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Abstract: Impact and risk assessments in coastal areas are informed by current and future sea
level rise and acceleration, which demands a better understanding of drivers for regional sea level
acceleration. In our study, we analyze the near-coastal sea level acceleration compared with global
values during satellite altimetry (1993–2020) and discuss the potential drivers of regional sea level
acceleration. We estimate regional sea level acceleration using high-resolution satellite altimetry
sea surface height anomalies. Our study reveals a wide range of regional acceleration estimates,
varying from −1.2 to 1.2 mm·yr−2, which can be up to 20 times larger or smaller than the global mean
sea level acceleration of 0.07 mm·yr−2. Notably, sea level acceleration near the global coastline is
calculated at 0.10 ± 0.03 mm·yr−2, exceeding the global mean sea level acceleration by 40%. Regional
patterns of sea level acceleration are in good agreement with acceleration patterns calculated from
the steric sea level. However, the magnitude of acceleration is only partially explained by the changes
in steric sea level, with increasing contributions from the non-steric component.

Keywords: sea level acceleration; global and near coastal; satellite altimetry; steric sea level

1. Introduction

Climate change and sea level rise are happening worldwide—no region on Earth
has escaped it [1]. Coastal areas contain large human populations, more significant socio-
economic activities and assets, and more fragile ecosystems. Cities, villages, and coastal
communities are facing increasing risk of sea level rise and more frequent and severe coastal
inundation, which could lead to huge economic losses [1–5]. Decisions about adequate
adaptation options and building a suitable coastal defense could take years; therefore,
developing an understanding of the drivers of regional sea level acceleration is key for
advanced projections of local sea level rise [2].

Sea level rise is not uniform, and despite the fact that scientists have made significant
strides in understanding the global rise and acceleration of sea levels [1,6,7], the estimates
for the regional and local sea level accelerations remain highly uncertain [8,9]. From
tide gauge-based global sea level reconstructions over the past 100 years [10–12] and
almost global sea level coverage from satellite altimetry over three decades [1,6,7], there
is substantial evidence suggesting that the rate of sea level changes has been increasing
in recent decades. Annual global mean sea level rise calculated from satellite altimetry
(1993–2021) reached a new high in 2021, increasing to 9.7 cm above 1993 [13] compared to
20 cm since 1900 (1900–2018) [1]. According to the Sixth Assessment Report of the IPCC
(Intergovernmental Panel on Climate Change) [14], the global sea level continues to rise
due to the increased rate of ice mass loss from glaciers and the Greenland and Antarctic
ice sheets and the warming of the ocean. Global sea level rise has accelerated since the
late 1960s, with a rate of 2.3 mm·yr−1 for 1971–2018, and it has increased to 3.7 mm·yr−1
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for 2006–2018 [14]. In addition, observations from space missions since 1993 and in situ
observations of sea level components demonstrate that ice mass loss from the Greenland
and Antarctic ice sheets is increasing, and observations in the ocean suggest heat uptake by
the ocean is increasing, leading to the sea level rise [13,15].

Regional and local sea level acceleration from tide gauge records in individual loca-
tions has been studied since the 1990s [10,16,17]. Nevertheless, the interpretation of the
results and discussion of an acceleration in coastal sea level [16] is often unclear, indicating
the necessity for a better understanding of drivers of regional sea level rise and accelera-
tion. Recent regional sea level acceleration studies based on satellite altimetry data have
discussed the role of sea level variability in detecting a robust trend and acceleration in
time series, with PDO and ENSO variability from the Pacific Ocean regions removed [8,18].
The removal of variability is contributing to an improved understanding of the physical
mechanisms driving sea level changes. However, for practical applications (e.g., adapta-
tion), removed variability could be observed in the future and might even exceed projected
sea level rise in short-term projections [8,19–21].

In this study, we provide new insights into regional and near-coastal level acceleration
by analyzing satellite altimetry data from 1993–2020. We identify the areas with posi-
tive/negative sea level acceleration along the coast, calculated from satellite altimetry, and
discuss potential drivers for regional sea level acceleration. We highlight the difficulties in
providing a robust estimate of the acceleration in near-coastal sea levels due to limitations
of satellite altimetry data in coastal areas and challenges in communicating the calculated
regional acceleration to end users, motivated by the importance of understanding the
regional sea level changes for adaptation purposes.

2. Materials and Methods
2.1. Data

We calculate regional sea level acceleration using 28 years of satellite altimetry ob-
servations (1993–2020) and complement these with steric sea level data. In this study, we
denote regional as the ocean basin with spatial scales larger than 100 km. Full-gridded
sea surface height anomalies were obtained from NASA JPL (Jet Propulsion Labora-
tory) (https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2S
ATS_5DAY_6THDEG_V_JPL2205 (accessed on 3 April 2023)) [22] with a spatial resolution
of 0.17◦ × 0.17◦ between 1993 and 2020 and the latitude ranging from 80◦ N to 80◦ S. This
is a combined altimetry product derived from several altimeters.

Using satellite altimetry data, we calculated the global mean sea level acceleration
from the global mean time series of sea level, while near-coastal sea level acceleration is
estimated from the time series within the area of 0.2◦ around the global coastline. By doing
so, we utilize available altimetry data within 20 km from the coast [9,23] and denote them
as the ‘near coastal’ sea level.

To examine the drivers of regional sea level acceleration, we examine the acceleration
of the steric sea level. The Institute of Atmospheric Physics (IAP) steric sea level (1993–
2020) with a 1◦ × 1◦ horizontal resolution for the upper 2000 m layers is used here, which
shows advantages in reducing the sampling errors by infilling data gaps with available
observations following an improved ensemble optimal interpolation method [24]. We
re-grid IAP data to the resolution of the satellite altimetry data (0.17◦ × 0.17◦). The IAP
steric sea level is obtained from the Institute of Atmospheric Physics, Chinese Academy
of Sciences (http://www.ocean.iap.ac.cn/pages/dataService/dataService.html (accessed
on 3 April 2023)) [24]. The monthly IAP steric data, referring to thermosteric changes,
are corrected for biases in XBT and MBT temperature data [24]. We have not made any
corrections for Pinatubo in gridded datasets of altimetry and steric sea level time series due
to the lack of information on regional patterns associated with volcanic eruption.

In this study, we consider two dominant climate indexes impacting the sea level
acceleration: El Niño-Southern Oscillation (ENSO) from https://psl.noaa.gov/enso/mei-
/data/meiv2.data (accessed on 3 April 2023) and Pacific Decadal Oscillation (PDO) from

https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL2205
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https://www.ncdc.noaa.gov/teleconnections/pdo/ (accessed on 3 April 2023) [7]; both
indexes are monthly data for 1993–2020. MEI index represents the ENSO signal and is the
Multivariate ENSO index, which combines several climate variables including sea surface
temperature and pressure, surface wind, and outgoing long-wavelength radiation over the
tropical Pacific [7,25].

2.2. Methods

We apply a regression model to estimate the regional and global mean sea level
acceleration, and annual and semi-annual cycles are removed from the time series, as we
apply a 6- and 12-month least-square fit prior to analysis:

h = a1t + a2t2+a3 (1)

where t is time, a1 to a3 coefficients are estimated following the least-squares fit, and h is the
reprocessed sea level time series. We estimate acceleration using the conventional method
as twice the quadratic coefficient a2 (Equation (1)). The calculations of acceleration are
implemented using the function polyfit in MATLAB, which also provides key statistics for
estimating the confidence interval at a 95% level with the function polyparci. The standard
deviation is calculated from what the polyfit model could not fit in the observational data,
and in this analysis, we assume the residuals are pure noise following Veng and Andersen
(2021) [25]. The p value is calculated to test if the regional acceleration is statistically
significant.

To determine the contribution of internal variability to regional and global mean sea
level acceleration, we apply a linear regression model to the climate indexes following
Moreira et al. (2021) [7], and annual and semi-annual cycles are removed from the time
series prior to analysis [7]:

h = a0 + a1t + a2t2 + a3MEI(t) + a4PDO(t) (2)

where t is time, a0 to a4 coefficients are estimated following the least-squares fit, and h is
the reprocessed sea level time series.

3. Results

Using satellite altimetry, we have calculated a global mean sea level acceleration of
0.07 ± 0.01 mm·yr−2. Our estimate of the global mean sea level acceleration is in good
agreement with the previously estimated acceleration of 0.08 ± 0.01 mm·yr−2 by Veng and
Andersen (2021) [26], within the margin of errors in both estimates.

To explore the changes in patterns of regional sea level acceleration, we calculate the
patterns of regional acceleration from satellite altimetry, IAP steric, and their difference
from 1993 to 2020 (Figure 1a–c). Regional acceleration in most locations is 10–20 times
larger/smaller than the global mean number (Figure 1a), with extreme estimates from
−5.1 mm·yr−2 to 4.15 mm·yr−2 in individual locations, mainly in dynamically active parts
of the ocean, e.g., Kuroshio, the Southern Ocean, and the North Atlantic. Almost 48% of the
ocean area covered by the satellite altimetry demonstrates a positive value of acceleration,
while 28% is negative and 24% is inconclusive or statistically not significant. Regional
acceleration patterns (Figure 1a) mimic the PDO/ENSO patterns in the Pacific [8,26].

https://www.ncdc.noaa.gov/teleconnections/pdo/
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acceleration from satellite altimetry and steric sea levels shows there is a large contribu-
tion from other sources not associated with steric sea level changes. Statistical significance 
tests of the estimates of acceleration for satellite altimetry, IAP steric, and the difference 
between estimates from satellite altimetry and IAP steric are presented in Figure 1d–f, 
illustrating that the acceleration in areas with large internal variability is not statistically 
significant. Correlation maps shown in Figure S1 provide evidence of a strong correlation 
between the patterns (Figure 1a–c). 

To determine the contribution of internal variability, represented by PDO and ENSO, 
we calculate the patterns of regional acceleration from satellite altimetry, IAP steric, and 
their difference from 1993 to 2020 after removing internal variability (Figure 2a–c). Figure 
2 shows that the acceleration from both satellite altimetry and the IAP steric sea level de-
creases in the Pacific Ocean after the removal of variability associated with ENSO and 
PDO. The significance test proves that many areas in the Northwestern Pacific have no 
significant acceleration of the steric sea level after removing the internal variability. 

Figure 1. Acceleration (mm·yr−2) from satellite altimetry (a); IAP (b) and their difference (c) for
1993–2020. Statistical significance test of the estimates of acceleration for (d) satellite altimetry, (e) IAP
steric; and (f) the difference between estimates from satellite altimetry and IAP steric.

There is agreement between the patterns for steric sea level acceleration calculated
using IAP steric sea level datasets from Cheng et al., 2017 [26] and for sea level acceleration
from satellite altimetry (Figure 1a–c). However, the map of the differences between the
acceleration from satellite altimetry and steric sea levels shows there is a large contribution
from other sources not associated with steric sea level changes. Statistical significance tests
of the estimates of acceleration for satellite altimetry, IAP steric, and the difference between
estimates from satellite altimetry and IAP steric are presented in Figure 1d–f, illustrating
that the acceleration in areas with large internal variability is not statistically significant.
Correlation maps shown in Figure S1 provide evidence of a strong correlation between the
patterns (Figure 1a–c).

To determine the contribution of internal variability, represented by PDO and ENSO,
we calculate the patterns of regional acceleration from satellite altimetry, IAP steric, and
their difference from 1993 to 2020 after removing internal variability (Figure 2a–c). Figure 2
shows that the acceleration from both satellite altimetry and the IAP steric sea level de-
creases in the Pacific Ocean after the removal of variability associated with ENSO and PDO.
The significance test proves that many areas in the Northwestern Pacific have no significant
acceleration of the steric sea level after removing the internal variability.

Global near-coastal sea level acceleration, calculated from the satellite altimetry grid
points close to the coastline, is 0.10 ± 0.03 mm·yr−2 (Figure 3a,b), exceeding the global mean
sea level acceleration of 0.07 ± 0.01 mm·yr−2 by 40%. We have calculated the difference
between the time series of sea level close to the coast and global mean sea level (Figure S2b),
obtaining a significant residual acceleration of 0.03 ± 0.03 mm·yr−2 in the difference.
Around 24% of near-coastal locations display a negative value of acceleration, and 61% of
near-coastal locations exceed the estimate of global mean acceleration (Figure 4a).
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Figure 2. Acceleration (mm·yr−2) from satellite altimetry (a); IAP (b) and their difference (c) after
removing the internal variability for 1993–2020. Statistical significance test of the estimates of
acceleration for (d) satellite altimetry, (e) IAP steric, and (f) the difference between estimates from
satellite altimetry and IAP steric after removing the internal variability.
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Figure 3. Acceleration calculated using satellite altimetry data close to coastline (a). Global mean
sea level time series from 1993–2020 are represented by the red line, and global near-coastal mean
sea level is represented by blue, calculated from satellite altimetry values close to the coastline
(b). Acceleration close to the coastline after removing the internal variability (c). Global mean sea
level time series after removing the internal variability are represented by the red line, and global
near-coastal mean sea level after removing the internal variability is represented by blue (d).
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Figure 4. Near-coastal locations with acceleration exceeding the global estimate (brown) and below
the global estimate (blue) (a). Near-coastal locations with acceleration exceeding the global estimate
(brown) and below the global estimate (blue) after removing the internal variability (b).

The global mean for near-coastal sea level, calculated from satellite altimetry along the
coastline, is 3.5 ± 0.3 mm·yr−1 compared to our global mean trend of 3.1 ± 0.3 mm·yr−1

(Figure 3b). The near-global coastline sea level trend is statistically different from the global
mean sea level trend, with a rate of difference in the time series of 0.4 ± 0.3 mm·yr−1

(Figure S2).
After removing ENSO and PDO signals (Figure 3c,d), global near-coastal sea level

acceleration decreases from 0.10 ± 0.03 mm·yr−2 to 0.09 ± 0.03 mm·yr−2, while the global
mean sea level acceleration decreases from 0.07 ± 0.01 mm·yr−2 to 0.04 ± 0.01 mm·yr−1.
The removal of internal variability, associated with ENSO and PDO, leads to a decrease
in the global mean sea level acceleration by approximately 0.03 mm·yr−2 as previously
reported by Nerem et al. (2018) [6]. After the removal of ENSO and PDO signals, the
calculated near-coastal sea level acceleration exceeds the global mean sea level acceleration
by 125%. Compared with the global mean sea level acceleration, the global near-coastal
sea level acceleration is less influenced by the removal of internal variability. The global
near-coastal sea level trend changes from 3.5 ± 0.3 mm·yr−1 to 3.6 ± 0.3 mm·yr−1 with
the removal of internal variability, and the global mean sea level trend changes from
3.1 ± 0.3 mm·yr−1 to 3.2 ± 0.1 mm·yr−1 after removing the internal variability (Table S1).
After removing the internal variability (Figure 4b), there is a slight decrease (4%) in near-
coastal locations exceeding the estimate of the global mean acceleration, which is mainly
located on the Atlantic coast of America.

To interpret the evolution of the regional acceleration pattern, we calculate the sea
level acceleration for a twenty-year moving window from satellite altimetry (Figure 5), IAP
steric (Figure 6), and the difference between them (Figure 7). Patterns of acceleration for
satellite altimetry and the steric sea level are changing with time (Figures 5 and 6). The
time-varying spatial pattern of acceleration from satellite altimetry and IAP steric sea levels
shows high homogeneity, which is prominently observed in the Pacific Ocean and other
regions [8]. The regional acceleration map of the moving window from altimetry and IAP
steric shows a homogenous time-varying spatial pattern in the North Atlantic and the
Indian oceans (Figures 5 and 6).
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Figure 7. Evolution of the differences between acceleration calculated from satellite altimetry and
steric sea level for 20-year time period shifted by one year since 1993.

With the starting year of the moving window changing from 1993 to 1997, the accel-
eration becomes stronger in the eastern tropical Pacific and extends northwestward until
it reaches the North American coast for both altimetry and IAP steric; then the pattern
weakens largely followed by strengthening again. At the same time, in the central and
western North Pacific, the acceleration patterns of the moving window display the opposite
signs (Figures 5 and 6). With the starting year of the moving window changing since
1998, the weakening of regional acceleration patterns from both altimetry and IAP steric
is observed in the Indian Ocean. Since 1993, there has been a strengthening of spatial
acceleration patterns from both altimetry and IAP steric sea levels in the North Atlantic
Subtropical Gyre region, accompanied by a weakening of spatial acceleration patterns in
the Subpolar Gyre region.

4. Discussion

Using high-resolution gridded satellite altimetry data, we have estimated that sea
level acceleration close to the coast is 0.10 ± 0.03 mm·yr−2, exceeding the global mean sea
level acceleration of 0.07 ± 0.01 mm·yr−2 by 40%. Considering the dense population and
concentrative infrastructures in coastal zones, the higher increase rate of sea level rise will
place low-lying coastal regions under great threat due to global warming. Elevated water
levels caused by accelerated sea level rise will exacerbate coastal flooding and erosion.
The implications for adaptation are that decision makers and planners require a skillful
understanding of such coastal processes along coastlines, and more attention should be
paid to densely populated areas.

Faster acceleration at near-coastal locations compared to the global mean sea level
acceleration could be explained by numerous near-coastal processes and ocean adjustment
mechanisms in shelf seas [27–29], including local atmospheric effects or coastal trapped
waves, baroclinic instabilities, shelf currents, and freshwater transport in estuaries [27–30].
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In addition, there are some well-known limitations of satellite altimetry data close to
the coastline, resulting from land contamination and the lack of optimized geophysical
corrections applied to the coastal zones [9]. However, despite the large uncertainties,
satellite altimetry data have been used for many applications along the coastline, e.g.,
estimating local vertical land movement [31–33], assessing interannual sea level variability
along the coastal areas of the USA [34], and assessing coastal vulnerability facing sea level
rise in Indian Sundarban delta [35]. Also, the uncertainty ranges of sea level acceleration
estimated from gridded satellite altimetry for four different regions along the coastal United
States are consistent with tide gauge acceleration envelopes [36].

We calculated the near-coastal sea level acceleration from the gridded satellite altimetry
to make it comparable with global mean sea level acceleration. The error estimation
in our acceleration is relatively conservative and does not reflect the uncertainties in
the original datasets, as discussed in several publications [9,33]. Our estimations of sea
level acceleration are dependent on the time slices, and the relatively short period of
satellite altimetry limits our present understanding of coastal, regional, and global sea level
acceleration. Longer records of high-resolution satellite altimetry along with improved
corrections are in demand for robust sea level acceleration evaluation in the future. Sea
level acceleration for coastal locations (not considered in this study) could be enhanced
by subsidence from groundwater extraction, urbanization, and tectonic activities [5,9,31].
However, incorporating changes in sea level acceleration due to tectonic activities and land
movement is beyond the scope of this analysis, particularly given the limitations of satellite
altimetry data close to the coastline.

The removal of natural variability, represented by ENSO and PDO, reveals that there
are decreases in sea level acceleration from both satellite altimetry and the IAP steric sea
level in the Pacific Ocean from 1993–2020. Our study supports the role of ENSO and PDO
for satellite altimetry sea level acceleration, which has been previously discussed in several
studies [6,7,26]. Our regional acceleration estimates reflect the challenges of separating the
wide range of variability resulting from complex interactions of various climate signals [7],
and we demonstrate the sea level acceleration results with and without the removal of
ENSO and PDO. We have performed this for the purpose of communicating the observed
sea level changes to policy makers and the general public, considering their interest in the
interpretation of observed changes and the use of observations for adaptation purposes.

In the Pacific Ocean, changes in the acceleration patterns from 1997–2016, in which the
eastern tropical Pacific has the largest area of acceleration while the central and western
North Pacific has the largest area of deceleration, are consistent with the significant climate
shift in the PDO [25,37,38].

In the Indian Ocean, the weakening of spatial acceleration patterns from both al-
timetry and IAP steric has been observed in the coastal regions of South Asia since 1998.
Changes in the patterns of acceleration in the Indian Ocean might be explained by the
decadal variability in sea surface height associated with decadal Indian Ocean basin mode
(DIOB), supported by previous studies [19,20,39]. However, the mechanisms for decadal
variability in the Indian Ocean are not fully explained [19,40]. Since 1993, there has been a
strengthening of regional acceleration patterns from both altimetry and IAP steric sea levels
in the North Atlantic Subtropical Gyre region, accompanied by a weakening of spatial
acceleration patterns in the Subpolar Gyre region (Figures 5 and 6). We attribute these
patterns to the decadal sea level fluctuations partly driven by surface wind and heat flux
associated with climate modes, e.g., the North Atlantic Oscillation (NAO) in combination
with changes in the Atlantic Multidecadal Oscillation (AMO), as suggested by Han et al.,
2019 [20]. This is supported by modelling studies [41,42] with evidence that on a decadal
timescale, variability in the North Atlantic is a combination of internal variability [43,44].
The dipole of the spatial acceleration pattern in the Subtropical Gyre and Subpolar Gyre
regions is thought to be a distinctive fingerprint of the AMOC (Atlantic Meridional Over-
turning Circulation) [19,45–47], suggesting that changes in the AMOC can be gyre-specific
rather than an isolated basin-scale cell [19]. However, there are open questions about the
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variability in the AMOC due to limited direct measurements of the AMOC, which are only
available over a decade [48].

Large uncertainties in observations [15,24,26] and the large variability in relatively
short time series contribute to the lack of robust estimates for acceleration, which has
been discussed previously [26,39,49]. As the need for more detailed sea level information
near the coast with a focus on impacts and adaptations is emerging, there is a growing
demand for sustainable sea level monitoring and related observations (e.g., steric sea level)
to improve our understanding of the sea level rise and its acceleration in coastal areas.

5. Conclusions

Sea level acceleration close to the global coastline is 0.10 ± 0.03 mm·yr−2, calculated from
satellite altimetry, and exceeds the global mean sea level acceleration of 0.07 ± 0.01 mm·yr−2

by 40%. The regional patterns of sea level acceleration are mainly explained by the changes
in steric sea level, compared to the increased contribution from ice mass loss from the sheets
and glaciers suggested as the main driver for acceleration in the global mean sea level in
a previous study [8]. However, there is a caveat whereby for regional sea level patterns,
the magnitude of acceleration from the steric sea level is relatively smaller compared to
the estimates from the satellite altimetry data. The calculated difference in the patterns
is increasing, suggesting there is an additional non-steric contribution to the regional
accelerations.

The regional acceleration calculated from the gridded satellite altimetry data displays
almost 20 times larger/smaller estimates for acceleration compared to the global mean
value of 0.07 mm·yr−2. Compared to previous studies, in which part of the internal
variability was removed, our estimates provide evidence of a large redistribution of heat
and ocean mass by the previously detected climate modes (e.g., PDO and ENSO) in the
Pacific regions [8]. The similarity in the patterns of acceleration in satellite altimetry and the
steric sea level suggests common mechanisms for redistribution by ocean dynamics [20]. It
seems that dynamical changes in the ocean are driving the patterns of acceleration on a
regional scale and along the global coastline, in contrast to the ice mass loss contribution to
the global mean sea level acceleration.

Sea level rise along the global coastline will increase the frequency of flooding and
intensify the risks for millions of people living in low-lying coastal areas [1,2]. Policy makers
and planners require a robust estimate of the rate of sea level rise and its acceleration for
adequate adaptation options. However, there is an open question as to whether the near-
coastal acceleration calculated from satellite altimetry data is a robust feature, considering
the changes in ocean dynamics are amplifying the global mean sea level acceleration in
large ocean basins and along the coast. In addition, there is the crucial task of improving
the communication/delivery of the required scientific information about future sea level
changes between scientists and policy makers, coastal engineers, and the public. For
stakeholders in charge of coastal planning and risk assessment, the availability of robust
scientific information is crucial for decision-making about adaptation options.

Supplementary Materials: The following supporting information can be downloaded at: https://ww
w.mdpi.com/article/10.3390/atmos14101573/s1, Figure S1: Map of correlation coefficients between
altimetry and IAP steric for 1993–2020 (a) and correlation coefficients between altimetry and the
difference for 1993–2020 (b); Figure S2: Panel (a) Global mean sea level time series 1993–2020 are
represented by the red line, and global near-coastal mean sea level (1993–2020) is represented by
blue color. Global near-coastal mean sea level is calculated from satellite altimetry values close to the
coastline. Panel (b) The difference between global near-coastal sea level and global mean sea level is
represented by blue dots.; Table S1: Estimates of trend (mm·yr−1) and acceleration (mm·yr−2) for
global near-coastal and global mean sea levels.
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