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Nitrogen (N) and phosphorus (P) are essential nutrients necessary for plant growth

and support life in aquatic ecosystems. However, excessive N and P can lead to

algal blooms that deplete oxygen and lead to fish death and the release of toxins

that are harmful to humans. Estimates of N and P levels in rivers are typically

calculated at station or grid (>1 km) scale; therefore, it is di�cult to visualise the

evolution of water quality as water travels downstream. Using a high-resolution

reach-scale river network and associating each reach with land cover fractions

and catchment descriptors, we trained random forest models on aggregated data

(2010–2020) from the Environmental Agency OpenWater Quality Data Archive for

2,343 stations to predict long-term nitrate and orthophosphate concentrations

at each river reach in Great Britain (GB). We separated the model training

and predictions for di�erent seasons to investigate the potential di�erence in

feature importance. Our model predicted concentrations with an average testing

coe�cient of determination (R2) of 0.71 for nitrate and 0.58 for orthophosphate

using 5-fold cross-validation. Our model showed slightly better performance for

higher Strahler stream orders, highlighting the challenges of making predictions

in small streams. Our results revealed that arable and horticultural land use is

the strongest and most reliable predictor for nitrate, while floodplain extents

and standard percentage runo� are stronger predictors for orthophosphate.

Nationally, higher orthophosphate concentrations were observed in urbanised

areas. This study shows how combining a river network model with machine

learning can easily provide a river network understanding of the spatial distribution

of water quality levels.
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Highlights

- A method to map point water quality observations to river reaches is developed.

- Catchment descriptors and land covers are mapped to reaches and used as

input features.

- Random forest models perform well for nitrate and orthophosphate over Great Britain.
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1. Introduction

Anthropogenic demands for food, energy, and raw materials

have reshaped the abundance and recycling of nitrogen (N) and

phosphorus (P). Excess N and P input to the landscape can

contaminate drinking water supplies and accelerate eutrophication,

though they are important nutrients for plant and algal growth. To

meet the UN Sustainable Development Goals, it has been argued

that we must eliminate nutrient overuse and still allow a 30%

increase in the production of major cereals (Mueller et al., 2012).

Reliable prediction and modelling underpin water quality

management practises. However, the abundances of N and P in

rivers are controlled by multiple factors, and often, the physical

process is not easily observed. Therefore, it is challenging to model

N and P distribution for large areas or at high frequencies using

physically based process models. Themapping of nutrients in rivers

has traditionally been performed using statistical models. Because

data are sparse, many early efforts focussed on statistical modelling

in small catchments using methods such as general linear models

and non-linear estimation models (Howden and Burt, 2009) or

generalised additive models (Morton and Henderson, 2008; Yang

and Moyer, 2020). These aimed to provide a robust regression for

the estimation of non-linear trends in water quality in the presence

of potentially correlated errors.

A very different type of modelling framework is the Source

Apportionment Geographical Information System (SAGIS), which

uses readily available national datasets to estimate concentrations

of nutrients, among other chemicals, from multiple sector sources

(Comber et al., 2013). Concentrations and loads are modelled using

the Environment Agency’s catchment river model, SIMCAT, at the

locations of model features or every 1 km along each river, taking

into account all upstream sources and user defined river losses.

Similarly, the GREEN model is a simple three-parameter statistical

model for source apportionment of riverine nutrient loads and has

been applied widely across the European Union (Grizzetti et al.,

2005). Finally, process-based models are also used to simulate the

chemical and biological status of river networks (Evans et al., 2006).

For example, INCA is a semi-distributed catchment model that is

widely used in the UK and globally and can account for diffuse and

point sources of pollution, land use change, and climate change

(Whitehaed et al., 1998). This is done by accounting for all input

sources and driving data and accounting for the process pathways

in different compartments (e.g., soil horizon, groundwater zone,

in-stream water column, streambed, and sediments).

Recently, machine learning methods have been increasingly

applied to water quality predictions (see review by Najah Ahmed

et al., 2019). While a small number of studies focus on classifying

waters into discrete classes (O’Sullivan et al., 2022), most research

seeks to predict quantitative values using regression. An important

distinction within water quality machine learning applications is

that while some focus on high-frequency predictions (i.e., daily or

sub-daily), others focus on long-term or seasonal predictions. The

former focuses on capturing the rapid dynamics of the system in

response to changes in input variables and could be used for near

real-time monitoring and early warning systems, while the latter is

often applied to a large area and seeks to improve understanding

of the key controls of overall water quality trends. For the first

group, examples include Xu et al. (2021), who compared eight

machine learning regressions to predict total nitrogen (TN) in the

Lianjiang River basin, Guangdong, China; Granata et al. (2017),

who compared support vector machines and regression trees to

predict wastewater quality from surrogate variables and training

data from the US National Stormwater Quality Database; and

Ahmed et al. (2019), who compared the use of 15 supervised

machine learning methods for water quality index predictions.

Examples of the second group include the use of random forest

modelling to explore the relationships between stream N and

watershed features, climate, and N input rates at nearly 5,000 US

watersheds (Lin J. et al., 2021). In another study (Frei et al., 2021),

the importance of land use and land cover for lake vs. stream on

water quality were compared using fourmachine learningmethods.

Bhattarai et al. (2021) used ML algorithms to predict nitrate and

total phosphorus for five watersheds of different types draining into

Lake Erie, while Shen et al. (2020) estimated seasonal TN and total

phosphate (TP) maps at 30 arc-second (∼1 km) spatial resolution

using 47 global gridded environmental variables and the random

forest (RF) algorithm. For a review of machine learning paradigms

in hydrology, see Zounemat-Kermani et al. (2021).

Most existing river modelling works are applied at point,

pixel (usually 1 km or greater), or catchment scales. One common

approach for modelling rivers is to model the entire area using a

grid-based approach (typically at a resolution of 1 km or less) and

just display the river pixels (e.g., Lane and Kay, 2021). The use of

river network graphs has emerged to improve the understanding

of the physical properties of rivers and catchments as datasets of

drainage and high-quality river graphs have become increasingly

available (Demir and Szczepanek, 2017; Giachetta and Willett,

2018; Sarker et al., 2019; Lin P. et al., 2021). These graphs represent

river networks as a series of connected lines and nodes and can

better represent the evolution of water quality as chemicals are

transported across the catchment. Flexible regression models have

been successfully applied to the River Tweed catchment river

network to model nitrate pollution, and it has provided valuable

insight into changes in water quality in both space and time

(O’Donnell et al., 2014). However, their method requires flows

at each stream to be known to obtain flow-based distance for

smoothing, which can be challenging for nationwide modelling

or mapping of nutrient levels. In addition, statistical regression

requires the selection of kernels for smoothing. A potential

alternative option is the use of random forest modelling to

model the levels of nutrients on a river network graph. It is also

noteworthy that river flow directions extracted from river reach

network graphs have been used as input for the statistical modelling

of water quality (Smith et al., 1997).

In this study, we present a modelling framework that

maps nationwide water quality levels from point observations

to the United Kingdom (UK) river network graph. This

approach is motivated by the need to develop a flexible

and easy-to-use approach to map point data to river

reaches by incorporating readily available ancillary datasets.

Specifically, we used random forest and input features

that can be readily matched to the network graph. We

used this modelling framework to address the following

research questions:
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1. What are the most important drivers for predicting nitrate

and orthophosphate variability?

2. What is the long-term seasonal distribution of nitrate and

orthophosphate in each river reach in GB?

3. What is the reach-scale variability of the

predicted concentrations?

Catchment descriptors and land covers are readily available for

all river reaches in the UK, and to the best of our knowledge, these

have not been used for water quality prediction. While Shen et al.

(2020) used gridded input datasets to predict N and P at a 1 km

grid, in our study, we trained and predicted concentrations at point

locations (which are matched to river reaches) within the river

network. The rest of the article is arranged as follows: the methods

and data used are described in Section 2. We report and compare

the performance of various machine learning methods in Section 3,

followed by discussions and conclusions in Sections 4 and 5.

2. Methods and data

2.1. Method overview

The overarching framework for the river reach-level machine

learning water quality prediction described herein is as follows

(Figure 1):

1. Obtain access to a digital river network graph.

2. Match and append water quality data and input variables (e.g.,

catchment characteristics and land cover) from different data

sources to each reach of the river network graph.

3. Extract data tables from the river network graph (i.e., remove

geographical information).

4. Perform machine learning training and predictions.

5. Match the predictions back to the river network graph for

visualisation and evaluation.

Details of the data sources and machine learning methods

used to demonstrate this method are given in the remainder of

this section. Jupyter notebooks to reproduce our workflow in

Python are available in Magee et al. (2023).

2.2. Data sources

2.2.1. High-resolution river network graph for the
UK

In our study, we subdivided our analysis based on 107 UK

hydrometric areas (National River Flow Archive, 2014). These 107

hydrometric areas were either integral catchments with a single

outlet to the sea or tidal estuary, or they included several river

catchments having topographical similarity with separate tidal

outlets. We also used a UK reach-level river network digitised

from OS mapping at a 1:50,000 scale (Fry et al., 2000). Canals

and other artificial water bodies were removed, and the flow paths

through lakes were represented by centrelines. Rivers stretches

contain connectivity information, but this was not explicitly made

use of in this study. Most river stretches in the network represented

the entire line between confluences and included bifurcations.

The river network graph also included information such as

length, identifier, and name of the parent river (for larger rivers),

hydrometric area, and the Strahler and Shreve stream order for

each reach.

2.2.2. UK Environment Agency (EA) water quality
data

The Environment Agency maintains water quality monitoring

data for a multitude of water sampling sites throughout England

for a range of water body types from coastal or estuarine

waters, rivers, lakes, ponds, canals, or ground waters in the

Water Quality Archive (WQA, https://environment.data.gov.uk/

water-quality/view/landing). Readings are taken for a variety of

purposes, including compliance assessments against discharge

permits, environmental monitoring, as well as investigations for

pollution incidents. The WQA only contains complete samples

where all analyses have been completed. The data analysed for this

study was accessed on 23 June 2021.

We extracted the data from WQA for 2010–2020 for

“orthophosphate, reactive as P” and “nitrate as N.” These datasets

were further filtered to consider only sample material types from

rivers or running surface water bodies. We then aggregated the

data by taking the mean for each season for each year at each

sampling location contained within the datasets (i.e., winter:

December, January, and February; spring: March, April, and May;

summer: June, July, and August; autumn: September, October, and

November). Note that the typical sampling interval for nitrates

and orthophosphates varies considerably but is roughly between

biweekly and monthly. However, it is not uncommon that at some

sites, there may be periods of more than 8 weeks between samples.

To minimise the effects of outliers, we used only the middle 95% of

the data. The modelling was performed on log-transformed nitrate

and orthophosphate data.

2.2.3. Catchment descriptors and Land Cover Map
Unlike some of the studies mentioned earlier, we used physical

descriptions of the catchment area to aid with predictions for

the machine learning models in this study. The UK Centre for

Ecology andHydrology (CEH) develops andmaintains a number of

catchment descriptor datasets to inform its UK freshwater research.

Catchment descriptors are available on a gridded representation

of the UK at 50m resolution—the CEH Integrated Hydrological

Digital Terrain Model, IHDTM (Morris and Flavin, 1990), where

the values for each cell represent the catchment upstream of that

cell. Cells are connected using topographical information but also

include information from mapped contours and the digital river

network to ensure consistency where mapped surface water bodies

are present. The Flood Estimation Handbook (FEH) provides

a dataset of landform catchment descriptors for every grid cell

with a catchment area > 0.5 km2. Further catchment descriptors,

including land cover fractions from the UK Land Cover Map

2015 (Rowland et al., 2017), are maintained and provided at the

same scale by the National River Flow Archive. For this study, the

FEH descriptors and catchment land cover statistics were extracted

for each individual river reach within the digital river network.
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FIGURE 1

Overall framework for river reach-level machine learning predictions of water quality. Note that this framework is statistics-free and only involves the

joining of data frames. It includes the following steps: (1) Input features and water quality observations are first matched to river reaches. (2) Spatial

information is then removed to obtain a standard data frame so that standard machine learning methods can be used. (3) The spatial information is

appended to the results for visualisation and post-analysis.

A representative IHDTM grid cell was identified for each reach

as that closest to the 70th percentile by area of all grid cells

intersecting with the reach river line to maximise the likelihood

that the cell correctly lies on the river stretch. All catchment

descriptors were from the raster datasets and stored alongside the

river reach attributes.

The full list of FEH descriptors and land cover input features

initially considered for machine learning algorithms are described

in Table 1. The full and final features chosen for the final model are

discussed in Section 3. The FEH descriptors were then matched to

the river stretch ID for the Environment Agency’s phosphate and

nitrate readings.

2.3. Training data, pre-processing, and
feature engineering

After collating all data sources, the sample point IDs from

the WQA were matched to the closest river stretch in the digital

river network to integrate the two data sources. Note that this

matching was a statistics-free process—all variables were matched

to a river reach. As illustrated in Figure 1, all spatial information

was excluded from themachine learningmodel and was not used in

the post-analysis of results. Once the datasets were integrated, rows

withmissing data were excluded. The filtered nitrate and phosphate

datasets contained 5,187 and 5,594 rows, respectively, for winter

and a similar number of rows for other seasons. Once all missing

values were removed, continuous features were normalised using

min-max transformation. The reason for such a transformation is

that large input values in a neural network can result in a model

that learns large weights; models with large weight values are often

unstable and may result in poor performance during learning,

resulting in a higher generalisation error.

Min-max scaling was also chosen since it does not affect

Pearson correlation scores between the potential features, helping

with feature reduction in machine learning models. Feature

reduction is a key part of data prepossessing, as reducing the

dimensionality of a machine learning algorithm potentially reduces

the execution time of machine learning algorithms, which is

especially important for the tree-based algorithms implemented

in this study. Irrelevant features within training data may also

mislead the learning process of the final model, resulting in

unexpected predictions. Including too many features may also

result in overfitting of the model to the training data, resulting in

poor predictions of new data (Kantardzic, 2019).

Highly correlated features can often be considered candidates

for feature reduction, and the inclusion of highly correlated features

provides little extra information from the data. Feature selection

algorithms tend to fall within two categories: philtre and wrapper

methods. Philtre methods rely on the general characteristics of the

considered datasets to select features without involving the training

of any machine learning methods. Therefore, this method is not

affected by any inherent bias in the machine learning methods

used. Wrapper methods, on the other hand, take up large amounts

of processing time due to the training of many machine learning

models (Kohavi and John, 1997). For this reason, a basic correlation

philtre was applied to all continuous features. For each feature,
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TABLE 1 Description of catchment descriptors used as input features for

the construction of water quality machine learning models.

Descriptor
code

Description

CCAR Catchment drainage area (km2), derived from the IHDTM.

HGHT An estimate of the depth of precipitation for some specified

duration by and frequency or recurrence interval.

QALT Mean catchment altitude (m above sea level), derived from

the IHDTM.

QASB Index representing the invariability in aspect of catchment

slopes (◦).

QASV Index representing the dominant aspect of catchment slopes

(◦).

QBFI A base flow index is a measure of catchment responsiveness

derived using the 29-class Hydrology Of Soil Types (HOST)

classicationREF2.

QDPB Mean of distances between each node on the IHDTM grid

and the catchment outlet, in kilometres.

QDPS This landform descriptor (mean Drainage Path Slope)

provides an index of overall catchment steepness. It was

developed for the Flood Estimation Handbook and is

calculated as the mean of all inter-nodal slopes (derived

using the IHDTM) for the catchment.

QFAR The Flood Attenuation by Reservoirs and Lakes (FARL)

index, developed for the Flood Estimation Handbook,

provides a guide to the degree of flood attenuation

attributable to reservoirs and lakes in the catchment Values

close to unity indicate the absence of attenuation due to lakes

and reservoirs whereas index values below 0.8 indicate a

substantial influence on flood response.

QFPD The mean depth of water on floodplains in a 100-year event.

QFPX The floodplain extent is defined as the fraction of the

catchment that is estimated to be inundated by a 100-year

flood.

QFPL The location of floodplains within the catchment is

described using the same principles employed to derive

values of the FEH index URBLOC.

QLDP Longest drainage path (in kilometres), defined by recording

the greatest distance from a catchment node to the defined

outlet.

QPRW This catchment wetness index (PROPortion of time soils are

WET), developed for the Flood Estimation Handbook,

provides a measure of the proportion of time that catchment

soils are defined as wet. PROPWET values range from over

80% in the wettest catchments to less than 20% in the driest

parts of the country.

QS47 Average annual rainfall in the standard period (1941–1970)

in millimetres.

QS69 Average annual rainfall in the standard period (1961–1990)

in millimetres.

QSPR Standard percentage runoff (%) associated with each HOST

soil class.

QUCO Index of the location of urban and suburban land cover in

1990 expressed as a fraction.

QUEX Index of urban and suburban land cover in 1990 expressed

as a fraction.

QULO Index of the location of urban and suburban land cover in

1990 expressed as a fraction.

QUC2 Index of the location of urban and suburban land cover in

2000 expressed as a fraction.

(Continued)

TABLE 1 (Continued)

Descriptor
code

Description

QUE2 Index of urban and suburban land cover in 2000 expressed

as a fraction.

QUL2 Index of the location of urban and suburban land cover in

2000 expressed as a fraction.

QB19 Centroid of the catchment (km) cover. first used in

HiFlows-UK Version 3.

QR1D 1day average rainfall.

QR1H 1 hour average rainfall.

QR2D 2 day average rainfall.

Arable and

Horticulture

LCM2015 % land use: Arable and Horticulture

Coastal LCM2015 % land use: Coastal

Grassland LCM2015 % land use: Grassland

Heath/Bog LCM2015 % land use: Heath/Bog

Inland Rock LCM2015 % land use: Inland Rock

Unknown LCM2015 % land use: Unknown

Urban LCM2015 % land use: Urban

Water LCM2015 % land use: Water

the first feature that was correlated with an absolute value above

0.8 was removed from the datasets. The list of land cover and

FEH descriptors with the descriptor codes that were used as input

features are outlined in Table 1.

2.4. Seasonal nitrate and orthophosphate
predictions

2.4.1. Random forest regressor for water quality
modelling

Random forest models offer great flexibility and high predictive

performance for environmental applications (e.g., Tyralis et al.,

2019; Vergopolan et al., 2021). In this study, we trained a random

forest (RF) model (Ho, 1995; Breiman, 2001) to predict either

nitrate or orthophosphate levels for each season. Input features and

water quality observations were matched to river reaches. The data

were then used for training and predictions in the RF model. The

final results werematched back to the river reaches. Fitting different

models for each season and each chemical species allowed the RF

models to select the most relevant input features for the given data.

The RF models are ensemble learners for classification and

regression tasks. Ensemble methods use multiple weak learners

to obtain a better predictive performance than using any of the

constituent learning algorithms alone (Zhang, 2012). Ensemble

learners such as RF models always converge by the strong law of

large numbers and provide a distinct advantage over single decision

trees, as overfitting is not as large of a problem (Ho, 1995; Breiman,

2001). To generate each tree in this ensemble method, bagging is

often utilised. Bagging, also referred to as bootstrap aggregation,

works as follows: given an initial training dataset D of size N,

bagging generates new training sets Di, each of size n by random
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TABLE 2 The combination of hyper-parameters tested to optimise the

random forest model in a random grid search.

Hyperparameter Values tested

Number of tree estimators 25, 50, 75, 100, 125, 150, 175, 200,

225, 250

Minimum samples needed to split

a node

2, 5, 10, 15, 20

Minimum samples needed to form

a leaf node

1, 5, 10, 15, 20

sampling with replacement. Should N = n, then for large n, the set

of training data inDi is expected to have the fraction 1−1/e ∼ 63%

of the unique examples of D, with the rest being duplicates (Aslam

et al., 2007). Sampling with replacement ensures that each bootstrap

is independent of other bootstrapped samples since it does not

depend on the previously chosen samples when sampling. For each

training dataset Di, a tree is trained, and the tree’s outputs are

combined, usually as an average of all tree outputs or as a voting

system for classification. Bagging reduces variance and hence limits

overfitting; however, unlike single trees, bagging and ensemble

learners lose interpretability. Moreover, sampling and generation

of many learners to produce suitable bagging ensemble models can

be computationally expensive. RF models can also benefit from

randomisation of features where a random subset of features is

considered for splitting at each node. Boosting and the ability

to consider random subsets for splitting tree nodes decreases the

variance of the RF estimator. Moreover, for regression tasks, by

taking an average of tree predictions, errors within single trees can

be mitigated with a large number of estimators.

To obtain the optimal RF model, we tested each RF model with

combinations of hyperparameters, which are listed in Table 2. We

have reported only the results from RF methods in this study. For

a comparison of the performance of different machine learning

methods, see the preliminary study of Huxley (2021).

2.4.2. Feature importance and selection
To avoid overfitting, we performed a two-step procedure to

select input features for the final RF models. First, we ran full

RF models with all available features and ranked the features by

descending importance values. Subsequently, the list of features was

iterated by adding one feature at a time and calculating the variance

inflation factor (VIF), which is defined as VIF = 1/(1− R2), where

R2 is the coefficient of determination between two feature pairs. If

the inclusion of the feature caused the VIF to exceed 10, then the

feature was dropped. Otherwise, the feature was retained.

2.4.3. Cross-validation
It is not recommended to train a model on the same data it

will be tested on since machine learning models tend to overfit the

training data (Srivastava et al., 2014). Machine learning algorithms

should be developed to maximise predictive accuracy on new data,

not necessarily the training data. Fixation on fitting the best fit

on training data will fit its noise by memorising its peculiarities

rather than finding a general predictive rule (i.e., overfitting;

Dietterich, 1995). To analyse whether a machine learning model

is overfitted to the training data, we can use cross-validation and

assess the performance of a machine learning algorithm on separate

testing datasets.

To implement a random grid search, each nitrate and

orthophosphate dataset was split into a training and a testing set.

This was done by randomly assigning data points to the sets, with

each testing set comprising 25% of the original dataset and the

training sets with the remaining. The grid search was performed

on the testing sets with k-fold cross-validation where k = 4. In

k-fold validation, data is partitioned into k-equal or nearly equal

sets using a stratification process or randomisation. Training and

testing are performed on these partitioned sets, referred to as folds,

in k iterations such that at each iteration, we leave 1-fold out

for testing the trained model, where the remaining k-1 folds are

used for training (Yadav and Shukla, 2016). The performance of

the machine learning algorithm is determined by the mean of the

metric scores of the k iterations. It has been shown for classification

problems that k-fold validation provides a good indicator of model

performance for large datasets. This is despite a trade-off between

the number of cross-validation folds and the computation time for

evaluatingmetrics, wheremore folds lead to increased computation

time (Yadav and Shukla, 2016). K-fold validation is selected over

other validation techniques, such as “hold one out,” mainly due to

time and computational restraints. “Hold one out” trains the model

with the whole training set except a single point and tests with

a single point. For a random grid search, this would have led to

a longer search time for the best hyperparameters compared to a

k-fold validation approach due to the greater number of models

trained. Using the “hold one out” method with a large training

set could also lead to the selection of a hyperparameter set that

overfits, with more outlier trends being learnt that lead to a final

model that generalises poorly to new data. Due to the number of

folds and time trade-off, k = 3 folds were used in the random

grid search for hyperparameters to reduce searching time. Once

the hyperparameters were selected, final models, which included 3-

folds as the final training data, were trained. The final performance

was determined using metrics on a held-out testing dataset, as

illustrated in the next section.

2.4.4. Performance evaluation
To evaluate the performance of our machine learning methods,

we considered themean squared error (MSE), Nash-Sutcliffe model

efficiency coefficient (NSE; Nash and Sutcliffe, 1970), and the Kling-

Gupta efficiency (KGE; Gupta et al., 2009). The mean squared error

(MSE) is defined as:

MSE =

n
∑

i

(xi − x̂i)
2
/n (1)

where xi represents the observation and x̂i represents the predicted

value for data (i). The Nash-Sutcliffe model efficiency coefficient

(NSE) is defined as:

NSE = 1−

∑n
i (xi − x̂i)

2

∑n
i (xi − xi)

2
(2)
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TABLE 3 Feature screening results.

Nitrate Orthophosphate

Feature Spring Summer Autumn Winter Spring Summer Autumn Winter

CCAR 0.03 0.03 0.02 0.01 0.03 0.03 0.04 0.04

HGHT 0.02 0.03 0.02 0.01 0.04 0.03 0.03 0.03

QALT 0.02 0.04 0.04 0.02 0.03 0.03 0.03 0.03

QASB 0.02 0.03 0.02 0.02 0.04 0.04 0.04 0.04

QASV 0.02 0.03 0.02 0.01 0.03 0.03 0.03 0.03

QBFI 0.06 0.08 0.04 0.05 0.05 0.05 0.05 0.04

QDPB 0.02 0.02 0.02 0.01 0.03 0.03 0.03 0.03

QDPS 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.05

QFAR 0.02 0.02 0.02 0.01 0.03 0.02 0.03 0.02

QFPD 0.02 0.02 0.02 0.01 0.08 0.09 0.04 0.04

QFPL 0.02 0.03 0.02 0.01 0.03 0.03 0.03 0.03

QFPX 0.02 0.03 0.02 0.02 0.04 0.05 0.1 0.05

QLDP 0.02 0.02 0.02 0.01 0.03 0.02 0.03 0.03

QPRW 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02

QR1D 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03

QR1H 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.03

QR2D 0.04 0.05 0.04 0.04 0.03 0.03 0.04 0.03

QS69 0.06 0.05 0.05 0.08 0.04 0.05 0.04 0.09

QSPR 0.04 0.04 0.03 0.03 0.06 0.06 0.07 0.05

Arable and horticulture 0.35 0.19 0.32 0.45 0.03 0.03 0.03 0.03

Coastal 0 0 0 0 0 0 0 0

Grassland 0.02 0.03 0.03 0.02 0.04 0.04 0.04 0.04

Heath/bog 0.01 0.01 0.02 0.02 0.02 0.03 0.02 0.03

Inland rock 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

Unknown 0 0 0 0 0 0 0 0

Urban 0.03 0.04 0.04 0.02 0.08 0.07 0.05 0.07

Water 0.02 0.02 0.02 0.01 0.03 0.02 0.02 0.02

Woodland 0.03 0.03 0.03 0.02 0.05 0.05 0.06 0.05

Features highlighted and bold values were used in the random forest models. Note that some features with higher importance were not selected because they increased the VIF to above 10, and

therefore, they were skipped.

where xi represents the mean of observations. The Kling-Gupta

efficiency (KGE) is defined as:

KGE = 1−

√

(r − 1)2 + (α − 1)2 + (β − 1)2 (3)

where r is the linear correlation between observations and

simulations, α is a measure of the variability error, and β is a bias

term, which can also be written as:

KGE = 1−

√

(r − 1)2 +

(

σ̂

σ
− 1

)2

+

(

µ̂

µ
− 1

)2

(4)

where µ and σ correspond to the mean and standard deviation,

respectively. When NSE = 1 and KGE = 1, it indicates perfect

agreement between simulation and observations. When NSE = 0,

it indicates that the mean of observations provides better estimates

than simulations.

3. Results

3.1. Feature selections and predictions

As discussed in the methods section, we adopted a two-step

approach to initially run full RF models with all features and

then select a subset of the features to run the final RF models.

Table 3 shows the features selected for the models for each water

quality species and season. In all models, coastal and unknown
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land use had zero feature importance. The Flood Attenuation by

Reservoirs and Lakes (FARL) index [QFAR], catchment wetness

index [QPRW], as well as 1-day, 2-day, 1-h average rainfall [QR1D,

QR1H, and QR2D] were not selected in any models. Arable and

horticulture land use was an important feature of all nitrate models.

While five or more catchment descriptors were selected as input

features in all other models, only three and four of them were

selected for the winter and autumn nitrate models, respectively.

While all nitrate models did not select grassland as an input

feature, it was included in three of the four orthophosphate models.

For predicting orthophosphate in winter, fewer land use features

were selected, while average annual rainfall [QS69] and arable and

horticulture were selected instead.

The selected features listed in Table 3 were then used to run the

final RF models and the final feature selection results are reported

in Figure 2. For nitrate models, arable and horticulture land use

was by far the most important input feature, while other land

use features mostly had low importance. Catchment descriptors

tended to have higher importance in autumn and winter, partly

because fewer of them were selected in the previous stage. In the

orthophosphate models, the contributions of feature importance

were much more evenly distributed. The spring, summer, and

autumn models were very similar, while the winter model had a

rather different set of features, and their feature importance values

were non-trivial. Specifically, the longest drainage length [QLDP],

average annual rainfall [QS69], and arable and horticulture land use

were included, while the baseflow index [QBFI], mean distance to

catchment outlet [QDPB], and grasslandwere excluded. Catchment

drainage area [CCAR], catchment slope invariability [QASB],

mean depth of water and floodplain extent of a 100-year event

[QFPD, QFPX], standard percentage runoff [QSPR], and urban and

woodland land use were included in all orthophosphate models.

3.2. Overall model performance

3.2.1. Nitrate models
Once the predictions of nitrate concentrations were made by

the RF model at each river reach, they were mapped back to the

river network graph. Figure 3 shows the long-term predicted nitrate

levels at each river reach in GB for each season. Central and eastern

England were predicted to have higher nitrate concentrations,

and they are higher in winter and spring than in summer and

autumn. The exception was the Pennines, which had a low nitrate

concentration that may be attributed to its topography, lower-

intensity land use, lack of sewage inputs, and low base flow index.

In Scotland and northern England, higher nitrate concentrations

were mostly observed on the East Coast alone. While in some cases,

small streams in remote areas had higher nitrate concentrations, in

general, nitrate concentrations were higher in bigger streams.

Figures 5A, B illustrate the nitrate model performance in

training and testing. For brevity, we grouped the results from all

seasons together. The training data achieved a very good R2 value

of 0.96 (NSE of 0.91 and KGE of 0.83), and there was a very high

density along the 1:1 line. It was also obvious from the Hexbin

plot that nitrate observations were mostly concentrated between

1.0 and 2.0 of the log-transformed data, and there was a long tail

for concentrations below 1.0.

There is evidence that the nitrate RF model exhibited slight

overfitting as the training MSE of 0.25 (NSE of 0.51 and KGE of

0.61) was not as good as the testing MSE. However, its R2 value of

0.71 was good, and despite some spread, the scatter points fell along

the 1:1 line well.

Spatially, Figure 6 and Table 4 show that the nitrate RF model

performed well and better generalised the whole of England based

on testing the MSE values for each hydrometric area (HA, see

Supplementary Figure 1). The RF models, on average, showed the

larger HAs, and those not along the south and northeast coasts

made better predictions and showed more consistent performance.

The NSEs of many HAs reported a good value of 0.3 or above.

A few HAs reported negative NSEs, indicating they had issues

reproducing the mean. These were small Has, so their small sample

size can be attributed to the NSE value, and it is not an indication

of the model’s predictive power in general. For KGE, better-than-

average performances were observed in Tweed (HA = 21) and the

HAs on the southwest coast.

Based on the MSE, the nitrate RF models performed better on

river reaches with a Strahler stream order 4–7 (Table 5) than lower-

order streams. Based on the NSE and KGE, streams of orders 5

and 6 outperformed other streams. In particular, based on the NSE,

the performance of order 1 and 7 streams were very similar. This

indicated that nitrate predictions were more challenging for small

streams and very large streams (order = 7), with the latter only

having a few occurrences in the UK river network graph.

Figure 3 shows only subtle changes in nitrate levels between

any two seasons. While nitrate levels between seasons are well-

correlated, considerable variability within +/– 0.5 order of

magnitude exists (Supplementary Figure 2A). This highlighted that

with good training and cross-validation results for the models for

each season (Figure 5), applying machine learning methods for

nitrate predictions in every reach of the UK river network could

lead to greater variability in predictions.

3.2.2. Orthophosphate models
Figure 4 illustrates the long-term predicted orthophosphate

levels at each river reach in GB for each season. Similar to nitrate,

central and eastern England had higher orthophosphate levels, but

regions with high orthophosphate levels appeared to be smaller.

Unlike nitrate levels, orthophosphate levels were higher in summer

and autumn than in spring and winter.

Figure 5 shows the orthophosphate model’s performance in

training and testing. The training data achieved a good R2 value

of 0.95 (NSE of 0.88 and KGE of 0.77), and there was a very high

density along the 1:1 line. Furthermore, unlike nitrate, the Hexbin

plot for orthophosphate did not show a skewed distribution. Some

bias was noticeable in the predictions; the slope of the best-fit line

was slightly steeper than the 1:1 line, indicating predicted values

were higher than observed for high orthophosphate levels, while

the opposite was true for low orthophosphate levels.

There is evidence that the orthophosphate RF models exhibited

slight overfitting as the training MSE of 0.77 (NSE of 0.33 and KGE

of 0.43) was not as good as the testing MSE. Despite a rather large

spread of the scatter points, the R2 value of 0.77 indicated a good

correlation between the predicted and observed data.
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FIGURE 2

Final feature selection results of the random forest models. Note that features with zero importance are not included in the final models.

FIGURE 3

Predictions of nitrate concentration in rivers across GB. Note line widths are proportional to Strahler stream order (i.e., thicker for larger

streams downstream).
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TABLE 4 Model performance metrics based on hydrometric areas (HAs) in England.

MSE NSE KGE

HA HA name Nitrate Orthophosphate Nitrate Orthophosphate Nitrate Orthophosphate

21 Tweed 0.048 0.729 0.103 -inf 0.419 nan

22 Coquet Group 0.439 1.236 −1.139 −1.106 0.103 0.407

23 Tyne (Northumberland) 0.39 1.454 0.25 −0.235 0.43 −0.101

24 Wear 0.42 1.305 0.234 0.157 0.271 0.226

25 Tees Group 0.246 0.798 0.407 0.481 0.56 0.548

27 Ouse (Yorkshire) 0.211 0.943 0.578 0.299 0.693 0.451

28 Trent 0.259 0.92 0.401 0.213 0.557 0.322

29 Ancholme Group 0.226 1.14 −0.208 −0.097 0.378 −0.006

30 Witham and Steeping 0.241 1.06 0.263 0.081 0.532 0.124

31 Welland 0.208 0.885 0.507 −0.037 0.556 0.106

32 Nene 0.195 0.93 0.553 −0.007 0.563 0.236

33 Great Ouse 0.2 0.802 0.213 0.268 0.436 0.328

34 Norfolk Rivers Group 0.182 0.89 0.236 0.165 0.411 0.285

35 East Suffolk Rivers 0.147 0.446 0.434 0.433 0.457 0.459

36 Stour (Essex and Suffolk) 0.163 0.612 0.016 −0.64 0.271 −0.002

37 Essex Rivers Group 0.194 0.446 0.26 0.159 0.544 0.293

38 Lee 0.219 1.082 0.233 −0.027 0.547 0.121

39 Thames 0.314 0.79 0.163 0.237 0.289 0.318

40 Kent Rivers Group 0.393 0.733 0.196 0.352 0.358 0.407

41 Sussex Rivers Group 0.437 0.855 0.266 0.27 0.381 0.407

42 Hampshire Rivers Group 0.355 0.55 0.34 0.142 0.468 0.475

43 Avon and Stour 0.117 0.551 0.54 0.409 0.594 0.476

44 Frome Group 0.138 0.465 0.327 −0.101 0.444 0.16

45 Exe Group 0.078 0.479 0.408 0.157 0.712 0.476

46 Dart Group 0.269 0.924 0.445 −0.338 0.561 −0.149

47 Tamar Group 0.095 1.407 0.539 −0.587 0.7 −0.004

48 Fal Group 0.107 1.045 0.637 −0.058 0.732 0.199

49 Camel Group 0.137 1.323 0.264 −0.029 0.493 0.179

50 Taw and Torridge 0.112 0.857 0.609 −0.077 0.673 0.45

51 East Lyn Group 0.038 0.011 0.853 0.491 0.67 0.337

52 Somerset Rivers Group 0.253 0.609 0.27 0.22 0.38 0.328

53 Avon (Bristol) 0.099 0.658 0.447 0.165 0.536 0.275

54 Severn 0.185 0.491 0.3 0.404 0.537 0.506

55 Wye (Hereford) 0.134 0.36 0.529 0.485 0.64 0.586

67 Dee (Cheshire) 0.363 0.364 0.009 0.321 0.504 0.586

68 Cheshire Rivers Group 0.29 0.536 0.031 0.214 0.268 0.316

69 Mersey and Irwell 0.361 0.454 0.5 0.634 0.579 0.619

70 Douglas Group 0.392 0.644 0.068 −0.097 0.367 0.211

71 Ribble 0.291 0.505 0.22 0.459 0.352 0.633

72 Wyre and Lune 0.118 0.381 0.437 0.359 0.374 0.482

(Continued)
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TABLE 4 (Continued)

MSE NSE KGE

HA HA name Nitrate Orthophosphate Nitrate Orthophosphate Nitrate Orthophosphate

73 Kent Group 0.26 0.345 −0.509 0.263 0.139 0.679

74 Esk Group (Cumbria) 0.371 0.652 −0.084 −0.169 0.243 0.495

75 Derwent Group (Cumbria) 0.165 1.508 0.375 −0.047 0.364 0.129

76 Eden (Cumbria) 0.222 0.335 0.296 −0.003 0.568 0.486

101 Isle of Wight 0.135 0.721 0.379 0.036 0.38 0.269

TABLE 5 Model performance metrics based on the Strahler stream order.

MSE NSE KGE

Strahler Nitrate Orthophosphate Nitrate Orthophosphate Nitrate Orthophosphate

1 0.475 1.08 0.318 0.088 0.456 0.182

2 0.348 0.973 0.427 0.25 0.521 0.311

3 0.277 0.819 0.48 0.327 0.584 0.408

4 0.194 0.575 0.631 0.465 0.703 0.554

5 0.14 0.4 0.672 0.549 0.744 0.612

6 0.138 0.458 0.75 0.428 0.748 0.607

7 0.134 0.656 0.327 0.235 0.652 0.412

FIGURE 4

Predicted concentrations of orthophosphate in rivers across GB. Note line widths are proportional to Strahler stream order (i.e., thicker for larger

streams downstream).

Overall, Figure 6 and Table 4 demonstrate that the

orthophosphate RF models performed well and better generalised

the whole of England based on the testing MSE values for each HA.

The RF models, on rage, registered lower MSE at larger HAs and

in the west of England (excluding the southwest coasts). The NSE

of many HAs reported negative values, indicating they had issues

reproducing the mean, which we partly observed in the Hexbin

plots in Figure 5. For KGE, good performance (KGE > 0.5) could
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FIGURE 5

Hexbin plots showing the performance of random forest models. Note that models from the four seasons are plotted on a single plot. (A) Nitrate.

Training data. (B) Nitrate. Testing data. (C) Orthophosphate. Training data. (D) Orthophosphate. Testing data.

be observed in the Tees group (HA = 25), Severn (HA = 54), Wye

(Hereford; HA = 55), Dee (Cheshire; HA = 67), Ribble (HA =

71), and Kent group (HA = 73), with many other HAs achieving

similar performance. Meanwhile, Tyne (Northumberland; HA =

23) and Dart group (HA= 46) performed poorly (KGE < 0.1).

Identical to the results for nitrate, the orthophosphate RF

models performed better on river reaches with a Strahler stream

order 4–7 (Table 5) than lower-order streams based on MSE. Based

on NSE and KGE, streams of order 5 and 6 outperformed other

streams. Again, this indicated that the orthophosphate predictions

were more challenging for small streams and very large streams

(order= 7).

Supplementary Figure 2B shows a scatter plot of predicted

nitrate against orthophosphate at each river reaches in spring.

It shows that despite some higher correlations in high nitrate-

high orthophosphate conditions and at high Strahler stream

order (6 or above), nitrate and orthophosphate levels were not

well-correlated. This highlighted the differences in sources for

nitrate and orthophosphate and in their sensitivity to input

features. This also suggested that nitrate and orthophosphate

may not be suitable to be used as a proxy measurement for

each other.

3.3. Results from selected catchments

It can be difficult to visualise the nitrate and orthophosphate

prediction at individual river reaches when all the river reaches of

GB are presented in the same plot. Therefore, we focused on the

results of four selected hydrometric areas in Figure 7. In Tweed (HA

= 21), we observed much higher nitrate concentrations in streams

in the east of the HA in winter. However, it caused just a small

increase in nitrate concentration in its main river channel (i.e.,

River Tweed). Orthophosphate levels in the Tweed were generally
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FIGURE 6

Spatial map of mean MSE, NSE, and KGE by hydrometric areas for

testing data for nitrate, and orthophosphate.

very low; however, their levels were higher in smaller streams in

summer and autumn. In the Thames (HA= 39) area, higher nitrate

levels were observed in RiverMole in the southeast of the HA, while

higher orthophosphate levels tended to occur in smaller tributaries

in the northwest of the HA. We observed slightly higher nitrate

in spring and winter than in summer and autumn. There were

a few localised orthophosphate hotspots in summer and autumn,

causing some increase in orthophosphate in the Thames. In Wye

(Hereford; HA = 55), nitrate levels were generally seasonally

invariant. Obvious increases in orthophosphate in small streams

near Hereford in summer and autumn were observed. However,

it did not lead to a change in the very low orthophosphate levels in

its 6th order streams—River Wye and River Monnow. For the Tay

(HA= 15) in Scotland (note that all training data is from England),

we observed very low nitrate levels in most of the HAs. These

were slightly higher in the larger streams, and high levels were

observed in the southeast corner of the HAs, which were slightly

higher in spring and winter. Orthophosphate levels were also very

low for most of the HAs. Slightly higher levels were observed in

very small streams and some streams in the southeast corner of the

HAs, while higher orthophosphate levels were observed in summer

and autumn.

4. Discussion

4.1. Key findings

We presented a flexible modelling framework that mapped

point observations of river water quality of more than 200,000 river

reaches across GB using machine learning. Our key findings are

as follows:

• Model skill: The modelling approach we developed was able

to estimate nitrate and orthophosphate levels with higher skill

than existing statistical modelling approaches (Rothwell et al.,

2010). A testing R2 of 0.71 and 0.58, was attained for nitrate

and orthophosphate, respectively.

• Flexibility: Our modelling approach is highly flexible. After

matching the input features and observations to the river

reaches, they could be used to build machine learning models

without geographical or network information. This meant that

input datasets required no modifications for commonly used

machine learning methods to be applied. After the machine

learning predictions are made, they can be mapped back

to the river network (Section 2.1). Therefore, our method

is applicable in all situations where (i) a high-resolution

river network graph is available and (ii) input features and

observations can be mapped to the graph. Features that were

not considered in this study can be easily incorporated.

• Stream order: Plotting river-reach concentration predictions

with stream order information is highly informative as it

allows the visualisation of the evolution of nutrient levels

downstream. Further, our model performs better with streams

with higher Strathler stream order. This may be due to
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FIGURE 7

Nitrate and orthophosphate prediction results at (A) Tweed (HA = 21), (B) Thames (HA = 39), (C) Wye (Hereford; HA = 55), and (D) Tay (HA = 15).

Note line widths are proportional to Strahler stream order (i.e., thicker for larger streams downstream). The maps on the right overlay the spring

nitrate predictions on a UK map. In the right column, spring nitrate results are overlaid on a base map. To view results from other HAs, go to the

following web application: https://moisture-wqmlviewer.datalabs.ceh.ac.uk/wqml_viewer.

challenges in accurately linking catchment and land cover

attributes to small streams with fewer observations.

The ability to estimate water quality at every point in a

river network [based on the models of everywhere concept

(Beven and Alcock, 2012; Blair et al., 2019)] has huge potential

to revolutionise environmental science. For example, the chemical

levels or other properties at any point in the river network can

be queried, the effects along reaches on downstream biodiversity

can be studied, and the cumulative exposure to a chemical to an
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organism can be calculated based on their trajectory in a simple and

straightforward manner.

4.2. Drivers for water quality variability in
the GB river network

Predicting river water quality using catchment characteristics

(Davies and Neal, 2004, 2007; Rothwell et al., 2010; Oehler and

Elliott, 2011; Lintern et al., 2018) and land use (Jarvie et al.,

2008; Hutchins et al., 2010; Worrall et al., 2012) has been

common practise. However, existing methods rely on multi-linear

relationships between these characteristics and water quality, and

they have rarely been applied at the national level. Furthermore,

previous catchment characteristics and land use attributes are not

matched at a fine scale. Similar to the findings by Rothwell et al.

(2010), we found nitrate concentrations in UK rivers highly linked

to agricultural land use, while diffuse and point sources (Bowes

et al., 2008, 2009) tended to play a major role in orthophosphate

concentrations. This was because household sources dominate P

loads in many of GB’s waters near high population density (White

and Hammond, 2009).

4.3. Challenges, limitations, and future
work

It is important to note that in this study, machine learning

predictions were made at each river reach without any reference to

their spatial location or connectivity. The land cover and catchment

descriptors of each river reach were used as input features in

a non-spatial way, and the resultant predictions were mapped

back on the river network graph. This offered a very flexible

approach to convert point observations of river water quality to

maps at the relevant spatial scale (i.e., river reach). This method

could be applied to other chemical species or geographical regions.

Future studies could also investigate the method’s applicability to

river biodiversity indicators such as macroinvertebrate abundance

(Powell et al., 2022).

A trade-off for the ease of use of our framework was that

we did not make explicit assumptions on geostatistics based on

distance or connectivity. However, as emerging approaches such

as graph neural networks (Sun et al., 2022) or graph Gaussian

processes (Pinder et al., 2022) have highlighted the importance of

the connectivity of networks and provided more flexible tools to

model them, future studies can extend our framework to include

geostatistics or network connectivity.

Our study focused on the use of static input features for long-

term predictions of water quality. An opposite group of approaches

used very high temporal resolution driving data and sparse water

quality data, as well as methods such as Long Short-term Memory

(LSTM) to model the dynamics of water quality variations at

chemically ungauged basins (Zhi et al., 2021). Future studies

can consider both static and dynamic input features to obtain

predictions that capture spatial trends and temporal variations.

Many physical processes that control the distribution and

evolution of nitrate and orthophosphate are not explicitly

considered in our study. For instance, the long-term evolution of

these chemical species (Bell et al., 2021), the migration of nitrate

from land surface to groundwater and its storage in the vadose

zone (Wang et al., 2016; Ascott et al., 2017), or the discharge from

sewage treatment works (Jarvie et al., 2006; Bowes et al., 2010)

have not been explicitly considered. Future studies can also strive

to improve the joint use and interpretation of process-based and

machine learning water quality model results.

Because of the flexibility of the methods described in this study,

they can potentially be applied elsewhere in the world or with

different input variables. The water quality portal (Read et al., 2017)

in the United States and the Global River Water Quality Archive

(Virro et al., 2021) are examples of other centralised databases for

water quality measurements where the models from this study can

be applied. The availability of global high-resolution river network

graphs makes it possible to repeat a similar analysis globally (Linke

et al., 2019; Yan et al., 2022). However, if the use of river reach

characteristics that are not provided in those graphs is required,

users need to match those characteristics to the graphs. For GB,

CAMELS-GB (Coxon et al., 2020) may be a richer, alternative

dataset that can be matched to the river network graph for an

analysis similar to the one presented in this study. Future studies

can also compare river network water quality predictions with

remote sensing of water quality for inland waters, such as those

obtained from AquaSat (Ross et al., 2019).

Finally, the proposed framework may be applied iteratively to

optimise the design of water quality monitoring networks. It can be

used to design the placement of new point sampling locations or to

assess the information content of sampling locations by comparing

the resultant reach scale water quality maps.

5. Conclusion

Current methods for water quality mapping are often

conducted at a grid-based level, masking the important sense of

network connectivity that is intrinsic to rivers. This limits their

utility to inform policy and decision-making. While some methods

have been developed for mapping river quality in networks, they

are often not readily applicable at a national scale.

With the advancement of machine learning and very high-

resolution river graphs becoming available at national levels, it

becomes possible to map the spatial variability of water quality

variables nationally. To our knowledge, this study is the first

to predict water quality at each river reach nationally for Great

Britain. Our study builds on previous approaches by integrating

static variables into seasonal water quality prediction and by

demonstrating the use of machine learning to effectively make

water quality predictions without the need to specify geostatistical

constraints. Mapping the water quality of every British river reach

also has the potential to serve as a new fit-for-purpose tool when

evaluating the water quality in British rivers (Whelan et al., 2022).

By demonstrating a practical way to map water quality

monitoring data from a network of stations to river reaches

in an entire country, this study provides a way for reach-scale

interrogation of water quality data in decision-making, which

allows much more targeted actions to improve and protect water

quality in rivers.
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