
Science of the Total Environment 905 (2023) 167095

Available online 23 September 2023
0048-9697/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A temporally and spatially explicit, data-driven estimation of airborne 
ragweed pollen concentrations across Europe 
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u Ministry of Environmental Protection, Environmental Protection Agency, 11000 Belgrade, Ruže Jovanoviüa 27a, Serbia 
v Federal Department of Home Affairs FDHA, Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box, CH-8058, Zurich-Airport, 
Switzerland 
w Lomonosov Moscow State University, Biological Faculty, 1-12 Leninskie Gory, 119991 Moscow, Russia 
x State Institution (Scientific and Practical Center (SPC) of the State Forensic Examination Committee of the Republic of Belarus, Akademicheskaya Str. 27, 220072 
Minsk, Belarus 
y Teaching Institut of Public Health “Dr Andrija Śtampar”, 10000 Zagreb, Croatia 
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ai Allergen Research Center Ltd., Warsaw, Poland 
aj Department of Palaeobotany, Institute of Geological Sciences, University of Wroclaw, Poland 
ak Vilnius University, Siauliai Academy, Vytauto 84, LT-76352, Siauliai, Lithuania 
al Department of Medical Biology, Zaporizhia State Medical University, 69035 Zaporizhia, Ukraine 
am National Pirogov Memorial Medical University, Vinnytsya, 56 Pirogov street, Vinnytsia 21018, Ukraine 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Temporal maps for the distribution of 
ragweed pollen for Europe were 
developed. 

• Missing daily pollen data were restored 
with the Gaussian method and deep 
learning. 

• A web page was created to upload newly 
measured or restored daily pollen data. 

• These are the first maps of pollen 
phenology, -quantity and frost events 
for Europe. 

• DL improves the accuracy more than 
GM, although it requires the use of 
weather data.  
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A B S T R A C T   

Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major 
human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally 
dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to 
restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, 
resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To 
achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for 
restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, 
pollen production and frost-related) characteristics. DL model performances were consistently better for esti-
mating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps 
using altitude correction and flowering phenology to recover missing pollen information. We created a web page 
(http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the sta-
tions examined and their restored daily data, allowing one to upload newly measured or recovered daily data. 
Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify 
geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit 
mitigation measures and prioritize management interventions.   

† He passed away in 2015. 
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1. Introduction 

Common ragweed (Ambrosia artemisiifolia) (Asteraceae family) is an 
annual herbaceous plant, native to North America, which has been 
introduced and subsequently naturalized in a large part of Europe 
(Bullock et al., 2010; Makra et al., 2015; Montagnani et al., 2017, 2023), 
Asia (Chen et al., 2007a, 2007b; Singh and Mathur, 2021) and Australia 
(Bass et al., 2000; Beggs, 2018) following its introduction to many places 
in the world. 

The expansion of Ambrosia into Europe began after the First World 
War (Comtois, 1998). Seeds of different Ambrosia species were trans-
ferred to Europe from America by purple clover seed shipments and 
grain imports. Its expansion started probably from the European ports: 
from Rijeka toward Croatia and Transdanubia (a region of Hungary), 
from Trieste and Genoa toward northern Italy, and from Marseilles to-
ward the Rhône valley (Makra et al., 2005; Kazinczi et al., 2008). 

The most frequently occurring Ambrosia species in Europe are 
A. artemisiifolia, A. trifida, A. psilostachya, and A. tenuifolia. However, the 
most widespread of them is A. artemisiifolia. Its estimated distribution 
rate vs. other ragweed species in Europe is approx. 90:10, while in 
Hungary approx. 95:5 in favour of A. artemisiifolia (Bartha et al., 2019, 
2022; Makra, 2022). 

In Europe, the most important habitat areas of common ragweed in 
decreasing order of the measured seasonal pollen integral are as follows: 
(I) the south-western part of European Russia, (II) the southern and 
eastern parts of Ukraine, (III) the Pannonian Plain in central Europe, (IV) 
the Rhône-Alpes region in France, furthermore (V) the Po River valley in 
Italy (Makra et al., 2015). 

There are substantial differences in the seasonal pollen integral per 
station. Between the two extreme years, five times or even higher dif-
ferences may be detected at the individual stations (Makra et al., 2005). 
On the days with the maximum pollen concentration, a difference of one 
order of magnitude can be detected, while on the years with the 
maximum annual total pollen concentration, a difference of even two 
orders of magnitude can be shown between the ragweed pollen con-
centrations of the stations in the Pannonian Basin, which provides the 
climatic optimum for the life processes of common ragweed, and the 
stations of the peripheral areas (Makra et al., 2005). 

Ragweed pollen grains can reach a height of 1 km due to the strong 
updrafts of the summer months, where typical wind speeds reach 40 
km/h. Though their settling rate is low (approx. 1 cm/s) (Sofiev et al., 
2006), strong updrafts can keep pollen grains at that height for longer 
periods of time. Based on this, ragweed pollen grains can travel hun-
dreds of kilometres per day. However, every airborne pollen grain can 
osmotically rupture to produce sub-pollen particles (SPP) that can be 
long-distance transported much further away than the airborne ragweed 
pollen itself (Stone et al., 2021). Some examples of the ratio of the long- 
range transported pollen in the total annual pollen amounts are as fol-
lows. For the Galápagos Islands, 1000 km from South America, 5 % of 
the seasonal pollen integral (van der Knaap et al., 2012); for southern 
Greenland, 11 % (Rousseau et al., 2005, 2006); for Szeged, Hungary 7.5 
% (Makra et al., 2016) and for eastern Germany 20 % (Zink et al., 2012). 
In addition, Prank et al. (2013) found that high-concentration areas are 
substantially more extensive than the heavily-infested territories. This is 
indirect proof of the long-distance transport of airborne ragweed pollen 
in Europe. 

Among the 42 species of the ragweed (Ambrosia) genus, common 
ragweed (A. artemisiifolia L.), an invasive alien species in Europe, is 
among the most dangerous for public health. Based on clinical in-
vestigations, common ragweed pollen is the most serious and persistent 
cause of allergy-associated respiratory diseases (Schaffner et al., 2020; 
Bonini et al., 2022; Montagnani et al., 2023). Damialis et al. (2021) 
found that simultaneous exposure to SARS-CoV-2 (via other infected 
human carriers) and airborne pollen may, under ‘favourable’ weather 
conditions, also promote viral infection. Currently, 23.2 million people 
(3.13 %) are sensitised to airborne ragweed pollen in Europe (Schaffner 

et al., 2020). The prevalence of allergic respiratory conditions has 
increased over the last three decades, especially in industrialised coun-
tries (Damialis et al., 2019; Ziska et al., 2019; Rauer et al., 2020). Eco-
nomic costs per year, associated with ragweed and allergic rhinitis, can 
run into billions of dollars (AAAAI, 2006; ASCIA, 2007; Bullock et al., 
2010; Richter et al., 2013; Schaffner et al., 2020; Hillerich et al., 2023). 

Recent anthropogenic warming is associated with changes in the 
phenological and quantitative parameters of pollen dispersion of 
different plant species (Recio et al., 2010; Rodríguez-Rajo et al., 2011; 
Hess, 2019; Anderegg et al., 2021). Warming might already be 
contributing to extended pollen season duration and increased pollen 
load for multiple aero-allergenic taxa across the northern hemisphere 
(Ziska et al., 2019; Xian et al., 2023), which can potentially be attributed 
to increases in pollen productivity and/or higher reproductive capacity 
in general, or expansion of plant ranges (Damialis et al., 2019). Recent 
models, in accordance with the warming climate, predict a northward 
and eastward shift of common ragweed habitats in central and northern 
Europe in the coming decades (Cunze et al., 2013, ecological niche 
modelling (ENM); Chapman et al., 2014, a phenology model; Storkey 
et al., 2014, a process-based model; Chapman et al., 2016, a simulation 
model to understand and describe plant invasion at a continental scale; 
Leiblein-Wild et al., 2016, a physiological model; Chapman et al., 2017, 
a forward mechanistic species distribution model; Lake et al., 2017, a 
process-based model, and a simulation model; Rasmussen et al., 2017, 
species distribution models). Anderegg et al. (2021) found that the 
contribution of human forcing on the climate system – due to the 
accumulation of anthropogenic greenhouse gases, especially CO2 
(Wayne et al., 2002; Ziska and Beggs, 2012) – accounted for ~50 % of 
the trend in lengthening pollen seasons and ~8 % of the trend in 
increasing pollen concentrations. Based on these climatic trends, sensi-
tisation to ragweed is projected to more than double in Europe, from 33 
million people (1986–2005) to 77 million by 2041–2060 (Lake et al., 
2018). 

The changing frequency, strength, and duration of extreme atmo-
spheric events such as heat waves, droughts, floods, and thunderstorms 
may also be associated with the changing climate (D'Amato and 
D'Amato, 2023). Due to heat waves and droughts pollen production 
decreases (Deák et al., 2013). At the same time, this decrease in pollen 
production is far exceeded by the surplus of pollen, which is caused by 
the extension of the pollen season due to global warming and the 
expansion of the habitats of pollen-producing plants. Nevertheless, 
certain pollen-producing plants can be sensitive not only to drought but 
also to floods by changing their pollen properties (Yamburov et al., 
2014). On the other hand, thunderstorms during the pollen season can 
increase the intensity of asthma attacks in pollinosis patients (D'Amato 
et al., 2007). 

Further models for estimating airborne ragweed pollen emission and 
dispersion are as follows. Zink et al. (2012) used the COSMO-ART 
meteorological and dispersion model and combined it with a manually 
harmonized inventory of ragweed habitat in Germany, Austria, Czechia, 
and Hungary. However, the model was applied only to a single short 
episode. Prank et al. (2013) presented a new model for ragweed pollen 
release and dispersion over the European continent, and reported the 
first estimates of the European-wide ragweed pollen load. They used the 
SILAM (System for Integrated modeLling of Atmospheric coMposition) 
model (http://silam.fmi.fi (Sofiev et al., 2008, Sofiev et al., 2013), 
which is a chemical transport model. Liu et al. (2015, 2016) imple-
mented a pollen emission and transport module in the Regional Climate 
Model (RegCM4) using the Community Land Model (CLM4.5) for 
calculating pollen emissions for Europe. Menut et al. (2021) used the 
CHIMERE chemistry-transport model to improve the daily release of 
ragweed pollen emission for nine stations in Hungary, Croatia and 
France. 

Recent maps of airborne ragweed pollen concentrations for Europe 
presented by Smith et al. (2013) taken from Skjøth et al. (2012), were 
based on mean annual Ambrosia pollen levels from 368 stations using the 

L. Makra et al.                                                                                                                                                                                                                                  
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European Aeroallergen Network (EAN) Pollen Database (https://ean. 
polleninfo.eu/ean). Another map of airborne ragweed pollen concen-
trations for Europe was published by Prank et al. (2013), who used data 
for the period 2005–2011. Liu et al. (2015, 2016) used data for the 
period 2000–2010, simulating the production and dispersion of airborne 
ragweed pollen for Europe. Hamaoui-Laguel et al. (2015) used the 
chemistry transport model CHIMERE and the RegCM4 regional climate 
model for mapping historical average pollen concentrations based on 
annual pollen concentration data of 51 sites across Europe. The mean 
annual ragweed pollen concentration map for Europe, prepared by 
Schaffner et al. (2020), used 5–9-year long pollen concentration data 
sets for 296 stations. 

Concerning airborne pollen concentrations of common ragweed, 
there are no accurate maps representing Europe in toto [see airborne 
ragweed pollen maps of the European Pollen Information Service (EPI) 
(http://www.polleninfo.org), the European Food Safety Authority 
(EFSA, 2010, http://www.efsa.europa.eu/fr/scdocs/doc/1566.pdf), the 
European Aeroallergen Network (EAN) (https://ean.polleninfo.eu/Ean 
), Buttenschøn et al., 2010, and Mányoki et al., 2011]. Existing maps: 
(I) are low resolution, due to the small number of aerobiological stations 
and significant gaps in data sets, (II) show only regional distributions of 
relative pollen concentrations, (III) are not particularly sensitive for 
areas with high pollen levels (Csépe et al., 2019), and (IV) do not 
eliminate the effect of elevation. 

Reliable ragweed pollen concentration maps for North America, the 
native area of ragweed, are also missing from the literature. Only pre-
dictions on the start and length of the ragweed pollen season have been 
reported so far (Ziska et al., 2011; Zhang et al., 2015). One of the reasons 
for this may be that the pollen measurement was not done with a uni-
form sampling technique, but partly with Rotorod and partly with 
Burkard sampling equipment (oral communication: Lewis H. Ziska). 

To date, these efforts have resulted in different estimates for repre-
senting ragweed distribution and pollen production for Europe. How-
ever, actual in situ quantification of ragweed pollen concentration or 
associated temperature characteristics related to ragweed growth and 
temporal pollen production (e.g. number of frost-free days) are currently 
unavailable. In addition, maps of phenological characteristics of the 
ragweed pollen season, that can affect its impacts on public health, such 
as the start, end and duration of the season, are also missing. 

Consequently, there is a need to generate a biogeographical assess-
ment of ragweed pollen concentrations for Europe using in situ gener-
ated data. Such an assessment could be used to generate a number of 
features including: (i) mean annual total ragweed pollen concentrations 
for a given time interval, (ii) mean first and last day exposure for a given 
season; (iii) mean duration of the ragweed pollen season, (iv) mean 
maximum daily ragweed pollen concentrations, (v) day of the year in 
which the maximum pollen concentrations occur; (vi) temperature 
related data on first and last frost and extent of the frost-free period. 
Overall, generation of these maps can identify geographical regions with 
high pollen exposure risk, determine areas of future vulnerability and, 
provide a means to distribute resources to manage and/or prevent 
ragweed introduction and spread. 

The primary objective of this work was to produce the most reliable 
quantity- and phenology-related ragweed pollen maps for Europe. To 
achieve this, we set ourselves the following tasks: (a) restoring missing 
daily pollen concentration data for 67 stations for the years 1995–2010 
and for 162 stations for the year 2010, by using two procedures 
(Gaussian method and deep learning), (b) comparing the accuracy of the 
two methods, (c) analyzing whether the data restoration with these two 
methods increased the accuracy of the ragweed pollen concentration 
maps at a statistically significant level compared to those prepared with 
raw data sets, and (d) applying an easy-to-use method to allow others to 
restore missing daily pollen concentration data with as much accuracy 
as possible. 

In the following, we present the collected data and restoring meth-
odologies and map generation techniques (Section 2), we show the 

results obtained in restoring missing pollen concentration data and the 
generated maps (Section 3), we discuss the relevance of the obtained 
results (Section 4), and present the conclusions and future research lines. 
To help readers follow the study, the overall methodology is also re-
ported in a flow chart depicting the various stages of the analysis (Ap-
pendix, Fig. A8). 

2. Materials and methods 

2.1. Locations and selected years 

In our initial approach, we used pollen concentration data of com-
mon ragweed from 625 aerobiological stations in Europe [https://ean. 
polleninfo.eu/Ean/ (European Aeroallergen Network Pollen Data-
base)]. However, many of these stations have limited or sporadic data, 
may be absent from key geographical regions, or have ceased operations 
altogether. Consequently, significant temporal and spatial gaps for 
determining pollen characteristics are evident. For instance, most sta-
tions have been operating since the 1980s in the western part of Europe, 
while all aerobiological stations in Ukraine and the south-western part 
of Russia came on line circa 2010. Therefore, in order to prepare a 
satisfactory pollen portrait for Europe trade-offs among data coverage, 
number of stations and length of the period are evident. To address this 
issue, we decided to select a common study period covering the flow-
ering and pollen-producing period of A. artemisiifolia (July 15 – October 
15) and used only stations for which not more than 25 % of the years 
1995–2010 (i.e. at most 4 years) had data coverage <40 %. This crite-
rion is subjective, but by clarifying it, our goal was to include as many of 
the stations with incomplete databases as possible in the study, even if 
we have no restrictions regarding the temporal distribution of the data 
gaps per station according to the pollen season. As a result, only 67 out 
of the above 625 aerobiological stations were selected for a 16-year 
period (1995–2010). The year 2010 had the most complete data sets 
over this period, and using a similar approach for the 1995–2010 period, 
we selected 162 stations for this year. 

Finally, we generated two data sets from the above database (Fig. 1, 
1b; Table 1; European Aeroallergen Network Pollen Database, 
https://ean.polleninfo.eu/Ean). Namely, (a) 16-year (1995–2010) 
annual total ragweed pollen counts based on daily data for 67 stations 
and (b) annual total ragweed pollen counts for the year 2010 using daily 
data from 162 stations. 

2.2. Study periods and variables in the selected years 

Ambrosia pollen is prevalent over the late summer - early autumn 
period, although it can continue producing pollen until the first frost. 
Therefore, when calculating mean seasonal pollen integrals (67 stations, 
1995–2010) and seasonal pollen integrals (162 stations, 2010), we used 
a uniform study period (July 15 – October 15) for each station involved 
in the analysis. The rationale for selecting this period is that it covers the 
pollen season of the stations in the Pannonian Plain within the Carpa-
thian Basin (the south-eastern part of central Europe) and that of the 
other main distribution centres (Rhône-Alpes region in France and 
western Lombardy in Italy) (Skjøth et al., 2019). With this choice, we 
intended to focus on the most important centres of common ragweed 
distribution in relation to generating pollen concentration maps. 

All pollen data from every aerobiological station were measured 
applying the same methodology, using the Burkard sampling equipment 
(Crisp et al., 2013) (Appendix, Sections A1 and A2). 

Daily weather data were downloaded from the European Climate 
Assessment and Dataset website (https://www.ecad.eu/dailydata/pre-
definedseries.php#, Blended ECA dataset, Cornes et al., 2018). The 
website provides daily meteorological data for a large number of sta-
tions over Europe. 
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2.3. Restoration of missing ragweed pollen data 

2.3.1. Data restoration by the Gaussian method 
Pollen data were unavailable for many stations and on several days 

for the study period (Fig. 1, 1b; Table 1). Due to the relatively few 
numbers of aerobiological stations with full ragweed pollen data sets, we 
intended to keep stations with incomplete data but to use what was 
available to estimate their missing data. The Gaussian curve was fitted to 
the seasonal distribution of the daily ragweed pollen concentrations at 
the given station, and the missing daily pollen concentration values were 
estimated from the fitted daily values for the Gaussian curve (Kasprzyk 
and Walanus, 2014). 

In order to estimate the mean of the seasonal pollen integrals 
(MATPCs), individual ATPCs were estimated separately for every station 
and every year. Where enough data were available in a suitable tem-
poral distribution, this was done in one step. Otherwise, an additional 
step, spatial interpolation (SI) was used (Appendix, Section A3). Then, 
averaging ATPCs over years for each station gave mean ATPC (MATPC) 

values. 
In the first step, a Gaussian curve was fitted to the daily pollen 

concentration data for every year and every station separately (Appen-
dix, Section A4). 

Evidently, the fitted curve does not always provide a good estimate 
for actual daily concentrations, but we are interested only in the ATPC. 
An experiment was performed for stations and years where data 
coverage was 100 %, i.e., pollen concentration data were available for 
the entire pollen seasons. Typically, the relative difference between C 
and Ĉ (C denotes measured ATPC and Ĉ is the estimate of the expected 
ATPC if data on all days were available) was just slightly above 5 %. 
Fig. 2 shows two examples as the worst estimations, namely for a station 
(Nyíregyháza, Hungary) (Fig. 2a) having very high daily concentrations 
and for another station (Dresden, Germany) (Fig. 2b) having very low 
daily concentrations. The measured ATPC in 2010 is 14,223 and 100 
pollen grains ⋅ m− 3 at Nyíregyháza and Dresden respectively, and the 
relative difference (C − Ĉ)/C is − 7.7 % and 10 % for these two stations. 
In a further experiment we cut portions of data from the data sets which 

Fig. 1. a. Geographical location of the 67 aerobiological stations used in the study comprising 16-year (1995–2010) mean annual total ragweed pollen concen-
trations. Locations of the aerobiological stations are indicated by black dots. Horizontal axis: longitude, angle in degrees; vertical axis: latitude, angle in degrees. The 
data density (x, %) of the stations is proportional to the size of the black dots (see Table 1). Legends: 1: 0 < x ≤ 20; 2: 20 < x ≤ 40; 3: 40 < x ≤ 60; 4: 60 < x ≤ 80; 5: 
80 < x ≤ 100. 
b. Geographical location of the 162 aerobiological stations used in the study comprising the total annual ragweed pollen concentrations for the year 2010. Locations 
of the aerobiological stations are indicated by black dots. Horizontal axis: longitude, angle in degrees; vertical axis: latitude, angle in degrees. The data density (x, %) 
of the stations is proportional to the size of the black dots (see Table 1). Legends: 1: 0 < x ≤ 20; 2: 20 < x ≤ 40; 3: 40 < x ≤ 60; 4: 60 < x ≤ 80; 5: 80 < x ≤ 100. 
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had 100 % data coverage thus creating data sets with missing values. 
Our finding is that the relative error (C − Ĉ)/C increases slowly as the 
portion of omitted data increases when missing values are not clustered 
but are distributed nearly uniformly in time. In contrast, the accuracy of 

Ĉ substantially decreases when missing values are clustered, i.e. they are 
concentrated on one or more subperiods of the pollen season. 

Unfortunately, data sets for a number of stations and years have 
clustered missing data structures and hence the estimated values Ĉ for 
these are likely highly inaccurate. These estimated ATPCs were omitted 
and substituted with values obtained by interpolating ATPCs from other 
stations where reliable ATPCs were available (see Section 2.3.1.1). The 
decision of whether a Ĉ is accurate enough or not is based on subjective 
considerations because an objective decision requires a measure of C −

Ĉ, but C is not known. Specifically, the location parameter m relating to 
the date of the annual peak pollen concentration should be around the 
middle of the pollen season. An m̂ strongly deviating from the day of the 
middle of the pollen season shows that missing values are concentrated 
in subperiods of the pollen season with increasing or decreasing pollen 
concentrations. Additionally, the dispersion parameter σ relates to the 
length of the pollen season. It happens in a number of cases that Ĉ is 
small, but with a large σ̂ . This situation shows that missing values are 
concentrated in the subperiod with the highest daily pollen concentra-
tions. Finally, we compared Ĉ in a given station and year to ATPC values 
of other years at the same station and to the values of the neighbouring 
stations of the same year. When Ĉ looked like an outlier (Ĉ˃2σ̂), then Ĉ 
was omitted. 

A web page (http://euragweedpollen.gmf.u-szeged.hu/) was 
created, which includes the daily ragweed pollen concentration data 
sets, restored with the Gaussian method, for both the 67 selected stations 
(16-year data series, 1995–2010) and the 162 selected stations (annual 
data sets, 2010), with the possibility to upload newly measured or 
recovered daily data (Appendix, Section A5). 

2.3.1.1. Interpolation. In the interpolation step, refined kriging tech-
niques (Chiles and Delfiner, 1999; Oteros et al., 2019) cannot be used as 
they require the variogram of the underlying random field, which 
cannot be accurately estimated due to missing values. Therefore, our 
original intention was to use an inverse distance method. The procedure, 
however, produced poor results as the interpolation led to large over- or 
underestimations for areas of sharp spatial changes in concentrations. 
Hence, the interpolation was performed with the help of the 
geographical coordinates (latitude ϕ, longitude λ and the height above 
sea surface z) of stations using the Nadaraya-Watson estimate (Simonoff, 
1996): 

ŷi =

∑
jyjK

(
ϕj − ϕi

hϕ

)
K
(

λj − λi
hλ

)
K
(

zj − zi
hz

)

∑
jK
(

ϕj − ϕi
hϕ

)
K
(

λj − λi
hλ

)
K
(

zj − zi
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) . (2.1) 

Here yi denotes ATPC at the ith target station, and the summation 
runs over stations where ATPC is available from the first step. Note that 
the interpolated ATPC is a weighted average of ATPC values with 
weights depending on the distance between the geographical co-
ordinates of the target station and other stations. The weights are 

generated by a Gaussian kernel K(u) = exp
(
− (u/h)2

/2
)/( ̅̅̅̅̅̅

2π
√

h
)

and 

the bandwidth h controls the width of averaging. The choice of band-
widths hϕ, hλ, hz has an important role as small bandwidths provide a 
small bias with a big variance, while large bandwidths deliver a large 
bias with a small variance of the estimate Eq. (2.1). Optimal bandwidths 
resulting in the smallest mean squared error of the interpolation are 
obtained by cross-validation (Simonoff, 1996), i.e., by minimizing 
∑

i
(
yi − ŷi

i
)2 with respect to hϕ,hλ,hz, where ŷi

i is obtained from Eq. (2.1) 
but omitting ith data from the summation. In fact, the procedure is a 
combination of three one-dimensional Gaussian kernels, namely one 
Gaussian kernel for each dimension (ϕ, λ and z), and the best band-
widths parameters (for each dimension) are estimated with cross- 
validation. This way the Gaussian kernels can be applied to variables 
with very different value ranges. The Gaussian kernel was developed 

Table 1 
Number of the stations with data coverage x (%) for the selected periods1. 

*Data density of the stations is proportional to the size of the black dots (see 
Fig. 1a and Fig. 1b); 
1Note: the table concerns the station-specific pollen seasons but not the 
selected study period, July 15 – October 15. Since the study period does not 
cover the pollen season for many stations, the station selection criteria defined 
in Section 2.1, paragraph 1, does not contradict with the result of Table 1, 
according to which >25 % of the years (actually, 31.3 % of the years) 
1995–2010 has data coverage <40 %. 

Fig. 2. Daily ragweed pollen concentrations at (a) Nyíregyháza (Hungary) and 
(b) Dresden (Germany) in 2010 and their approximation by a Gaussian Curve. 
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with the formula reported in Eq. (2.1). 
Using this technique for the years when ATPC is available can pro-

vide a result for the ratio of the mean squared error of the interpolation 
to the variance. Hence, it is concluded that the spatial mean of the 
variance explained by this interpolation is 43.6 %. 

2.3.2. Data restoration by artificial intelligence 
Another way of reconstructing daily ragweed pollen concentration 

data is an AI approach employing deep neural networks. Specifically, the 
deep learning (DL) strategy is implemented through a Denoising Con-
volutional Auto-encoder (ConvAE). ConvAE is an auto-encoder 
composed of only convolutional layers that aim at modelling the tem-
poral dependency in the time series and reconstructing the input data. 
Considering the low availability of data (i.e. the significant lack of data), 
Convolutional Neural Networks are easier to train compared to more 
complex recurrent architectures, e.g. Long-Short Term Memory com-
ponents (LSTM) or Gated Recurrent Units (GRU) (Duan et al., 2016; Liu 
and Chen, 2017; Che et al., 2018; Navares and Aznarte, 2019; Zewdie 
et al., 2019a, 2019b; Zhang et al., 2019; Zhao et al., 2020). 

ConvAE architecture takes as input daily pollen concentrations be-
tween June 1 and October 31 (in combination with additional daily 
weather data, namely daily values of maximum temperature, minimum 
temperature, mean temperature and precipitation). Other spatio- 
temporal variables are not used as input, with the objective of con-
structing a general model. The model is trained by randomly removing 
daily input concentrations and reconstructing the original time series. 
Models were trained with different data corruption schemes, input 
features, loss functions, and other hyper-parameters. The best configu-
ration is selected with 5-fold cross-validation (Kohavi, 1995). A more 
detailed definition of the ConvAE model and the training procedure 
(Appendix, Fig. A1) is given in the appendix (Appendix, Section A6). 

Results are reported for eight different model configurations: (1) 
with and without weather information, (2) with original or normalized 
loss function, and (3) with a perturbation scheme working on days or 
windows. Performances are reported for two evaluation settings: 
restoring single (i.e. points) and windows of consecutive (i.e. windows) 
missing days. Among the generated models, two (with and without 
weather channel) were selected to reconstruct daily pollen concentra-
tion data for each setting, based on cross-validation results. The two 
resulting models were then compared on the test and test103 data sets to 
assess their behaviour. The test dataset was generated from the 67 sta-
tions, while the test103 dataset was generated by selecting 103 stations 
that belong to the 162 stations dataset but are not included in the 67 
stations dataset. The result of the best DL model was then compared to 
that of the restoration process implemented with the one-step and two- 
step ATPC restoration models. 

The model performances are assessed through four metrics: Root 
Mean Squared Error (aRMSE), the average of Normalized Root Mean 
Squared Error (aNRMSE), the coefficient of determination (R2) and the 
Pearson Correlation Coefficient (PCC). While PCC and R2 are standard 
measures computed on the whole set of the reconstructed values, aRMSE 
and aNRMSE are computed by averaging RMSE and NRMSE values ob-
tained on each reconstructed series (Mentaschi et al., 2013). 

2.4. Cartographical background 

The maps are shown using parts of the European grid. ETRS89/LAEA 
Europe is a projected coordinate reference system (CRS) suitable for use 
in Europe (Annoni et al., 2003). ETRS89/LAEA Europe uses the ETRS89 
geographic 2D CRS as its base CRS and the Europe Equal Area 2001 
(Lambert Azimuthal Equal Area) as its projection. 

The borders of the study area were determined on the basis of the 
geographical positions of the pollen-measuring stations having sufficient 
pollen concentration data. Geographical coordinate corners for the maps 
were set to cover a region with ample margin beyond the pollen 
measuring stations of extreme coordinates. The reason is that in this way 

the given airborne ragweed pollen concentrations and ragweed pollen- 
related characteristics can be better described in the neighbourhood of 
the stations with extreme positions as well. 

For the Europe-scale maps the map corners were set to cover most of 
Europe since, in addition to the many stations in the western and central 
part of the continent, we have data from stations in Russia and Scan-
dinavian countries, as well. For these Europe-scale maps of mean annual 
total (1995–2010) (Fig. 3, 3*) and annual total (2010) (Appendix, 
Figs. A10, A10*) ragweed pollen concentrations a spherical trapezoid 
with 24◦ difference of latitudes (34◦N-58◦N) and 53◦ difference of lon-
gitudes (11◦W-42◦E) was selected. 

The maps of the phenological characteristics (Fig. 4), peak pollen- 
related characteristics (Fig. 5) and frost-related characteristics (Appen-
dix, Fig. A11) are based on the data from 67 stations only, located mostly 
in eastern and central Europe. The geographical coordinate corners of 
these maps were inclusive of those parts of Europe where data were 
available. This allowed better visualization for pollen relevancy of the 
maps. Using the same projection as detailed above, a spherical trapezoid 
with 15◦ difference in latitudes (40◦N-55◦N) and 32◦ difference of lon-
gitudes (5◦W-27◦E) was selected. 

The Europe-scale pollen concentration maps were constructed using 
the interpolated pollen data from 67 and 162 stations, respectively. The 
maps of ragweed pollen-related characteristics are based on the data 
from 67 stations. Spatial predictions were made using latitude, longi-
tude, as well as elevation information. Elevation information was 
available for the measuring stations. Elevation data for the interpolation 
sites were extracted from the ETOPO1 Global Relief Model (Amante and 
Eakins, 2009). ETOPO1 is a 1 arc-minute global relief model of Earth's 
surface that integrates land topography and ocean bathymetry. It was 
built from numerous global and regional data sets. 

All interpolation was executed and the maps were created using the 
R software (version 3.1.2) (R Core Team, 2014). The maps were 
generated in two stages. First, using the scattered measured data points a 
high-resolution raster map was computed using Bayesian Gaussian 
Process Modelling as implemented in the spTimer package (Bakar and 
Sahu, 2014). The model was fitted by the spt.Gibbs function using the 
package default settings (“GP” model, “geodetic:km” distance method). 
The raster resolution was set to 15 pixels per geographical degree in both 
latitude and longitude dimensions, which corresponds to a spatial res-
olution of about 4 arcminutes. Because the predictions were made using 
a stochastic modelling process, the resulting pixels show the predicted 
trends with a stochastic pattern. To facilitate a better interpretation of 
the results, the predicted values were smoothed using a 3 × 3 averaging 
filter. The plots were generated using the ggplot package (Kahle and 
Wickham, 2013). 

For the pollen concentration maps, the measured data were mapped 
with the generalized log transform before interpolation and the inter-
polated results were mapped back to the original scale using the inverse 
log transform. This is a commonly used technique to ensure that the 
interpolated values fall within a sensible range (in our case only non- 
negative values can be interpreted). 

Standard rectangular shaped raster maps were created. In addition, 
the region covered by our maps extended the minimal enclosing rect-
angle of the measuring stations to show some influential regions around 
the stations at extreme locations. It should be stressed that interpolation 
techniques can only produce values at locations that lie within the 
convex hull of the data points with known values. For locations outside 
the convex hull, only extrapolation can be applied (using some fitting 
models). Extrapolation is less reliable than interpolation and the error 
increases with increasing geographical distance from the data points. 
Therefore, although visually appealing, some maps may show obviously 
false information, especially in regions where extrapolation was used. 
To address this problem, the maps were modified in several respects, as 
follows. (i) We masked out the regions further than 150 km away from 
any of the measuring stations (Skjøth et al., 2012; Smith et al., 2013). 
The neighbouring circles can be observed around stations further than 
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Fig. 3. 16-year mean annual total ragweed pollen concentrations for Europe using a base-10 logarithmic colour scale, with the geographical location of the 67 aerobiological stations with (a) raw data sets, (b) restored 
(GM) data sets, and (c) restored(DL) data sets, July 15 – October 15, 1995–2010, (pollen grains ⋅ m− 3 of air). The maps (1) include all stations, (2) the areas beyond ±100 m from the altitude of the stations within their 
150 km radius are excluded from mapping, and (3) the maximum distance is 150 km to each station. Horizontal axis: longitude, angle in degrees; vertical axis: latitude, angle in degrees. Locations of the aerobiological 
stations are indicated by black dots. Restored(GM) data sets: restoration of the missing daily data occurred on the assumption that the seasonal distribution of the daily pollen concentrations is normal (Gaussian 
Method) (see Section 2.3.1). Restored(DL) data sets: restoration of the missing daily data occurred by using convolutional auto-encoder models with weather data1 (ConvAE + Weather) (see Section 2.3.2). Weather 
data1: daily values of maximum temperature, minimum temperature, mean temperature and precipitation. 
Fig. 3*. 16-year mean annual total ragweed pollen concentrations for Europe on base-10 logarithmic colour scale, with the geographical locations of the aerobiological stations, using the (a) raw data sets, (b) restored 
(GM) data sets, and (c) restored(DL) data sets, July 15 – October 15, 1995–2010 (pollen grains ⋅ m− 3 of air). The stations (1) with mean annual pollen concentration smaller than 100 pollen grains ⋅ m− 3 of air, as well as 
(2) the areas beyond ±100 m from the altitude of the stations within their 150 km radius are excluded from mapping, and (3) the maximum distance is 150 km to each station. Horizontal axis: longitude, angle in 
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degrees; vertical axis: latitude, angle in degrees. Locations of the aerobiological stations are indicated by black dots. Restored(GM) data sets: restoration of the missing daily data occurred on the assumption that the 
seasonal distribution of daily pollen concentrations is normal (Gaussian Method) (see Section 2.3.1). Restored(DL) data sets: restoration of the missing daily data occurred by using convolutional auto-encoder models 
with weather data1 (ConvAE + Weather) (see Section 2.3.2). Weather data1: daily values of maximum temperature, minimum temperature, mean temperature and precipitation. 

Fig. 3. (continued). 
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150 km from the other stations. These circles appear larger at higher 
latitudes than at lower latitudes due to the choice of the LAEA projec-
tion, though their areas are equal. (ii) We applied an altitudinal buffer, 
namely we masked out those areas within a 150 km radius of every 
aerobiological station that are beyond ±100 m from the altitude of the 
station. Removing these areas (e.g. the Alps and the Carpathians) (a) 
makes it possible to address uncertainties in predicting very late start 
and end dates of the pollen season and (b) allows a distinct colour scale 
to better differentiate eastern and western Europe. (iii) Studying sea-
sonality requires a considerable observed pollen concentration. To this 
end, seasonal parameter maps were created using only those aero-
biological stations where the mean annual pollen concentration reached 
at least 100 pollen grains ⋅ m− 3. This threshold also addresses the high 
altitude problem mentioned in (ii). 

The statistical computations were performed with the following 
softwares: SPSS (version 15.0), MATLAB (version 7.7.0.471), Python 
(version 3.7), PyTorch (version 1.5), NumPy (version 1.18.4), and SciPy 
(version 1.4.1). The source code for training the models is as follows: 
https://gitlab.fbk.eu/dsip/dsip_dlresearch/ragweed-pollen-reconstructi 
on-europe. 

2.5. Evaluation of the map accuracy with the original and restored 
datasets 

The final aim of the GM and DL models was to estimate a more ac-
curate ATPC value that leads to an accuracy improvement in the 
generated maps. We compared the reconstruction abilities of the two 
models considering a set of 25 stations from the “test103” dataset. These 
stations had no missing data for the 2010 season, therefore their ATPC is 
considered correct. We removed different percentages of data (from 10 
% to 80 %) from the time series of the 25 stations and asked the model to 
reconstruct the real ATPC. We evaluated two scenarios. First, we 
assessed model accuracy in reconstructing ATPC values with R2, RMSE 
and Mean Absolute Error (MAE). Second, we compared the Mean Ab-
solute Percentage Error (MAPE) between the maps generated with real 
and perturbed data, and the MAPE between the maps generated with 
real and reconstructed data (Appendix, Section A7: A7.1, A7.2). Both 
experiments were repeated 10 times, and the results were averaged. 
Note that since the SI method (spatial interpolation) only considers 
ATPC of the closest 6 stations, a single experiment was performed, in 
contrast with the 10 experiments performed for GM and DL. 

3. Results 

3.1. Data restoration by deep learning 

Deep learning generalization performances on the validation sets 
were used to select the best training configurations to use (Appendix, 
Fig. A2). The best-performing models were then evaluated on the “test” 
and “test103” data sets. Results are reported in terms of aRMSE, 
aNRMSE, R2 and PCC. Results are presented for two scenarios: removing 
the small window of consecutive days (Table 2) and removing large 
windows of consecutive days (Table 3). The use of the weather input 
feature impacted positively on the second scenario, while models per-
formed similarly in the first one. This difference is also present when 
examining the distribution of NRMSE over the predicted missing values 
(Appendix, Figs. A3, A4). Intuitively, the improvement in NRMSE is 
mainly associated with high pollen concentration values, i.e. > 500 
pollen grains m− 3 (Appendix, Fig. A5). To reconstruct missing data in 
the considered data set, the best-performing architecture was obtained, 
when training the model to reconstruct small windows of missing data 
using weather data (ConvAE + weather, normloss, Appendix, Fig. A2). 
An example of the reconstructed daily pollen concentration data with 
the best DL model is presented in Appendix, Fig. A6. 

3.2. Comparison of the maps prepared on the raw and restored pollen 
concentration data sets 

The original, namely raw, data sets consist of annual average pollen 
concentrations for the 16-year period (1995–2010), without restoring 
the missing daily pollen concentration data. For every station in the 
restored databases, the missing data for given days were restored by 
entering the values generated by both the Gaussian method (GM) (see 
Section 2.3.1) and the deep learning (DL) (see Section 2.3.2). For the 
study period, eight stations (11.9 %), showed the lowest data coverage, 
while 20 stations (29.9 %) indicated the highest data density (Table 1). 

We prepared mean annual total ragweed pollen concentration maps 
for Europe for the 16-year period, July 15 – October 15, 1995–2010, 
some including all stations (Fig. 3) and some excluding those for which 
the mean annual pollen concentration was smaller than 100 pollen 
grains m− 3 (Fig. 3*). For both cases, the maps were produced using both 
the raw data sets (Fig. 3a; *a) and the data sets restored with either the 
Gaussian method (GM) (Fig. 3b; *b) and the deep learning (DL) (Fig. 3c; 
*c). 

For mapping, we used (a) a concentration filter (the stations with 
mean annual pollen concentration smaller than 100 pollen grains m− 3 

were excluded from mapping (Figs. 3*a, *b, *c, 4a, b, c, 5a, b; Appendix, 
Figs. A10*a, *b, *c, A11a, b, c); (b) an altitude filter (the areas beyond 
±100 m from the altitude of the stations within their 150 km radius are 
excluded from mapping (Figs. 3a, b, c, *a, *b, *c, 4a, b, c, 5a, b; Ap-
pendix, Fig. A10a, b, c, *a, *b, *c, A11a, b, c); and (c) a station distance 
filter (the maximum distance is 150 km to each station; Figs. 3a, b, c, *a, 
*b, *c, 4a, b, c, 5a, b; Appendix, Figs. A10a, b, c, *a, *b, *c, A11a, b, c). 

The question arises as to whether restoration of the missing data 
changed the mapped pollen patterns. When comparing the maps based 
on the raw vs. restored data, the following results were obtained. If we 
take the 16-year (1995–2010) mean annual total ragweed pollen data 
sets including all stations (Fig. 3a; b; c), we find that the maps of the raw 
data set (Fig. 3a) were very similar to both the restored (GM) (Fig. 3b) 
and the restored (DL) (Fig. 3c) data sets. However, the maps for both the 
restored (GM) (Fig. 3b) and the restored (DL) (Fig. 3c) data sets show 
higher pollen concentrations both for western Europe and the Pan-
nonian Basin. This suggests that data restoration increases the mean 
seasonal pollen integrals per station (Fig. 3a; b; c). When the stations 
with mean annual pollen concentrations lower than 100 pollen grains 
m− 3 are excluded from the mapping (Fig. 3*a; b; c), then the maps based 
on the raw data set (Fig. 3*a) show substantial similarity to both the 
restored (GM) (Fig. 3*b) and the restored (DL) (Fig. 3*c) data sets. In 
addition, neither the mean seasonal pollen integral in western Europe 
and the Pannonian Basin, nor the gradient of the pollen counts from east 
to west were changed (Fig. 3*a; *b). However, the map of the restored 
(DL) data set (Fig. 3*c) shows a slight increase in these two character-
istics compared to the two other maps (Fig. 3*a; *b). 

The maps generated after the raw and restored pollen concentration 
data sets, 2010, including 162 stations were also prepared and compared 
(Appendix, Section A8). 

3.3. Maps of raw phenological data 

Based on the raw data sets, the earliest mean start dates of the pollen 
season occur in the central and southern part of the Pannonian Plain in 
central Europe at the end of July. For the stations in the southernmost 
part of France and in the Po River estuary in Italy, airborne ragweed 
pollen release starts at the beginning of August. In northern Czechia and 
in Poland the pollen release starts in the middle of August (Fig. 4a). 
Pollen dispersion occurs at the latest in the middle of October in the 
Rhône River estuary in France, in western Lombardy in Italy and in the 
north-eastern part of the Pannonian Plain in Hungary. Meanwhile, the 
earliest mean end date of the pollen season is observed within the first 
ten days of October in the north-eastern part of the Pannonian Plain in 
Hungary (Fig. 4b). The pollen season is the longest in the southern part 
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Fig. 4. Mean start date (a), mean end date (b), and mean duration (days) (c) of the ragweed pollen season for Europe, with the geographical locations of the aerobiological stations, using the raw data sets, 16 years, 
1995–2010. The stations (1) with mean annual pollen concentration smaller than 100 pollen grains ⋅ m− 3 of air, as well as (2) the areas beyond ±100 m from the altitude of the stations within their 150 km radius are 
excluded from mapping, and (3) the maximum distance is 150 km to each station. Horizontal axis: longitude, angle in degrees; vertical axis: latitude, angle in degrees. Locations of the aerobiological stations are 
indicated by black dots. 
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of the Pannonian Plain, followed by the southern part of France, while it 
is the shortest in northern central Europe (Fig. 4c). Detailed information 
on the characteristics of the frost-free period (the last frost day in spring, 
the first frost day in fall and the duration of the frost-free period), as well 
as the spatial patterns of pollen abundance and flowering phenology in 
association with the geographical coordinates and the frost-free period 
are presented in the Appendix (Sections A9 and A10). 

3.4. Comparison of the maps of raw and restored maximal pollen counts 
and their date 

Peak values of the mean maximum daily ragweed pollen concen-
trations were observed in the Pannonian Plain within the Carpathian 
Basin (Fig. 5a). Areas exceeding 600 pollen grains m− 3/day cover the 
central and southern parts, as well as the north-eastern part of this area, 

Fig. 5. Mean maximum daily ragweed pollen concentrations (pollen grains ⋅ m− 3 of air) (a), and date of the mean maximum daily ragweed pollen concentration (b) 
for Europe, using a base-10 logarithmic colour scale, with the geographical location of the aerobiological stations, using the raw data sets, 16 years, from 1995 to 
2010. The stations are: (1) with mean annual pollen concentration smaller than 100 pollen grains ⋅ m− 3 of air, as well as (2) the areas beyond ±100 m from the 
altitude of the stations within their 150 km radius are excluded from mapping, and (3) the maximum distance is 150 km to each station. Horizontal axis: longitude, 
angle in degrees; vertical axis: latitude, angle in degrees. Locations of the aerobiological stations are indicated by black dots. 
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respectively. [The daily ragweed pollen concentration above 100 pollen 
grains m− 3 during the main flowering period is many times higher than 
the minimum concentration values causing symptoms (Déchamp et al., 
1997; Makra et al., 2005)]. 

The date of the mean maximum daily ragweed pollen counts changes 
within a very narrow time frame (between late August and early 
September), with the earliest peak values in the Pannonian Plain, while 
the latest ones occur in western Lombardy and France, respectively 
(Fig. 5b). 

We found that DL model performances were consistently better than 

GM for estimating ATPC with 10 % to 70 % data removal considering R2 

and RMSE. With 80 % missing data, the GM approach works better, since 
DL underestimates the real value (Table 4, Fig. 6). Compared to GM and 
DL, the SI method performed poorly, due to over/under-estimation of 
the real ATPC value (Table 4). The simulation shows that with large 
percentages of missing data, performances become increasingly similar, 
and tend to overlap in terms of standard deviation. However, the DL 
model exhibits a more robust behaviour, and reaches consistently better 
performances when considering the generated maps (Appendix, Section 
A7: A7.1, A7.2). 

Table 2 
Missing data imputation performances with weather information (ConvAE + Weather) and without weather information (ConvAE). Original data were perturbed 
removing small windows of consecutive days. Metrics are reported for the 1995–2010 data set (5-fold validation and test sets) and for the 2010 test data set (103 
stations not present in the training distribution). Reported metrics are the average of Root Mean Squared Error (aRMSE), the average of Normalized Root Mean Squared 
Error (aNRMSE), the coefficient of determination (R2) and the Pearson Correlation Coefficient (PCC). Pearson's p-values are calculated to be significantly close to 0.  

Models Data sets aRMSE aNRMSE R2 PCC 

*ConvAE 1val 18.13 ± 30.34 0.23 ± 0.14 0.67 ± 0.04 0.82 ± 0.02 
2test 16.90 ± 32.35 0.23 ± 0.15 0.62 0.80 
3test103 28.61 ± 40.34 0.20 ± 0.11 0.64 0.82 

*ConvAE + Weather 1val 18.09 ± 30.58 0.23 ± 0.14 0.67 ± 0.04 0.82 ± 0.02 
2test 16.84 ± 31.32 0.23 ± 0.14 0.64 0.81 
3test103 28.20 ± 38.93 0.21 ± 0.12 0.65 0.82  

* Convolutional auto encoder models. 
1 Validation data set. 
2 “test” data set. 
3 103 stations from the 2010 test data set. 

Table 3 
Missing data imputation performances with weather information (ConvAE +Weather) and without weather information (ConvAE). Original data were perturbed 
removing large windows of consecutive days. Metrics are reported for the 1995–2010 data set (5-fold validation and test sets) and for the 2010 test data set (103 
stations not present in the training distribution). Reported metrics are the average of Root Mean Squared Error (aRMSE), the average of Normalized Root Mean Squared 
Error (aNRMSE), the coefficient of determination (R2) and the Pearson Correlation Coefficient (PCC). Pearson's p-values are calculated to be significantly close to 0.  

Models Data sets aRMSE aNRMSE R2 PCC 

*ConvAE 1val 23.99 ± 45.94 0.34 ± 0.18 0.39 ± 0.07 0.63 ± 0.06 
2test 19.92 ± 33.02 0.32 ± 0.17 0.40 0.65 
3test103 39.83 ± 91.38 0.29 ± 0.15 0.19 0.46 

*ConvAE + Weather 1val 24.58 ± 48.95 0.33 ± 0.17 0.31 ± 0.06 0.60 ± 0.04 
2test 16.93 ± 31.00 0.23 ± 0.14 0.65 0.82 
3test103 28.45 ± 39.90 0.20 ± 0.12 0.64 0.81  

* Convolutional auto encoder models. 
1 Validation data set. 
2 “test” data set. 
3 103 stations from the 2010 test data set. 

Table 4 
ATPC estimation results reported in terms of R2, RMSE, and MAE. The DL model used takes as input the additional weather information. For each metric, mean and 
standard deviation are calculated on the 10 simulations. [Results of the two-step spatial interpolation (SI) are reported in the last row of the table.] (Bold indicates that 
the given method works better.)  

Removed data, % Method R2 RMSE MAE 

0.1 DL 0.9971 ± 0.00 203.47 ± 44.72 123.03 ± 21.53 
GM 0.9654 ± 0.01 705.25 ± 120.77 460.60 ± 58.38 

0.2 DL 0.9912 ± 0.01 343.39 ± 109.26 204.52 ± 50.10 
GM 0.9503 ± 0.05 789.72 ± 333.28 489.66 ± 84.82 

0.3 DL 0.9802 ± 0.01 521.27 ± 146.65 323.33 ± 59.59 
GM 0.9130 ± 0.10 1002.28 ± 529.73 545.31 ± 164.75 

0.4 DL 0.9678 ± 0.01 680.54 ± 114.38 449.96 ± 66.05 
GM 0.9299 ± 0.05 976.64 ± 286.94 595.34 ± 98.10 

0.5 DL 0.9302 ± 0.02 1008.30 ± 118.74 644.69 ± 51.88 
GM 0.8430 ± 0.09 1460.19 ± 433.07 861.59 ± 181.14 

0.6 DL 0.8745 ± 0.03 1348.70 ± 187.85 917.29 ± 100.88 
GM 0.8574 ± 0.07 1410.63 ± 341.93 886.81 ± 140.82 

0.7 DL 0.8149 ± 0.06 1635.62 ± 244.74 1196.53 ± 168.97 
GM 0.7901 ± 0.08 1732.98 ± 314.95 1042.87 ± 158.84 

0.8 DL 0.5262 ± 0.12 2626.26 ± 322.68 1971.28 ± 217.17 
GM 0.6071 ± 0.25 2292.06 ± 742.99 1325.30 ± 271.27 

Two-step SI SI 0.3052 3204.25 2297.74  
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4. Discussion 

Biodiversity loss and changes under climate change are a major 
concern according to the IPCC 2022. In addition, the agenda of IPBES 
(2018) also covered non-native species. Invasive non-native species are 
strongly linked to biodiversity changes and the expansion of many is 
favoured by ongoing climate change. A. artemisiifolia is one non-native 
species that has been continuously spreading in central and other 
parts of Europe (Bullock et al., 2010; Smith et al., 2013; Xian et al., 
2023). Many of the current maps used to determine ragweed distribu-
tion and pollen release have significant information gaps. With this 
background, we developed the most up-to-date and accurate ragweed 
pollen abundance maps currently available for Europe. The maps pro-
vide the basis for improved management of pollen-associated respira-
tory diseases in the future. 

The novelty of our research can be summarized in the fact that we 
applied two approaches, i.e. the Gaussian method and deep learning, to 
restore incomplete ragweed pollen data sets to improve pollen mapping. 
As such, this study improves on previous mapping approaches which 
used interpolation-oriented methods (e.g. European Aeroallergen 
Network Pollen Database, https://ean.polleninfo.eu/ean; Skjøth et al., 
2012; Smith et al., 2013). To the best of our knowledge, this is the first 
attempt in the literature to restore incomplete pollen data sets. 

In addition, we developed maps of ragweed phenology (means of 
start, end and duration of the pollen season), quantity-related charac-
teristics (means of maximum daily pollen concentrations and the day of 
the mean maximum daily pollen concentrations) and frost-related pa-
rameters (means of last frost day in spring, first frost day in fall and the 
duration of the frost-free period) for Europe that have not been gener-
ated by previous research (e.g. Skjøth et al., 2012; Smith et al., 2013; 
Storkey et al., 2014). The maps created by our study can therefore be 
considered the most accurate, most complete and most detailed, with 
the highest resolution for Europe with the currently available 
information. 

As climatic alterations are shaping habitat structure under the effects 
of climate change, the biological cycles of plants will also be affected 

(Ziska and Beggs, 2012). Therefore, it is crucial to be able to track such 
changes and understand plant responses via monitoring of various 
ecological metrics, such as their reproductive output (Ziska et al., 2011) 
and distribution patterns (Chapman et al., 2016). The maps presented in 
our study are the first to be generated following a detailed cartograph-
ical technique. A set of processes was implemented to obtain detailed 
results with increased accuracy. The methodological approach we used 
involved: (i) map projection, (ii) refining the border selection technique 
for the study area; (iii) incorporation of latitude, longitude and elevation 
information when interpolating [where the interpolation procedure is a 
combination of three one-dimensional Gaussian kernels]; and (iv) cre-
ation of rectangular raster maps to make the maps familiar to the 
readers. Complementarily, the following approaches improved the in-
formation available: (v) the region covered with our maps extends the 
minimal enclosing rectangle of the measuring stations to show some 
influential regions around the stations at extreme locations, (vi) the 
longest data sets (16-year-long station data sets for the period 
1995–2010) were used for creating the maps of quantity- and quality- 
related characteristics of ragweed, (vii) a concentration filter (mean 
annual pollen concentration smaller than 100 pollen grains m− 3 are 
excluded from mapping) and an elevation filter (the areas beyond ±100 
m from the altitude of the stations within their 150 km radius are 
excluded from mapping) were incorporated, and finally (viii) the maps 
are interpreted by using a wide sliding colour scale, to better reflect the 
spatial differences in the examined pollen-related characteristics. 

The spreading of A. artemisiifolia is associated with a large number of 
local environmental factors including climatic conditions, ecological 
and habitat preferences, competition with other plants, relief and 
elevation, as well as changes in land use and affected by management 
interventions such as timing of mowing. We did not deal with these 
additional local environmental and human factors influencing ragweed 
pollen concentration. The reasons for this are: (I) Ragweed is mainly 
growing in disturbed and unmanaged habitats across Europe, with little 
competitive vegetation. In the more heavily colonized areas of Europe, 
ragweed is most frequent on roadsides and in arable fields (Essl et al., 
2015), (II) for the managed habitats, only very limited information is 

Fig. 6. Comparison of ATPN restoration between (a) DL and (b) GM methods with 20 % to 80 % of missing values. Restoration is performed 10 times by removing 
data from 25 time series (identified by the colour) extracted from the “test103” data set. With a growing percentage of missing data, the DL method tends to un-
derestimate the observed ATPN, while the GM method occasionally yields ATPN values largely different from the target. 
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available (e.g. on the date of mowing), and information is missing for 
some areas (e.g. the CORINE Land Cover Database, as a pan-European 
land cover inventory does not contain data on the following countries: 
Croatia, Belarus, Ukraine, and Russia), and (III) information is missing 
for several years (the CORINE Land Cover Database inventory is only 
available for the following years based on the period we are examining: 
1990, 2000, and 2006. In a previous paper, Deák et al. (2013) examined 
the potential change in land use for one of the stations included in this 
paper (Szeged, Hungary). They found that land use changes did not 
influence ragweed pollen concentration over the Szeged area in the 
period examined (http://www.eea.europa.eu/publications/COR0- 
landcover) (Deák et al., 2013). 

4.1. Suitability of the distribution maps of common ragweed and their 
agreement with the pollen concentration maps of ragweed for Europe 

Distribution databases may not accurately reflect pollen loads. For 
example, casual ragweed occurrences in northern Europe, where 
ragweed populations are small, produce a very little amount of pollen. 
As a result, pollen data give a better indication of variation in abundance 
and impacts (Dahl et al., 1999). In addition, distribution databases can 
under-record in regions like Ukraine (Rodinkova et al., 2018) where 
monitoring is absent. At the same time, the pollen data can, in principle, 
help fill the gaps now that more stations in these regions are available 
online. However, under-recording of distributions seems to correlate 
with poor pollen monitoring. 

Although careful modelling of habitat suitability from the distribu-
tion data (e.g. envelope modelling) can be used to forecast ragweed 
demography. Pollen data could also be used for calibrating or validating 
habitat suitability models based on native or invasive distributions, 
providing a powerful new approach (Chapman et al., 2016). To the best 
of our knowledge, the paper of Chapman et al. (2016) is the only 
example, where modelling invasion and pollen counts have been 
correlated. 

Distribution data and habitat suitability models do not provide 
temporal information, while the pollen data are useful for mapping plant 
phenology and possibly population trends over time (e.g. Ziska et al., 
2011). Some habitat suitability models include or are based on flowering 
phenology (Chapman et al., 2014), so integrating large-scale spatial data 
on ragweed phenology with model predictions would be very useful for 
developing better models for ragweed invasion risk as a response to 
climate-induced changes in temperature. 

Distribution maps of A. artemisiifolia for Europe using the DAISIE 
(Bullock et al., 2010; http://www.europe-aliens.org) and the GBIF 
(Bullock et al., 2010; Cunze et al., 2013; http://data.gbif.org) databases 
are less accurate due to lack of information (i.e. significant gaps in the 
data sets). Specifically, (a) the distribution of the European GBIF records 
for A. artemisiifolia, (b) the distribution of A. artemisiifolia in Europe 
either on 50 km × 50 km or 10 km × 10 km grid cells (based on the 
distribution maps of >40 national aerobiological services and interna-
tional databases), and (c) the modelled habitat suitability of 
A. artemisiifolia for Europe under the current climatic conditions based 
on the European data (adventive range approach) are not precise either, 
and only (d) the modelled habitat suitability of A. artemisiifolia for 
Europe under current climatic conditions based on the North American 
data (native range approach) provides a good estimation of the habitat 
suitability of this taxon for Europe (Bullock et al., 2010; Cunze et al., 
2013). 

4.2. Suitability of the retained stations, data restoration and interpolation 
maps 

Without appropriately accounting or compensating for missing data, 
data sets may be biased and, as a consequence, any projections may be 
imprecise. For ragweed over the majority of Europe, this is the current 
situation. Due to the relatively few aerobiological stations with full 

ragweed pollen data sets, stations with raw data sets satisfying certain 
conditions (see Section 2.1) were retained and their missing data were 
restored through two novel procedures, i.e. the Gaussian method (GM) 
(see Section 2.3.1) and deep learning (DL) (see Section 2.3.2). 

Annual pollen concentrations of several retained stations with 
complete databases are very low, not even exceeding 100 pollen grains 
m− 3. For such stations, it seems excessive to speak about a pollen season, 
even in some cases about a longer pollen season reaching 60 days or so. 
In addition, at stations situated quite far from the source areas, long- 
range transported ragweed pollen may represent a substantial part of 
the measured small seasonal pollen integral, reaching even 20 % of the 
total ragweed pollen load in Germany (Zink et al., 2012). In contrast, in 
the centre of a source area (e.g. Szeged in Hungary, Pannonian Plain, 
south-eastern part of central Europe), only 7.5 % is added to the annual 
total ragweed pollen concentration, due to long-range transport (Makra 
et al., 2016). However, 7.5 % of Hungarian pollen levels represent a 
substantially higher absolute amount than 20 % of German pollen levels 
(Makra et al., 2016). Accordingly, stations with mean annual pollen 
concentrations smaller than 100 pollen grains m− 3 were masked when 
preparing the maps (see Section 3.2). This threshold also concerns the 
high altitude problem mentioned in Section 2.4. 

5. Conclusions 

For the first time, we have developed detailed and up-to-date maps of 
the airborne pollen concentrations of ragweed across the continent of 
Europe. We applied two statistical approaches, i.e. the Gaussian method 
(GM) and deep learning (DL) model for restoring missing daily ragweed 
pollen data sets for Europe. Based on these techniques, we used large 
ragweed pollen data sets for Europe to produce maps of the mean annual 
ragweed pollen concentrations for the 16-year period 1995–2010 and 
for the year 2010. Both types of concentration maps were prepared for 
the raw and restored data sets, respectively. For maximum compre-
hensibility and dissemination, we created a web page (http://eur 
agweedpollen.gmf.u-szeged.hu/), including the restored daily ragweed 
pollen concentration data sets of both the 67 selected stations (16-year 
data series, 1995–2010) and the 162 selected stations (annual data sets, 
2010) (Appendix, Section A5). 

The ragweed pollen related maps produced and presented in this 
paper are unique for Europe. Maps of phenology-related characteristics 
(means of start, end and duration of the pollen season), quantity-related 
parameters (means of maximum daily pollen concentration and the day 
of the maximum daily pollen concentration) and frost-related charac-
teristics (means of last frost day in spring, first frost day in fall and 
duration of the frost-free period) are novelties in the international 
literature. In addition, these are the first maps in the literature prepared 
using altitude correction. 

We found that DL model performances are consistently better than 
those of GM for estimating annual total pollen amounts (ATPC). 
Ragweed pollen concentration maps derived from the raw data sets were 
very similar to those based on the restored data sets produced by both 
the Gaussian method (GM) and deep learning (DL). The restored maps 
based on both the GM and DL methods show slightly higher values over 
France, producing a smaller east-to-west gradient in the pollen con-
centrations after the restoration. This may be attributed to the fact that 
the pollen concentrations in western Europe have been underestimated 
due to the higher volume of missing values in this region. 

We suggest that the maps developed here, covering a wider 
geographical and altitudinal range than previously available, are of 
considerable value in assessing ragweed pollen characteristics for those 
areas where airborne ragweed pollen is either an existing, or a potential, 
health threat. 

The occurrence of ragweed and the pollen concentrations reported 
here are, overall, consistent with the known biogeography of ragweed 
and reflect the temperature (frost-free) conditions under which this 
species flourishes. 
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A future prospect will be to associate (i) the actual daily ragweed 
pollen concentrations reported in this paper and, as an extension, (ii) the 
cumulative daily pollen concentrations of all remaining allergenic taxa, 
with public health effects for Europe. 
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Vucić, A., Peroš Pucar, D., Škorić, T., Ščevková, J., Kmenta, M., Berger, U., 
Magyar, D., 2019. The application of a neural network-based ragweed pollen 
forecast by the ragweed pollen alarm system in the Pannonian biogeographical 
region. Aerobiologia 36, 131–140. https://doi.org/10.1007/s10453-019-09615-w. 

Cunze, S., Leiblein, M.C., Tackenberg, O., 2013. Range Expansion of Ambrosia 
artemisiifolia in Europe is promoted by climate change. Ecol., 610126 https://doi. 
org/10.1155/2013/610126. 

Dahl, Å., Strandhede, S.O., Wihl, J.Å., 1999. Ragweed – an allergy risk in Sweden? 
Aerobiologia 15, 293–297. https://doi.org/10.1023/A:1007678107552. 

D’Amato, G., D’Amato, M., 2023. Climate change, air pollution, pollen allergy and 
extreme atmospheric events. Curr. Opin. Pediatr. 35 (3), 356–361, 8. https://doi. 
org/10.3390/atmos14050848. 

D'Amato, G., Liccardi, G., Frenguelli, G., 2007. Thunderstorm-asthma and pollen allergy. 
Allergy 62 (1), 11–16. https://doi.org/10.1111/j.1398-9995.2006.01271.x. 

Damialis, A., Traidl-Hoffmann, C., Treudler, R., 2019. Climate Change and Pollen 
Allergies. In: Marselle, M., Stadler, J., Korn, H., Irvine, K., Bonn, A. (Eds.), 
Biodiversity and Health in the Face of Climate Change. Springer, Cham, pp. 47–66. 
https://doi.org/10.1007/978-3-030-02318-8_3. 

Damialis, A., Gilles, S., Sofiev, M., Sofieva, V., Kolek, F., Bayr, D., et al., 2021. Higher 
airborne pollen concentrations correlated with increased SARS-CoV-2 infection 
rates, as evidenced from 31 countries across the globe. PNAS 118 (e2019034118), 
1–10. https://doi.org/10.1073/pnas.2019034118. 

L. Makra et al.                                                                                                                                                                                                                                  

https://ean.polleninfo.eu/Ean
https://doi.org/10.1016/j.scitotenv.2023.167095
https://doi.org/10.1016/j.scitotenv.2023.167095
http://www.theallergyreport.com/reportindex.html
https://doi.org/10.7289/V5C8276M
https://doi.org/10.7289/V5C8276M
https://doi.org/10.1073/pnas.20132841188
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0020
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0020
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0025
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0025
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0025
http://www.jstatsoft.org/v63/i15/
https://doi.org/10.17542/kit.24.238
http://floraatlasz.uni-sopron.hu
https://doi.org/10.1023/A:1007696112953
https://doi.org/10.17061/phrp2841828
https://doi.org/10.17061/phrp2841828
https://doi.org/10.1038/s41598-022-20069-y
https://doi.org/10.1038/s41598-022-20069-y
https://circabc.europa.eu/sd/d/d1ad57e8-327c-4fdd-b908-dadd5b859eff/FinalFinalReport.pdf
https://circabc.europa.eu/sd/d/d1ad57e8-327c-4fdd-b908-dadd5b859eff/FinalFinalReport.pdf
http://ign.ku.dk/ansatte/skov-natur-biomasse/?pure=files%2F32962432%2Fambrosia_rapport_uk.pdf
http://ign.ku.dk/ansatte/skov-natur-biomasse/?pure=files%2F32962432%2Fambrosia_rapport_uk.pdf
https://doi.org/10.1111/gcb.12380
https://doi.org/10.1111/gcb.13220
https://doi.org/10.1111/gcb.13220
https://doi.org/10.1002/ecy.1835
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1007/978-3-540-71318-0_8
https://doi.org/10.1007/978-3-540-71318-0_8
https://doi.org/10.1007/s11434-007-0192-2
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0080
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0080
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0080
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0085
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0085
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0085
http://refhub.elsevier.com/S0048-9697(23)05722-4/rf0085
https://doi.org/10.1029/2017JD028200
https://doi.org/10.1016/j.anai.2013.05.021
https://doi.org/10.1007/s10453-019-09615-w
https://doi.org/10.1155/2013/610126
https://doi.org/10.1155/2013/610126
https://doi.org/10.1023/A:1007678107552
https://doi.org/10.3390/atmos14050848
https://doi.org/10.3390/atmos14050848
https://doi.org/10.1111/j.1398-9995.2006.01271.x
https://doi.org/10.1007/978-3-030-02318-8_3
https://doi.org/10.1073/pnas.2019034118


Science of the Total Environment 905 (2023) 167095

17
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Erostyák, J., Bodnár, K., Sümeghy, Z., Vogel, H., Pauling, A., Páldy, A., Magyar, D., 
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Budapest, 81 p. (in Hungarian).  

Mentaschi, L., Besio, G., Cassola, F., Mazzino, A., 2013. Problems in RMSE-based wave 
model validations. Ocean Model. 72, 53–58. https://doi.org/10.1016/j. 
ocemod.2013.08.003. 

Menut, L., Khvorostyanov, D., Couvidat, F., Meleux, F., 2021. Impact of ragweed pollen 
daily release intensity on long-range transport in Western Europe. Atmosphere 12, 
693. https://doi.org/10.3390/atmos12060693. 

Montagnani, C., Gentili, R., Smith, M., Guarino, M.F., Citterio, S., 2017. The worldwide 
spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant Sci. 36 (3), 
139–178. https://doi.org/10.1080/07352689.2017.1360112. 

Montagnani, C., Gentili, R., Citterio, S., 2023. Ragweed is in the air: Ambrosia L. 
(Asteraceae) and pollen allergens in a changing world. Curr. Protein Pept. Sci. 24 (1), 
98–111. https://doi.org/10.2174/1389203724666221121163327. 

Navares, R., Aznarte, J.L., 2019. Geographical imputation of missing poaceae pollen data 
via convolutional neural networks. Atmosphere 10 (11), 717. https://doi.org/ 
10.3390/atmos10110717. 

Oteros, J., Bergmann, K.C., Menzel, A., Damialis, A., Traidl-Hoffmann, C., Schmidt- 
Weber, C.B., Buters, J., 2019. Spatial interpolation of current airborne pollen 
concentrations where no monitoring exists. Atmos. Environ. 199, 435–442. https:// 
doi.org/10.1016/j.atmosenv.2018.11.045. 

Prank, M., Chapman, D.S., Bullock, J.M., Belmonte, J., Berger, U., Dahl, A., Jäger, S., 
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