectures were trained by adding one convo-
lution or dense layer at a time until validation loss (mean
squared error [MSE]) stopped decreasing (Supplementary
Table 2). The values set for different hyperparameters had
to be limited, because the number of possible combinations
would have been computationally impractical. Filter and
node counts were powers of two (32, 64, 128, 256, 512) to
make the iteration efficient. A maxpooling layer of size
2 was added after each convolution layer to simplify the
data. After the expedient numbers of convolution and
dense layers were obtained (Supplementary Table 2), fur-
ther hyperparameter tuning was done using Keras Tuner
Random Search. The hyperparameters tuned with the Ran-
dom Search were convolution filter count, node count in
the dense layers, kernel size and learning rate. Filter and
node counts between 32 and 512 were validated with step
32. Kernel sizes three and five and learning rates 0.01 and
0.001 were validated. A 100 different models per pigment
were trained for a 100 epochs with a patch size 32. MSE
was used as the loss function and the hyperparameters were
tuned using minimum validation loss as the objective. The
most valid model architectures (Tables 1–3, see Supplemen-
tary Fig. 1 for training and loss curves) selected this way
was used for the leave-one-out tests.

2. Leave-one-out tests: The capability of the most adequate
model architectures (Tables 1–3) to adapt to different lakes
was tested using the L-O-O method, where the lake that
was left out was used as independent test data and
excluded from the Xsim and Msim. Therefore, the trained
model had not used data from the test lake, even as a part
of a modeled mixture. The data used for testing were non-
augmented mean spectra from the 50 � 50-pixel ROIs and
their corresponding observed pigment concentrations. The
models were tested on the 50 � 50-pixel ROIs because these
represent how the method would be used in practise, in
contrast to the augmented training data. The mean spectra
were min-max normalized using the minimum and maxi-
mum of Xsim. The L-O-O tests resulted to 20 different

trainings of the architectures. Loch Leven was sampled five
times between May and June to study the potential of the
protocol to support regular phytoplankton monitoring;
therefore, the L-O-O test results for Loch Leven are given
separately from the results for the other lakes.

Error metrics
1. Measurement error: Coefficient of variation (CV, %) was

determined for mean absorbance spectra and HPLC and
spectrophotometry assessments where three replicates were
prepared. Coefficient of variation was calculated as follows:

CV,%¼ SD
μ

� �
�100 ð3Þ

where μ is the mean of the replicate assessments and SD the
standard deviation. Replicates were from separate filtrations
and separate tubes during centrifugations; this way, the coef-
ficient of variation included variation due to sample
processing and measurement. Average distance from the
mean was calculated for samplings that had two replicates
instead of three. The coefficient of variation or distance from
the mean for the imaging was calculated as the average
absorbance spectrum across the 50 � 50 pixel area of the
imaged sample well (Fig. 2B) and with the metrics for the
mean spectra being calculated from replicate samples wells.

2. Performance of the CNNs: The error between the observed
(obs) and estimated (est) pigment concentrations obtained
using the 1D CNN were calculated using typical error met-
rics (Morley et al. 2018), that is, median absolute percent-
age difference (MAPD, %), mean absolute percentage error
(MAPE, %) and root MSE (RMSE). Also, median symmetric
accuracy (MdSA) was calculated to provide a robust error
estimate for biased data (Morley et al. 2018). The metrics
were defined as follows, where N is the number of samples:

MAPD,%¼median
esti�obsij j

obsi

� �
�100, i¼1,…,N ð4Þ

MAPE,%¼mean
esti�obsij j

obsi

� �
�100, i¼1,…,N ð5Þ

RMSE,μgL�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i

est�obsð Þ2
 !vuut , i¼1,…,N ð6Þ

MdSA,%¼ 10median log10
est
obsð Þj jð Þ �1

� �
�100 ð7Þ

Assessment
Measurement error

The mean coefficient of variation in the absorbance spectra
was 20.9% (SD = 21.2) and the median was 15.1% (Table 4).
Mean coefficients of variation in the HPLC assessments of Chl
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a and carotenoids were 6.7% (SD = 6.0) and 5.7% (SD = 4.0),
respectively. For phycocyanin assessments, the mean coefficient
of variation was 16.6% (SD = 17.5, median 9.3). The errors esti-
mated as the distance between the means of two replicates of
mean absorbance spectra were of the same order of magnitude
as the corresponding coefficient of variation (Table 5). For phy-
cocyanin assessments, distances from the mean were slightly
lower than, or the same order of magnitude as, the error calcu-
lated as the coefficient of variation (Table 5). These levels of mea-
surement error determine the accuracy that the 1D CNN could
be expected to provide in estimating pigment concentrations.

Observed pigment concentrations
The observed total pigment concentrations based on the

reference HPLC and spectrophotometry assessments varied
across two orders of magnitude; 3.2–335.7 μg L�1 in the

non-condensed lake water samples (Fig. 3). Median concen-
tration of Chl a in the dataset was 6.6 μg L�1, carotenoids
4.3 μg L�1, and phycocyanin 4.6 μg L�1 indicating that most
of the sites sampled were relatively oligotrophic. The respec-
tive mean concentrations were 17.9, 8.2—, and 22.5 μg L�1.
Total pigment concentrations were highest in Airthrey
Loch, Loch Leven, and Monikin Reservoir (Fig. 3). The
observed Chl a and phycocyanin concentrations were
58.7–58.9 and 162.3–244.8 μg L�1 in Airthrey Loch, respec-
tively, 10.4–58.9 and 4.6–45.9 μg L�1 in Loch Leven and
21.5 and 32.4 μg L�1 in Monikin Reservoir. Pigment concen-
trations decreased in Loch Leven in mid-June (Fig. 3), but
otherwise Chl a and phycocyanin concentrations stayed
relatively high in these lakes. The blooming taxa were
identified as coiled Nostocales species based on qualitative
scrutiny using an inverted light microscope (see description

Table 1. Model architecture selected to estimate chlorophyll a concentration.

Layer Kernel or pool size Activation Output shape Parameters Learning rate (Adam)

Conv1D 3 Relu (None, 148, 384) 1536 0.001

MaxPooling1D 2 (None, 74, 384) 0

Conv1D 5 Relu (None, 70, 32) 61,472

MaxPooling1D 2 (None, 35, 32) 0

Conv1D 3 Relu (None, 33, 32) 3104

MaxPooling1D 2 (None, 16, 32) 0

Conv1D 5 Relu (None, 12, 384) 61,824

MaxPooling1D 2 (None, 6, 384) 0

Flatten (None, 2304) 0

Dense Relu (None, 480) 1,106,400

Dense Relu (None, 320) 153,920

Dense Relu (None, 320) 102,720

Dropout (0.2) (None, 320) 0

Dense Linear (None, 1) 321

Table 2. Model architecture selected to estimate the carotenoid concentration.

Layer Kernel or pool size Activation Output shape Parameters Learning rate (Adam)

Conv1D 3 Relu (None, 148, 96) 384

MaxPooling1D 2 (None, 74, 96) 0 0.001

Conv1D 3 Relu (None, 72, 384) 110,976

MaxPooling1D 2 (None, 36, 384) 0

Conv1D 5 Relu (None, 32, 32) 61,472

MaxPooling1D 2 (None, 16, 32) 0

Conv1D 3 Relu (None, 14, 32) 3104

MaxPooling1D 2 (None, 7, 32) 0

Flatten (None, 224) 0

Dense Relu (None, 384) 86,400

Dense Relu (None, 352) 135,520

Dense Relu (None, 480) 169,440

Dropout (0.2) (None, 480) 0

Dense Linear (None, 1) 481
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of the microscopy-based observations in Supplementary
Table 1). The algal blooms in Loch Leven exceeded the first
Chl a alert level of 10 μg L�1 set by World Health Organiza-
tion (WHO 2003) and once also the moderate health alert of
50 μg L�1 (WHO 2003) in late May.

Estimated pigment concentrations
When Loch Leven was excluded in the L-O-O tests, the

CNNs trained with the data from the 19 other lakes yielded
adequate estimates of Chl a and carotenoid concentrations for
Loch Leven (Fig. 4). Median absolute percentage difference
was 15% for Chl a (MAPE 22%, SD 23%) and 36% for caroten-
oids (MAPE 35%, SD 29%). However, the model failed to pre-
dict the mid- and late-June carotenoid concentrations in Loch
Leven resulting to 64%–80% error (Fig. 4). Phycocyanin esti-
mates were typically higher than the observed phycocyanin
levels in Loch Leven (Fig. 4), with the median absolute
percentage difference being 102% (MAPE 174%, SD 199%)

for phycocyanin estimates at this site. The estimates of Chl
a exceeded the first alert level of WHO at each sampling time,
and the second, level of moderate health alert in late May and

Table 3. Model architecture selected to estimate the phycocyanin concentration.

Layer Kernel or pool size Activation Output shape Parameters Learning rate (Adam)

Conv1D 5 Relu (None, 146, 160) 960

MaxPooling1D 2 (None, 73, 160) 0 0.001

Conv1D 3 Relu (None, 71, 384) 184,704

MaxPooling1D 2 (None, 35, 384) 0

Conv1D 5 Relu (None, 31, 32) 61,472

MaxPooling1D 2 (None, 15, 32) 0

Conv1D 3 Relu (None, 13, 352) 34,144

MaxPooling1D 2 (None, 6, 352) 0

Conv1D 5 (None, 2, 192) 338,112

Flatten (None, 384) 0

Dense Relu (None, 192) 73,920

Dense Relu (None, 448) 86,464

Dense Relu (None, 320) 143,680

Dense Relu (None, 352) 112,992

Dense Relu (None, 384) 135,552

Dense Relu (None, 288) 110,880

Dropout (0.2) (None, 288) 0

Dense Linear (None, 1) 289

Table 4. Coefficient of variation (CV, %) in different assessments calculated from three replicate samplings. Imagingabsorbance(λ) denotes
absorbance spectra calculated over the 50 � 50 pixel ROI, Carotenoids denotes total concentration of carotenoids, SpectrophotometryPC
denotes spectrophotometric assessments of phycocyanin.

CV (%) Imagingabsorbance(λ) HPLCChl HPLCCarotenoids SpectrophotometryPC

Mean 21 6.7 5.7 17

SD 21 6.0 4.0 18

Median 15 5.0 5.0 9

Samplings 14 31 31 3

Replicates 3 3 3 3

Table 5. Distance from the mean (%) in different assessments cal-
culated from two replicate samplings. Imagingabsorbance(λ) means
absorbance spectra calculated over the 50 � 50 pixel ROI, Caroten-
oids denotes total concentration of the major carotenoids,
SpectrophotometryPC denotes spectrophotometric assessments of
phycocyanin.

Distance from
the mean (%) Imagingabsorbance(λ) SpectrophotometryPC

Mean 18 6
SD 17 2
Median 14 7
Samplings 7 4
Replicates 2 2
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late June (Fig. 5). At the times when Chl a moderate health
alert levels were exceeded, also phycocyanin estimates were
high (Fig. 4). The RMSE for Chl a estimates at Loch Leven was
8.4 μg L�1, for carotenoids 4.5 μg L�1, and for phycocyanin
31.7 μg L�1. MdSA was 15%, 39%, and 107%, for Chl a, carot-
enoids and phycocyanin, respectively, in Loch Leven.

When the 19 lakes other than Loch Leven were scrutinized,
the congruence between the observations and the estimations
given by the 1D CNN was adequate for Chl a and total carot-
enoids (Fig. 5), median absolute percentage difference being
26% (MAPE 30% SD 23%) and 27% (MAPE 47%, SD 93%),
respectively. The highest prediction errors were for samples
from Westfield Power Station Reservoir (Fig. 5), which,
according to qualitative microscopic inspection, was blooming
with the green alga Monoraphidium sp. This deviating observa-
tion is corroborated also by the notably high proportion of
Chl b (Supplementary Fig. 2) and the separation of the water
body in the primary component analysis of the pigment profiles
(Supplementary Fig. 2). Median absolute percentage difference
for the phycocyanin concentrations was high (75%, MAPE
193%, SD 274%). RMSE was 4.6 μg L�1 for Chl a estimates,
5.6 μg L�1 for carotenoid estimates and 50.0 for μg L�1 for phy-
cocyanin estimates (Fig. 5). MdSA was 26%, 35%, and 215%, for
Chl a, carotenoids and phycocyanin, respectively, in the lakes,
excluding Loch Leven. The highest concentrations in the plots
(Fig. 5) were extrapolations by the trained model, because
samples containing spectra from the test lake were removed
from the model training data (Xsim) for the L-O-O tests.

Discussion
A proposed protocol to resolve Chl a, carotenoid and phy-

cocyanin concentrations, based on a mobile spectral imager
and 1D CNNs, was developed and evaluated against HPLC
and spectrophotometry-based assessments. The imaging setup
was simple to operate, and the samples required minimal
processing in laboratory. However, there are some important
sources of variation, especially in the sample processing and
in the volume and distribution of training data, that need to
be considered when applying this protocol.

Measurement error and model performance
One of the most prominent sources of variation in the imag-

ing protocol is likely to have been the cell distribution resulting
from centrifugation. The centrifugation force was selected so that
it did not destroy phytoplankton cells and pigments could be
expected to stay inside intact cells. However, the centrifugation
force used here was probably not strong enough to settle very
buoyant or small cells, such as picophytoplankton. In this study,
Volvox colonies in samples from Lake of Menteith recovered
quickly from the centrifugation and started to swim up into the
centrifuge tube. Therefore, it is very important that samples are
pipetted quickly to minimize the loss of flagellated cells.

The model performance evaluated with the median percent-
age metrics was on a similar level to the coefficients of variation
in the assessments. This indicated that the expected perfor-
mance had been achieved. In this study, despite sampling the

Fig. 3. Observed pigment composition in the 20 sampled lakes. Samples with high concentrations and samples from Loch Leven are shown in separate
panels for clarity. Chl a and carotenoid concentrations are averages of three replicate filtrations (six replicates from Westfield Power Station Reservoir),
and phycocyanin 1–3 filtrations.
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lakes as a gradient from western to eastern Scotland, most of
the lakes were oligo-mesotrophic and rather similar in their pig-
ment profiles apart from the phycocyanin-rich Airthrey Loch,
Loch Leven and Monikin Reservoir, and the Chl a-rich West-
field Power Station Reservoir (see Supplementary Fig. 2 for a
PCA). Werther et al. (2022) noted that that algorithms to esti-
mate Chl a from satellite images have been developed, typi-
cally, for eutrophic lakes. In their study, these authors used a
Bayesian neural network to estimate Chl a from multispectral
satellite data, including oligotrophic and mesotrophic lakes,
and reported MdSA values of 17.28–32.42%. The MdSAs
for Chl a and carotenoids in this study were on the same level
(26–35%) in the L-O-O tests.

Recently, Aptoula and Ariman (2021) demonstrated the
use of a CNN to resolve Chl a concentration from

multispectral satellite images of Lake Balik, Turkey. They
reported RMSEs of 4.07–13.64 μg L�1 for estimations across
different temporal and spatial scales. Pyo et al. (2019) con-
structed a CNN to resolve Chl a and phycocyanin concentra-
tions from hyperspectral satellite images of Baekje weir in
Geum River, Korea. Their validation results showed good
consistency between the observed concentrations and CNN-
based estimates (R2: 0.73–0.86). The RMSE was 8.34 μg L�1

for Chl a estimates and 9.39 μg L�1 for phycocyanin esti-
mates (Pyo et al. 2019). In this study, RMSE values of Chl
a and carotenoids from the L-O-O tests (4.6 and 5.6 μg L�1,
respectively) were lower than, or at a similar level to, the
results presented by Aptoula and Ariman (2021) and Pyo
et al. (2019). In this study, condensation of the oligotrophic
lake samples was no doubt instrumental to detecting the

Fig. 4. Monitoring of pigments in Loch Leven in May–June 2022. “Observed” refers to HPLC assessments of chlorophyll a and carotenoids, or spectro-
photometric assessment of phycocyanin. “Estimated” refers to the concentrations predicted by the 1D CNN. The 1D CNNs were trained with mixtures
(Xsim) of samples from 19 lakes, excluding Loch Leven. Error bars show the minimum and maximum of the observed or estimated values. Chl a alert con-
centrations by WHO (2003) and corresponding phycocyanin concentrations according to Brient et al. (2008) are marked on the panels with yellow
(lower alert levels) and red (higher alert levels) lines.
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pigment-related signal from the spectral images. For Loch
Leven, RMSEs were at the similar level or lower for Chl a and
carotenoids (8.4 and 4.5 μg L�1) than the results by Aptoula
and Ariman (2021) and Pyo et al. (2019). Error in phycocya-
nin estimates from this study were notably higher than those
reported by Pyo et al. (2019).

Variation in phycocyanin estimates
An explicit level of risk for phycocyanin concentration in

lakes cannot be estimated because several factors add variation
to the detection of phycocyanin. Cyanobacterial species and
proportion, as well as variability in their intracellular phycocy-
anin concentration, affect the observation of the pigment

Fig. 5. Ratios of observed concentrations and estimations made by the leave-one-out CNNs. “Observed” refers to the HPLC assessments of chlorophyll
a and carotenoids, or the spectrophotometric assessment of phycocyanin. “Estimated” refers to the concentrations predicted by the 1D CNN. Values are
means of 1–3 replicates (6 HPLC replicates for Westfield Power Plant). Error bars show the minimum and maximum of the observed or estimated values.
Values below 1 μg L�1 are omitted for the logarithmic scales. “Loch” prefixes or “Reservoir” suffixes are omitted from the legend to improve readability.
The models were trained with Xsim where data from one lake at a time (the test lake for the estimations) had been removed.
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(Stumpf et al. 2016). The WHO has set a Chl a concentration
of 10 μg L�1 as the first alert level for irritative and allergenic
reactions due to possible cyanobacteria blooms and 50 μg L�1

as the second, moderate health alert level (WHO 2003). Also,
based on the sampling of 35 water bodies in western France,
Brient et al. (2008) estimated that these levels of alert could
correspond to approximately 30 μg L�1 (� 2 μg L�1) and
90 μg L�1 (� 2 μg L�1) of phycocyanin. In Loch Leven, the
phycocyanin estimates increased with Chl a estimates
(Pearson r = 0.62, p = 0.06, Spearman’s ρ = 0.77, p = 0.009).
Each time, when Chl a estimate exceeded the level of moder-
ate health warning, phycocyanin estimates exceeded at least
the first level of alert by Brient et al. (2008, Fig. 4). However,
the results from Loch Leven indicated that the first phycocya-
nin alert level of 30 μg L�1 might be too high for Loch Leven,
and the alerts should be given earlier. Therefore, although the
protocol demonstrated here failed to estimate phycocyanin
concentration adequately, it could be a promising application
for early detection of cyanobacteria blooms.

The reasons for the high variation in phycocyanin estimate
in this study are likely to have been the variation in the
spectrophotometry-based phycocyanin assessments and,
more, prominently the imbalanced data distribution. Phycocy-
anin concentrations were generally low in the data from the
20 lakes, with few containing phycocyanin concentrations
above the alert level. Therefore, there were unlikely to have
been enough data for the L-O-O tests to make adequate predic-
tions of concentrations. In the reference assessments by
spectrophotometry, the variation could have been caused by
incomplete extraction of the pigment from cells as cyanobacteria
are known to be resistant to the mechanical degradation on
which the extraction protocol of the water-soluble pigments is
based (Horv�ath et al. 2013). Carotenoid aphanizophyll was
observed in the phycocyanin-rich Airthrey Loch, Loch
Leven, and Monikin Reservoir (Supplementary Fig. 2). In
addition to phycocyanin, aphanizophyll is a biomarker of
cyanobacteria (Peltomaa et al. 2023). In the dataset of all
the lakes and samplings, phycocyanin concentration corre-
lated with aphanizophyll concentration (r = 0.6, p < 0.001)
and with Chl a concentration (r = 0.7, p < 0.001), suggesting
that in addition to phycocyanin analytics other sources con-
tributed to the variation. Tests with a Loch Leven sample
and Grad CAM algorithm (https://www.kaggle.com/discussions/
general/286454, accessed 06 October 2023) showed that the
phycocyanin model was focusing on the region of expected
phycocyanin absorbance (Supplementary Fig. 4). Based on these
observations, both the relatively limited training data and the
variation in the phycocyanin analytics probably caused the high
error in phycocyanin estimates.

Outlook
The possibility to resolve carotenoid concentrations, in addi-

tion to the traditionally monitored Chl a concentrations, in a
rapid and robust way could open up new possibilities for

monitoring. On-site spectrofluorometers are applicable to monitor
Chl a and phycocyanin based on the pigments’ autofluorescence.
In contrast, carotenoids are a diverse group of auxiliary pigments
that do not have autofluorescence and whose absorbance spectra
overlap with each other (Clementson and Wojtasiewicz 2019)
and with humic substances, making their on-site or remote sens-
ing assessment less straightforward. Total carotenoids were esti-
mated successfully in this study, but expedient training data
distribution and model testing are crucial when applying this
approach in the future. In addition, quantitative microscopy-
based assessments in parallel with spectral imaging could be a
potential way to develop the protocol towards spectral imaging-
based taxonomic assessment.

Recently, Legleiter et al. (2022) combined spectral imaging
from the laboratory with satellite data to resolve bloom-forming
cyanobacteria. They obtained reflectance spectra of different cya-
nobacteria species in the laboratory with a spectral imager
attached to a microscope and used those as spectral endmembers
to resolve to taxa level using data from satellite images. Instead
of a neural network, they used a linear model-based spectral
unmixing. Their results were promising because their algorithm
indicated the presence of possible toxin-producing taxa. Their
results also demonstrated that laboratory-based spectral imaging
is scalable and has the potential to support phytoplankton moni-
toring from satellites (Legleiter et al. 2022). The models trained in
this study most likely will not generalize as such. By using the full
survey protocol, similar results can be obtained at other times of
the year and elsewhere. Openly available software to analyze phy-
toplankton spectra could be an interesting future direction. The
protocol described here, could also be tested for rapid assessment
of cyanobacteria blooms in inland waters with high water color,
because one of the benefits of the preprocessing was to enable the
capability of introducing water color as a background to the 1D
CNN. Another benefit is that spectral imaging in the laboratory
enables further processing of the samples, downstream, such as
biochemical or microscopy-based analysis. This is because the
sample processing and imaging were non-destructive.

Comments and recommendations
A new protocol based on a mobile hyperspectral imager was

introduced to support phytoplankton monitoring. In addition
to sampling, this protocol contains three steps: (1) sample con-
densing, (2) spectral imaging, and (3) modeling with CNNs.
Based on assessments using samples from 20 Scottish lakes, the
protocol was demonstrated to have the potential to resolve Chl
a and carotenoids from lake water samples and indicate cyano-
bacteria blooms. Further studies are need to improve the pre-
dictability of phycocyanin assessments and to test the protocol
more widely across different lakes and setups.

Data availability statement
Pigment data and corresponding descriptive metadata are

available via The Environmental Information Data Centre
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(EIDC) with doi: https://doi.org/10.5285/7794cbfa-1d74-
4885-b303-8c20f4608728. Spectral images and Python
code to image processing are available via Fairdata IDA with
doi: https://doi.org/10.23729/20a62a08-e776-47f4-96e5-
e8e3475d8c4a. CNNs to resolve algae pigments are available
via Fairdata IDA with doi: https://doi.org/10.23729/
0d4b355b-8ed9-466a-a6db-86843e62262a.
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