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A B S T R A C T   

Accurate extraction of urban green space is critical for preserving urban ecological balance and enhancing urban 
life quality. However, due to the complex urban green space morphology (e.g., different sizes and shapes), it is 
still challenging to extract green space effectively from high-resolution image. To address this issue, we proposed 
a novel hybrid method, Multi-scale Feature Fusion and Transformer Network (MFFTNet), as a new deep learning 
approach for extracting urban green space from high-resolution (GF-2) image. Our method was characterized by 
two aspects: (1) a multi-scale feature fusion module and transformer network that enhanced the recovery of 
green space edge information and (2) vegetation feature (NDVI) that highlighted vegetation information and 
enhanced vegetation boundaries identification. The GF-2 image was utilized to build two urban green space 
labeled datasets, namely Greenfield and Greenfield2. We compared the proposed MFFTNet with the existing 
popular deep learning models (like PSPNet, DensASPP, etc.) to evaluate the effectiveness of MFFTNet by the 
Mean Intersection Over Union (MIOU) benchmark on Greenfield, Greenfield2, and a public dataset (WHDLD). 
Experiments on Greenfield2 showed that MFFTNet can achieve a high MIOU (86.50%), which outperformed 
deep learning networks like PSPNet and DensASPP by 0.86% and 3.28%, respectively. Meanwhile, the MIOU of 
MFFTNet incorporating vegetation feature (NDVI) was further achieved to 86.76% on Greenfield2. Our exper-
imental results demonstrate that the proposed MFFTNet with vegetation feature (NDVI) outperforms the state-of- 
the-art methods in urban green space segmentation.   

1. Introduction 

Urban green space plays a pivotal role in the ecosystem of the urban 
landscape and has significant connections with the urban ecological 
environment (Thompson et al., 2012), people’s health (Astell-Burt et al., 
2022), and welfare (Wang et al., 2021). It has been found that urban 
green space coverage has a negative correlation with heat island in-
tensity and that increasing green space coverage has considerable 
impact on heat island mitigation (Wang et al., 2021). In addition, urban 
green space provides a suitable leisure platform for residents’ lives (Tu 
et al., 2019), decreases stress and anxiety (Bertram and Rehdanz, 2015), 

and promotes healthy living (Hills et al., 2019). Unfortunately, the 
massive expansion of urbanisation and human activities have resulted in 
the encroachment upon the expanse of green space (Portillo-Quintero 
et al., 2012). This situation poses a severe threat to the urban ecological 
environment (Su et al., 2011). Consequently, there is urgent need for 
rapid and precise extraction and monitoring techniques for urban green 
space as they are pivotal to ensure the sustainable and healthy devel-
opment of urban areas. 

With the progress in remote sensing technology, a plethora of multi- 
temporal high-resolution image data is acquired using diverse sensors 
(Zhang et al., 2019). These high-resolution images provide intricate 
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details that are imperceptible to the naked eye, enabling the exploration 
of internal urban structures and they serve as invaluable resources for 
conducting comprehensive surveys and mapping of urban greenfield 
(Yin et al., 2021). By analyzing high-resolution remote sensing, a 
comprehensive understanding of urban green space can be achieved, 
facilitating informed decision-making and strategic urban planning and 
management. Researchers employ remote sensing images to extract in-
formation pertaining to urban green space. Currently, the methods for 
extracting such information from images can be categorized into four 
distinct types: the threshold method (Myeong et al., 2006), pixel-based 
classification method (Liu and Yue, 2010), object-based image analysis 
approach (Ardila et al., 2012), and deep learning method (Xu et al., 
2020). The threshold technique is commonly used to distinguish vege-
tation by utilizing spectral indices like the Normalized Difference 
Vegetation Index (NDVI) (Tucker et al., 2005). However, the presence of 
complex urban backgrounds, including buildings and highways, often 
leads to interference and disruption of vegetation feature in remote 
sensing imagery (Neyns and Canters, 2022). The pixel-based technique 
relies on the properties of distinct wavebands to extract green patches 
from basic image backgrounds, while the method is largely used for low- 
and medium-resolution images (Räsänen and Virtanen, 2019). In an 
object-based approach, identification of urban green space as a whole, 
with noise resistance and wide applicability, and has achieved successful 
applications in the study of vegetation high-resolution image data 
(Wang et al., 2020).However, segmenting urban green space from high- 
resolution image data is a complicated data processing operation, and 
high-resolution images can provide detailed feature information while 
simultaneously increasing intra-target class variation (Liu et al., 2016). 
Above approaches, such as thresholding, require manually created fea-
tures to extract greenfield information, often result in poor generaliza-
tion (Spiering et al., 2020), and lack an autonomous learning process; 
thus, improved methods to increase the efficiency and accuracy of green 
space extraction are urgently needed. 

Deep learning-based remote sensing imagery segmentation has 
gained significant prominence in recent years as computer vision tech-
niques have advanced (He et al., 2022; Li et al., 2023). Deep learning can 
be described as a hierarchical feature representation network with 
strong capability to automatically learn complex feature representations 
from enormous data sets such as spectrum, texture, shape, and context 
(Hinton et al., 2006). Deep learning is now being selected to solve a 
variety of problems, including object detection (Jiang et al., 2022) and 
semantic segmentation (Chen et al., 2021). Numerous studies have 
demonstrated that Fully Convolutional Networks (FCNs) increase the 
accuracy of target feature extraction because of their powerful end-to- 
end feature representation and pixel-level segmentation capabilities 
(Long et al., 2015). Since these studies, several semantic segmentation 
models based on FCNs have been developed, including SegNet (Badri-
narayanan et al., 2017), DeepLabv3+ (Chen et al., 2018), DenseASPP 
(Yang et al., 2018), and PSPNet (Zhao et al., 2017). Although these 
models have shown capabilities in semantic segmentation tasks, direct 
application upon urban greenfield extraction tasks is difficult due to the 
complex urban landmark structure, often composed of different ele-
ments such as buildings and roads, each with its own features such as 
spectral characteristics, texture, and spatial context. Consequently, re-
searchers proposed different models and networks according to the 
characteristics of urban greenfield on the basis of the above networks, 
such as Xu et al. (2020) and Kattenborn et al. (2021). However, only 
retrieving shallow information is no longer sufficient for the task of 
green space segmentation. Feature extraction generates abundant in-
formation across different levels in the feature maps during feature 
extraction, and accurate segmentation needs to take into account the 
contextual relationship between green spaces and their surroundings. In 
addition, a single convolution used in Xu et al. (2020) can only capture 
local image features and cannot effectively fuse urban green space in-
formation extracted from high-resolution images, thus leading to poor 
accuracy of segmentation results. What’s more, the intricate and diverse 

spatial scales of features in different remote sensing images also bring 
huge challenges to model feature extraction, and although some scholars 
(Kuai et al., 2022) have developed a multiscale feature extraction 
module using the concept of cavity convolution to enhance segmenta-
tion accuracy, its reception field is limited, and the multi-scale feature 
information of the object green space has not been fully explored. 

In this study, we present an innovative approach, namely the Multi- 
scale Feature Fusion and Transformer Network (MFFTNet), to address 
the aforementioned challenges of poor feature information fusion and 
limited perceptual field in urban green space segmentation from high- 
resolution image data. To capture sharp green space objects by gradu-
ally recovering spatial information, MFFTNet used an enco-
ding–decoding structure and built a fusion module in the encoder’s 
feature map to improve the integrity of the generated green space im-
ages. To collect multi-scale context information, the encoder’s feature 
maps were sent through a transformer, and ultimately, vegetation 
feature (NDVI) was included to enhance the training. The key contri-
butions of this research included:  

1. A deep learning network, MFFTNet, was proposed based on the 
encoding–decoding framework for automatical extraction of urban 
greenfield from high-resolution image data, and the ablation exper-
iments showed that the optimized backbone, transformer, and fusion 
module in the MFFTNet significantly enhanced the performance.  

2. Using the GF-2 images collected from Changping District, Beijing, 
two deep learning urban green space labeled datasets (Greenfield 
and Greenfield2) were built, which contributed to the research and 
application of deep learning in urban green space segmentation. 
Comparative experiments on the WHDLD, Greenfield, and Green-
field2 datasets confirmed that MFFTNet outperformed other deep 
learning networks and that the model was robust and efficient.  

3. Vegetation feature (NDVI) was incorporated into the MFFTNet for 
urban green space segmentation study. The results demonstrated 
that incorporating NDVI could increase the richness of MFFTNet 
learning and optimize segmentation results, demonstrating the effi-
ciency of vegetation feature in improving urban green space 
segmentation. 

2. Study area and dataset construction 

Existing public semantic segmentation datasets, such as ISPRS- 
Vaihingen and Potsdam (https://www.isprs.org/commissions/comm3/ 
wg4/semantic-labeling.html), are used for characterizing land cover 
surfaces, such as impervious surfaces, buildings, and other structures, 
which do not adequately represent the complex urban green space. For 
this reason, Men et al. (2021) employed high-resolution images to create 
urban green space labeled datasets; nevertheless, these high-resolution 
image urban green space datasets are not open source to be used 
freely. As a result, developing a high-quality, high-resolution urban 
green space labeled dataset remains a pressing issue to be addressed. 

2.1. Study area 

In Beijing, China’s capital, the creation of “green concepts” is highly 
valued. As a mega-city with rapid urbanization in China’s northern 
plains, it is an ideal location to investigate the response of urban green 
space to urbanization, having seen significant urban sprawl in recent 
decades (Zhang et al., 2022). Changping District in Beijing was selected 
as the study area in this research (Fig. 1). The Changping District is 
located in the mid-latitude zone, and the vegetation consists primarily of 
deciduous broad-leaved woods with a low number of evergreen trees. 

2.2. Dataset construction 

This experiment used high-resolution images (GF-2, June 4, 2017) as 
the data source to effectively extract urban green space. The data was 
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obtained from the China Resources Satellite Application Center. The GF- 
2 PMS (panchromatic multispectral sensor) has a 1-m spatial resolution 
panchromatic band and four 4-m spatial resolution multispectral bands, 
including blue, green, red, and near-infrared. The spatial resolution of 
the sub-satellite point reaches 0.8 m with a revisit time of 5 days. The 
data pre-processing includes orthographic correction, image fusion, and 
clipping. 

All processed images were labeled at the pixel level, and classified 
into two categories: green space and background, with backdrop pixels 
having RGB of (0, 0, 0) and greenfield pixels having RGB of (0, 255, 0), 
as shown in Fig. 2. Image cropping was utilized to partition the original 
image and the label image into 256 × 256 pixels to accommodate the 
limited computational resources, and the final dataset of urban green-
field images, Greenfield, was obtained by utilizing the training, valida-
tion and test data split as 3:1:1. The number of image pairs of training 
set, validation set and test set were 1162, 387, and 387, respectively. 

Typical false color image mixed with 4-3-2 bands (NIR, R, G) were 
used to demonstrate the urban green space features. All captured images 
were labeled at the pixel level, and classified into two categories: green 
space and background (Fig. 3). Image cropping was utilized to segment 
the original image and the label image into 256 × 256 pixels to 

accommodate the limited computational resources, as the second data-
set (Greenfield2). The number of image pairs in the training set, vali-
dation set, and test set was 1109, 370, and 370, respectively. 

2.3. Vegetation feature 

The spectral information in high-resolution image data is minimal, 
and the training data used for green space extraction is often RGB three- 
band information with insufficient feature richness, making high seg-
mentation accuracy difficult to achieve. The green region shows low 
reflectivity in the visible band and high reflectance in the near-infrared 
band in GF-2. This research combines GF-2 multi-temporal remote 
sensing images and introduces vegetation feature for urban green areas. 
The NDVI (Tucker et al., 2005), a widely used index for plant growth 
assessment, is chosen as the vegetation feature. The formula is shown 
below: 

NDVI =
NIR − R
NIR + R

(1)  

where NIR and R denote the near-infrared and red bands, respectively. 

Fig. 1. Example map of some greenfield in the study area.  

Fig. 2. Example of Greenfield dataset.  

Fig. 3. Example of Greenfield2 dataset.  

Y. Cheng et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103514

4

The NDVI of the study area was calculated by formula (1), and the 
vegetation feature (NDVI) was super-imposed onto the false color image, 
which was mixed with NDVI as the fourth band via image fusion to get 
the enhanced urban green space vegetation feature image data. The 
results of a conventional false color image and vegetation feature su-
perimposition are shown in Fig. 4. 

3. Methods 

We proposed MFFTNet based on the codec framework to implement 
urban green space semantic segmentation. The MFFTNet encoder 
component extracted green space features from shallow to deep using 
Res2Net as the backbone and the transformer to synthesize green space 
context information. The Fusion module was built to extract multi-scale 
information from high-level features, which were then integrated with 
contextual information acquired from levels of network within the 
backbone. Finally, convolutional layers were used to generate the 
greenfield extraction. Fig. 5 depicts the overall workflow. 

3.1. Multi-scale backbone 

It is critical to extract high-precision feature information from im-
ages when segmenting urban green space semantically, however, as the 
number of encoder convolution layers grows, the visual information is 
lost significantly. This work used Res2Net as the backbone to improve 
image information extraction performance and minimize gradient 
disappearance. 

Res2Net performs deep learning tasks by building residual connec-
tions with hierarchy within a single residual block rather than one single 
3 × 3 convolution (Gao et al., 2019). Unlike ResNet (He et al., 2016), 
Res2Net presents a new multiscale combination strategy and cross-layer 
connection structure to further increase the network’s representational 
capability and learning efficiency (Fig. 6). Res2Net, in particular, adds a 
new multiscale combination module to each residual block for extract-
ing features at several target scales. By expanding the number and size of 
sub-blocks, the multiscale combination module can adaptively extend 
the network’s perceptual field and feature characterization capability. 
To prevent feature information bottlenecks, Res2Net adds cross-layer 
connections between different levels of feature maps, allowing lower- 
level features to be transferred more fully to higher-level features. A 
multi-scale feature encoder with a Res2Net backbone was built to 
improve the extraction of deep features and multi-scale context infor-
mation from urban green space. Res2Net’s single 7 × 7 convolutional 
kernel extracts green space features, resulting in the model’s inability to 
find reliable features and objects in images. To improve the model’s 
representation performance, two 5 × 5 convolutional kernels were uti-
lized instead. Furthermore, this paper used the Relu6 activation function 

for the Rectified Linear Unit (Relu) (Sandler et al., 2018). The Relu limit 
to a maximum output of 6 is Relu6. The numerical resolution of the 
model is improved by restricting the magnitude of the Relu6 function, 
while negative values are filtered out to enhance the overall general-
ization of capabilities. 

3.2. Transformer module 

The transformer has recently offered a significant boost to numerous 
computer vision methods. Given the computational complexity and 
parameter volume of the model, as well as the synthesis of information 
on the length and distance of the street tree green space, the EdgViT- 
related module was utilized as a component of the Transformer atten-
tion branch of this study (Pan et al., 2022). The EdgViT module in-
troduces a local–global-local information exchange bottleneck, as 
illustrated in Fig. 7, through three key operations. Firstly, local aggre-
gation utilizes deep convolution to integrate local information from 
neighboring tokens. Secondly, sparse attention globally provides a small 
collection of representative markers to facilitate long-distance infor-
mation sharing via self-attention. Lastly, local propagation employs 
transposed convolution to propagate learned global context information 
from representative tokens to nearby tokens. 

The model’s sensing field limits the model’s capacity to perceive 
green space targets in remote sensing image frames within a compli-
cated city. To broaden the perceptual field, this paper introduced the 
EdgViT module, which can extract small-scale green space like street 
trees while also effectively identifying large-scale green space sections. 
Self-focusing enables effective learning of global information and long- 
range dependence, which aids in avoiding the interference of shadow 
occlusion of buildings, diversity of imaging conditions, and similarity of 
green space spectra with other features and enables the model to 
segment green space fractions effectively. 

3.3. Fusion module 

Green space features more intricate edge shapes than other objects, 
such as urban buildings and roadways. Fig. 8 depicts the structure of a 
multi-scale fusion module (Fusion) used in this paper to fuse information 
from multiple layers and refine edge details. Within the codec structure, 
the incorporation of rich high-level feature category information can 
greatly aid in the classification of low-level features. Similarly, 
leveraging low-level feature location information can significantly 
enhance the spatial positioning accuracy of high-level features. 

The multi-scale feature fusion module (Fusion), depicted in Fig. 8, is 
made up of five parallel branches. To improve feature extraction capa-
bility, deep-level characteristics are first upscaled to align with the low- 
level features from the alternate branch. Subsequently, strip convolution 
is utilized to refine the information present within both deep and low- 
level feature sets. DOConv of sizes 1 × 3 and 3 × 1 (Cao et al., 2022), 
an activation function Gelu (Liu et al., 2022) and a Group Normalization 
(GN) layer (Wu and He, 2018) make up the majority of the bar convo-
lution structure. Simultaneously, the input data is subjected to feature 
fusion by acting on one 1 × 1 convolutional kernel and three 3 × 3 
convolutional kernels. Following the convolutional layer operation, the 
information taken from various branches is summed up and transferred 
jointly to the next layer of the network to produce feature information 
after a full connection. This paper uses DOConv instead of traditional 
convolution in the fusion module, which is a deep hyperparametric 
convolutional layer with additional learnable parameters, to solve the 
problems of slow convergence and insufficient generalization ability 
during deep convolutional neural network training. Dynamically 
creating convolution kernels based on diverse aspects of the input data 
improves model generalization and accuracy. DOConv integrates an 
adaptive channel attention mechanism to dynamically adjust channel 
weights, thereby enhancing the model’s accuracy. Meanwhile, the 
Fusion module incorporates an asymmetric convolution kernel to boost Fig. 4. False color image and NDVI feature overlay results.  
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the attractiveness of greenfield characteristics by incorporating 
nonlinear changes. BN primarily addresses issues such as gradient ex-
plosions during the training phase. In urban green space semantic seg-
mentation tasks, the batch size is frequently small, making BN training 
useless. As a result, we introduced GN, which improved green space 
segmentation performance by grouping channels. 

4. Experiment 

4.1. Experimental environment and evaluation metrics 

The experiment was conducted on a Windows 10 platform equipped 
with an NVIDIA GeForce RTX 3060 GPU and 12 GB of graphics memory. 
The deep learning framework comprised PyTorch 1.7.1 and CUDA 11.6. 
The SGD optimizer, a cosine annealing strategy, and the Cross Entropy 
Loss function were used for network optimization, where the weight 
decay was set as 1e-4. We set the baseline learning rate as 0.001, the 
adjustment multiple to be 0.98, and the adjustment interval as 3. 
Moreover, the batch size was set as 2 when training, and the number of 

trainings was parameterized as 300. 
The model’s resilience and efficacy were gauged using five quanti-

tative measures: Pixel Accuracy (PA), Mean Pixel Accuracy (MPA), F1 
score, Frequency Weighted Intersection Over Union (FWIOU), and Mean 
Intersection Over Union (MIOU). These metrics were utilized to 
compare the predicted values with the ground truth and evaluate the 
performance in practical applications. The formulas for the above 
evaluation metrics are shown below: 

PA =
∑k

i=0

Pii
∑k

j=0pij
(2)  

MPA =
1

k + 1
∑k

i=0

Pii
∑k

j=0pij
(3)  

Fig. 5. Overall experimental workflow of the proposed MFFTNet.  

Fig. 6. (a) for the ResNet backbone; (b) for the Res2Net backbone. The x1, x2, 
x3, and x4 denoted the input feature maps for different scale branches in the 
Res2Net module; K2, K3, and K4 denoted the convolutional kernel sizes for 
feature fusion; and y1, y2, y3, and y4 denoted the output feature maps for 
different scale branches. 

Fig. 7. EdgeViT module of the Transformer branch.  
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P =
pii

pii + pij
(4)  

R =
pii

pii + pji
(5)  

F1 = 2⋅
P⋅R

P + R
(6)  

MIOU =
1

k + 1
∑k

i=0

pii
∑k

j=0pij +
∑k

j=0pji − pii
(7)  

FWIOU =
1

∑k
i=0

∑k
j=0pij

∑k

i=0

∑k
j=0pijpii

∑k
j=0pij +

∑k
j=0pji − pii

(8)  

where Pii, Pji, Pij, and Pjj represent the corresponding true and false 
positives, false and true negatives, respectively. Ambiguity arises when 
precision rate (P) and recall rate (R) are compared separately, so a 
reconciled average F1-score is introduced in this experiment to measure 
accuracy and recall together. In addition, the MIOU evaluates the 
resemblance between the true greenfield pixels and the predicted 
greenfield pixels, and the higher the MIOU value, the greater the 
similarity. 

4.2. Ablation experiments 

Table 1 summarizes the ablation tests performed on the Greenfield 
dataset to test the usefulness of each module. In the first row, baseline 
was used for feature extraction, and the extraction results were gener-
ated via straight upsampling. In this paper, U, DUC- Fusion, SK, Fusion, 
and EdgeViT modules were added in turn from the second to the last 
row, where U denoted two 5 × 5 convolutions and the Relu6 activation 
function, DUC- Fusion denoted a module consisting of Dense Upsam-
pling Convolution (DUC) (Wang et al., 2018) and the Fusion module, SK 
denoted the selective kernel attention module (Li et al., 2019c), and 
EdgeViT denoted the Transformer module. 

MIOU increases 0.34 % and PA improves 0.24 % when compared to 

the base network while using the optimized backbone, indicating that 
network performance is improved further (Table 1). Two 5 × 5 con-
volutional operations can improve the model’s feature extraction per-
formance, and the activation function Relu6 can boost the model’s 
numerical resolution and overall generalization capacity. By construct-
ing the DUC- Fusion module, the MIOU is improved by 0.04 %; the 
MIOU is also improved by constructing the SK module on top of it. MIOU 
is improved by 0.50 % as compared to the base network while using 
Fusion. The Fusion module fuses information from several layers, in-
cludes comprehensive category information for high-level features to 
guide the classification of low-level features, and supplements low-level 
feature location information with high-level features. Furthermore, 
when comparing SK and EdgeViT modules, EdgeViT outperforms SK by 
0.11 % in MIOU. Overall, the modified module improves segmentation 
accuracy, and using the aforesaid improvement technique results in a 
0.95 percentage point gain, demonstrating the efficacy of the improve-
ment strategy. 

4.3. Comparison experiments 

4.3.1. Comparison experiment of the WHDLD dataset 
The WHDLD is a densely labeled dataset that originated from 

extensive remote sensing imagery of Wuhan. It has been specifically 
curated for semantic segmentation task (Shao et al., 2020). The dataset 
covers a diverse range of landforms, including building, road, pavement, 
vegetation, bare soil, and water. In this study, the WHDLD was opti-
mized by designating five categories of non-urban green space as the 
background. Additionally, irrelevant data was eliminated, resulting in a 
refined dataset consisting of two categories: green space and back-
ground. In addition, FCN8s, SegNet, DeepLabv3+, DenseASPP, Den-
sASPP (mobilenet), PSPNet, DFN (Yu et al., 2018), ShuffleNetV2 (Ma 
et al., 2018), DFANet (Li et al., 2019a), DABNet (Li et al., 2019b), 

Fig. 8. Fusion module. DOConv denoted an over-parameterized convolutional layer, GN denoted Group Normalization, and Gelu denoted an activation function.  

Table 1 
Ablation experiments on the Greenfield.  

Method PA 
(%) 

MIOU 
(%) 

Flops 
(G) 

Params 
(M) 

baseline  77.85  63.63  7.95  12.05 
baseline + U  78.09  63.97  38.20  12.15 
baseline + U + DUC-Fusion  78.17  64.01  44.13  26.13 
baseline + U + DUC-Fusion + SK  78.18  64.03  134.45  55.62 
baseline + U + Fusion  78.48  64.47  38.20  12.15 
baseline + U + Fusion + EdgeViT  78.62  64.58  58.90  33.32  

Table 2 
Experimental results in the WHDLD.  

Method PA(%) MPA(%) F1(%) MIOU(%) FWIOU(%) 

DFANet  88.23  86.64  82.04  77.29  79.24 
DensASPP(mobilenet)  88.56  87.26  82.53  77.95  79.70 
DensASPP  89.25  88.16  83.52  79.18  80.76 
ESPNetv2  89.23  88.45  83.49  79.26  80.67 
DFN  90.02  88.78  84.65  80.45  82.05 
FCN8s  90.20  89.17  84.90  80.83  82.30 
ShuffleNetV2  90.12  89.69  84.77  80.88  82.06 
DeepLabv3+ 90.88  90.08  85.89  82.08  83.39 
DABNet  90.87  90.12  85.88  82.09  83.38 
PSPNet  91.44  90.46  86.75  83.02  84.37 
SegNet  91.70  91.35  87.08  83.67  84.72 
MFFTNet  91.94  91.52  87.43  84.07  85.13  
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ESPNetv2 (Mehta et al., 2019), and MFFTNet were used for comparison 
experiments (Table 2). 

FCN8s achieves pixel-level semantic segmentation by employing a 
full convolutional structure. SegNet continues to pool indexes in the 
codec structure in order to refine edge segmentation information. 
DeepLabv3+ adds arbitrary control over the resolution of encoder- 
extracted features in the codec structure, balancing accuracy and time 
via null convolution. DenseASPP segments targets using a densely con-
nected structure. DensASPP (mobilenet) achieves quick segmentation 
tasks by utilizing a lightweight network, mobilenet. PSPNet presents a 
more extended, global contextual information integration network 
based on multiple image regions based on spatial pyramid pooling. DFN 
builds a top-down framework to optimize features at each level in order 
to get characteristics with inter-class distinctions and refine bounds. 
ShuffleNetV2 performs a quick segmentation task. With numerous 
connection architectures, DFANet includes a semantic segmentation 
coding module. DABNet uses asymmetric convolution and dilated 
convolution to efficiently generate bottleneck layers for improved seg-
mentation performance. ESPNetv2 has developed a spatial pyramid of 
depth-expanding, separable convolutions that can be applied to edge 
devices. 

Notably, the proposed model in this paper, MFFTNet, surpasses other 
networks in terms of urban green space segmentation accuracy across all 
metrics. The corresponding scores for the five metrics are as follows: PA, 
91.94 %; MPA, 91.52 %; F1, 87.43 %; MIOU, 84.07 %; and FWIOU, 
85.13 % (Table 2). Deeplabv3+, DABNet, and PSPNet fail to effectively 
identify the surrounding green space part and have poor classification 
results due to the influence of buildings, as shown in the first row of 
Fig. 9; in contrast, MFFTNet effectively identifies the green space around 
buildings and is close to the real surface condition. In the third rows of 
Fig. 9, each network can effectively identify green space for single 
presence; however, when the urban surface is complex, building 
shadows, the diversity of imaging conditions, and the similarity of green 
space spectra with other features inhibit the accurate estimation of green 
space extraction from remote sensing images, and Deeplabv3+, DABNet, 
and PSPNet do not effectively extract the green space part. The MFFTNet 
provides green space segmentation in difficult urban situations with 
high robustness by upgrading the network and performing multi-scale 
feature fusion. 

4.3.2. Comparison experiment of the Greenfield dataset 
A set of comparative experiments on the Greenfield dataset was 

chosen from current approaches to further test the effectiveness and 
rationale of MFFTNet in urban green space segmentation tasks. Table 3 
displays the experimental outcomes. 

Table 3 presents the performance metrics of various networks eval-
uated on the Greenfield dataset. The evaluation metrics utilized in this 
study include PA, MPA, F1, MIOU, and FWIOU. Notably, the MFFTNet 
exhibits the highest segmentation accuracy and outperforms other net-
works across all metrics for the urban greenfield segmentation task. 
Specifically, the scores for the five metrics are as follows: PA, 78.62 %; 
MPA, 79.02 %; F1, 70.80 %; MIOU, 64.58 %; and FWIOU, 64.66 % 
(Table 3). 

Several example images from the Greenfield dataset were selected 
for experimentation; the objective was to demonstrate the model’s 
capability in detecting objects of varying sizes, shapes, and distributions. 
The visualization of detection results can be observed in Fig. 10. It is 
clear that the MFFTNet can detect the majority of the objects. Deep-
labv3+ classification results disregard a huge number of Greenfield 
components, and the classification results are unsatisfactory. The 
PSPNet classification results demonstrate that the targets’ boundaries 
are reasonably smooth, but they fail to recognize minor elements of the 
areas, such as roadside trees (Fig. 10, second row f). Although SegNet 
and DenseASPP classification scores have improved, these two 

Fig. 9. Comparison experimental visualization results of WHDLD. (a) Input image. (b) Label. (c) DeepLabv3+. (d) DABNet. (e) PSPNet. (f) MFFTNet.  

Table 3 
Experimental results in the Greenfield.  

Method PA(%) MPA(%) F1(%) MIOU(%) FWIOU(%) 

DFANet  75.37  76.15  67.05  60.38  60.34 
DensASPP(mobilenet)  77.10  77.62  69.01  62.58  62.61 
PSPNet  77.49  78.42  69.64  63.19  63.12 
DensASPP  77.58  78.13  69.60  63.23  63.24 
ESPNetv2  77.75  78.21  69.77  63.43  63.47 
SegNet  77.79  78.45  69.90  63.53  63.51 
ShuffleNetV2  77.92  78.27  69.94  63.63  63.72 
FCN8s  78.08  78.42  70.13  63.84  63.94 
DeepLabv3+ 78.07  78.55  70.16  63.86  63.91 
DFN  78.14  78.52  70.21  63.93  64.01 
DABNet  78.18  78.56  70.26  63.98  64.07 
MFFTNet  78.62  79.02  70.80  64.58  64.66  
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algorithms mistakenly classify some roads as green space. The graphic 
shows that MFFTNet’s categorization outperforms SegNet and Den-
seASPP, and the segmented edges are more compatible with the actual 
edge features of green space. The MFFTNet MIOU scores are 1.15 %, 
1.39 %, and 4.20 % higher than ESPNetv2, PSPNet, and DFANet, 
respectively. Experiments employing high-resolution remote data show 
that the approach has specific advantages in urban green space seg-
mentation. In addition, results show that MFFTNet can detect small-area 
objects such as street trees more effectively than other networks such as 
SegNet, DeepLabv3+, and others (Fig. 10). 

4.3.3. Comparison experiment of the Greenfield2 dataset 
A set of comparative experiments on the Greenfield2 dataset was 

chosen from current approaches to further test the applicability and 
rationale of MFFTNet in urban green space segmentation tasks. Table 4 
displays the experimental outcomes. 

When compared to the Greenfield dataset, the Greenfield2 dataset 
highlights the greenfield portion more clearly. The scores of the five 
indicators of MFFTNet, the network suggested in this paper, in the 
Greenfield2 dataset are as follows: PA, 92.90 %; MPA, 92.73 %; F1, 
89.53 %; MIOU, 86.50 %; and FWIOU, 86.75 % (Table 4). When 
compared to the performance of MFFTNet in the Greenfield dataset, 
MIOU achieved 86.50 % in the Greenfield2 dataset, a 21.92 % 
improvement. The results show that using conventional false color 
image in conjunction with 4-3-2 bands for urban Greenfield extraction 
can improve the representation of urban Greenfield features. Greenfield 
areas may be efficiently detected in both lush and sparse Greenfield 

coverage areas, as illustrated in Fig. 11, and the use of standard false 
color image effectively helps the urban Greenfield classification work. 
When compared to other advanced deep learning networks, the 
MFFTNet has a greater segmentation effect than SegNet and DABNet, 
and the MIOU is 0.37 %, 0.56 %, 0.86 %, and 2.21 % higher than SegNet, 
DABNet, PSPNet, and DFANet. The urban surface is complex, with 
numerous feature element categories and large object scale variations. 
In the second row of Fig. 11, PSPNet and SegNet are unable to recognize 
the occluded area due to the influence of building occlusion, whereas 
MFFTNet effectively segments the small green area in the occluded area 
via a local–global-local information connection; additionally, it is 
smoother for segmented edges, avoiding roughness like that which oc-
curs with SegNet segmentation. 

The accuracy of green space segmentation is increased by incorpo-
rating vegetation feature, with MIOU improving 0.26 %, PA increasing 
0.13 %, MPA improving 0.17 %, F1 improving 0.19 %, and FWIOU 
improving 0.24 % (Table 4). Fig. 12(d)(e) shows that when vegetation 
feature is not incorporated, there are some areas with incorrect and 
missing scores, and inaccurate extraction of boundaries. When vegeta-
tion feature is incorporated, the incorrect scores are obviously reduced 
and the results are more consistent with the real surface conditions. 
Because of the similarity in the spectrum between red buildings and 
green regions, MFFTNet incorrectly recognizes buildings as green space 
in the second row of Fig. 12. When vegetation feature is incorporated, 
this erroneous segmentation is effectively prevented. The correct clas-
sification of green space in vast areas is essentially attained, while edge 
information is improved. The use of GF-2 remote data in conjunction 
with vegetation feature can considerably improve the segmentation of 
green space. 

5. Discussion 

The ablation experimental investigation validates the efficacy of 
each improvement module in MFFTNet (Section 4.2). The ablation 
experimental analysis is carried out on the Greenfield dataset, starting 
with Res2Net as the baseline and gradually adding modules for the ex-
periments. The performance of the model feature extraction is improved 
further by employing two 5 × 5 convolutional operations and intro-
ducing the activation function Relu6. The effectiveness of the improved 
backbone is demonstrated by increasing MIOU by 0.34 % (Table 1). The 
results show that in the decoder part, with the Fusion module, the MIOU 
is improved by 0.50 %, which can effectively fuse the multi-level fea-
tures. In addition, compared with selective kernel attention, the EdgeViT 

Fig. 10. Comparison experimental visualization results of Greenfield. (a) Input image. (b) Label. (c) DABNet. (d) DeepLabv3+. (e) DenseASPP. (f) PSPNet. (g) 
SegNet. (h) MFFTNet. 

Table 4 
Experimental results in the Greenfield2.  

Method PA(%) MPA(%) F1(%) MIOU(%) FWIOU(%) 

DFN  89.82  88.93  85.28  80.94  81.73 
DensASPP(mobilenet)  89.99  89.99  85.40  81.52  81.79 
FCN8s  90.45  90.04  86.07  82.18  82.64 
DensASPP  91.02  90.86  86.84  83.22  83.54 
ShuffleNetV2  91.08  90.87  86.93  83.31  83.65 
ESPNetv2  91.56  91.40  87.60  84.15  84.46 
DFANet  91.64  91.50  87.72  84.29  84.59 
PSPNet  92.46  92.05  88.93  85.64  86.04 
DABNet  92.61  92.30  89.12  85.94  86.29 
SegNet  92.71  92.51  89.23  86.13  86.43 
DeepLabv3+ 92.79  92.45  89.38  86.24  86.59 
MFFTNet  92.90  92.73  89.53  86.50  86.75 
MFFTNet + NDVI  93.03  92.90  89.72  86.76  86.99  
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module performs better, with a 0.11 % improvement in MIOU. 
Compared with the single adaptive selection attention, the local–global- 
local information connection in the EdgeViT module is more applicable 
to the urban green space segmentation task, which can detect large 
green space while taking into account small areas such as street trees, 
thus improving the overall green space segmentation effect (Fig. 10). 

This series of enhancements demonstrates the effective segmentation of 
urban green space targets by each module of the model in this paper. 

Large-scale urban green space segmentation requires fast construc-
tion and good transformation of the model. To verify the spatial 
generalization capability of MFFTNet, experiments were conducted on 
WHDLD, the Greenfield dataset, and the Greenfield2 dataset. To adapt to 

Fig. 11. Visualization results of comparison experiments on Greenfield2. (a) Input image. (b) Label. (c) PSPNet. (d) DABNet. (e) SegNet. (f) MFFTNet.  

Fig. 12. Visualization results of comparison experiments on Greenfield2. (a) Input image. (b) NDVI. (c) Label. (d) MFFTNet. (e) MFFTNet + NDVI.  
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the urban Greenfield classification task, the public dataset WHDLD is 
optimized; MFFTNet achieves 84.07 % MIOU and can identify Green-
field areas in complex urban environments with clearer segmentation, 
which is better than other networks. In the Greenfield dataset for com-
parison experiments, MFFTNet performs better compared with other 
networks, and its MIOU scores are 1.15 %, 1.35 %, 1.39 %, and 4.2 % 
higher than ESPNetv2, DensASPP, PSPNet, and DFANet, respectively. 
Meanwhile, comparison experiments were conducted in the Greenfield2 
dataset; the experiments proved that the extraction of urban green space 
using false color image could better represent the urban green space 
features, and the MIOU of MFFTNet reached 86.50 %. Comparing with 
Fig. 12, we found that the MFFTNet effectively segmented the small 
green space in the area affected by building shading and performed 
better than PSPNet and SegNet. After incorporating vegetation feature 
(NDVI), the vegetation information was more obvious, with a 0.26 % 
increase in MIOU (Table 4). In WHDLD for the public dataset and 
Greenfield and Greenfield2 datasets for an experimental area in Beijing, 
the highest MIOU is reached in all of them, which proves the effec-
tiveness and robustness of the MFFTNet to partition the greenfield. 

While MFFTNet achieves the highest segmentation accuracy, further 
optimization is possible in terms of model parameters. The combination 
of the fusion module and transformer effectively extracts green space 
feature information from the image. However, compared to the base 
network, MFFTNet has 50.95 G more floating points (Flops) and 21.27 M 
more parameters (Params), which affects the segmentation speed. The 
objects in remote sensing images also have substantial differences in 
geometric shape features, which results in the problem of scale variation 
of objects, so the model should have multi-scale segmentation capa-
bility. Meanwhile, the target can be clustered by linear discrimination to 
correctly present the internal sample’s structure and thus improve the 
segmentation accuracy; the marginal distribution can be used to deter-
mine the category by testing the instances, which can improve the 
instance detection and generalization performance under multi-class 
supervision of the object (Zhu et al., 2022; Zhu et al., 2023). In future 
research, it is proposed to consider further deepening the research: (1) 
Commit to minimizing the weights; (2) The distribution of green space 
in different cities is different, and the green space extracted in this study 
are biased toward the Changping area, and several different cities can be 
added in the follow-up to carry out further research; (3) This study only 
considers the vegetation feature (NDVI) of GF-2 images, and subsequent 
studies can add texture features and elevation information to make the 
classification of urban green space more accurate. 

6. Conclusions 

In this study, we developed a novel hybrid method (MFFTNet) 
incorporated vegetation feature (NDVI) for urban green space segmen-
tation based on high-resolution remote sensing image, which tackles the 
challenges caused by complex urban landscape structure. Our method 
integrated a multi-scale feature fusion module and transformer network, 
which can provide a multi-scale urban green space segmentation field of 
view, thus enhancing the recovery of green space edge information. 
Experiments conducted on the WHDLD, Greenfield, and Greenfield2 
datasets reveal that MFFTNet outperformed in accuracy and general-
ization. In particular, we found that the incorporation of vegetation 
feature (NDVI) enabled MFFTNet to identify vegetation boundaries 
more accurately, thereby improving the accuracy of urban green space 
segmentation. More vegetation features such as phenology information 
and Sun/Solar-induced Chlorophyll Fluorescence could be considered to 
incorporate into MFFTNet in the future. 
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