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An innovative hydrological model for the sparsely-gauged Essequibo River basin,
northern Amazonia
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Angela L. Frankline, Garvin Cummingsf and Ryan Pereiraa
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United Kingdom; cDepartment of Geography, Durham University, Durham, United Kingdom; dBritish Geological Survey, The Lyell Centre,
Edinburgh, United Kingdom; eGuyana Water Incorporated, Georgetown, Guyana; fGuyana Hydrometeorological Service, Georgetown, Guyana

ABSTRACT
Tropical river basins – crucial components of global water and carbon cycles – are threatened by
logging, mining, agricultural conversion, and climate change. Thus, decision-makers require
hydrological impact assessments to sustainably manage threatened basins, such as the
∼68,000 km2 Essequibo River basin in Guyana. Emerging global data products offer the potential
to better understand sparsely-gauged basins. We combined new global meteorological and soils
data with established in situ observations to build the first physically-based spatially-distributed
hydrological model of the Essequibo. We developed new, open source, methods to translate
global data (ERA5-Land, WFDE5, MSWEP, and IMERG) into a grid-based SHETRAN model.
Comparing the performance of several global and local precipitation and evaporation datasets
showed that WFDE5 precipitation, combined with ERA5-Land evaporation, yielded the best daily
discharge simulations from 2000 to 2009, with close water balances (PBIAS =−3%) and good
discharge peaks (NSE = 0.65). Finally, we tested model sensitivity to key parameters to show the
importance of actual to potential evapotranspiration ratios, Strickler runoff coefficients, and
subsurface saturated hydraulic conductivities. Our data translation methods can now be used to
drive hydrological models nearly anywhere in the world, fostering the sustainable management of
the Earth’s sparsely-gauged river basins.
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1. Introduction

Tropical rivers contribute ∼67% of global freshwater outfl-
ows to the oceans (Huang et al. 2012), while tropical forests
store around 246 billion tonnes of carbon (Saatchi et al.
2011). However, tropical water resources and carbon fluxes
are under pressure from changing land use and climate
(Regnier et al. 2013, Berhe et al. 2018). Agriculture drove
6.4–8.8 Mha per year tropical deforestation from 2011 to
2015 (Pendrill et al. 2022), industrial mining in tropical for-
ests is expanding (Giljum et al. 2022), and climatic changes
are affecting the frequency and magnitude of hydrological
extremes, impacting fire regimes and potentially causing eco-
system shifts (Armenteras et al. 2021). Tropical hydrological
research has been hampered by sparse monitoring and inac-
curate data (Sheffield et al. 2018), owing to inaccessibility and
poor infrastructure. Recently, however, the proliferation of
global geospatial and hydro-meteorological data from
remote-sensing and reanalysis has enabled hydrological
impact studies in sparsely-gauged tropical regions including
West Africa (Dembélé et al. 2020) and Central Africa
(Nkiaka et al. 2022).

1.1. Research gap

The Essequibo-Mazaruni-Cuyuni River basin is South
America’s sixth largest river by discharge (Meybeck and
Ragu 2012). It plays a crucial role in continental moisture

transport (Bovolo et al. 2018), and transports high concen-
trations of solutes to the Atlantic Ocean (Raymond and
Spencer 2015). Parts of the basin are threatened by defores-
tation, mining, agriculture and pollution (Government of
Guyana 2016, Department of Environment 2019), and
some tributaries (e.g. Amaila River Falls) are earmarked for
hydropower development. Although there is an urgent
need to assess the potential impact of such changes, limited
modelling has been done. Global hydrological models
(GHMs) (e.g. Ward et al. 2014, Stacke and Hagemann
2021) have been run on large grid cells (typically 1°), with
surface water drainage derived from coarse (e.g. 0.5°) Digital
Elevation Models (DEMs) (Telteu et al. 2021). Furthermore,
they have not used the regionally-accurate forcing data
required to simulate streamflow adequately in Amazonia
(Getirana et al. 2012, Towner et al. 2019, Krysanova et al.
2020). Moreover, remote-sensing and reanalysis products
have severely underestimated rainfall in the central Esse-
quibo basin (Pereira et al. 2014a). There is, therefore, an
urgent need for an effective purpose-built hydrological
model of the Essequibo River basin.

In this study we assessed the suitability of different
spatial and atmospheric data for modelling the Essequibo’s
hydrology, built the first physically-based spatially-distribu-
ted (PBSD) hydrological model of the basin, and assessed
its suitability for predicting water balances and peak
discharges.
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2. Data and methods

2.1. Study area

The 154,860 km2 Essequibo-Mazaruni-Cuyuni basin sits
within the Guiana Shield in the Amazonia region (Figure
1). The Essequibo and Cuyuni Rivers, running through
Guyana, meet the Mazaruni River stemming from Venezuela
at Bartica, before flowing to the Atlantic Ocean. This study
focuses on the Essequibo sub-basin to Plantain Island
(Lehner and Grill 2013). The sub-basin covers some
68,279 km2, although the watershed shared with the Takutu
River (Amazon basin) moves during the wet season in the
3,500 km2 Rupununi Portal wetlands (de Souza et al. 2020,
WWF 2020). The Kanuka and Pakaraima Mountains delin-
eate the western watershed. The northern basin’s coastal cli-
mate has two wet seasons (May to July; Dec to Jan), while the
southern basin’s more continental climate has one (May to
Aug) (Pereira et al., 2014a). Precipitation is driven by the
movement of the Inter-Tropical Convergence Zone (ITCZ)
seasonally, and also the El Niño Southern Oscillation
(ENSO) (Bovolo et al. 2012). Only two large rivers have
near continuous long-term discharge records, from January
1950 (Bovolo et al. 2009): (1) the Essequibo River at Plantain
Island (PI) (2,604 m3 s−1 or 71 km3 yr−1 mean discharge); (2)
Potaro River near Kaieteur Falls (KF) (214 m3 s−1 or
7 km3 yr−1) (HydroMet 2009).

2.2. Model rationale and development approach

We needed a model to represent basin-scale water
dynamics and balances, and make robust predictions

about the impacts of land cover and climatic changes
on future discharges peaks, which drive carbon and nutri-
ent fluxes. PBSD models can provide robust predictions
under non-stationary conditions, allowing detailed scen-
arios to be simulated. PBSD models are needed to under-
stand the impacts of interacting changes in land cover and
climate (Ebodé 2022). SHETRAN is a PBSD catchment
hydrological modelling package that simulates surface
and subsurface flows on a 3D spatial grid (Ewen et al.
2000). SHETRAN has been used for impact studies in
numerous geographical contexts (e.g. Birkinshaw and
Ewen 2000, de Hipt et al. 2017, Sreedevi and Eldho
2021). A SHETRAN (v4.5) computational model was
built for the Essequibo basin to Plantain Island, where
there was a discharge gauge available for model vali-
dation. However, the spatial data domain covered the
entire Essequibo-Mazaruni-Cuyuni basin (1.1° South to
8.2° North, −62.9° West to −57.7° East) to facilitate future
model expansion into the ungauged basin. A 5 km grid
resolution was chosen to capture major river channels,
while aligning with the coarse resolution of available
spatial data and minimising computational demands.
The period from 2000 to 2009 was chosen to correspond
to available gauge precipitation and discharge data.

The model development approach was as follows: Spatial
data selection and processing (Section 2.3); selection and
processing of meteorological forcing data (Section 2.4) to
create a ‘prototype’ model with estimated initial parameters;
performance assessment to identify the ‘most suitable for-
cings model’ (Section 2.5), and; sensitivity analysis of key
spatial parameters (Section 2.6).

Figure 1. Location of Essequibo River basin in South America.
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2.3. Spatial data selection and processing

SHETRAN models are based on DEMs and parameterised
using spatial data to describe subsurface hydraulics and
land cover properties. The criteria for data selection were
determined a priori (Table 1). Where multiple potential data-
sets were available, the most suitable was determined
through further testing. For example, DEMs were tested
against other hydrographic products. The MERIT-Hydro
Adjusted Elevation (Yamazaki et al. 2017) river channels
and watershed boundary we derived corresponded well to
two independent datasets; HydroBASINS (Lehner and Grill
2013) and major river channel locations (OpenStreetMap
2017). Watersheds derived using other products extended
erroneously into neighbouring river basins. There was only
one soils dataset that included all Maulem-van Genuchten
parameters (Montzka et al. 2017). Sentinel-2 10 m Land
Use/Land Cover (Karra et al. 2021) was selected since it
has a high resolution and is updated annually.

Key processing steps are detailed in Supplementary
Material and briefly described here. The MERIT-Hydro
Adjusted Elevation DEM was sink-filled and aggregated to
obtain mean and minimum elevations at 5 km resolution.
SHETRAN’s channel algorithm was applied to minimum
elevations to generate a river network (Birkinshaw 2010).
A 10 m deep channel was burned in using a River layer
(OpenStreetMap 2017). This ensured that the river locations
were accurate, especially in flat forested areas, in contrast to
many GHMs. Sinks were manually filled near Annai to
ensure the Rupununi River converged with the Essequibo
River at Apoteri. Sentinel-2 Land Cover (2021–2022) was
aggregated to 5 km using nearest neighbour. The 12 Senti-
nel-2 Land Cover Classes were reclassified into 3 dominant
SHETRAN classes: Tropical Forest (342,125 km2), Grass-
Arable (87,975 km2), and Urban (275 km2).

PBSD models rely on representative grid-scale parameter
values, which may vary considerably within and between
grid cells. Vegetation parameters were added from the SHE-
TRAN Manual (Birkinshaw 2021). Soils were parameterised

by resampling, to 5 km, the 0.25° (∼28 km) Soil-Grids-
Schaap parameters for the upper 2 m (Supplementary
Material, Research Data). Geology was conceptualised
based on lithological maps, descriptions, and geological
field reports by the authors (US Army Corps of Engineers
1998, Department of Environment 2019), since full Mau-
lem-van Genuchten parameters were unavailable. In lieu of
high resolution hydrostratigraphy, the model assumes a
5 m thick layer of sand and laterite, underlain by 150 m of
low permeability bedrock (pers comms Ó Dochartaigh,
2022). Saturated hydraulic conductivity (K) values are
based on pumping tests in analogue horizons in Nigeria,
which share similar geology and climate (Bonsor et al.
2014). The processed data was used to construct a ‘prototype’
model using initial parameter estimates (Figure 2).

2.4. Meteorological forcing data selection and
processing

PBSD hydrological models require meteorological forcing
data, e.g. precipitation (P) and evapotranspiration (ET).
We needed to force the model with historic data to test
it against observed river discharges. The suitability criteria
were determined a priori (Table 2). Products also needed
to be low-cost, available to download, and well- documen-
ted. Observed P data was selected from the Guyana Hydro-
meteorological Service (HydroMet) 147-gauge network
(Bovolo et al. 2009). Since incomplete records were avail-
able for most of the gauges, the eight gauges with the
most continuous records (>69% of daily data from 2000
to 2010) were selected and used to create the 8-Rain-
Gauges forcing data with Thiessen polygons (Supplemen-
tary Material).

To overcome the sparsity of gauge data, the use of global
gridded atmospheric products was investigated. Over 30 glo-
bal P datasets were available, including gauge-based, satel-
lite-related and reanalysis products (Sun et al. 2018). Four
datasets were selected, based on their suitability for

Table 1. Spatial data criteria and suitability in the Essequibo basin.

Dataset required Suitability criteria (geospatial and parameters) Dataset description Dataset suitability

Digital elevation
model (DEM)

Resolution min. 5 km
Topography sufficiently accurate to generate basin area
matching HydroBASINS and major river channel
locations

*MERIT-Hydro Adjusted Elevation
(Yamazaki et al. 2017)

MERIT-DEM (90 m) (ibid)
ALOS World 3D (30 m) (Japan
Aerospace Exploration Agency 2021)

*Suitable. Corresponds well to
HydroBASINS and major river
channels

Corresponds poorly
Corresponds poorly

Geology Resolution min. 100 km
Layer depth indication
Saturated Water Content (θSat)
Residual Water Content (θRes)
Saturated Conductivity (K)
vanGenuchten- alpha (vGα)
vanGenuchten-n (vGn)

BDTICM_M_1 km Depth to Bedrock
(Shangguan et al. 2017)

GLiMv1.0 (Hartmann and Moosdorf
2012)

GLHYMPS v1.0 (Gleeson et al. 2014)
GLHYMPS 2.0 (Huscroft et al. 2018)

Unsuitable. Provides depth
estimates only

Unsuitable. Provides no hydraulic
properties

Unsuitable. Provides permeability (k)
only

Unsuitable. Provides permeability (k)
only

Soil As for Geology * Hydraulic-Params Soil-Grids-Schaap
(0.25°) (Montzka et al. 2017)

Harmonized World Soil Database v 1.2
(Wieder et al. 2014)

*Suitable. Parameter values are
physically plausible

Contains soil texture only

Land cover Resolution min. 5 km
Broad land cover types, e.g. forest, short vegetation,
urban

Strickler coefficient (Str)
Actual to Potential Evapotranspiration ratio (AE:PE)
Canopy storage capacity (CSC)

*Sentinel-2 10 m Land Use/Land Cover
(Karra et al. 2021)

Copernicus Global Land Service: Land
Cover 100 m (Buchhorn et al. 2020)

Land Cover Map (GLC2000 – JRC)
ESA WorldCover (ESA 2017)

*Suitable. High accuracy and annual
product release

Suitable
Suitable
Suitable

Note: *Indicates most suitable dataset.
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hydrological modelling and data availability: ERA5-Land,
WFDE5, MSWEP, and IMERG. ERA5-Land (ECMWF Rea-
nalysis v5) is part of the ERA5 product family, at higher
spatial resolution. ERA5 assimilates more gauge-satellite
data than its predecessor ERA-Interim (Muñoz-Sabater
et al. 2021). Its ‘total precipitation’ variable is an input for-
cing of ERA5-Land. ERA5 has been widely used in land sur-
face and hydrological models. Although it tends to have a wet
bias in the tropics, it has a 10–20% dry bias over most of the
Essequibo (compared to GPSC-SG) (Hassler and Lauer
2021), and underestimates daily rainfall by 1.5–4 mm over
the Guiana Shield (compared to TRMM) (Hersbach et al.
2020). WFDE5 (WATCH Forcing Data methodology applied
to ERA5) provides bias-corrected ERA5 variables, including
precipitation, to improve hydrological modelling (Cucchi
et al. 2020). MSWEP 2 (Multi-Source Weighted-Ensemble
Precipitation) merges gauge, satellite, and reanalysis pro-
ducts (Beck et al. 2019) to provide reliable global P estimates.
MSWEP products have been used widely, including to study
hydrological extremes in the Amazon River basin (Wong-
chuig et al. 2019). IMERG 6 (Integrated Multi-satellitE
Retrievals for GPM) intercalibrates and merges P data
from many satellites from 2000 to present (Huffman et al.

2018). It has been successfully used for hydrological model-
ling in Amazonia (Satgé et al. 2021).

ERA5-Land, WFDE5 and IMERG 6 were downloaded
from the Copernicus Climate Data Store (Muñoz Sabater
2019, Huffman et al. 2020, Cucchi et al. 2022). MSWEP
2 was batch downloaded using Rclone (GloH20 2022).
Each dataset required translation into SHETRAN input
files. Bespoke methods using Python 3 and QGIS were
developed to extract target variables, clip to domain,
align to model grid, aggregate to daily time step, and re-
dimension from 3D to 2D. Workflows and codes for trans-
lating WFDE5 precipitation and ERA5-Land ET have been
made freely-available (Supplementary Material; Research
Data).

Some consistent and plausible point-source ET data was
available from a weather station at Kaieteur Falls, an upland
forest area. Pan evaporation data from January 2005 to
December 2007 was used to derive ‘Kaieteur Pan’ seasonal
ET estimates (Supplementary Material). However, this data
was not spatially distributed. Many spatially-distributed ET
products were available, from remote-sensing, reanalysis,
and hydrological model outputs (Mohan et al. 2020, Senay
et al. 2020, Schneider and Hogue 2022, Zhu et al. 2022).

Figure 2. Key spatial data used in Essequibo model. (A) Minimum DEM (Source: MERIT-Hydro Adjusted Elevation (Yamazaki et al. 2017)); (B) Soil (Source: Hydraulic-
Params Soil-Grids-Schaap (0.25°) (Montzka et al. 2017)); (C) Land Cover. Source: Sentinel-2 10 m Land Use/Land Cover (Karra et al. 2021).

Table 2. Requirements and suitable precipitation and evapotranspiration for the Essequibo-Mazaruni-Cuyuni data domain.

Variable Dataset name Variable name

Highest spatial
resolution

(Min. 1° × 1°,
∼90 km)

Highest time
resolution
(Min. 1-day)

Time period
(2000 –2009) Data source Key ref

P 8-Rain-Gauges - - 1-day 2000–2010 Rain gauges (Bovolo et al. 2009)
P ERA5-Land ‘tp’ (total

precipitation)
0.1° × 0.1° 1-hour 1950–present Reanalysis (Muñoz Sabater 2019)

P WFDE5 v2.1 ‘Rainf’ (rainfall flux) 0.5° × 0.5° 1-hour 1979–2019 Reanalysis (Cucchi et al. 2022)
P MSWEP v2.8 ‘precipitation’ 0.1° × 0.1° 3-hour 1979–present Gauge, satellite,

reanalysis
(Beck et al. 2019)

P IMERG v6.0 ‘pr’ (precipitation) 0.1° × 0.1°
(0.5° × 0.5° used)

30-minute 2000–present Satellite (Huffman et al. 2018)

ET Kaieteur Pan - - Seasonal 2005–2007 Evaporation pan -
ET ERA5-Land ‘total evaporation’ 0.1° × 0.1° 1-hour 1950–present Reanalysis (Muñoz Sabater 2019)
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Hydrological impact studies in sparsely-gauged areas have
demonstrated that gridded ET suitability depends on study
purpose and regional climate (Ansari et al. 2022, Wang
et al. 2022). In the Amazon River basin, several products pro-
vide reasonable estimates of annual magnitude, but may
overestimate monthly variability and exhibit divergent
multi-year trends (Wu et al. 2020). The ERA-5 Land
(ECMWF Reanalysis v5) gridded dataset was selected. This
includes several ET variables, of which ‘total evaporation’
was used since it most closely matched pan evaporation at
Kaieteur Falls and Lethem. Other ET products did not
meet the specified spatial and temporal resolution.

2.5. Model performance assessment

The model was spun up from 1 January 2000, and assessed
from 1 January 2001 to 1 December 2008 (7 years, 11
months) to match the observed discharge data. Model per-
formance was assessed using river discharge at Plantain
Island (PI) and Kaieteur Falls (KF) (Figure 1). No further
variables (e.g. soil moisture and groundwater level) were
available for multi-objective validation (Gupta et al. 1998).
Four objective functions were calculated for daily values,
with missing days excluded: (1) Percentage bias (PBIAS),
where lower values are better, with positive values indicating
overprediction and vice versa; (2) Root Mean Squared Error
(RMSE), where lower values are better; (3) Nash-Sutcliffe
Efficiency (NSE), where a value of zero indicates perform-
ance equivalent to the mean and one indicates a perfect fit,
and; (4) Kling-Gupta Efficiency (KGE) where a value of
−0.41 indicates performance equivalent to the mean and
one indicates a perfect fit (Gupta et al. 2009, Moriasi et al.
2015, Knoben et al. 2019). The model required low PBIAS
(e.g.< ± 20%) to predict water balances, and ‘good’ NSE
(e.g. >0.6) to reproduce peak discharges.

2.6. Spatial parameter sensitivity analyses

The ‘most suitable forcings model’ contained initial soil and
vegetation parameter values within a plausible range (Table
S3, Supplementary Material). Single-factor sensitivity ana-
lyses were performed on parameters critical to SHETRAN
(de Hipt et al. 2017, Sreedevi et al. 2019), i.e. Actual to Poten-
tial Evapotranspiration ratio (AE:PE) at field capacity;
Canopy Storage Capacity (CSC); Strickler overland flow of
Land (StrLand) and Channels (StrChannel); and the Saturated
Hydraulic Conductivity of Soil (KSoil) and Sand-Laterite
(KSand-Laterite) (Table 3). Each parameter was changed by
up to ±30% and −80 to + 400%, depending on its range of

variability (Research Data – Essequibo Model Simulation
Results). For instance, Stricker values of Grass-Arable may
range from 5 to 10 (Engman 1986). Meanwhile, values of
KSand-Laterite may range locally from 0.5 to 400 m d−1,
although during pumping tests they are typically in the
range of 5–50 m d−1 (Bonsor et al. 2014). Sensitivity was
assessed using objective functions (QMAX, PBIAS, NSE,
KGE) for river discharge at PI and KF. Given the gauge spar-
sity, model calibration could pose a substantial risk of overfi-
tting, leading to overconfidence in model outputs and
reduction in predictive ability under non-stationary con-
ditions (Yang et al. 2022). The ‘blind validation’ approach
was therefore deployed to prevent overfitting (Parkin et al.
1996).

3. Results

3.1. Model performance assessment

The prototype model was run with the five P and two ET
products (N = 10) and assessed at the downstream PI and
upstream KF stations.

3.1.1. Prototype performance with Kaieteur pan
evaporation data
With Kaieteur Pan ET (rows 1–5, Table 4), the model
generally performed better at PI than KF. Being further
downstream, PI allowed for greater compensation of dis-
charge errors, i.e. over- and under-prediction of dis-
charges in upstream tributaries mutually cancelled as
they propagate downstream. WFDE5 P performed best
at PI, generating the lowest PBIAS (−25%), a moderate
NSE (0.68) and KGE = 0.72. Furthermore, WFDE5 was
the only P data that performed well at KF. This demon-
strates the value of bias-corrected P data for impact
studies (Cucchi et al. 2020). ERA5-Land, MSWEP and
IMERG precipitation all performed moderately at PI,
suffering from negative PBIAS (−53% to −59%), low
NSE (0.25–0.41), and KGE 0.33–0.42. All three performed
worse at KF, with severe negative biases (−78% to −80%)
resulting in negative NSE and KGE. All three were out-
performed by the less sophisticated 8-Rain-Gauges
(Thiessen polygons) data, perhaps because it accurately
recorded local rainfall dynamics. Overall, WFDE5 was
the best performing dataset across all metrics at both PI
and KF.

3.1.2. Prototype performance with ERA5-Land total
evaporation data
With ERA5-Land ET (rows 6–10, Table 4), the models per-
formed better due to more accurate water balances. Once
again, the WFDE5 forcing performed best overall at PI
(Figure 3), generating low PBIAS (−3%), moderate NSE
(0.65) and KGE = 0.74, although NSE decreased slightly
(from 0.68 to 0.65), because it overestimated wet season
high peak discharges (Figure 4), to which NSE is particularly
sensitive (Gupta et al. 2009). Although ERA5-Land, MSWEP
and IMERG performed better at PI, they still suffered from a
substantial negative PBIAS (−29% to −36%). Only WFDE5
performed well at KF (Figure 5), with a closely fitted flow
duration curve from 0% to 80% exceedance (Figure 6). In
contrast, ERA5-Land, MSWEP and IMERG performed
poorly at KF, where their very negative PBIAS (−69% to

Table 3. Initial parameter values in prototype model, with relative changes
during sensitivity testing (Full results in Research Data – Essequibo Model
Simulation Results).

Parameter Spatial distribution Initial value Relative change

AE:PE Tropical-Forest 1.0 (-) ± 10%, 20%, 30%
AE:PE Grass-Arable 0.6 (-) ± 10%, 20%, 30%
CSC Tropical-Forest 5 (mm) ± 10%, 20%, 30%
CSC Grass-Arable 1.5 (mm) ± 10%, 20%, 30%
StrLand Tropical-Forest 1 (-) ± 10%, 20%, 30%
StrLand Grass-Arable 5 (-) ± 10%, 20%, 30%
StrChannel All river channels 20 (-) ± 10%, 20%, 30%
KSoil All grids, 0–2 m depth 0.013 m d−1 (min)

0.018 m d−1 (mean)
0.021 m d−1 (max)

± 20%, 50%, 80%

KSand-Laterite All grids, 2–7 m depth 20 m d−1 ± 20%, 50%, 80%

INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT 5



−72%) drove negative NSE and low KGE. All three were out-
performed at KF by 8-Rain-Gauges. Overall, WFDE5 per-
formed best across most metrics at PI and KF. In
summary, the model was highly sensitive to the forcing
data used, performing best with the combination of
WFDE5 P and ERA5-Land ET data.

3.2. Spatial parameter sensitivity analyses

The sensitivity analysis demonstrates that, for discharge at
PI, the WFDE5 – ERA5-Land model was most sensitive to
AE:PE, moderately sensitive to StrLand, StrChannel,
KSand-Laterite and KSoil, and insensitive to CSC (Figure 7,

Table 4. Objective functions for simulated daily discharge at Plantain Island and Kaieteur Falls, with Kaieteur Pan evaporation and ERA5-Land ‘total evaporation’.

Plantain Island Kaieteur Falls

P forcing ET forcing PBIAS NSE RMSE (m3s−1) KGE PBIAS NSE RMSE (m3s−1) KGE

ERA5-Land Kaieteur Pan −53% 0.41 1612 0.41 −80% −0.54 224 −0.14
WFDE5 Kaieteur Pan −25% 0.68 1195 0.72 −12% 0.55 121 0.75
MSWEP Kaieteur Pan −59% 0.25 1816 0.33 −78% −0.56 226 −0.10
IMERG Kaieteur Pan −52% 0.35 1691 0.42 −78% −0.47 219 −0.09
8-Rain-Gauges Kaieteur Pan −58% 0.05 2053 0.24 −35% 0.03 178 0.47
ERA5-Land ERA5-Land −32% 0.66 1219 0.67 −72% −0.30 206 −0.02
*WFDE5 *ERA5-Land −3% 0.65 1236 0.74 −3% 0.56 119 0.79
MSWEP ERA5-Land −36% 0.65 1240 0.63 −69% −0.31 207 0.05
IMERG ERA5-Land −29% 0.55 1414 0.66 −71% −0.24 201 0.04
8-Rain-Gauges ERA5-Land −43% 0.33 1711 0.45 −26% 0.09 172 0.54

NB *indicates best overall forcing data combinations.

Figure 3. Simulated and observed hydrographs at Plantain Island (downstream), with different precipitation forcings and ERA5-Land ET. January 2001 to Decem-
ber 2008.

Figure 4. Simulated and observed flow duration curves at Plantain Island (downstream), with different precipitation forcings and ERA5-Land ET. January 2001 to
December 2008.
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Research Data – Essequibo Model Simulation Results).
These findings are broadly similar for KF, although
QMAX, NSE and KGE were less sensitive to AE:PE
(Figure 8).

At PI, setting AE:PE at −30% resulted in a 6% increase in
PBIAS (from −3% to +3%) and corresponding 216 m3 s−1

increase in QMAX, while NSE declined (from 0.65 to
0.60), and KGE declined (from 0.74 to 0.68). Conversely, set-
ting AE:PE at +30% increased NSE and KGE. Setting StrLand
at −30% made little difference to PBIAS, although it did
decrease QMAX (by 258 m3 s−1), and it increased NSE (by
0.04) and KGE (by 0.03). The effects of modifying StrChannel
were similar to StrLand. The model was quite sensitive to
KSand-Laterite; setting this at +100% increased NSE (by 0.02)
and KGE (by 0.03). Conversely, reducing KSand-Laterite

decreased model performance. Changing KSoil had similar
effects, although with less sensitivity. In summary, the
model was most sensitive to changes in AE:PE, and some-
what sensitive to Strickler and subsurface K. Nevertheless,
the model was more sensitive to forcing data than to soil
and vegetation parameters.

4. Discussion

This innovative modelling approach takes global forcing
data (WFDE5 precipitation and ERA5-Land evaporation)
and translates it to a 5 km SHETRAN grid for the Esse-
quibo River basin. Running the WFDE5 – ERA5-Land
model for a ten-year daily simulation costs ∼4 h of com-
putational time on single core 3.6 GHz CPU with 32 GB
RAM. From 2000 to 2009, this reproduces river discharge
well, with very good PBIAS (−3%). The shapes of the
hydrographs match well at Plantain Island (NSE = 0.65)
and Kaieteur Falls (NSE = 0.56). Wet season peaks are
generally well reproduced, although the model tends to
overestimate their magnitudes and overestimate their
recession gradients. Correspondingly, the model tends
to underestimate dry season flows. This indicates that
the groundwater component requires further develop-
ment. Nonetheless, the ability to simulate discharge
peaks makes it suitable to use the model for estimating
flood risk to infrastructure and riverine solute transport
(Regnier et al. 2013). Indeed, the Essequibo model

Figure 5. Simulated and observed hydrographs near Kaieteur Falls (upstream), with different precipitation forcings and ERA5-Land ET. January 2001 to December
2008.

Figure 6. Simulated and observed flow duration curves near Kaieteur Falls (upstream), with different precipitation forcings and ERA5-Land ET. January 2001 to
December 2008.
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outperforms most GHMs in Amazonia (Getirana et al.
2012, Towner et al. 2019, Krysanova et al. 2020), as
judged by the PBIAS and KGE metrics.

PBSD models require high volumes of data to parameter-
ise them well. Our model could be improved by further para-
meterisation. Firstly, soil hydraulics data could be validated

Figure 7. Sensitivity analysis metrics for Essequibo at Plantain Island in ERA5 – WFDE5 model. NB +400% not plotted.

Figure 8. Sensitivity analysis metrics for Essequibo at Kaieteur Falls in ERA5 – WFDE5 model. NB +400% not plotted.
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or modified though in situ measurements. Secondly, the
broad geological assumptions could be developed further,
given that the model is sensitive to subsurface parameters.
Improvements in continental-scale geological mapping
could be used to refine stratigraphy and hydraulic properties
(e.g. MacDonald et al. 2012), with performance assessed
using in situ measurements or remote sensing (Adams
et al. 2022) to enable multi-objective model assessment.
The sensitivity analysis at PI and KF suggests that improved
model performance (in terms of PBIAS, NSE and KGE)
could be achieved by a combination of slightly decreasing
AE:PE, decreasing Str and increasing subsurface K. These
factors would likely reduce the overprediction of wet season
discharge peaks, and maintain higher baseflows during dry
periods (through aquifer discharges into river channels). It
would therefore be worthwhile to obtain and incorporate
further empirical data. Alternatively, the sensitivity analysis
could be used to inform calibration efforts (de Hipt et al.
2017). A calibration exercise would need to maintain par-
ameters within plausible limits to mitigate the risk of overfi-
tting, especially given the uncertainty inherent in the forcing
products. Given current data limitations, we recommend
that future modelling studies incorporate parameter uncer-
tainty by running parameter ensembles.

Global forcing data have enabled PBSD hydrological
modelling in the Essequibo River basin, despite the sparsity
of hydrometric data. We, therefore, suggest that many pre-
vious barriers to using satellite data to improve water
resources management have been overcome (Sheffield et al.
2018). Nevertheless, the quality of geospatial and atmos-
pheric forcing data ultimately relies on ground-level data
for validation. Moreover, high quality, continuous in situ
hydrometric monitoring would enable more robust predic-
tions in sparsely-gauged river basins, particularly in remote
upstream sub-basins. The high overall performance resulting
from the bias-corrected WFDE5 dataset, and good local per-
formance from the rain gauge at Kaieteur Falls, indicates the
value of improved in situ rainfall monitoring, as a comp-
lement to remote sensing datasets. Further investment in
meteorological and hydrometric monitoring (e.g. eddy
covariance flux towers for ET, and river gauging in remote
inland locations) would support model developments. None-
theless, the model can be spatially and temporally refined to
facilitate better process representation at the headwater scale,
where there is a direct link between terrestrial and aquatic
processes (Pereira et al., 2014b). The model forcing timestep
could be decreased from 24 to 1 h/s using the WFDE5 and
ERA5-Land forcing data. If combined with higher spatial res-
olution, this could allow catchment responses to sub-daily
(e.g. convective) rainfall events to be simulated. Land cover
can also be updated annually (Karra et al. 2021). Future
data releases may allow simulations to be extended to the
near present and offer digital twin potential. ERA5-Land (P
and ET) latency is currently five days (Muñoz-Sabater
et al. 2021). However, WFDE5 P is released only periodically
(currently to 2019).

Our approach can be adapted for other sparsely-gauged
regions. By translating global data into grid-based PBSD
models (Supplementary Materials), assessing the suitability
of forcing data, and validating against a small volume of in
situ observations, we can improve upon previous GHMs.
Our approach can, thereby, help to answer crucial scientific
and engineering questions in sparsely-gauged basins around

the world. For instance, what would be the impacts of mining
and deforestation on tropical hydrology, especially given the
disruption of continental moisture transport (Bovolo et al.
2018)? How might global climate changes affect patterns of
floods, droughts, and fires? How can policymakers sustain-
ably manage use and water resources (Department of
Environment 2019)? Furthermore, how could changing
hydrological dynamics alter global solute fluxes (Berhe
et al. 2018; Pereira et al., 2014b)? By addressing these ques-
tions, this modelling approach can guide land use planning,
water resources planning, and climate adaptation.

5. Conclusions

This study presents an innovative approach to building
PBSD models using global forcing data, and the resulting
hydrological model of the sparsely-gauged Essequibo River
basin. We identified the most suitable geospatial data avail-
able and used this to build a SHETRAN model. We sub-
sequently forced this using gauge data, plus gridded
atmospheric data from ERA5-Land, WFDE5, MSWEP, and
IMERG. The resulting simulated discharges were highly sen-
sitive to the meteorological forcing data used. The bias-cor-
rected WFDE5 precipitation data, and ERA5-Land total
evaporation data yielded the best model performance for
predicting hydrological peaks, suggesting these are the
most representative data available for the Amazonia region.
The model was also somewhat sensitive to geospatial
runoff coefficients and subsurface permeability, both of
which are difficult to measure across the model domain.
The new Essequibo model enables hydrological impact
studies of land use and climate change on future water and
carbon fluxes to support, e.g. water resources, climate adap-
tation and land use planning.

This study demonstrates that global datasets can be used
to overcome gauge sparsity to build effective spatially-dis-
tributed hydrological models in tropical regions. Our
approach, including new data translation methods (Sup-
plementary Material), may now be used to build grid-based
hydrological models almost anywhere on Earth. In the
future, these methods can be updated to harness higher-
quality, lower latency meteorological products. This study
indicates that synthesising the sometimes disparate endea-
vours of in situ hydrometry, earth observation, and hydrolo-
gical modelling has great potential to advance environmental
science and foster sustainable development.
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