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Abstract
Floods are the largest natural disaster currently facing the UK, whilst the incidents of 
droughts have increased in recent years. Floods and droughts can have devastating con-
sequences on society, resulting in significant financial damage to the economy. Climate 
models suggest that precipitation and temperature changes will exacerbate future hydro-
logical extremes (i.e., floods and droughts). Such events are likely to become more frequent 
and intense in the future; thus to develop adaptation plans climate model projections feed 
hydrological models to provide future water resource projections. ‘eFLaG’ is one set of 
future river flow projections produced for the UK driven by UKCP18 climate projections 
from the UK Met Office. The UKCP18-derived eFLaG dataset provides state-of-the-art 
projections for a single GCM driven by RCP 8.5 across the entire UK. A QE-ANOVA 
approach has been used to partition contributing sources of uncertainty for two flow quan-
tiles (Q5 high flows and Q95 low flows), at near and far future time scales, for each of 
the 186 GB catchments in the eFLaG dataset. Results suggest a larger hydrological model 
uncertainty associated with low flows and greater regional climate model uncertainty for 
high flows which remains stationary between flow indicators. Total uncertainty increases 
from near to far future and highly uncertain catchments have been identified with a high 
concentration in South-East England.

Keywords UKCP18 · Regional climate model · QE-ANOVA

1 Introduction

Floods and droughts can have devastating consequences on society. Recent events across 
Europe such as the floods in continental Europe in the summer of 2021, followed by wide-
spread drought in the summer of 2022 highlight the real impact such events have on peo-
ple. The July 2021 event devastated large areas of Belgium and Germany resulting from 
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recording breaking rainfall across the region and the highest recorded river discharge in 
the Meuse and Rhine catchments (Copernicus 2022). A combination of factors including 
a slow moving low pressure which stalled over Northern Europe, and saturated soils led 
to devastating flooding which killed over 200 people and caused billions of euros in dam-
ages (AXA 2022). The following year, in the summer of 2022 widespread drought across 
Europe resulted in exceptional water and heat stress and impacting crop yields and energy 
generation (Toreti et al. 2022). The Po river basin was particularly affected, with the lowest 
water levels on record and saline intrusion inland from the delta. The hot and dry condi-
tions across the region additionally exacerbated the wildfire threat. These are clearly severe 
events with catastrophic impacts to lives, livelihoods, economies and the environment. 
With the impact of anthropogenic climate change affecting weather patterns, the likelihood 
of encountering such events more frequently is increasing (IPCC 2020).

As natural hazards such as floods and droughts are set to intensify (Visser et al. 2019; 
Hannaford et  al. 2022), alongside increasing global urbanisation, significant challenges 
arise in the way we live with and manage our future water resources (Beevers et al. 2022; 
Watts et  al. 2015; Parry et  al. 2023). Societies need to adapt to the changing climate, 
increasing the resilience of both communities and infrastructure to such shocks. In order to 
adapt efficiently, there is a need to understand future changes in climate variability and how 
that may impact river flows in terms of their extremes.

Future projections of climate are available (Aitken et  al. 2022a). These are often the 
result of a modelling chain where global climate models are used to drive regional climate 
models giving higher resolution projections of future climate variables. These outputs can 
be post-processed (bias correction and/or downscaling) and used as inputs to hydrological 
models in order to deliver future of river flow time series projections. This is a resource 
intensive process, particularly when multi-model ensembles are considered, and require 
long, complex modelling chains. The modelling chain is subject to cascading uncertain-
ties as one model feeds another. Different uncertainties manifest through the chain arising 
from parameter choice, input uncertainty and model structure to name a few (Beevers et al. 
2020). An ensemble approach to model results aims to quantify some of the uncertainties 
within the chain (Smith et al. 2019).

The latest generation of UK climate projections (UKCP18; Lowe et  al. 2018) pro-
vides an updated state-of-the-art assessment of the future changes in the climatology of 
the UK. The ‘eFLaG’ dataset capitalised on these newly available climate projections 
to derive corresponding river flow, groundwater level and recharge projections for the 
UK (Hannaford et al. 2023). The previous generation of flow projections — the ‘Future 
flows and groundwater levels’ dataset (Prudhomme et al. 2013) derived from UKCP09 
(Jenkins et  al. 2010) — has been used for a wide range of applications (e.g., Collet 
et al. 2017). The most important aspects of the eFLaG dataset for understanding future 
change are its spatial consistency, transient attributes, and the inclusion of multiple 
RCM-HM combinations. Assessments of future water resources are often undertaken 
independently by around 30 water companies across the UK. In addressing questions of 
future water resource availability, companies adopt a range of approaches that are not 
readily comparable (despite recent attempts to improve regional and national cohesion). 
This has important implications when considering potential approaches for enhanc-
ing the resilience of regional and national water resources, such as inter-regional water 
transfers. A spatially coherent dataset such as eFLaG is required to better understand 
drought occurrence and characteristics in different regions prior to expensive invest-
ment decisions. A further advantage of datasets such as eFLaG are the transient nature 
of data which highlight the importance of inter-decadal variability in a manner which 
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traditional time slice data cannot provide. Parry et al. (2023) have undertaken the first 
analysis of changing future drought for the UK based on the eFLaG dataset, but only 
discuss RCM and HM uncertainty in a qualitative manner.

As with all future projections the model chains required result in cascading uncertain-
ties. These uncertainties need careful navigation in order to ensure that the important 
information tracks through to their use in decision-making (Smith et  al. 2018). Picking 
out the necessary detail requires an understanding of the projections. For example, which 
uncertainties are the most important to consider and quantify in a modelling chain; how 
can these be narrowed down; which need most attention and where should more effort be 
focussed? Until recently, the common perception was that climate model uncertainty was 
the dominant mode of variability in climate impact studies (Wilby and Harris 2006; Thober 
et al. 2018; Zhang et al. 2022). However, over the last decade, there has been increasing 
evidence that hydrological model uncertainty is at least as important and in some instances 
more important than climate model uncertainty (Melsen et  al. 2018; Collet et  al. 2017, 
2018; Visser-Quinn et al. 2019). Thus in model cascades which typically includes global 
and regional climate models, alongside scenario choice and hydrological models, there is 
a pressing need to untangle the relative components which may be contributing to the total 
projection uncertainty. The relevance of such studies is critical to feed into the decision 
making context (Smith et al. 2018). For example, in the UK, there are critical questions 
for water managers around what the future entails for water resources and hydrological 
extremes. The answers to these questions will inform significant investment decisions with 
ramifications for water companies and their customers.

Partitioning the cascading model uncertainty provides critical insight into internal vari-
ability of future climate projections. Analysing the interdependencies of modelling choices 
highlights the contributions of model choices on uncertainties. Typically, this is performed 
through empirical statistical analysis or a formal analysis of variance (ANOVA) method 
(Hingray and Saïd 2014). Quantification of uncertainty contributions has seen significant 
interest recently with a number of studies applying ANOVA to large multi-model climate 
ensembles (Bosshard et al. 2013; Addor et al. 2014; Visser-Quinn et al. 2019). Examining 
the partitioned uncertainty provides key insight into catchment behaviours and allocation 
of research efforts along the multi-stage climate modelling process.

Different ANOVA methods are available with QE-ANOVA selected for the work herein. 
A quasi-ergodic ANOVA (QE-ANOVA) framework for partitioning climate ensemble 
variability was first introduced by Hawkins and Sutton (2011) before being formalised by 
Hingray and Saïd (2014). It provides an analysis of variance under the ergodic assumption 
for climate projections. It considers variations over large time scales to be smooth (ergodic 
assumption) with internal variations creating any observed high-frequency changes. QE-
ANOVA has been applied to large multi-model ensembles to identify uncertainties associ-
ated with choices in general circulation models, regional climate models and hydrological 
models (Kay et al. 2009; Vidal et al. 2016; Visser-Quinn et al. 2019). The close overlap 
between work allows similar application of QE-ANOVA to the eFLaG dataset. An alterna-
tive approach is single time ANOVA (STANOVA) method. This considers ANOVA for 
a select time step t, disregarding all other data. However, a comparison of both methods 
has identified QE-ANOVA as a more appropriate assessment of model variations (Hingray 
et al. 2019).

Consequently the aim of this paper is to understand and quantify uncertainty in the 
newly available eFLAG dataset which has been developed for the UK as a pilot climate 
service to support enhanced resilience of water resources. The analysis addresses a number 
of specific questions:
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1. How does total uncertainty across the ensemble of the streamflow projections for Great 
Britain vary across the country?

2. How do the relative contributions of the modelling chain regional climate model (RCM) 
uncertainty and hydrological model (HM) uncertainty vary regionally?

3. How do the answers to these questions vary spatially (across GB) and temporally (2050s 
and 2080s), at both high (Q5) and low (Q95) flows?

2  Methods

The eFlaG dataset contains 48 modelling chains for UK flow series derived from the 
UKCP18 climate projections. UKCP18 uses a single GCM (HadGEM3-GC3.05) driven 
by one emissions scenario (RCP 8.5) but applies multiple perturbations of the HadREM3-
GA705 RCM and multiple HM’s to assess uncertainty in the latter two modelling stages. 
Twelve regional climate models are combined with four hydrological models in a balanced 
matrix. Analysing uncertainty contributions requires multiple climate models to create 
ensemble time series. This provides model variability which can be quantified to calcu-
late the contribution from the two sources (RCM and HM), without considering GCM and 
emissions scenario uncertainty (several studies have investigated GCM uncertainty (Addor 
et al. 2014; Bosshard et al. 2013; Lane et al. 2022; Prudhomme and Davies 2009)). Flow 
quantiles can then be extrapolated from the bias corrected precipitation outputs of the 
eFLaG’s dataset.

Assessing the relative contributions requires an analysis of variance (ANOVA). In 
this case, a quasi-ergodic ANOVA assessment has been performed which assumes that 
all states are captured when time periods are sufficiently long (Hingray and Saïd 2014). 
Applying QE-ANOVA to river flow series can separate the relative contributions of the 
multi-stage modelling chain, providing a deeper understanding of the sources of variability. 
Figure 1 demonstrates the overview of the methodology, which is explained in more detail 
in Section 2.1–2.4.

2.1  River flow projections for the UK

2.1.1  UKCP18 climate projections

The eFLaG hydrological projections were derived from the UKCP18 ‘Regional’ PPE data-
set representing the state-of-the-art in future climate projections for the UK. The regional 
PPE contains 12 ensemble members representing variations in the boundary conditions of 
the Met Office Hadley Centre climate model. The original UKCP18 precipitation data were 
bias-corrected to ensure the resulting daily time series of precipitation and potential evap-
otranspiration (PET) required for hydrological modelling better reflect observations. The 
bias-correction followed an approach previously used in the UK and is described briefly 
herein with full details presented in Hannaford et  al. (2023). A monthly mean approach 
was used with change factors calculated between RCM and observed data for every grid 
cell over the period 1981–2010. Change factor grid smoothing was applied using weighted 
combinations of the original value and neighbouring cells to prevent discontinuities. Simu-
lated RCM precipitation time series were then multiplied by the factor grid for each month. 
PET was calculated using input variables from the regional PPE and according to the 
approach used by CHESS (Robinson et al. 2016). The 12-km regional PPE data were also 
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downscaled spatially to the 1-km resolution necessary as input to hydrological models for 
simulating flows in some relatively small catchments. Downscaling was performed using 
the distribution of standard-period average annual rainfall (SAAR) (Bell et al. 2007; Kay 
and Crooks 2014).

The processing described above resulted in 1 km grids of daily precipitation and PET 
for the whole of the UK spanning a timeframe of December 1980 to November 2080 for 
each of the 12 ensemble members. Whilst these gridded data were used to drive the distrib-
uted G2G model, the lumped catchment models (GR4J, GR6J, PDM) required catchment 
average driving data. Following a spatial averaging process using catchment shapefiles, one 
precipitation and one PET time series were generated for each catchment and each of the 
12 ensemble members.

Of particular relevance for this study contrasting climate model uncertainty with hydro-
logical model uncertainty, it is important to note that neither the Regional PPE nor its bias-
corrected product comprehensively represent the full range of climate model uncertainty. 
This is because the 12 ensemble members only represent boundary condition variability 
within the same climate model, rather than a range of model structures or processes. Simi-
larly, the climate model data are based only on the RCP8.5 emissions scenario, a relatively 
high emissions scenario which does not allow for the possibility of emissions reductions in 
future.

2.1.2  Hydrological modelling

Four hydrological models were driven by the UKCP18 climate data in order to generate a 
multi-model ensemble of past, present and future river flows (the ‘simrcm’).

Fig. 1  Method framework for the 
separation of uncertainties in the 
eFLaG’s dataset
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The distributed ‘Grid-2-Grid’ model (G2G) is a gridded model at 1  km spatial reso-
lution providing coverage of Great Britain. G2G does not cover catchments in Northern 
Ireland thus all results for this model are run across the 186 GB catchments in the eFLaGs 
dataset. In contrast to the other models, G2G simulates naturalised river flows since it is 
not calibrated to observations (therefore implicitly incorporating artificial influences into 
flow estimates). In addition, of the four models applied herein, G2G is the only one to 
produce gridded estimates of flows, although for comparability with the other three models 
in this study, flows are extracted at the catchment outlet locations. G2G has been demon-
strated to perform acceptably in a range of previous drought and low flow assessments in 
the UK (e.g., Bell et al. 2018; Rudd et al. 2019).

The lumped catchment ‘Probability Distributed Model’ (PDM) is a very flexible model-
ling framework that can adopt a wide variety of different model structures. These configu-
rations were explored as part of the setup process and the most appropriate one selected 
from a range of options as identified following multiple rounds of calibration.

Two models from the ‘airGR’ family (Coron et al. 2017) were selected for use in the 
eFLaG multi-model ensemble: GR4J and GR6J, with the number identifying how many 
parameters are available to calibrate. Simple to understand and relatively easy to calibrate, 
they have previously been applied on numerous occasions to simulate the full range of river 
flows (e.g., Harrigan et al. 2018, Anglian Water Drought Plan, 2021).

Comprehensive information on hydrological model setup for the eFLaG projections are 
provided by Hannaford et al. (2023).

2.2  High and low flow metrics and hydrological model performance

Flow quantiles are used as simple metrics of high and low flows. Flow exceedance per-
centiles (Qxx) quantify the flow that is exceeded xx% of the time and are considered to be 
robust when calculated from a sufficient record length of data, typically a 30-year time-
frame at a minimum. A range of different high and low flow quantiles have been applied 
in high and low flows studies, and there is no consensus on the most appropriate metric, 
which tends to be application- and system-specific. Here, Q5 is used for high flows and 
Q95 is used for low flows. Q5 and Q95 are calculated from daily data within 30-year time 
windows by ordering daily flows from highest to lowest and extracting the 5th and 95th 
percentiles to give the flows exceeded 5% and 95% of the time. Capitalising on the benefits 
of the transient nature of the river flow projections, Q5 and Q95 is calculated for every 
simrcm run (48 time series for each catchment) for all 30-year time windows across the 
1983–2079 timeframe. The Q5 and Q95 values in 2012 represent Q5 and Q95 calculated 
across 1983–2012, in 2013 represent 1984–2013, and so on to 2079 (2050–2079).

The hydrological models employed in eFLaG were evaluated using a range of metrics 
to assess the models’ capabilities in simulating high, median and low flows. These metrics 
included absolute percent error in Q95 (Q95_APE), among others, for low flows, whilst high 
flows were evaluated more generically in eFLaG using the Nash Sutcliffe efficiency (NSE) 
and the modified Kling Gupta Efficiency (KGE2) (Hannaford et al. 2023, Figs. 4 and S2). For 
this study, absolute percent error in Q5 was also calculated to assess high flows more rigor-
ously. Results suggest reasonable agreement between observed and simulated values across all 
four hydrological models (Hannaford et al. 2023). The lumped catchment models showed very 
similar performance, with KGE and NSE scores above 0.8, Q95_APE for GR6J and PDM 
was below 20%, and Q5_APE below 5% for most catchments (Supplementary material S1 and 
S2). GR6J performed slightly better than GR4J, and PDM showed the best results. G2G had 
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worse performance, with KGE and NSE scores above 0.6 for most catchments, though median 
Q95_APE for G2G was 48% and median Q05_APE was 11%. The poorer performance from 
G2G is likely due to its simulations of naturalised flows as opposed to the other models that 
are directly calibrated against observations, and occurs mainly in the south-east region where 
catchments have significant groundwater interactions and water transfer schemes, giving flows 
more heavily influenced by abstractions which are more difficult to explicitly simulate.

2.3  QUALYPSO

Climate model uncertainty can be partitioned into contributing sources using quasi-ergodic 
analysis of variance (QE-ANOVA) (Hingray & Saïd 2014; Vidal et al. 2016). This method 
estimates the uncertainty associated with climate model projections, and partitions the specific 
sources in a statistical framework. QE-ANOVA highlights contributing sources of uncertainty 
and provides a deeper understanding of dominant uncertainties across the dataset.

The first step to performing QE-ANOVA is to estimate the noise-free signal (NFS) for the 
change variable X (e.g., flow percentile). This is performed using a trend model of the raw 
projections Y , giving

where g represents the RCM, h represents the hydrological model with y(g, h, t) and 
y(g, h, b) the trend estimates of the raw projections across the future time period ( t ) and 
baseline period ( b ), respectively. Having calculated the NFS, it is assumed that the noise-
free change response can be partitioned as

where �(t) is the overall climate response which represents the complete ensemble mean at 
time t , �(g, t) and �(h, t) are the mean deviations of RCM g and HM h from the ensemble 
mean �(t) , and �(g, h, t) is the residual. These parameters can be estimated using a classical 
two-way ANOVA approach with no interactions [Berrington de González and Cox (2007); 
Searle (1971)].

Firstly, define the means across each variable (e.g., g , h ), with the dot symbol representing 
averaging over the index, as

Then, from a least squares estimation using the constraints 
∑Ng

g=1
�̂(g, t) = 0 and 

∑Nh

h=1
�(h, t) = 0 , the parameter estimations in Eq. (2) can be given as

(1)N̂FS(g, h, t) =
y(g, h, t)

y(g, h, b)
− 1

(2)N̂FS(g, h, t) = �(t) + �(g, t) + �(h, t) + �(g, h, t)

(3)N̂FS(g, ∙, t) =
1

Nh

Nh
∑

h=1

N̂FS(g, h, t),

(4)N̂FS(∙, h, t) =
1

Ng

Ng
∑

g=1

N̂FS(g, h, t),

(5)N̂FS(∙, ∙, t) =
1

NgNh

Ng
∑

g=1

Nh
∑

h=1

N̂FS(g, h, t)
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The total uncertainty associated with the NFS can then defined as

This was performed using the “QUALYPSO” function in the QUALYPSO R-package 
(Evin 2022). This function runs QE-ANOVA across the input ensemble dataset with con-
tributions extracted from the figure data. The QUALYPSO function requires a smoothing 
factor for fitting the trendlines to the baseline and future projections using cubic smoothing 
splines. A smoothing factor of 1 (default value) was used following the functions authors 
Evin et al. (2019).

2.4  Catchment selection

River flow projections were derived for a representative set of 186 catchments in Great 
Britain (excluding Northern Ireland catchments due to G2G not covering these). Ensur-
ing an acceptable geographical coverage was an important selection criterion to maximise 
the inclusion of the breadth of hydrometeorological and hydrogeological variability in GB. 
As an additional layer of validation, the representativeness of catchment characteristics 
within the subset was checked against the distribution of values in the full set of catch-
ments on the UK National River Flow Archive. The majority of UK catchments are subject 
to some level of artificial influence, and the catchment selection was not limited to only 
those that cannot be empirically quantified. An effort to identify near-natural “benchmark 
network” catchments (Harrigan et al. (2018) identified 80 such catchments (shaded blue in 
Fig. 2), of which 11 were flagged to be used with caution due to minor influence). How-
ever, the catchment selection for the eFLaG simulations, and this study, was not limited 
to these benchmark catchments as the assessment of hydrometric networks with national 
importance was critical to determine the implications of uncertainty for water resources 
management in GB. Catchments were also chosen to reassess those included in the previ-
ous study of GB river flow projections by Prudhomme et al. (2013). Finally, catchments 
were selected according to criteria of record length (covering the entire baseline period 
(1981–2012) in Hannaford et al. (2023)) and data completeness, as well as expert visual 
judgement on data quality. Feedback was sought from both the water industry and research 
scientists to maximise utility of the river flow projections. This selection includes catch-
ments in the south-east which have very complex geology (chalk aquifers) and are heav-
ily exploited for drinking water and agricultural abstractions, thus representing catchments 
with significant human influence.

Of these 186 catchments, a subset of 12 (Fig. 2) were selected to illustrate a range of 
examples of uncertainty partitioning. Trios of catchments (Figs. 2 and 3) were identified to 
represent four general categories of HM uncertainty:

(6)�̂(g, t) = N̂FS(g, ∙, t) − N̂FS(∙, ∙, t),

(7)�̂(h, t) = N̂FS(∙, h, t) − N̂FS(∙, ∙, t),

(8)�̂(t) = N̂FS(∙, ∙, t),

(9)�̂(g, h, t) = N̂FS(g, h, t) − �̂(g, t) − �̂(g, t) − �̂(h, t).

(10)�ar
(

N̂FS(g, h, t)
)

= �ar
(

�̂(g, t)
)

+ �ar
(

�̂(h, t)
)

+ �ar
(

�̂(g, h, t)
)

.
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A. Similar projections across all four HMs;
B. Similar projections across three of four HMs, with one outlier;
C. Different projections between each of two pairs of HMs;
D. Different projections for each of the four HMs.

Three catchments were selected to represent each of these four categories as defined 
for transient Q95 data in the far future (2080). When sub-sampling these 12 catchments, 
consideration was made to ensure a reasonable geographical spread across the UK as 
well as a representative cross-section of catchment characteristics (Table 1). Catchment 
areas range from 53 to  9885km2 (median of  187km2), median catchment elevations 
range from 68 to 509 m (median of 118 m), catchment average annual rainfall ranges 
from 566 to 2022  mm (median of 982  mm), base flow index values range from 0.27 
to 0.90 (median of 0.53), and urban proportion of catchment ranges from 0.3 to 10.4% 
(median of 3.5%).

Fig. 2  eFLaG catchments with groupings — all catchments included in the analysis are depicted by their 
outline. Sample catchments for comparison and analysis purposes are identified and indicated in the figure 
by red dots. Benchmark network catchments are shown in blue
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3  Results

In order to examine the results of the analysis, a few different types of results were 
extracted. Firstly, the paper explores the results of the high and low flow metrics across 
catchments, which are a direct output of the eFLaG modelling. From there, the results 
then explore the original research questions posed in Section 1. The total uncertainty in 
the model cascade as quantified using the QE-ANOVA method set out in Section 2.3 for 

Fig. 3  Raw Inflow values for the 12 selected catchments a Q5 flow and b Q95 flows. Coloured dashed lines 
represent the upper and lower bounds for each HM with grey lines showing the individual projections
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the noise-free signal (NFS) for the change variable X , and the partitioned components 
of the main sources of uncertainty. Using a sub-set of catchments set out in Section 2.5, 
the results are then explored in more detail for trends and explanations. Finally the clus-
ter analysis performed highlights whether trends in the results can be attributed to par-
ticular physical characteristics.

Fig. 3  (continued)
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3.1  Median change signal

Figure 4 shows the median flow metric results for each catchment, and the median change 
across the ensembles into the 2050s and 2080s. It is clear from the figure that there are 
both positive changes (i.e., increases) and negative (i.e., decreases) to high flow  (Q5) esti-
mates in both the 2050 and 2080 time periods. Similar magnitude changes are observed for 
both time periods across both time periods with the maximum changes concentrated along 
the west coast. Changes generally tend to increase marginally between 2050 and 2080 for 
the majority of catchments. Some exceptions are observed for example the Thames where 
reductions in high flows are projected after 2050. All median changes range between − 69.1 
and 13.9 with 79.5% of these less than zero (100% of the low flow values and 59% of the 
high flows). The distributions of change values for each flow quantile are given in Supple-
mentary materials S3.

A general trend of decreasing median flow values is identified for low flow projections. 
The median estimate for Q95 is set to decrease further from the 2050s to the 2080s. The 
reduction is observed most acutely in the south of the country, with catchments in the 
south west having a 40% reduction in the 2050s, and further reducing to − 60% of the 2012 
median flows by 2080. All catchments show a decreasing trend in Q95 median values from 
the 2050s to the 2080s.

3.2  Uncertainty components

Figure 5 shows the total uncertainty as calculated using the QUALYPSO package across all 
study catchments in Great Britain. There is a clear trend of increasing uncertainty between 
near and far future time periods, as well as between high and low flows. There is greater 
uncertainty in the far future as a result of diverging results from the modelling chain. This 
is in line with previous studies conducted such as Evin et al. (2019).

What is interesting however is that there is a trend of greater uncertainty between high 
and low flows with low flows having increased total uncertainty in comparison. Examining 
the raw results from the eFLaG dataset, this appears to arise from the calibration of the 
hydrological models. Three of the four hydrological models (G2G being the exception) are 

Table 1  Subset of 12 catchments 
used for in-depth analysis of 
QUALYPSO results

Name NRFA ID Location Category Area  (km2)

Dee (Sco.) 12001 E Scot A 1370
Lud 29003 E Eng A 55
Naver 96002 NW Scot A 477
Leet Water 21023 SE Scot B 113
South Tyne 23004 NE Eng B 751
Dee (W.) 67018 N Wal B 54
Colne 37005 E Anglia C 238
Brue 52010 SW Eng C 135
Severn 54057 Mid. Wal C 9895
Dove 28046 Central Eng D 83
Thames 39072 SE Eng D 7046
Fal 48,003 SW Eng D 87
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calibrated to gauged historical flow records which include some level of artificial influence 
(depending on catchment). Whilst these three models (GR4J, GR6J, PDM) are calibrated 
to the same historical flow records, despite attempts to ensure as much consistency as pos-
sible, there are differences in the calibration procedures for PDM and GR4J/GR6J. Since 
the impact of artificial influences on the flow regime is more significant (in relative terms 
as a proportion of flows) at low flows rather than high flows, there are greater differences 
between the lumped models calibrated to observations and the uncalibrated G2G which 
simulates naturalised flows. This yields more HM uncertainty at low flows than high flows.

Figure 6 maps the evolution of the untangled dominant uncertainty components for both 
low and high flow indicators across the time periods. There is a clear pattern for high flows 
of dominant uncertainty arising from the RCM. This trend intensifies in the far future. A 
few key catchments do not follow this trend (e.g., 54,057 — Severn) where the uncertainty 
components are more balanced between HM and RCM; these catchments are generally 
located in Southern England. For low flow indicators, the opposite is true. It appears that 
the dominant source of uncertainty across both time periods is the hydrological model, 

Fig. 4  Median catchment results across Great Britain. The top panel displays the results for the high flow 
metric  (Q5), whilst the lower panel shows low flow metric  (Q95). The first column shows the median catch-
ment flows for the baseline period (2012), whilst the middle column shows the percentage change in median 
flows for the 2050s and the third column shows the change in the 2080s
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and this trend intensifies in the far future. Regional climate model uncertainty remains sta-
tionary between flows, the additional uncertainty in low flows is a direct consequence of 
increased hydrological model uncertainty.

3.3  Catchment analysis

QUALYPSO results have been produced for each trio of catchments defined in Section 2.4. 
Comparing the separation of uncertainty identifies the largest source of variability and 
what may need to be considered when working with catchments with similar flow relation-
ships to those examined herein.

3.3.1  Category A

The first of these groups to be investigated include catchments with similar Q95 flow series 
for each of the 4 hydrological models in the eFLaG dataset.

Across each of the catchments, the RCM uncertainty is seen to dominate within the high 
flow (Q5) series. Partitioning uncertainties shows that the variability between 12 RCM 
ensemble members accounts for over 80% of the total uncertainty in the 2080s (Fig. 7a). 
The remaining uncertainty is typically made up of internal variability with only the Scot-
tish Dee producing only moderate HM uncertainty (4%). As such, the selection of hydro-
logical model is seen to have less influence on the modelled flows than the 12 RCM ensem-
ble members. Interestingly, this occurs also for the Lud even when one hydrological model 
(usually G2G) produces significantly different high flow series. This may be a consequence 
of the similarities seen in the other HM’s with QUALYPSO designed to calculate the HM 
mean deviations from the ensemble mean.

Uncertainty partitioning for low flows (Q95) show a larger proportion of hydrological 
model uncertainty compared to the high flow results. The Lud and Naver catchments are 
characterised by equivalent HM uncertainty partitioning ranging from ~ 15 to ~ 45% for the 
Scottish Dee (Fig. 7a). All three HM values are significantly larger than those for Q5 flows, 
highlighting an increased importance of HM selection at lower flows. This importance 
increases through time at all three locations with more uncertainty in the far future. The 
larger proportion of HM uncertainty occurs even in the case of Lud whereby the modelled 
Q95 flow series from the 4 HMs are more similar to one another than the Q5.

3.3.2  Category B

The second group of catchments have been identified as having 3 hydrological models with 
similar Q95 flow series and one outlier. G2G is the outlier for both the Leet Water and 
Welsh Dee catchments with PDM producing different flows for the South Tyne.

Once more, the total uncertainty at high flows (Q5) is dominated by the RCM 
uncertainty which remains above 85% from 2050 through to 2080. In contrast, HM 
uncertainty is negligible by comparison (< 5%) throughout the twenty-first century. 

Fig. 5  a Total Uncertainty across all catchments for high flow indicators (top panels) and low flow indica-
tors (bottom panels). b HM Uncertainty across all catchments for high flow indicators (top panels) and low 
flow indicators (bottom panels). c RCM Uncertainty across all catchments for high flow indicators (top pan-
els) and low flow indicators (top panels)

▸
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Fig. 5  (continued)
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Fig. 5  (continued)
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Fig. 6  Uncertainty components per catchment as a percentage of total uncertainty: hydrological model 
(HM) uncertainty versus regional climate model (RCM) uncertainty
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Fig. 6  (continued)
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This trend is consistent for all catchments, including where modelled flows from the 
HMs are significantly different (e.g., Fig. 7b — Welsh Dee). Higher RCM uncertainty 
indicates greater importance on selection of RCM ensemble members compared to 
influence of the HM.

HM uncertainty partitions increase through time for low flows (Q95), becoming 
the major contributor to overall uncertainty for the South Tyne by 2080. RCM uncer-
tainty continues to dominate in the near future but the choice of hydrological model 
becomes more important when analysing far future low flows. However, HM uncer-
tainty percentages remain smaller than the equivalent for RCM uncertainty for Leet 
Water and Welsh Dee (Fig. 7b). The relative proportions of uncertainty contributions 
vary across years and catchments for Q95 flows compared to the more stable  Q5 
partitions.

3.3.3  Category C

The third subset of catchments is those for which modelled low flows in 2080 fall into two 
distinct pairs of HMs. For the Colne and Severn, far future low flows are similar for G2G 
and GR4J and for GR6J and PDM (Fig. 7c), whereas for the Brue the G2G and PDM mod-
elled flows are similar (as are those modelled by GR4J and GR6J).

Uncertainty at high flows (Q5) for this third subset of catchments (Fig. 7c) is partitioned 
far more equally between RCM and HM relative to the previous two subsets (Fig. 7a and 
b). Whilst RCM uncertainty remains the majority component in the near future (2050) — 
50–70% of total uncertainty across the three catchments — the importance of HM uncer-
tainty continues to increase into the far future. By 2080 and consistently across all three 
catchments, RCM and HM uncertainty are approximately similar.

Once again, there is less consistency in the uncertainty partitioning between catch-
ments for low flows (Q95) in this subset. Unlike for those catchments in preceding subsets, 
HM uncertainty is the dominant component of total uncertainty for the Colne and Severn, 
accounting for more than 70% of total uncertainty in both the near (2050) and far future 
(2080). The relatively narrow envelopes representing the RCM variability for each HM 
illustrate that differences in flows attributable to RCM ensemble members are much less 
significant than differences between HMs. The Brue is an exception to this general pat-
tern, with RCM uncertainty larger than HM uncertainty throughout the twenty-first century 
(though not to the same extent as for low flows in the preceding subsets of catchments; 
Fig. 7a and b). For the Brue, RCM and HM uncertainty are relatively consistent through 
time at ~ 50% and ~ 30%, respectively, with residual variability comprising a larger propor-
tion than for other catchments (~ 10%).

Fig. 7  a Category A: Catchments where the hydrological model results demonstrate similar behaviour 
(Scottish Dee, Lud, Naver). b Category B: Catchments where three hydrological model results demonstrate 
similar behaviour and one is an outlier (Leet Water, South Tyne, Welsh Dee). c Category C: Catchments 
where two sets of hydrological model results demonstrate similar behaviour (Colne, Brue, Severn). d Cat-
egory D: Catchments where all four hydrological model results demonstrate different behaviour (Thames, 
Dove, Fal). Internal variability is coloured red; hydraulic model uncertainty is coloured light blue; regional 
climate model is coloured dark blue; residual uncertainty is coloured orange

▸
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3.3.4  Category D

The final subset comprises catchments for which modelled low flows (Q95) in the eFLaG 
dataset are generally different for each of the four HMs. A range of catchment sizes are rep-
resented, from the Fal and increasing in catchment size to the Thames catchment. Whilst 
the four subsets have been determined based on the relative similarity of modelled low 
flows in 2080, in the case of this subset, modelled high flows (Q5) also generally differ 
between each of the four HMs (this is not necessarily true for the other subsets).

The uncertainty partitioning for high flows (Q5) results in a range of different charac-
teristics across the three catchments (Fig. 7d). Total uncertainty for both the Dove and Fal 
is dominated by RCM uncertainty (~ 80% in both the near and far future), akin to those 
catchments in the first two subsets (Fig. 7a and b) although marginally less dominant. For 
the Dove, the widths of the RCM ensemble envelopes in high flows are much larger than 
differences between HMs. In contrast, high flow uncertainty for the Thames is dominated 
by HM variability in the far future (~ 70%), although the balance between RCM and HM 
uncertainty in the near future is almost equal.

At low flows (Q95), uncertainty partitioning results across all three catchments are con-
sistent: HM uncertainty is the dominant component, ~ 70% of the total uncertainty in the 
far future for all catchments (though having increased from ~ 55% in the near future for the 
Dove).

4  Discussion

4.1  Trends across the UK

A north-west/south-east divide is observed across the UK with greater total uncertainty 
observed in southern England. River flows in catchments of the south-east have particu-
larly high uncertainty, and there are many contributing factors at play in this region. The 
south-east has a very complex geology of chalk aquifers that are exploited by abstractions 
due to high water supply demands (including public water supply and irrigated agriculture) 
that are not met by the relatively dry conditions of the region, and the dominance of arable 
agriculture. Water transfer schemes are, though not limited to this region, also employed 
here increasing the effect of artificial influence. Results are in agreement with previous 
QE-ANOVA studies on different climate ensembles (Collet et al. 2017; Visser-Quinn et al. 
2019; Lane and Kay 2021).

4.2  Trends in dominant uncertainty

Regional differences in total and partitioned uncertainty highlight the need to assess 
ensembles at catchment scales. As part of this assessment, any relationship between catch-
ment characteristics might explain these regional differences; however, no clear correlation 
was found between NRFA descriptors and total uncertainty (Supplementary Material S4). 
South-eastern catchments are shown to have a higher degree of uncertainty with more vari-
ability in Q5 and Q95 flow estimates. This may be due to G2G producing outlier values in 
these regions as a result of anthropogenic changes. Similar variations are not observed in 
the north-west as G2G is more likely to align with lumped models for more natural catch-
ments (fewer abstractions occur in these catchments). RCM uncertainty dominates for high 
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flows but is not the controlling uncertainty source. The percentage of uncertainty associ-
ated with the RCM has been shown to be large for high flows, reaching 90% in some loca-
tions. However, examining raw uncertainty values shows a different picture with smaller 
increases in RCM uncertainty compared to HM for low flows.

On the other hand, low flow uncertainty is dominated by uncertainty from the HM. 
This is in agreement with several studies in the UK (Chegwidden et al. 2019; De Niel 
et  al. 2019; Vetter et  al. 2017) and may be a consequence of the flow calibration to 
observed data including abstractions which has a larger impact on Q95 values. Further-
more, hydrological model performance at low flows is poorer than high flows, likely a 
consequence of the calibration procedure and catchment characteristics.

The results presented herein suggest that RCM uncertainty is larger for high flows 
and HM uncertainty more significant at low flows. However, it is important to note that 
this is not to claim that intrinsically there is more uncertainty in RCM output during 
wetter spells triggering higher flows. Absolute values of RCM uncertainty are similar 
at both high and low flows and in the near and far future (Fig. 6). This highlights that 
in relative terms the RCM ensemble members are as similar to one another regardless 
of the hydrometeorological situation. It is important to note these similarities are likely 
due to RCM uncertainty being assessed across a PPE with different parameters of a 
single model being modified. Therefore, RCM model structure uncertainty is not con-
sidered — rather it provides the uncertainty associated with one RCM. However, the 
corresponding absolute values of HM uncertainty (Fig.  5b) span a much larger range 
than for RCM uncertainty. This highlights that, whilst there is no significant difference 
in the RCM during high and low flow periods, it is HM uncertainty that dominates the 
relative contributions illustrated in Fig. 6. Correspondingly, the extent of dominance of 
RCM uncertainty at high flows only occurs because the HM uncertainty is the control-
ling factor in the relative contributions.

The finding that HM uncertainty is the dominant factor which drives the whole 
uncertainty partitioning process raises the important question of why there is nothing 
intrinsically different in the RCM at high and low flows, but there are identifiable dif-
ferences between the HMs at high and low flows. In the first instance, the use of G2G 
(simulating naturalised flows) alongside three lumped catchment models (calibrated to 
gauged observations which include artificial influences) will introduce differences. In 
addition, amongst the three calibrated models, whilst attempts were made to maxim-
ise consistency between models, there were differences in approaches. However, it is 
worth reflecting on whether there are explicit differences between the ability of models 
to calibrate to high and low flows. Whilst an early application of the eFLaG dataset was 
to support enhanced resilience of water resources in the UK, the hope is that the future 
projections will be useful for a range of applications, in the same manner that the previ-
ous iteration of ‘future flows’ for the UK (Prudhomme et al. 2013). As such, the met-
rics that were used as objective functions during the calibration process were chosen to 
simulate a range of flows across the regime (rather than favouring low flows as has been 
undertaken previously; e.g., Smith et al. 2019). The calibration process attempts to min-
imise errors between observed and simulated flow, and the most efficient target is large 
differences in high flows (which yields the greatest reductions in errors). Correspond-
ingly, errors in low flows following calibration are likely to be larger (in relative terms) 
than at high flows. This is a potentially important explanation for why low flows might 
naturally be more uncertain than high flows when calibrations are undertaken using gen-
eral purpose flow metrics, even if ensuring the calibration procedure was identical for 
all models.
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4.3  Understanding uncertainty

Application of QE-ANOVA to the eFLaG dataset has provided insight into an important 
UK dataset. Untangling the uncertainty of the 12-member PPE, 4 HM dataset identifies 
potential considerations for future studies across 186 UK catchments. Researchers can thus 
use eFLaG whilst fully aware of regional and modelling uncertainties.

The assessment of uncertainties across UK catchments has highlighted regions with 
more uncertain flow projections. Large total uncertainties are a consequence of increased 
variations between the flow projections. Application of eFLaG projections in these regions 
are likely to produce considerable uncertainties. Therefore, such catchments demand more 
attention for both high and low flow water management assessments. Additional assess-
ment of catchment characteristics found no clear correlation between NRFA descriptor 
(BFIHOST) and total uncertainty (Supplementary Material S4).

QE-ANOVA has been applied to a state-of-the-art dataset and can be performed on 
larger ensembles with additional GCM members. Untangling the eFLaG uncertainties pro-
vides more insight into the RCM and HM modelling chains, as well as regional variations. 
Having assessed uncertainties this dataset can be used for flood and drought estimations 
with confidence. However, as a PPE the GCM/RCM structural uncertainty has not been 
assessed. Inclusion of additional RCM models will capture variations in underlying equa-
tions and assumptions. Application of QE-ANOVA to further multi-model ensemble cli-
mate projection datasets should be considered before their use in water management.

4.4  Implications for water resources management in the UK

Separation of climate projection uncertainties has identified dominant sources. However, if 
costs are not an issue, then we advocate for robust sampling of both RCM and HM uncer-
tainties. This paper has isolated uncertainty contributions relating to RCM and HM choices 
within the eFLaG dataset. This has provided additional insight into model interactions and 
importance to specific regions. However, the temptation to focus on one uncertainty should 
be avoided. Future assessments must continue to consider all cost- and time permitting 
uncertainties to ensure robust conclusions.

Practitioners can use the QE-ANOVA results presented herein to determine how com-
putational budgets should be assigned under resource constraints. Catchments identified 
as having large HM uncertainties should prioritise multiple HMs over RCM ensembles to 
best capture variations in flow estimates. Conversely, RCM dominant catchments could 
preferentially consider RCM ensembles at the expense of HMs, reducing computational 
costs. Tailoring ensemble flow series to catchments will ensure computational feasibility 
targets are met, increasing the likelihood of probabilistic approaches. However, it should be 
noted that including multiple RCM’s and HM’s is encouraged to reduce the risk of biased 
conclusions.

Future water resource management planning currently considers climate change through 
climate projections run through only a single hydrological model (e.g., United Utilities 
2019). The work herein has shown that this is likely to be unsuitable for climate impact 
studies due to the lack of HM uncertainty quantification, particularly with far future low 
flows. Significant hydrological model uncertainty is observed across the south-east where 
population densities are large. A single hydrological model will not account for flow uncer-
tainty in this region and will underestimate flow uncertainty. This has the potential to 
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impact investment decisions required to provide water to increasing populations in the face 
of climate change. The same is true for assessing floods in deterministic manner runs the 
risk of under adaptation thus probabilistic approaches to flood hazard assessment are nec-
essary (Aitken et al. 2022b).

5  Conclusions

This paper has quantified uncertainties relating to state-of-the-art eFLaG’s climate dataset. 
Total uncertainties have been assessed before separating into regional climate model and 
hydrological model contributions across 186 GB river catchments with the aim of identify-
ing national trends in dominant source via a QE-ANOVA approach.

Results have identified large uncertainties in the southeast of England particularly with 
low flow projections. A national assessment of total uncertainties observed greater vari-
ability in projections for southern catchments, highlighting the need for increased care and 
attention in these domains. High flow river projections produce smaller uncertainties than 
the equivalent Q95 values and thus may be used with more confidence than their low flow 
counterparts.

Uncertainty contributions from RCM and HM choices have been analysed for every 
catchment included in the eFLaG dataset for the single GCM-emissions scenario presented 
in UKCP18. Regions which are more sensitive to hydrological or regional climate model 
choices have been highlighted, providing additional information for water resource man-
agement in these areas. This allows cost and time limited studies to prioritise the most 
impactful source of flow variability.

An in-depth analysis of uncertainty partitions and temporal changes has been performed 
at 12 UK catchments. Four categories (defining similarities in Q95 flows) have been used 
to differentiate tendencies in hydrological model variability. This analysis has identified 
trends in dominant uncertainties as a consequence of variability in flows.

Future studies must perform an analysis of variance to ensure robust assessment of 
uncertainties and prevent unnecessary social, environmental, and economic losses. QE-
ANOVA provides a method to understand uncertainties and dependencies which should 
be applied to new case studies. This will ensure uncertainties are quantified with accurate 
conclusions for future flood and drought events, increasing national resilience to climatic 
changes.
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