
ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 1–16

Available online 1 October 2023
0924-2716/© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mapping intertidal topographic changes in a highly turbid estuary using 
dense Sentinel-2 time series with deep learning 

Chunpeng Chen a,b, Ce Zhang c,d,*, Bo Tian a,*, Wenting Wu e, Yunxuan Zhou a 

a State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China 
b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 
c School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK 
d UK Centre for Ecology & Hydrology, Library Avenue, Lancaster LA1 4AP, UK 
e Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, National & Local Joint Engineering Research Center of Satellite Geospatial 
Information Technology, Fuzhou University, China   

A R T I C L E  I N F O   

Keywords: 
Intertidal topography 
Deep learning 
Self-attention 
Hybrid loss 
Morphological change 

A B S T R A C T   

Intertidal mudflats are an important component of the coastal geomorphological system at the interface between 
ocean and land. Accurate and up-to-date mapping of intertidal topography at high spatial resolution, and 
tracking of its changes over time, are essential for coastal habitat protection, sustainable management and 
vulnerability analysis. Compared with ground-based or airborne terrain mapping, the satellite-based waterline 
method is more cost-effective for constructing large-scale intertidal topography. However, the accuracy of the 
waterline method is affected by the extraction of waterlines and the calibration of waterline height. The blurred 
boundary between turbid water and mudflats in the tide-dominated estuary brings enormous challenges in ac-
curate waterline extraction, and the errors in estuarine water level simulations prevent the direct calibration of 
waterline heights. To address these issues, this paper developed a novel deep learning method using a parallel 
self-attention mechanism and boundary-focused hybrid loss to extract turbid estuarine waterlines accurately 
from dense Sentinel-2 time series. UAV photogrammetric surveys were employed to calibrate waterline heights 
rather than the simulated water levels, such that the error propagation is constrained effectively. Annual 
intertidal topographic maps of the Yangtze estuary in China were generated from 2020 to 2022 using the 
optimized waterline method. Experimental results demonstrate that the proposed deep learning method could 
achieve excellent performance in land and water segmentation in time-varying tidal environments, with better 
generalization capability compared with benchmark U-Net, U-Net++ and U-Net+++ models. The comparison 
between the generated topography and UAV photogrammetric observations resulted in an RMSE of 13 cm, 
indicating the effectiveness of the optimized waterline method in monitoring morphological changes in estuarine 
mudflats. The generated topographic maps successfully identified hotspots of mudflat erosion and deposition. 
Specifically, the mudflats connected to the land predominantly experienced deposition of 10–20 cm over the two- 
year period, whereas the offshore sandbars exhibited instability and significant erosion of 20–60 cm during the 
same period. These topographic maps serve as valuable datasets for providing scientific baseline information to 
support coastal management decisions.   

1. Introduction 

Intertidal mudflats (also known as tidal flats), located in the critical 
transition between marine and terrestrial ecosystems, are an important 
component of the coastal geomorphological system (Gao, 2019). These 
areas support habitats for waterbirds (Iwamura et al., 2013; Wang et al., 
2018), provide land resources for urban development (Tian et al., 2016), 

and serve as buffers against marine related hazards (Arkema et al., 2013; 
Schoutens et al., 2019). However, anthropogenic interventions such as 
coastal reclamation and abrupt reductions in sediment input induced by 
upstream damming, combined with sea level rise resulting from climate 
change, have led to widespread erosion and loss of these intertidal areas 
(Murray et al., 2019; Nienhuis et al., 2020). Accurate and timely map-
ping of tidal flat topography with high spatio-temporal resolution, and 
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tracking of its changes are essential for coastal habitat protection, sus-
tainable coastal management and vulnerability analysis (Kulp & Strauss, 
2019; Nicholls et al., 2021). However, the topographic mapping and 
continuous monitoring of mudflats are extremely challenging since 
these intertidal environments are spatially complex and temporally 
dynamic under the compound effects of physical, hydrological and 
biological processes (Fagherazzi et al., 2012; Wang et al., 2019). 

Due to poor accessibility and short exposure times, morphological 
monitoring of intertidal mudflat relies heavily on remotely sensed 
techniques, including airborne or terrestrial light detection and ranging 
(LiDAR) (Xie et al., 2017; Andriolo et al., 2018), unmanned aerial 
vehicle (UAV) structure-from-motion (SfM) photogrammetry (Kalacska 
et al., 2017; Chen et al., 2022), video imaging (Holman & Stanley, 2007; 
Ellenson et al., 2020), and satellite-based waterline method (Heygster 
et al., 2010; Salameh et al., 2020). These approaches vary in terms of 
data processing complexity, resulting accuracy, economic cost, and 
spatiotemporal coverage. Ground- and airborne-based techniques such 
as LiDAR and SfM tend to have limited spatial coverage, although they 
can provide terrain with centimeter-level accuracy. They often require a 
high economic investment for high-frequency observations and are 
therefore not suitable for continuous and long-term observations of tidal 
flats at large spatial scales. Consequently, the satellite-based waterline 
method to date is still the most cost-effective approach for monitoring 
large-scale intertidal topography and has been successfully applied to 
tidal flats globally, such as the German Wadden Sea (Wiehle & Lehner, 
2015), the Dee Estuary in UK (Bell et al., 2016), the Jiangsu coast in 
China (Wang et al., 2019), the Australian coast (Bishop-Taylor et al., 
2019b), and the Arcachon Bays in France (Salameh et al., 2020). 

The waterline method utilizes time-series waterlines recorded at 
different tidal stages and synchronized in-situ observations or simulated 
water levels to reconstruct intertidal topography (Mason et al., 1995). 
This method consists of three major steps: waterline delineation, 
waterline height determination and waterline interpolation. Accord-
ingly, errors in such a method arise from these steps. First, the accuracy 
of instantaneous waterline extraction depends on the extraction algo-
rithm and the spatial resolution of the input images. Currently, edge 
extraction techniques (Salameh et al., 2020; Yang et al., 2022), water 
index thresholding methods (Sagar et al., 2017; Bishop-Taylor et al., 
2019a; Tong et al., 2020), supervised classification (Banks et al., 2015), 
and clustering algorithms (Obida et al., 2019) could provide pixel or 
even subpixel level accuracy for water and land segmentation. However, 
the high moisture content of the mudflat surface in estuarine areas and 
the high concentration of suspended sediment in the surrounding 
seawater, which varies with river input, make it difficult for the above 
methods to distinguish the boundary accurately between mudflat and 
seawater (de Vries et al., 2021). Furthermore, previous practices of the 
waterline method have typically used simulated water levels to assign 
waterline heights (Liu et al., 2013; Zhang et al., 2022). These simulated 
water levels contain an error of up to 30 cm due to the effects of estu-
arine runoff (Gao et al., 2021). Such an error would propagate into 
terrain reconstruction, which is unacceptable for monitoring morpho-
logical change in estuarine mudflats. In addition, the waterline method 
needs to consider the mudflat morphological stability during the period 
of image acquisition (Ryu et al., 2008; Salameh et al., 2020). The use of 
an insufficient number of images or a prolonged period of image 
acquisition can lead to inaccuracies in the constructed topography. 
Previous studies have attempted to increase the number of available 
images by extending the period of image acquisition, for example by a 
full year or more (Khan et al., 2019; Jain et al., 2022; Chen et al., 
2023b). For the purpose of constructing intertidal topography for use in 
numerical modelling, the trade-off between the number of images and 
the period of image acquisition is acceptable. However, estuarine areas 
are subject to significant intra-annual morphological variability due to 
the influence of changing river discharge and sediment transport, as well 
as frequent summer typhoons. The use of topographic maps recon-
structed from a full year of satellite observations for inter-annual 

comparisons may obscure actual morphological changes in the mudflats. 
It is therefore important to select an appropriate period for the con-
struction of mudflat topography for estuarine areas. 

The limitations mentioned above make it impractical to directly 
replicate the existing approaches of waterline extraction and waterline 
height calibration for detecting intertidal topographic variability in 
turbid estuaries. It is therefore necessary to adapt these methods to 
improve mapping accuracy for large-scale applications. Currently, deep 
learning (DL) models have been widely used for semantic segmentation 
of remotely sensed imagery and are gradually being introduced into 
shoreline detection. For example, Aghdami-Nia et al. (2022), Pucino 
et al. (2022), Dang et al. (2022) and Seale et al. (2022) implemented 
shoreline extraction using the U-Net architecture and its variants with 
significantly higher accuracy than traditional methods. Thus, the inte-
gration of DL-based waterline extraction into the waterline method for 
intertidal topography reconstruction could potentially increase the ac-
curacy of the results. Moreover, local-scale topographic observations 
have been made in many intertidal areas using LiDAR or UAV photo-
grammetry to further understand the coastal evolution. The use of these 
local observations to calibrate waterline elevations instead of low 
credible water levels can potentially be an ideal solution. In addition, the 
deployment of the European Space Agency’s (ESA) twin Sentinel-2 sat-
ellites has made it possible to acquire sufficient images in the short term 
(avoiding morphological changes) to reconstruct intertidal topography. 
Thus, the iterations of advanced technology and the accumulation of 
available datasets offer a new opportunity to monitor intertidal 
morphological change in highly dynamic and complex estuarine 
regions. 

In this paper, we aim to optimize the waterline method in terms of 
waterline extraction, waterline quality control and waterline height 
determination to maximize its accuracy in intertidal topography 
reconstruction. The specific objectives of this study are 1) to overcome 
the challenge of accurate extraction of highly turbid estuarine water-
lines by developing a deep learning model with a parallel self-attention 
mechanism and boundary loss optimization; 2) to eliminate the error of 
waterline height determination by using UAV photogrammetric profiles 
instead of water levels to assign waterline heights; and 3) to investigate 
the morphological changes of the Yangtze estuarine mudflats from 2020 
to 2022. 

2. Study area 

The study area is located on the Eastern shore of Chongming Island at 
the mouth of the Yangtze River in China. The abundant sediment loads 
from the Yangtze River have formed extensive intertidal mudflats, 
including Dongtan (DT), Guyuan Shoal (GYS) and Tuanjie Shoal (TJS) 
(Fig. 1). These areas consist of the largest nature reserve for interna-
tional migratory birds in East Asia. DT mudflats are approximately 40 
km long from north to south, with a mudflat width of approximately 1.5 
km in the north, 3 km in the center and 500 m in the south. Tidal surface 
gradients vary over such a large spatial span, resulting in different ele-
vations along the same instantaneous waterline. Therefore, based on the 
a priori geomorphological characteristics and terrain slope obtained 
from UAV photogrammetry, DT mudflats were divided into three sec-
tions: North of Dongtan (NDT), Middle of Dongtan (MDT), South of 
Dongtan (SDT). GYS and TJS are offshore sandbars with a maximum 
mudflat width of about 4.5 km and 2.5 km respectively. The climate of 
the Yangtze estuary is monsoonal, with an average temperature of 
15.5 ◦C and an annual precipitation of 1022 mm/year (Hu et al., 2019). 
The tidal regime in this area is semidiurnal and mixed tides, with mean 
and maximum tidal ranges of approximately 2.7 m and 5 m, respectively 
(Yang et al., 2005). Due to the influence of the monsoon climate, the 
water discharge and sediment load of the Yangtze estuary show seasonal 
variations. Multi-year observations at the Datong hydrological station 
demonstrate that water discharge and sediment load during the flood 
season (May to October) account for more than 70 % and 75 % of the 
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Fig. 1. (a) Monthly water discharge and sediment load from 2017 to 2021 year in Datong station; (b)–(c) Map of the study area for NDT, MDT, SDT, GYS and TJS. 
The background is a B8, B3 and B2 composite of the Sentinel-2 image taken on 18 January 2021; (d)–(f) The elevation gradient of mudflats acquired by UAV 
photogrammetry. 
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year, respectively (Fig. 1(a)). In addition, storm surges and typhoons in 
the region occur mostly during the flood season. As a result, the mudflat 
morphology in the Yangtze estuary is relatively unstable during the 
flood season. 

3. Data and methods 

3.1. Dataset 

The twin Sentinel-2 satellites can acquire high-resolution multi-
spectral imagery with a revisit period of approximately 5 days. In this 
study, we first filtered the Sentinel-2 Level 2A surface reflectance images 
in the Google Earth Engine (GEE) platform using a 60 % threshold and 
masked cloud pixels using the QA60 band. These images were then 
individually loaded into the GEE interface to check if any masked cloud 
pixels covered the land–water boundaries, and if so, the images were 
discarded. Finally, a total of 220 cloud-free or low cloud cover Sentinel-2 
images were selected for three periods (Period I: 2019.11–2020.4; 
Period II: 2020.11–2021.4 and Period III: 2021.11–2022.4) over the 
study area. The time-series images used for each period were acquired 
between November and April of the following year. Image acquisition 
was restricted to the dry season to avoid substantial morphological 
changes of the estuarine mudflats during the flood season due to high 
water and sediment discharge and typhoons. Only bands with a spatial 
resolution of 10 m (i.e., B2, B3, B4 and B8 bands) and 20 m (i.e., B5, B6, 
B7, B8A, B11 and B12 bands) in the Sentinel-2 imagery were used, and 
the 20 m bands were resampled to 10 m using nearest neighbour 
interpolation. In case the number of Sentinel-2 images was insufficient 
to construct the intertidal topography, Sentinel-1 Synthetic Aperture 
Radar (SAR) images were used as a backup. Notably, Sentinel-1 SAR 
images, not affected by cloud cover, were not selected as the primary 
data source, due to the speckle noise and poor separability of water and 
mudflats in the estuarine areas (Geng et al., 2016). 

Three transects of the DT (i.e., C1, C2, and C3 in Fig. 1(c)) were 
observed using a DJI RTK-assisted UAV in early May 2020, April 2021, 
and April 2022. In addition, three other transects (i.e., V1, V2 and V3) 

were also surveyed by the UAV in April 2022. The width of these tran-
sects is approximately 200 m (i.e., the width of 20 Sentinel-2 pixels) and 
their length is close to the seaward width of the beach at low tide. All 
UAV aerial surveys were conducted at low tide. After the RTK-assisted 
UAV acquired images of the above transects according to the planned 
flight path, digital elevation models (DEMs) of these transects were 
generated using the structure-from-motion photogrammetric algorithm 
implemented in the Pix4DMapper software. The accuracy of the UAV- 
based DEMs was evaluated using ground checkpoints, which yielded a 
vertical root-mean-square error (RMSE) of 3.1 cm (Chen et al., 2023a). 
The C1-C3 transects were used to calibrate waterline heights instead of 
tidal data, and the V1-V3 transects were used to validate the accuracy of 
the topography constructed from the deep learning-based waterline 
method. 

3.2. Mudflat topography construction with deep learning 

Mapping mudflat morphological changes using Sentinel-2 time series 
and deep learning involves four main steps: (1) image selection and 
training dataset preparation; (2) DL model building and training; (3) 
waterline extraction and selection; and (4) topography construction and 
evaluation. Fig. 2 illustrates the workflow and the platforms used for the 
corresponding processing. 

3.2.1. Image selection and training dataset preparation 
DL models trained on large and diverse samples can have better 

generalization. The diversity of training data in this study is mainly 
reflected in the variation of water color and tides. Water color is influ-
enced by suspended sediment concentration and tidal waves, which vary 
from month to month. Therefore, in this study, one Sentinel-2 image was 
selected from each month of the three periods 2019.11–2020.4, 
2020.11–2021.4 and 2021.11–2022.4, for a total of 3 * 6 = 18 images, 
and one image with highly turbid water bodies, for a total of 19 images 
used to create the training dataset (Table S1 and S2). These training 
images covered the entire study area and featured a variety of scenarios, 
including varying water turbidity, tidal stages over time, and 

Fig. 2. The workflow for constructing mudflat topography from Sentinel-1/2 time series and UAV photogrammetry with deep learning algorithm.  
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whitewater caused by wave breaking. To generate the corresponding 
annotations, we first calculated the Modified Normalized Difference 
Water Index (MNDWI) (Xu, 2006) from Sentinel-2 imagery, which ex-
ploits the optical property that water has strong reflectance in the green 
band (i.e., B3 band) and high absorption in the shortwave infrared band 
(i.e., B11 band). Previous tidal flat mapping studies have also shown that 
MNDWI can provide good initial segmentation of exposed tidal flats 
after applying a threshold (Tseng et al., 2017; Zhao et al., 2022). We 
then determined the optimal segmentation threshold through trail-and- 
error to obtain the initial segmentation results, and manually corrected 
the misclassified areas, especially the water and mudflat boundaries. 
Finally, these training images and their corresponding annotations were 
sliced into patches of 256 × 256 pixels, resulting in a DL dataset with a 
total of 1112 patches (Fig. 3). This dataset was partitioned 8:2 to 
generate a training set (889 patches) and a validation set (223 patches). 
Similarly, a testing dataset of 266 patches was generated from six 
randomly selected images (Table S3). We did not split the dataset but 
used different images to generate the training and testing datasets. This 
is to completely separate the training and testing datasets in order to 
better assess the generalization ability of the DL model. 

3.2.2. DL model building and training  

(1) The architecture of DAU-Net model 

U-Net is a fully convolutional neural network that was first intro-
duced in 2015 for biomedical image segmentation tasks (Ronneberger 
et al., 2015). The architecture of U-Net features an encoder and a 
decoder. The encoder consists of four blocks, each of which uses 2 
convolutional layers and 1 max-pooling layer to extract features from 
the input image and reduce the spatial dimensions of the feature maps. 

The decoder includes four blocks, which utilize deconvolutional layers 
to upsample the feature maps to their original image size. The upsam-
pled features are then concatenated with the corresponding feature 
maps from the encoder using skip connections, which allows the 
network to combine high-level semantic features with low-level se-
mantic features. To improve the performance of the classical U-Net ar-
chitecture and to better match it to our tasks, we made two major 
adaptations. (1) A parallel dual self-attention mechanism (PDSA) for 
pixel-wise regression was introduced at the skip connection stage. (2) A 
hybrid loss function with variable weights combining binary cross- 
entropy (BCE) and boundary loss was proposed to accurately segment 
the land–water boundary. The proposed DL model is called dual atten-
tion U-Net (DAU-Net) and its architecture is shown in Fig. 4. The DAU- 
Net used 32, 64, 128, 256 and 512 filters in the encoder and decoder 
stages. Thus, the difference between the DAU-Net and the standard U- 
Net is the addition of the PDSA mechanism at the skip connection stage 
and the construction of the boundary-focused hybrid loss function. 

The PDSA is designed for high-quality pixel-wise mapping (Liu et al., 
2022). It consists of channel self-attention and spatial self-attention, and 
its structure is shown in Fig. 4(b), (c). Channel self-attention is used to 
focus on specific channels of the feature map. Using channel self- 
attention, the model can selectively weight the most relevant bands 
and improve the accuracy of the segmentation by exploiting the inter- 
spectral relationship of feature information (Hang et al., 2020). For 
the input feature map FM, the channel self-attention weight WC can be 
expressed as: 

WC = Sigmoid[FC(FR(FC(FM)) ⊗ Softmax(FR(FC(FM))))] (1)  

where FC, and FR represent 1 × 1 convolution and tensor reshape op-
erators, respectively;⊗ represents the operation of matrix dot product. 
Spatial self-attention, on the other hand, is used to focus on specific 

Fig. 3. Examples of Sentinel-2 RGB composite images and corresponding labels. These image patches are 256 × 256 pixels in size.  
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regions of the input image. Each region is assigned a weight based on its 
importance for the segmentation task. Given the input feature map FM, 
the spatial self-attention weight WS can be expressed as: 

WS = Sigmoid[FR(FR(FC(FM)) ⊗ Softmax(FR(FGP(FC(FM)))))] (2)  

where FGP is a global pooling operator. A more discriminative and 
informative feature representation is produced by combining the 
channels and spatial self-attention modules in parallel. The output 
FMPDSA of the PDSA can be expressed as: 

FMPDSA =
(
FM ⊙C WC

)
⊕
(
FM ⊙S WS

)
(3)  

where ⨀C and ⨀S are channel-wise and spatial-wise multiplication 
operators, respectively; ⊕ is the element-wise addition operator. 

The BCE loss, which compares the probability of each prediction 
with the actual category output and then penalizes the probability based 
on the difference with the expected value, has been widely used in bi-
nary classification tasks of remote sensing images (Li et al., 2020; Li 
et al., 2021; Aghdami-Nia et al., 2022). However, the BCE loss adopts 
equal weights for every pixel in the same class and does not impose an 
additional penalty for misclassification of boundary pixels. However, for 
the task of waterline detection, the focus should be on the accuracy of 
boundary pixel segmentation. Therefore, we used a boundary loss 
(Bokhovkin & Burnaev, 2019) to supervise the prediction of boundary 
pixels. The calculation of the boundary loss is as follows: 

P =
1

⃒
⃒Bpd

⃒
⃒

∑

x∈Bpd

Ed
(
x,Bgt

)〈
θF (4)  

R =
1

⃒
⃒Bgt

⃒
⃒

∑

x∈Bgt

Ed
(
x,Bpd

)
< θF (5)  

Lbd = 1 −
2PR

P + R
(6)  

where Bpd, Bgt represent the boundaries for the predicted binary images 
and the corresponding ground truth, respectively; d (⋅) is the Euclidean 
distance measured in pixels, and θ is a predefined threshold for distance, 

set to 3 in this study. Thus, to optimize the segmentation performance 
for DL models, the proposed hybrid loss function used a combination of 
BCE loss and boundary loss with a weighting parameter α: 

LHybrid = αLBCE +(1 − α)Lbd (7)  

where α controls the weight distribution of the two losses. A weight 
rebalancing strategy was used in model training: the initial value of α 
was set to 1, and it was self-subtracted by 0.005 at the end of each 
training epoch until it reached 0. Such a setting could guide the model to 
gradually optimize the boundary segmentation in the later stages of 
training to improve the accuracy of waterline detection.  

(2) Model implementation and training 

The DAU-Net model was implemented using Keras backend with 
Tensorflow in the Python environment on the Google Colaboratory 
platform. The training and validation datasets were accessed from 
Google Drive and the training dataset was randomly shuffled before 
being fed into the model. To avoid overfitting, the DAU-Net model was 
preset to train for 1000 epochs with early stopping if the validation loss 
did not decrease after 15 epochs. The Adam optimizer was adopted to 
compile the model with an initial learning rate of 1e-4 and the proposed 
hybrid loss function. The separate BCE loss function was also used in 
model compilation for comparison. In addition, the learning rate was 
reduced by a factor of 0.1 when the validation loss plateaued for more 
than 10 epochs, to avoid an excessive learning rate leading to non- 
convergence of the loss. At the end of each epoch, the trained model 
was automatically saved if the validation loss decreased. For compari-
son, the standard U-Net, and variants of U-Net, U-Net++ and U-Net+++

were trained in the same training configuration. U-Net++ is an exten-
sion of the original U-Net proposed by Zhou et al. (2018). It aims to 
address the limitation of the original U-Net in capturing fine details by 
introducing nested skip paths in the encoder-decoder architecture. U- 
Net+++ is another extension proposed by Huang et al. (2020), which 
further enhances the feature extraction capabilities of the U-Net archi-
tecture. It adds more paths in both the encoder and decoder, resulting in 
a more complex network with multiple levels of nesting. In addition, 

Fig. 4. The structure of the proposed parallel dual self-attention U-Net: (a) the DAU-Net; (b) The channel self-attention module; and (c) The spatial self- 
attention module. 
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Random Forest classification (Murray et al., 2019) and the commonly 
used Otsu’s threshold segmentation based on MNDWI (Jia et al., 2021) 
were also implemented. 

The primary inputs for the U-Net, U-Net++, U-Net+++, and the 
proposed DAU-Net models were 10-band Sentinel-2 image patches, 
along with their corresponding labels. Additionally, we investigated the 
impact of various band combinations, such as utilizing solely the 10 m 
band from the original Sentinel-2 imagery, and incorporating water 
indices (i.e., NDWI and MNDWI), on the segmentation performance of 
the proposed DAU-Net model. A summary of the input data configura-
tions and loss functions employed for training the deep learning models 
can be found in Table 1. In total, thirteen model training experiments 
were conducted. All DL models were trained on the Google Colaboratory 
platform with an NVIDIA Tesla T4 (16 GB) GPU. The source codes and 
training results developed in this study are openly available at https://gi 
thub.com/Chunpchen/IntertidalTopoDL.  

(3) Model evaluation metrics 

Precision, Recall, F1-score, Intersection over Union (IoU), and the 
Matthews correlation coefficient (MCC) are commonly used metrics in 
binary classification and segmentation tasks because they provide a 
comprehensive evaluation of model performance. Precision is a metric 
that measures the accuracy of positive predictions made by a model. 
Recall, also known as sensitivity, measures the ability of the model to 
find all positive samples in the dataset. F1-score is the harmonic mean of 
precision and recall, providing a single metric that balances both pre-
cision and recall. IoU is a metric commonly used in segmentation tasks 
to assess the spatial overlap between the predicted and ground truth 
regions. MCC is a comprehensive statistical rate that only gives a high 
score if the prediction scores well in all four confusion matrix categories. 
They can be calculated as follows: 

Precision =
TP

TP + FP
(8)  

Recall =
TP

TP + FN
(9)  

F1 − score =
2 × Precison × Recall

Precison + Recall
(10)  

IoU =
TP

TP + FP + FN
(11)  

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (12)  

where TP, TN, FP, and FN represent the number of true positives (i.e., 
correctly predicted mudflat pixels), true negatives (i.e., correctly pre-
dicted water pixels), false positives (i.e., water pixels predicted to be 
mudflats), and false negatives at the pixel level (i.e., mudflat pixels 

predicted to be water), respectively. 

3.2.3. Waterline extraction and selection 
The filtered Sentinel-2 images from the GEE were exported into 

Google Drive and then fed into the well-trained DL model for water and 
land segmentation. Prior to this, each Sentinel-2 image was cropped into 
a series of 256 × 256 patches and fed into the DL model for patch-by- 
patch prediction. Once the entire image had been predicted, the out-
puts of the predicted patches were stitched together and the original 
georeferencing information was also written using the Python Geo-
spatial Data Abstraction Library (GDAL). A contour tracking algorithm 
was then used to delineate waterlines from the binary images predicted 
by the DL model. The contour tracking algorithm, proposed by Suzuki 
(1985), defines the inner and outer and hierarchical relationships of the 
contours. As a result, the algorithm allows only the outermost connected 
waterlines to be extracted, ignoring the edges of the inner hollow water 
bodies, thus reducing the need for massive post-processing (Fig. 5c). 
Finally, the extracted contours were converted into vector waterlines. 

Because the Sentinel-2 images acquired at different times could 
correspond to very close tidal levels, there are potentially some redun-
dant waterlines or waterlines that do not cover the entire intertidal 
range at reasonable intervals. It is therefore necessary to remove 
redundant waterlines or to additionally supplement the waterlines. 
Salameh et al. (2020) considered waterlines with a difference in tidal 
height of less than 15 cm to be redundant. However, the tide stations in 
the Yangtze estuary are far away from the study area and this metric 
cannot be used to filter the waterlines. In this study, the transects ac-
quired by UAV photogrammetry accurately recorded the elevation 
gradient of the mudflats, such that the mudflat width corresponding to 
the 15 cm elevation value could be calculated according to its slope as a 
criterion for redundant waterline removal (Fig. 1(d)-(f)). Accordingly, 
136 m, 167 m and 39 m were used as discriminating intervals for 
redundant waterlines in the northern, central and southern Dongtan. In 
cases where there were insufficient waterlines (i.e., large intervals be-
tween waterlines), we manually delineated waterlines from contempo-
raneous Sentinel-1 imagery to increase the density of the waterlines. To 
implement this, the waterlines extracted from Sentinel-2 imagery were 
first uploaded to GEE Assets. The Sentinel-1 images for the corre-
sponding period were filtered through GEE, and then each Sentinel-1 
image was loaded into the GEE interface along with the Sentinel-2 
derived waterlines. If the waterline in the Sentinel-1 image was found 
to be positioned between the waterlines extracted from the Sentinel-2 
images, the waterline was manually extracted from that image as a 
supplement. 

3.2.4. Topography construction and evaluation 
In this study, the waterline heights were calibrated using UAV 

photogrammetric elevations to generate intertidal topography from 
multi-temporal waterlines. To achieve this, the spatial resolution of the 
UAV-based DEMs (i.e., C1, C2, and C3 DEMs) was first resampled to 10 

Table 1 
An overview of the configurations of input data and loss functions used to train deep learning models.  

Model Input data Loss function 

U-Net B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 BCE 
B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 Hybrid 

U-Net++ B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 BCE 
B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 Hybrid 

U-Net+++ B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 BCE 
B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 Hybrid 

DAU-Net B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 BCE 
B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12 Hybrid 

DAU-Net B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 and NDWI Hybrid 
B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 and MNDWI Hybrid 
B2, B3, B4, and B8 Hybrid 
B2, B3, B4, B8 and NDWI Hybrid 
B2, B3, B4, B8 and MNDWI Hybrid  
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m (in line with Sentinel-2) and then the average elevation of the UAV- 
based DEM pixels covered by the waterline was calculated as the 
height of that waterline. The reason for the resampling was that the 
terrain surface captured by the UAV photogrammetry is very fine and 
direct overlay can result in poor representativeness of the waterline 
elevation. Next, the height-assigned waterlines were used to create the 
triangulated irregular networks (TINs) using the Create TIN tool in 
ArcGIS Pro. TINs, which are a digital means of representing surface 
morphology, can vary in resolution depending on the degree of surface 
variability, resulting in higher resolution in areas with greater vari-
ability and lower resolution in areas with less variability, thus accurately 
reflecting the terrain (Lee, 1991; Gao et al., 2021). Finally, TINs were 
converted to 5 m resolution raster topographic maps using natural 
neighbor interpolation. This allowed us to compare the reconstructed 
terrain with the UAV-based DEMs at a finer spatial scale. Specifically, 
the topographic accuracy was evaluated by calculating the pixel-by- 
pixel elevation difference and the RMSE between the three UAV-based 
transect DEMs (i.e., V1, V2 and V3 DEMs, also resampled to 5 m) and 
the constructed terrain in 2022. 

Topographic changes, also known as DEM of Difference (DoD) maps, 
are obtained by subtracting the waterline derived DEMs in 2020 from 
the DEMs in 2022. Due to the presence of topographic reconstruction 
errors, the DoD map does not necessarily represent the true change in 
mudflat morphology. To obtain regions of mudflat erosion and deposi-
tion under uncertainty, the law of independent error propagation was 
used to calculate the uncertainty threshold (δ) for the DoD between 2020 
and 2022 (Eq. (13) (Wheaton et al., 2010). Absolute elevation differ-
ences below the threshold δ are excluded as they are treated as mapping 
errors rather than actual topographic changes. 

δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(eDEM 2020)
2
+ (eDEM 2022)

2
√

(13)  

where eDEM 2020 and eDEM 2022 are the errors of the constructed DEMs in 
2020 and 2022, respectively. 

4. Results 

4.1. Comparison of different DL models for water and land segmentation 

Eight trained models using 10-band input were evaluated on the 
testing dataset of 266 patches. The model trained using the hybrid loss 
function performed slightly better than the model trained using the bi-
nary cross-entropy loss, with each metric 0–2 points higher (Table 2). 
With the exception of U-Net+++, the other models using the hybrid loss 
function required fewer epochs and less time to train. The proposed 
DAU-Net model using hybrid loss achieved the best performance for all 
metrics except recall, with the highest precision, F1 score, IoU and MCC 
of 97.4 %, 97.5 %, 95.2 %, and 96.4 % respectively. The comparison 
results show that the DAU-Net model improves IoU by at least one point 
compared to the other models. The U-Net and U-Net++ models per-
formed similarly, while the two trained U-Net+++ models performed 
worse than any other models with equivalent training conditions and 
spent much more training time. These results show that the addition of 

Fig. 5. The procedure for the extraction of the waterlines using the trained DL model and the contour tracking algorithm.  

Table 2 
Quantitative assessment of model performance on the testing dataset. The best results for each metric are highlighted in bold.  

Model Training Testing (%) 

Loss Epoch Time(h) Precision Recall F1-score IoU MCC 

U-Net BCE 548  1.9  94.2  97.8  96.0  92.3  93.8 
U-Net Hybrid 482  1.9  96.2  97.8  97.0  94.2  94.8 
U-Net++ BCE 522  3.8  96.3  96.8  96.6  93.5  94.1 
U-Net++ Hybrid 359  2.7  96.9  96.7  96.8  93.9  94.8 
U-Net+++ BCE 365  4.6  93.7  97.9  95.7  92.0  93.1 
U-Net+++ Hybrid 417  5.3  94.4  97.4  95.9  92.2  93.3 
DAU-Net BCE 474  2.1  96.6  97.6  97.1  94.4  95.3 
DAU-Net Hybrid 390  1.8  97.4  97.6  97.5  95.2  96.4  

Table 3 
Quantitative evaluation of the DAU-Net model trained using different inputs on 
the testing dataset. The best results for each metric are highlighted in bold.  

Training Testing (%) 

Input of DAU- 
Net 

Epoch Time 
(h) 

Precision Recall F1- 
score 

IoU MCC 

10 Bands 390  1.8  97.4  97.6  97.5  95.2  96.4 
10 Bands +

NDWI 
446  3.5  94.3  97.0  95.6  91.6  92.3 

10 Bands +
MNDWI 

284  2.3  95.8  97.1  96.6  93.3  93.8 

B2, B3, B4 
and B8 

379  1.6  93.1  93.9  93.5  88.5  90.2 

B2, B3, B4, 
B8 and 
NDWI 

282  1.2  90.2  92.9  91.5  85.6  88.9 

B2, B3, B4, 
B8 and 
MNDWI 

424  1.8  94.1  96.8  95.4  91.4  92.9  
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the parallel dual attention mechanism to the U-Net model and the use of 
the hybrid loss function can both improve performance, with the most 
significant improvements found for the IoU scores. Furthermore, the 
addition of the attention mechanism and the use of the hybrid loss 
function did not lead to a dramatic increase in computational time, and 
instead the DAU-Net model converged faster than the other models. 

The evaluation of the DAU-Net models trained with different inputs 
on the test dataset shows that the model trained with all 10 bands 
achieved the highest quantitative metrics. Conversely, the model trained 
solely with four 10 m bands (i.e., B2, B3, B4, and B8) exhibited the 
poorest performance, showing a significant six-point difference in IoU 
between the two (Table 3). Furthermore, when incorporating NDWI and 
MNDWI into the 10-band input, the performance of the trained DAU-Net 
models deteriorated, with IoU decreasing by 3.6 and 1.9 points, 
respectively. Moreover, the addition of NDWI to the 4-band training set 
also resulted in a decline in model performance, while the inclusion of 
MNDWI improved the model’s performance by at least one point for 
each metric. 

We visually compared the results of different DL models and methods 
for land and water segmentation in three typical water color scenarios. 
For common water colors (Fig. 6(a)), the coastal segmentation results 
with different DL models and the Random Forest classifier are very close 
to the ground truth, while the MNDWI_Otsu method misclassified some 
mudflat pixels as water bodies. Notably, the proposed DAU-Net is more 
accurate for coastal segmentation of small isolated islands. In the case of 
whitewater at the edge of the shore (Fig. 6(b)), our proposed DAU-Net 
model performed the best and accurately segmented water and land, 
followed by the standard U-Net, even though the target area in this 
example was much smaller than the background area. The U-Net, U-Net 
++ and U-Net+++ models, the MNDWI_Otsu, and the random forest 
classifier, however, somehow misclassified the whitewater pixels as 
land. In extremely turbid estuarine regions (Fig. 6(c)), the coastline 
boundaries are very blurred, making accurate segmentation a chal-
lenging task. A large number of false negatives (i.e., mudflat pixels 
predicted to be water) were produced by the MNDWI_Otsu and the 
Random Forest classifier. The U-Net, U-Net++ and U-Net+++ models 
also produced a small number of false positive and false negative pre-
dictions. The DAU-Net model, on balance, was able to detect a greater 
amount of fine detail consistent with ground truth. 

To illustrate the difference in performance between the DAU-Net 
models trained with the hybrid and cross-entropy loss functions, some 
randomly drawn examples are shown with the commission and omission 
errors of the model predictions at the coastal edges. From Fig. 7, the 
model trained with the hybrid loss function has superior performance on 
these testing images, where the coastal edges are predicted accurately, 
with most errors of one pixel and a few errors of more than one pixel. 
The errors for narrow tidal channels are not informative, as the errors 
most likely arise from the spatial resolution limitations of Sentinel-2 
imagery. Accurate segmentation of water and land minimizes the 
error in waterline extraction and could therefore reduce the impact of 
error propagation on the intertidal topography constructed by the 
waterline method. 

4.2. Mudflat DEMs 

Waterlines extracted from Sentinel-2 images using the proposed 
DAU-Net deep learning model, supplemented by a small number of 
manually delineated waterlines from Sentinel-1 SAR images (Table S4), 
were used together to create the mudflat DEMs (Fig. S2-S4). Table 4 lists 
the number of waterlines from Sentinel-1 and Sentinel-2 images ac-
quired for each period for the study sites, the maximum waterline in-
terval, and the elevation difference (Δh) corresponding to the maximum 
waterline interval estimated from the slope. The maximum waterline 
interval is used to indicate the worst case for waterline density under the 
Sentinel 1/2 synergy observations. The Δh corresponding to the 
maximum waterline interval is less than 0.5 m for the study sites except 

for MDT. These waterlines were used to construct the annual mudflat 
topography for the study sites from 2020 to 2022 (Fig. 8). The number of 
waterlines and Δh used for each period in the same study area are 
comparable, allowing the constructed topography to be compared at 
different time periods with the same level of uncertainty to track 
changes in mudflat morphology. For the NDT, MDT and SDT, the 
topography maps constructed using the DL-based waterline method 
accurately record the decreasing elevation from land to sea. For the 
offshore GYS and TJS, their topography appears high in the middle and 
low on the sides. The maximum elevation of GYS and TJS is about 3 m, 
while the maximum tidal level in the Yangtze estuary is over 4 m, which 
means that both sandbars can be completely submerged by seawater at 
high tide. We found that both offshore sandbars were not exposed to 
water in some Sentinel-2 imagery at the time of image selection. 

4.3. Accuracy assessment of mudflat DEMs 

The elevation differences between the DL waterline-based DEMs and 
the UAV-based DEMs were calculated (Fig. 9). Positive values indicate 
that the reconstructed elevations are overestimated, while negative 
values imply underestimation. The observed elevation differences 
exhibit a zonal distribution pattern, with similar magnitude differences 
concentrated in specific areas. A pixel-by-pixel statistical analysis of the 
errors between DL waterline-based DEMs and UAV-based DEMs is 
shown in Fig. 9(d). A total of 29492-pixel errors were calculated for 
comparison. 5.6 % of the elevation difference has an absolute value 
greater than 0.2 m, and 94.4 % of the elevation difference is distributed 
in the range of − 0.2 to 0.2 m. 77.4 % of the elevation difference is in the 
range of − 0.15 to 0.15 m, and 20.2 % of the elevation difference is in the 
range of − 0.1 to 0.1 m. The RMSE between DL waterline-based DEMs 
and UAV-based DEMs is 0.13 m. 

4.4. Topographic changes in the mudflats 

Overall, the mudflats connected to the land were predominantly 
deposited, with deposition of 10–20 cm over the two years, while the 
offshore sandbars were unstable and significantly eroded, with erosion 
of 20–60 cm over the two years, as shown in Fig. 8. By considering the 
topographic mapping uncertainty, quantified with an RMSE of 13 cm, a 
threshold of 18 cm was established for the DoD maps between 2020 and 
2022. Following this criterion, the topographic changes of the Yangtze 
estuarine mudflats within the mapping uncertainty between 2020 and 
2022 were determined, as presented in Fig. 10. The intertidal mudflats 
were clearly dominated by deposition at both NDT and MDT, with the 
greatest deposition occurring in the northernmost part of NDT. The 
greater deposition at the widest part of the MDT was observed around 
the tidal channel area. This rapid change may be related to channel 
migration. Strip erosion was observed in the SDT, which is very close to 
the salt marsh margins. The morphology of the offshore GYS and TJS 
was unstable, with alternating erosion and deposition. The DoD maps 
showed that the erosion hotspots of the GYS and TJS were in the center 
of the higher topography, while the area around the center was domi-
nated by deposition, showing a sediment transfer pattern. 

5. Discussion 

5.1. Deep learning for muddy waterline extraction 

In this study, a convolutional neural network was used to extract 
muddy waterlines from Sentinel-2 imagery. The deep learning model 
with a parallel dual self-attention mechanism and a variable weighted 
hybrid loss achieved better performance than U-Net, U-Net++ and U- 
Net+++ models with greater generalization capability. The channel 
self-attention module in the parallel dual self-attention mechanism can 
be considered as a spectral self-attention, which can adaptively select 
bands that are useful for segmenting pixels by enhancing informative 
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Fig. 6. Comparison of water and land segmentation results from different DL models in different hydrological scenarios.  
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bands and weakening less useful bands (Sun et al., 2019; Zhu et al., 
2020). Such a mechanism is important for multispectral remote sensing 
image segmentation, especially for temporally and spatially varying 
suspended sediment concentrations and tidally induced scene changes. 
Our experimental results demonstrate the effectiveness of introducing 
the attention mechanism, improving the IoU from 92.3 % to 94.4 %. 
Furthermore, we used a variable-weighted hybrid loss function to guide 
the model to optimize the accuracy of the boundary segmentation. The 
boundary loss component of this hybrid function is calculated based on 
the labels and predicted outputs. This differs from previous approaches 
that used edge detection operators to calculate edge difference as an 
auxiliary loss. Such edge detection operators are based on local intensity 
variation without consideration of semantic context, and waterline 
detection in changing tidal environments can therefore result in many 
noisy edges. As a result, DL models with edge operator loss functions 
have been found to be effective only in structured regions (Cheng et al., 
2017; Seale et al., 2022). Our experiments indicate that the introduced 
hybrid loss function reduces the edge segmentation error and improves 
the evaluation metrics. This suggests that the DAU-Net model solves the 
challenge of accurate detection of blurred water-land boundaries in 
turbid estuarine environments. 

Previous studies have shown that training DL models using combi-
nations of bands that make the attributes of objects more obvious, can 
improve the performance of the model (Konapala et al., 2021; John & 
Zhang, 2022). Instead, the performance of the trained model decreased 

Fig. 7. Comparison of differences in water and land segmentation boundaries for DAU-Net models trained using BCE and the proposed hybrid loss.  

Table 4 
The number of available waterlines, their maximum spacing and the corre-
sponding maximum height difference (Δh) derived from Sentinel-1 and Sentinel- 
2.  

Region Period Number of available 
waterlines 

Maximum 
waterline 
interval (m) 

Δh(m) 

Sentinel- 
2 

Sentinel- 
1 

NDT 2019.11–2020.4 11 1 298 
312 
344  

0.33 
2020.11–2021.4 10 2  0.34 
2021.11–2022.4 10 2  0.38 

MDT 2019.11–2020.4 10 1 671 
721 
602  

0.53 
2020.11–2021.4 9 0  0.57 
2021.11–2022.4 10 1  0.48 

SDT 2019.11–2020.4 7 0 118 
125 
143  

0.41 
2020.11–2021.4 7 0  0.43 
2021.11–2022.4 7 0  0.50 

GYS 2019.11–2020.4 13 0 473 
508 
522  

0.28 
2020.11–2021.4 13 1  0.30 
2021.11–2022.4 12 0  0.31 

TJS 2019.11–2020.4 11 1 501 
547 
603  

0.30 
2020.11–2021.4 11 4  0.32 
2021.11–2022.4 8 2  0.36  
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Fig. 8. Topographic maps reconstructed with time-series waterlines and their changes from 2020 to 2022.  

Fig. 9. Elevation difference between satellite-based DEMs and UAV-based DEMs in: (a) V1 transect, (b) V2 transect and (c) V3 transect. (d) The histogram statistics 
corresponding to the elevation difference. 
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when NDWI and MNDWI, which can highlight water body information, 
were added to the 10-band data for model training. However, the per-
formance of the model trained on 4-band data was significantly 
improved with the addition of MNDWI. We selected a Sentinel-2 image 
to calculate its MNDWI and NDWI, and extracted its waterlines using the 
trained DAU-Net model, in an attempt to explain why the inclusion of 
the water indices reduced the accuracy of the model. As shown in 
Fig. 11, the NDWI values of the turbid water pixels are similar to those of 
the mudflat pixels, while the MNDWI values of some of the mudflat 
pixels are even lower than those of the water pixels. This shows the poor 
separability of turbid water and mudflat pixels in NDWI and MNDWI. 
Therefore, adding them to the spectrally rich 10-band training dataset 
introduces more learning uncertainty into the model. However, MNDWI 
can better detect the segmentation boundary between turbid water and 
exposed mudflats. Therefore, adding MNDWI to the less spectrally rich 
4-band training data could improve model performance. 

Deep learning models incorporating attention mechanisms and 
boundary-focused hybrid loss exhibit superior accuracy in detecting 
waterlines compared to methods like water index-based thresholding 
and Random Forest classifiers. However, the process of generating 
training samples for these models is both labor-intensive and time- 

consuming. Particularly for large-scale coastal mapping applications, 
the comprehensive generation of training samples covering diverse 
coastal types (e.g., muddy, sandy, rocky, etc.), various water color sce-
narios, tidal conditions, and weather conditions presents considerable 
challenges. Although some publicly available deep learning training 
datasets for land-sea segmentation, such as YTU-WaterNet from Landsat- 
8 imagery (Erdem et al., 2021) and the SWED dataset from Sentinel-2 
imagery (Seale et al., 2022), exist, they suffer from limitations in 
terms of spatial–temporal and semantic scene coverage completeness, as 
well as the reliability of semantic annotations. Furthermore, the un-
certainty in the position of the waterline under time-varying tidal levels 
complicates the search for high-resolution images with matching im-
aging moments, essential for enhancing the accuracy and reliability of 
semantic annotations during training sample generation. Relying solely 
on visual judgment may introduce uncertainty and adversely impact the 
deep learning model’s performance. To tackle these limitations, some 
recent research has explored the use of unsupervised deep learning for 
generating the initial training set or employed generative adversarial 
networks to expand the training set (Jozdani et al., 2022; Li et al., 2022). 
However, these techniques are still in their early stages of development 
in remote sensing sea-land segmentation and require further application 

Fig. 10. Mudflat topographic changes in the Yangtze estuary from 2020 to 2022 under mapping uncertainty.  
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and validation in future research endeavors. 

5.2. Topographic changes under mapping uncertainty 

Uncertainty in the waterline method arises from the parameters 
associated with the satellite sensor imagery, the waterline extraction 
technique and the waterline height assignment. A sufficient number of 
satellite images can provide dense waterlines and the interpolated 
topography is more detailed. In this study, only Sentinel-2 images ac-
quired during the dry season were used, supplemented by a small 
amount of Sentinel-1 SAR data. The results show that the waterlines 
used to construct the topography were dense, with most having a 
maximum height difference of about 0.3 m. In mudflats with low spatial 
variability in slope, such height difference introduces less uncertainty 
after spatial interpolation. Moreover, the short acquisition period, 
avoidance of extreme water discharge, sediment flux events and 
frequent summer typhoons, are conditions that are consistent with the 
assumption that the tidal flat morphology remains stable during the 
mapping period. Furthermore, the horizontal positional bias due to 
waterline extraction will lead to errors in the vertical direction. Previous 
studies have shown that NDWI and MNDWI are the seaward biased and 
threshold-sensitive indices, with the Otsu thresholding method resulting 
in an uncertainty of more than three Sentinel-2 pixels (i.e., 30 m) in the 
shoreline positions (Sagar et al., 2017; Pucino et al., 2022). For mudflats 
with a slope of 1/1000, such a horizontal error would result in a vertical 
bias of 3 cm. In comparison, the waterline extraction error is reduced to 
within one Sentinel-2 pixel using the deep learning method with the 
proposed hybrid boundary refinement loss. Furthermore, an over-
estimation of the calibration value of a waterline would lead to an 
overestimation of the elevation in the corresponding interpolated area, 
and conversely an underestimation of the calibration value results in an 
underestimation of the elevation. Consequently, it was observed that 
errors with the same magnitude exhibited a zonal clustering pattern in 
the accuracy assessment. However, it is noteworthy that the error 
associated with the UAV-based DEMs used to assign waterline elevations 
in this study is merely 3.1 cm, which is notably smaller than the errors in 
tidal elevations simulated using tidal models as reported in previous 
studies (Gao et al., 2021; Tsai & Tseng, 2023). As a result of optimizing 
the waterline method in this study, the constructed topography 

demonstrates high accuracy, achieving an RMSE of 13 cm. 
The areas of mudflat erosion and deposition between 2020 and 2022 

were delineated using an uncertainty threshold calculated from error 
propagation. The results indicate that the Dongtan mudflats were pri-
marily characterized by deposition, with significant deposition observed 
in the northern region and minor erosion in the southern area. These 
findings are consistent with previous research by Gao et al. (2021) and 
Lou et al. (2022), which also reported a dominant deposition trend in the 
entire Dongtan wetland. Our study further reveals that the mudflats in 
the northern Dongtan underwent a deposition of approximately 0.4 m 
during the two-year period from 2020 to 2022, in contrast to the ac-
cretion rate of 0.256 m/yr reported by Lou et al. (2022) for the same 
location. The rapid sedimentation in the northern Dongtan area can be 
attributed to two main factors. Firstly, it may be linked to the expansion 
of salt marsh vegetation, particularly the invasive species Spartina 
alterniflora, known for its rapid expansion rate and sediment trapping 
capability (Zhang et al., 2023). As reported by Liu et al. (2020) Spartina 
alterniflora predominantly occupies the northern Dongtan region. In 
contrast, other areas of Dongtan had gradually removed Spartina alter-
niflora since the implementation of the ecological restoration project in 
2013, and by 2018, it was completely eradicated (Zhang et al., 2020). 
Secondly, the deposition in the Dongtan mudflats also benefited from 
sediment recharge originating from offshore sandbars and delta front 
erosion. This effect becomes more pronounced due to the context of over 
70 % reduction in sediment load from the Yangtze River (Yang et al., 
2020). These two contributing factors elucidate the variations in topo-
graphic changes observed between the northern and southern regions of 
Dongtan, as well as the offshore sandbars. 

6. Conclusions 

The accuracy and quantity of the waterline extraction and the ac-
curacy of the associated elevation assignment determine the uncertainty 
of the reconstruction of the mudflat topography. In this paper, we 
developed a deep learning model with a parallel self-attention mecha-
nism and boundary-focused hybrid loss to extract turbid estuarine wa-
terlines from dense Sentinel-2 time series. The parallel self-attention 
mechanism allowed the model to selectively focus on spatial regions and 
spectral bands that were effective for semantic segmentation, while the 

Fig. 11. The poor separability of turbid water and mudflat pixels in NDWI and MNDWI.  
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boundary-focused hybrid loss was designed to guide the model to pay 
more attention to segmentation edges. Compared with U-Net, U-Net ++

and U-Net +++ models, the proposed model exhibits excellent perfor-
mance in water and land segmentation in time-varying tidal environ-
ments. Using the extracted waterlines and UAV photogrammetric 
surveys, the intertidal mudflat topography of the Yangtze estuary was 
reconstructed for the years 2020 to 2022. The use of deep learning 
methods and ground calibration data has maximized the accuracy of the 
waterline method, allowing more accurate detection of intertidal topo-
graphic changes. The comparison of the generated topography with the 
UAV photogrammetric observations showed an RMSE of 13 cm, an ac-
curacy superior to most existing studies. The reconstructed maps are 
effective in detecting coastal erosion and deposition hotspots given the 
uncertainty of the mapping. In the future, with the increasing avail-
ability of satellite data, there will be greater potential to detect mudflat 
topography over even shorter time spans, thereby capturing and 
analyzing subtle changes more comprehensively. 
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from motion will revolutionize analyses of tidal wetland landscapes. Remote Sens. 
Environ. 199, 14–24. 

Khan, M.J.U., Ansary, M.N., Durand, F., Testut, L., Ishaque, M., Calmant, S., Krien, Y., 
Islam, A.S., Papa, F., 2019. High-resolution intertidal topography from sentinel-2 
multi-spectral imagery: synergy between remote sensing and numerical modeling. 
Remote Sens. 11, 2888. 

Konapala, G., Kumar, S.V., Ahmad, S.K., 2021. Exploring Sentinel-1 and Sentinel-2 
diversity for flood inundation mapping using deep learning. ISPRS J. Photogramm. 
Remote Sens. 180, 163–173. 

Kulp, S.A., Strauss, B.H., 2019. New elevation data triple estimates of global vulnerability 
to sea-level rise and coastal flooding. NatureCommun 10, 1–12. 

Lee, J., 1991. Comparison of existing methods for building triangular irregular network, 
models of terrain from grid digital elevation models. Int. J. Geograph. Informat. Syst. 
5, 267–285. 

Li, X., Liu, B., Zheng, G., Ren, Y., Zhang, S., Liu, Y., Gao, L., Liu, Y., Zhang, B., Wang, F., 
2020. Deep-learning-based information mining from ocean remote-sensing imagery. 
Natl. Sci. Rev. 7, 1584–1605. 

Li, J., Meng, Y., Li, Y., Cui, Q., Yang, X., Tao, C., Wang, Z., Li, L., Zhang, W., 2022. 
Accurate water extraction using remote sensing imagery based on normalized 
difference water index and unsupervised deep learning. J. Hydrol. 612, 128202. 

Li, M., Wu, P., Wang, B., Park, H., Yang, H., Wu, Y., 2021. A deep learning method of 
water body extraction from high resolution remote sensing images with 
multisensors. IEEE J Sel Topics Appl Earth Observ. Remote Sens. 14, 3120–3132. 

Liu, Y., Huang, H., Qiu, Z., Fan, J., 2013. Detecting coastline change from satellite images 
based on beach slope estimation in a tidal flat. Int. J. Appl. Earth Obs. 23, 165–176. 

C. Chen et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.isprsjprs.2023.09.022
https://doi.org/10.1016/j.isprsjprs.2023.09.022
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0005
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0005
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0005
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0010
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0010
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0015
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0015
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0015
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0020
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0020
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0020
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0020
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0025
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0025
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0030
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0030
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0030
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0035
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0035
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0035
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0040
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0040
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0040
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0040
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0045
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0045
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0045
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0045
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0050
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0050
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0050
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0055
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0055
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0055
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0060
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0060
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0060
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0065
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0065
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0065
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0070
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0070
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0070
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0075
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0075
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0075
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0080
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0080
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0080
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0085
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0085
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0085
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0085
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0090
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0090
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0095
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0095
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0095
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0095
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0100
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0100
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0100
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0105
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0105
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0105
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0110
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0110
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0110
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0115
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0115
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0120
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0120
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0120
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0120
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0125
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0125
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0125
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0125
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0130
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0130
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0130
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0130
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0135
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0135
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0135
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0135
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0140
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0140
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0140
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0145
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0145
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0150
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0150
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0150
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0155
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0155
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0155
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0160
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0160
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0160
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0160
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0165
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0165
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0165
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0170
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0170
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0175
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0175
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0175
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0180
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0180
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0180
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0185
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0185
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0185
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0190
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0190
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0190
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0195
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0195


ISPRS Journal of Photogrammetry and Remote Sensing 205 (2023) 1–16

16

Liu, H., Liu, F., Fan, X., Huang, D., 2022. Polarized self-attention: Towards high-quality 
pixel-wise mapping. Neurocomputing 506, 158–167. 

Liu, Y.-F., Ma, J., Wang, X.-X., Zhong, Q.-Y., Zong, J.-M., Wu, W.-B., Wang, Q., Zhao, B., 
2020. Joint effect of Spartina alterniflora invasion and reclamation on the spatial 
and temporal dynamics of tidal flats in Yangtze River Estuary. Remote Sens. 12, 
1725. 

Lou, Y., Dai, Z., Long, C., Dong, H., Wei, W., Ge, Z., 2022. Image-based machine learning 
for monitoring the dynamics of the largest salt marsh in the Yangtze River Delta. 
J. Hydrol. 608, 127681. 

Mason, D., Davenport, I., Robinson, G., Flather, R., McCartney, B., 1995. Construction of 
an inter-tidal digital elevation model by the ‘Water-Line’Method. Geophys. Res. Lett. 
22, 3187–3190. 

Murray, N.J., Phinn, S.R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M.B., Clinton, N., 
Thau, D., Fuller, R.A., 2019. The global distribution and trajectory of tidal flats. 
Nature 565, 222–225. 

Nicholls, R.J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A.T., Meyssignac, B., Hanson, S. 
E., Merkens, J.-L., Fang, J., 2021. A global analysis of subsidence, relative sea-level 
change and coastal flood exposure. Nat. Clim. Chang. 11, 338–342. 

Nienhuis, J.H., Ashton, A.D., Edmonds, D.A., Hoitink, A., Kettner, A.J., Rowland, J.C., 
Törnqvist, T.E., 2020. Global-scale human impact on delta morphology has led to net 
land area gain. Nature 577, 514–518. 

Obida, C.B., Blackburn, G.A., Whyatt, J.D., Semple, K.T., 2019. River network 
delineation from Sentinel-1 SAR data. Int J Appl Earth Obs 83. 

Pucino, N., Kennedy, D.M., Young, M., Ierodiaconou, D., 2022. Assessing the accuracy of 
Sentinel-2 instantaneous subpixel shorelines using synchronous UAV ground truth 
surveys. Remote Sens. Environ. 282, 113293. 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for 
biomedical image segmentation. In: Medical Image Computing and Computer-Assisted 
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5- 
9, 2015, Proceedings, Part III 18, Springer, pp. 234–241. 

Ryu, J.-H., Kim, C.-H., Lee, Y.-K., Won, J.-S., Chun, S.-S., Lee, S., 2008. Detecting the 
intertidal morphologic change using satellite data. Estuar Coast Shelf S 78, 623–632. 

Sagar, S., Roberts, D., Bala, B., Lymburner, L., 2017. Extracting the intertidal extent and 
topography of the Australian coastline from a 28 year time series of Landsat 
observations. Remote Sens. Environ. 195, 153–169. 

Salameh, E., Frappart, F., Turki, I., Laignel, B., 2020. Intertidal topography mapping 
using the waterline method from Sentinel-1 & -2 images: The examples of Arcachon 
and Veys Bays in France. ISPRS J. Photogramm. Remote Sens. 163, 98–120. 

Schoutens, K., Heuner, M., Minden, V., Ostermann, T.S., Silinski, A., Belliard, J.P., 
Temmerman, S., 2019. How effective are tidal marshes as nature-based shoreline 
protection throughout seasons? Limnol. Oceanogr. 64, 1750–1762. 

Seale, C., Redfern, T., Chatfield, P., Luo, C., Dempsey, K., 2022. Coastline detection in 
satellite imagery: A deep learning approach on new benchmark data. Remote Sens. 
Environ. 278, 113044. 

Sun, H., Zheng, X., Lu, X., Wu, S., 2019. Spectral–spatial attention network for 
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58, 3232–3245. 

Tian, B., Wu, W.T., Yang, Z.Q., Zhou, Y.X., 2016. Drivers, trends, and potential impacts of 
long-term coastal reclamation in China from 1985 to 2010. Estuar Coast Shelf S 170, 
83–90. 

Tong, S.S., Deroin, J.P., Pham, T.L., 2020. An optimal waterline approach for studying 
tidal flat morphological changes using remote sensing data: A case of the northern 
coast of Vietnam. Estuar Coast Shelf S, 236. 

Tsai, Y.-L.-S., Tseng, K.-H., 2023. Monitoring multidecadal coastline change and 
reconstructing tidal flat topography. Int. J. Appl. Earth Obs. 118, 103260. 

Tseng, K.-H., Kuo, C.-Y., Lin, T.-H., Huang, Z.-C., Lin, Y.-C., Liao, W.-H., Chen, C.-F., 
2017. Reconstruction of time-varying tidal flat topography using optical remote 
sensing imageries. ISPRS J. Photogramm. Remote Sens. 131, 92–103. 

Wang, X., Kuang, F., Tan, K., Ma, Z., 2018. Population trends, threats, and conservation 
recommendations for waterbirds in China. Avian Res. 9, 1–13. 

Wang, Y., Liu, Y., Jin, S., Sun, C., Wei, X., 2019. Evolution of the topography of tidal flats 
and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites. 
ISPRS J. Photogramm. Remote Sens. 150, 27–43. 

Wheaton, J.M., Brasington, J., Darby, S.E., Sear, D.A., 2010. Accounting for uncertainty 
in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface 
Process. Landforms: J. British Geomorphol. Res. Group 35, 136–156. 

Wiehle, S., Lehner, S., 2015. Automated waterline detection in the Wadden Sea using 
high-resolution TerraSAR-X images. J. Sens. 2015. 

Xie, W., He, Q., Zhang, K., Guo, L., Wang, X., Shen, J., Cui, Z., 2017. Application of 
terrestrial laser scanner on tidal flat morphology at a typhoon event timescale. 
Geomorphology 292, 47–58. 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open 
water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. 

Yang, S.L., Zhang, J., Zhu, J., Smith, J.P., Dai, S.B., Gao, A., Li, P., 2005. Impact of dams 
on Yangtze River sediment supply to the sea and delta intertidal wetland response. 
J. Geophys. Res. Earth Surf. 110. 

Yang, S.L., Luo, X., Temmerman, S., Kirwan, M., Bouma, T., Xu, K., Zhang, S., Fan, J., 
Shi, B., Yang, H., 2020. Role of delta-front erosion in sustaining salt marshes under 
sea-level rise and fluvial sediment decline. Limnol. Oceanogr. 65, 1990–2009. 

Yang, Z., Wang, L., Sun, W., Xu, W., Tian, B., Zhou, Y., Yang, G., Chen, C., 2022. A new 
adaptive remote sensing extraction algorithm for complex muddy coast waterline. 
Remote Sens 14, 861. 

Zhang, S., Xu, Q., Wang, H., Kang, Y., Li, X., 2022. Automatic Waterline Extraction and 
Topographic Mapping of Tidal Flats From SAR Images Based on Deep Learning. 
Geophys. Res. Lett. 49, e2021GL096007. 

Zhang, M., Schwarz, C., Lin, W., Naing, H., Cai, H., Zhu, Z., 2023. A new perspective on 
the impacts of Spartina alterniflora invasion on Chinese wetlands in the context of 
climate change: A case study of the Jiuduansha Shoals. Yangtze Estuary. Sci Total 
Environ 868, 161477. 

Zhang, X., Xiao, X., Wang, X., Xu, X., Chen, B., Wang, J., Ma, J., Zhao, B., Li, B., 2020. 
Quantifying expansion and removal of Spartina alterniflora on Chongming island, 
China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 
247, 111916. 

Zhao, B., Liu, Y., Wang, L., Liu, Y., Sun, C., Fagherazzi, S., 2022. Stability evaluation of 
tidal flats based on time-series satellite images: A case study of the Jiangsu central 
coast. China. Estuar Coast Shelf S 264, 107697. 

Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J., 2018. Unet++: A nested u- 
net architecture for medical image segmentation. In: Deep Learning in Medical Image 
Analysis and Multimodal Learning for Clinical Decision Support: 4th International 
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in 
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. 
Springer, pp. 3-11. 

Zhu, M., Jiao, L., Liu, F., Yang, S., Wang, J., 2020. Residual spectral–spatial attention 
network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59, 
449–462. 

C. Chen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0924-2716(23)00262-9/h0200
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0200
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0205
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0205
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0205
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0205
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0210
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0210
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0210
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0215
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0215
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0215
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0220
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0220
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0220
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0225
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0225
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0225
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0230
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0230
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0230
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0235
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0235
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0240
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0240
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0240
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0250
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0250
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0255
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0255
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0255
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0260
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0260
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0260
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0265
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0265
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0265
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0270
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0270
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0270
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0275
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0275
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0280
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0280
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0280
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0290
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0290
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0295
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0295
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0295
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0300
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0300
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0305
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0305
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0305
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0310
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0310
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0310
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0320
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0320
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0320
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0325
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0325
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0330
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0330
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0330
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0335
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0335
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0335
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0340
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0340
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0340
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0350
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0350
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0350
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0350
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0355
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0355
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0355
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0355
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0360
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0360
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0360
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0370
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0370
http://refhub.elsevier.com/S0924-2716(23)00262-9/h0370

	Mapping intertidal topographic changes in a highly turbid estuary using dense Sentinel-2 time series with deep learning
	1 Introduction
	2 Study area
	3 Data and methods
	3.1 Dataset
	3.2 Mudflat topography construction with deep learning
	3.2.1 Image selection and training dataset preparation
	3.2.2 DL model building and training
	3.2.3 Waterline extraction and selection
	3.2.4 Topography construction and evaluation


	4 Results
	4.1 Comparison of different DL models for water and land segmentation
	4.2 Mudflat DEMs
	4.3 Accuracy assessment of mudflat DEMs
	4.4 Topographic changes in the mudflats

	5 Discussion
	5.1 Deep learning for muddy waterline extraction
	5.2 Topographic changes under mapping uncertainty

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary material
	References


