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Xiaohui Feng4‡, Renyong Lin4‡, Patrick GiraudouxID
2,5☯

1 UK Centre for Ecology and Hydrology, Lancaster, United Kingdom, 2 Department of Chrono-Environment,

University of Bourgogne Franche-Comte/CNRS, Besançon, France, 3 Centre de Biologie et Gestion des
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Abstract

Small mammal species play an important role influencing vegetation primary productivity

and plant species composition, seed dispersal, soil structure, and as predator and/or prey

species. Species which experience population dynamics cycles can, at high population

phases, heavily impact agricultural sectors and promote rodent-borne disease transmission.

To better understand the drivers behind small mammal distributions and abundances, and

how these differ for individual species, it is necessary to characterise landscape variables

important for the life cycles of the species in question. In this study, a suite of Earth observa-

tion derived metrics quantifying landscape characteristics and dynamics, and in-situ small

mammal trapline and transect survey data, are used to generate random forest species dis-

tribution models for nine small mammal species for study sites in Narati, China and Sary

Mogul, Kyrgyzstan. These species distribution models identify the important landscape

proxy variables driving species abundance and distributions, in turn identifying the optimal

conditions for each species. The observed relationships differed between species, with the

number of landscape proxy variables identified as important for each species ranging from 3

for Microtus gregalis at Sary Mogul, to 26 for Ellobius tancrei at Narati. Results indicate that

grasslands were predicted to hold higher abundances of Microtus obscurus, E. tancrei and

Marmota baibacina, forest areas hold higher abundances of Myodes centralis and Sorex

asper, with mixed forest—grassland boundary areas and areas close to watercourses pre-

dicted to hold higher abundances of Apodemus uralensis and Sicista tianshanica. Localised

variability in vegetation and wetness conditions, as well as presence of certain habitat types,

are also shown to influence these small mammal species abundances. Predictive applica-

tion of the Random Forest (RF) models identified spatial hot-spots of high abundance, with

model validation producing R2 values between 0.670 for M. gregalis transect data at Sary

Mogul to 0.939 for E. tancrei transect data at Narati. This enhances previous work whereby
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optimal habitat was defined simply as presence of a given land cover type, and instead

defines optimal habitat via a combination of important landscape dynamic variables, moving

from a human-defined to species-defined perspective of optimal habitat. The species distri-

bution models demonstrate differing distributions and abundances of host species across

the study areas, utilising the strengths of Earth observation data to improve our understand-

ing of landscape and ecological linkages to small mammal distributions and abundances.

Introduction

Small mammal species form a key role in terrestrial ecosystem functioning in many parts of

the world. In addition to their important role in food chains and ecosystem functioning [1–6],

understanding their distributions and population dynamics is important for other fields

including agriculture [7–10], and public health and disease transmission [11–13]. Many small

mammal species exhibit specific habitat preferences which drive the distribution and population

dynamics of those species [14–19]. Understanding the linkages between landscape and small

mammal ecology is therefore key [11, 20, 21]; when optimal conditions are met, small mammal

populations of some species can reach peaks of several hundred individuals per hectare [2, 7, 8,

22]. Therefore, key to understanding the potential impacts of small mammal population

dynamics is identifying the distributions and abundances of the species involved [23–25].

Species distribution models (SDM) quantify the environmental conditions leading to spe-

cies occurrence, and predict potential geographic distributions from existing observations of

those species [26], with numerous SDM methods available including machine learning meth-

ods such as Random Forests (RF) [27]. SDM encompasses two aspects, explanatory modelling

which aims to explain the relationships between a response variable, such as species distribu-

tion, and the explanatory variables (e.g., [28]), and predictive modelling, which predicts

unknown values of the response variable based on pre-specified relationships [29].

The application of SDMs in this scenario requires suitable small mammal population field

data, well spatially distributed across the landscape including the full range of habitats present

and differences in species trapability. Field techniques are mostly based on standardized catch

effort and transects to collect small mammal indices on regular spaced intervals, depending on

the species and habitats studied. Trapline and transect techniques differ in the data type they

produce and the spatial scales on which they apply. For example, trapline methods, where mul-

tiple traps are set over some hundreds of square metres, can produce measures of species pres-

ence and also measures of abundance by combining captures from multiple traps. Transect

methods, alternatively, record presence or absence of signs of presence (holes, faeces etc.) at

intervals along transect routes, although this can be converted to a continuous occupancy mea-

sure by combining multiple intervals [15–17].

While Earth observation (EO) data and derived products have been applied for SDM, for

example [30–32], integration of remotely sensed data in SDM remains rare in practice [33];

further opportunities exist to develop SDMs for predictive and explanatory purposes through

a close integration of SDM and EO [34]. The broad-scale coverage offered by satellite sensors

along with regular revisit periods and cost-free data availability enables characterisation of

landscape features and environmental processes underlying species distributions to be quanti-

fied and included within SDMs. These include measures of land and vegetation cover [23, 35,

36], structure [37], productivity and phenology [24], forest cover [38] and topographical vari-

ables which locally influence biota, habitat structure and growing conditions [39]. EO offers

improved monitoring capabilities by filling spatiotemporal data gaps that occur when using
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field data alone, and predict and monitor short and long-term impacts of management or envi-

ronmental change [40]. These data products are not yet used to their full potential within

SDMs [34]. In particular, vegetation indices (VI) have considerable potential for monitoring

vegetation productivity [41], phenology and dynamics [42] which influences the distribution

of many small mammal species.

Most SDM studies utilising remote sensing data products use static and temporally aggre-

gated data as predictors [34], with fewer attempts made to utilise time-series data and the

dynamic information contained therein [43]. The variation in vegetation state through the

growing season is a crucial source of information for discriminating between different types of

vegetation [44], with strong potential for quantifying how vegetation biomass change through-

out a growing season impacts habitat suitability for different species.

This research presents cost-effective methods integrating in-situ field survey and EO data

to identify the important landscape proxy explanatory variables driving small mammal species

distributions, and to predictively map spatial patterns of abundance. This research moves from

a conventional to a view of “optimal habitat" defined subjectively based on field experience

and literature to a view based on a correlation between species distribution and remote sensing

variables, whereby the SDM identifies what range of landscape variables influence species

abundance. This improves on previous work whereby optimal habitat was defined as simple

habitat presence, potentially over-simplifying complex ecological relationships. We follow this

by evaluating species-specific predictive abundance maps. This develops a framework for con-

ducting SDM analysis with the flexibility for the method to be applied to different species with

varying ecological preferences to identify their optimal habitats.

Materials and methods

Study sites

This study focussed on two areas, a 55 km x 40 km area around the town of Narati, Yili Valley,

Xinjiang, China (43.319˚N, 84.016˚N), and a 25 km x 30 km area around the village of Sary

Mogul, Alay Valley, Kyrgyzstan (39.679˚N, 72.883˚E) (Fig 1). These sites, whose access is logis-

tically difficult, were selected as they are transmission foci of Echinococcus multilocularis (Em),

a highly pathogenic parasitic tapeworm for which transmission is linked to small-mammal

populations, and consequently were surveyed extensively to establish small mammal species

abundance and distributions. Here, analysis focuses specifically on small mammal species dis-

tribution modelling at these sites.

The Narati study site comprises a variety of habitats including river valley, agricultural land,

woodland, and semi-natural grassland at altitudes between 1300–3450 m (Fig 2). Higher-alti-

tude areas include heavily grazed grassland and rocky screes. At lower altitudes, longer-grass-

land areas, in some locations harvested for winter fodder, are present creating a mosaic of

longer (uncut) and short (cut) grassland. Areas of coniferous and mixed woodland, often

interspersed with grassland patches, are also present, as are extensive areas of seasonal grass-

lands. Heavy grazing of these grasslands during summer months results in areas becoming

bare of vegetation by autumn, especially close to seasonal nomadic settlements. In valley bot-

toms permanent arable agriculture is present with densely wooded narrow river valleys in

places. Scattered settlements are also present, predominantly in river valleys.

The Sary Mogul site is located at altitudes between 2900–3200 m on the edge of the Tian

Shan and Pamir mountains, and is grassland dominated without woodland (Fig 3). Some areas

of low productivity arable areas are present close to built-up areas, along with areas of bushes

along river courses and extensive bare areas of dry braided riverbeds. At higher altitudes bare

areas are extensively present.

PLOS ONE Satellite mapping of small mammal optimal habitats

PLOS ONE | https://doi.org/10.1371/journal.pone.0289209 August 17, 2023 3 / 20

https://doi.org/10.1371/journal.pone.0289209


Small mammal survey

Field surveys were conducted in September 2006 at Narati and September 2014 at Sary Mogul

[45] using trapping and transect methods.

Trapping. Trapping was performed to establish small mammal distributions but also as

part of a larger study to establish Em infection which required specimen autopsy. Small

Fig 1. Study site extents and trapline and transect locations. (a) Sary Mogul, Kyrgyzstan, and (b) Narati, China,

overlaid on true colour composites of Landsat OLI (Sary Mogul) and Landsat TM (Narati).

https://doi.org/10.1371/journal.pone.0289209.g001
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mammals were caught using both small break back traps (sbbt) for animals lighter than 100 g,

and big break back traps (bbbt) for larger individuals, with trapping and animal handling car-

ried out in full accordance with the relevant European guidelines (Directive 86/609/EEC) and

national regulations. The rodent species investigated in this study do not have protected status,

with some even listed as pests and subject to control. The study was carried out as part of sev-

eral international and national research programmes where protocols have been approved

informally by corresponding ethical committees. Similar protocols received also full approval

from the Comité d’Ethique Bisontin en Expérimentation Animale (CEBEA No. 58). Each trap

was set for three nights (unless non-controlled factors, such as trap theft, dictated otherwise),

Fig 2. Main habitats present at the Narati study site. (a) Lower-altitude mixed woodland and grassland. (b) Deciduous woodland in valleys. (c) Arable

agriculture. (d) Higher-altitude mixed coniferous woodland and grassland. (e) Grassland (including mown areas). (f) High-altitude grassland.

https://doi.org/10.1371/journal.pone.0289209.g002
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checked every morning and re-set as necessary. Trapping was undertaken in habitats identified

in the field and defined a priori based on dissimilarities in vegetation structure and dominant

plant genus composition, with a number of traps grossly proportional to the habitat areas. Stan-

dard trapping [15–17] was undertaken in each habitat. Each trapline consisted of 25 traps of a

single kind (sbbt or bbbt) spaced 3 m apart, a distance classically selected for providing at least

two traps within a small mammal home range. A total of 2910 trap-nights (referring to a single

trap set for one night) in 43 traplines were set in Narati, and 3786 trap-nights in 48 traplines in

Sary Mogul, with trapped species identified using the references [46–49]. Seven small mammal

species were captured at Narati; Apodemus uralensis (Pallas, 1811) (Herb field mouse), Microtus
obscurus (Eversmann, 1841) (Altai vole), Myodes centralis (Miller 1906) (Tien Shan red-backed

vole), Sicista tianshanica (Salensky, 1903) (Tien Shan birch mouse), Sorex asper (Thomas, 1914)

(Tien Shan shrew), Ellobius tancrei (Blasius 1884) (Eastern mole vole) and Marmota baibacina
(Kastschenko, 1899) (Grey marmot). Three species were captured at Sary Mogul; Cricetulus
migratorius (Pallas, 1773) (Grey dwarf hamster), Microtus gregalis (Pallas, 1779) (Narrow-

headed vole) and E. tancrei. A. uralensis identifications were confirmed using cytochrome b

sequencing and karyotypes. Linnean nomenclature followed [50] except for M. obscurus which

was identified according to [51]. To investigate the influence of trap and control night differ-

ences on captures, generalised linear models (GLM) were used with a Poisson link and control

night and trap type as explanatory variables. A random effect was added to take into account

the fact that controls were made iteratively for each trapline. The logarithm of the total number

of traps accessible for a given species (free traps + successful captures after a night) was included

as an offset (S1 Table). According to species, the residuals of the model were used as species-spe-

cific relative abundance index (termed abundance index below) where trap-type or controls

have a statistically significant impact on captures. No spatial autocorrelation was found based

on the visual examination of semi-variograms and Moran’s I index, with this analysis (and

equivalent analysis for the transect data) performed in R (version 3.6.3) [52].

Fig 3. Main habitats present at the Sary Mogul study site.

https://doi.org/10.1371/journal.pone.0289209.g003
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Transects. Transects were used to sample open habitats (grassland, arable fields etc.) for

subterranean species, such as E. tancrei, that cannot be trapped using break-back traps but do

leave conspicuous activity indices on the ground surface, and also opportunistically for some

trappable species such as M. obscurus, M. gregalis, and M. centralis to provide abundance esti-

mates over a larger range than possible using trapping methods [15–17, 53]. For each transect,

20 intervals of 10 paces were surveyed with activity indicators identifiable to species or genus

level (including foraging corridors, ground holes, earth tumuli and small mammal faeces)

recorded. Relative abundance scores of small mammal presence (the number of intervals

where presence indicators were observed) were produced for each species for each transect. In

Sary Mogul, field surveys comprised 37 transects as described in [25]. Transect locations were

separated by an average of 1.2 km to avoid spatial autocorrelation [12]. In Narati, 40 similar

transects totalling over 41 km were surveyed in grassland areas between 1509–3335 m altitude.

Transect routes were selected opportunistically under accessibility constraints in order to

cross the largest portion of each habitat patch. They were recorded via Global Positioning Sys-

tem (GPS) receivers with an approximate 15 m accuracy. Abundance indices were computed

each 20 intervals of 10 paces to avoid spatial autocorrelation. No evidence of autocorrelation

was found based on visual examination of semi-variograms and Moran’s I.

EO-derived explanatory variables

A suite of EO data products characterising key biophysical factors underlying small mammal

distributions including land cover, vegetation temporal variability and topographical variables,

were generated. The imagery used to generate these products were coincident with, or

acquired as closely as possible to, the field survey years, although persistent cloud cover neces-

sitated a wider image acquisition period at Narati (Table 1). Landsat [54] surface reflectance

tier-1 data at 30 m resolution was used, with this data cloud masked to remove pixels affected

by cloud, cloud-shadow or snow.

The imagery collections were used for 1) generating a cloud-free median pixel value com-

posite for land cover classification, and 2) to produce a series of percentile metrics quantifying

vegetation index temporal variability across the growing season. Topographical characterisa-

tion was performed using 30 m resolution Shuttle Radar Topography Mission (SRTM) Digital

Elevation Model (DEM) data, from which slope and aspect were derived.

Vegetation temporal variability. Percentile metrics were calculated for a series of vegeta-

tion indices derived from the imagery collections for each study area. These included the Nor-

malised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI),

Modified Normalised Difference Water Index (MNDWI), Enhanced Vegetation Index (EVI),

Green Red Vegetation Index (GRVI), Difference Vegetation Index (DVI), Triangular Vegeta-

tion Index (TVI), Spectral Variability Vegetation Index (SVVI), Soil Adjusted Vegetation

Index (SAVI), and Tasselled Cap brightness, greenness and wetness (see S2 Table for details).

Percentile metrics were calculated for each VI for the 5th, 10th, 25th, 50th, 75th, 90th and 95th

percentiles across the imagery acquisition period, with VI range and range of 75th-25th, 90th-

10th and 95th-5th percentiles additionally calculated. Percentiles were used as they capture the

dynamics of the phenological response of the vegetation, but detach it from the specific timing

Table 1. Number of Landsat images included in the image collections for the respective compositing periods.

Site Sensor Acquisition period Images

Narati Landsat TM 1st Jan 2006 to 31st Dec 2007 29

Sary Mogul Landsat OLI 1st Jan 2014 to 31st Dec 2014 87

https://doi.org/10.1371/journal.pone.0289209.t001
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of the event [55]. This is important as phenological events move slightly from year to year in

response to climate.

Land cover classification. Image classification was used to create the required land cover

classifications. The image classification process required an input data stack, which comprised

of satellite data (Table 1) and contextual data (topographical data), plus training areas for each

of the land cover classes. The image data stack used multi-temporal composite data created

from one year of Landsat data (Table 1), as this enabled the production of cloud-free images,

which are known to perform well in image classifications [56]. Specifically, the image data

stack comprised of: median composites of the Landsat bands (all bands except the thermal?),

NDVI vegetation temporal variability (10th and 90th percentile metrics and the 10th to 90th

percentile range), and topographical bands (elevation, slope and aspect).

The land cover classification was based on eight-classes comprising grassland, woodland,

arable, bushes, built-up, bare, water and snow (Figs 2 and 3 illustrate the land cover classes

present). Woodland was absent from Sary Mogul.

Reference locations of known land cover types were used for classification training and

accuracy assessment respectively, and were collected from: 1) field locations of known land

cover class (recorded via GPS); 2) reference locations derived from field photographs; 3) visual

interpretation of VHR satellite imagery available via Google Earth, and; 4) expert knowledge

of clear imagery features (e.g. water and snow). Using higher-resolution imagery as reference

data is an established technique [57], with Google Earth previously used for this purpose [58].

Reference locations were allocated on an alternating basis for training or validation, creating

for Sary Mogul 352 training and validation locations each (704 in total). For Narati, 800 valida-

tion points (100 per class) were used. Where land cover homogeneity allowed training loca-

tions were used to generate larger training polygons.

Once the training areas and the data stack had been created, a 200-tree random forest [59]

image classification was run. To train the classifier, for each class, 5000 training pixels were

selected from within the class-specific training polygons using random stratified sampling.

This process was applied to the Narati and Sary Mogul study areas separately creating two final

land cover classifications (see Results section for outputs and validation).

The land cover classifications were then used to derive the proportional presence of grass-

land, woodland and arable across the study areas, using moving windows with nested kernel

sizes of 50–500 m, in 50 m increments. Data for each EO metric was extracted for each trapline

and transect interval location. This data was then used in the predictive species modelling. All

EO data processing, including the Random Forest classification, was performed using Google

Earth Engine (GEE) [60].

Predictive species distribution modelling

To determine which EO variables were important in relation to small mammal abundance, the

boruta feature selection approach was used to identify and retain only those variables statisti-

cally important for each species [61]. This was performed in R (v4.0.3) using the Boruta

(v7.0.0; [61]) and randomForest (v4.6.14, [62]) packages. Random Forests (RF), were then

applied in a regression (rather than classification) capacity to assess their effectiveness for pre-

dictively modelling abundances, using these reduced sets of important variables, for each spe-

cies, at each site. RF hyperparameter tuning was performed, with the internal RF parameters

(number of trees, minimum leaf population, maximum nodes, number of variables per split

and bag fraction) tuned iteratively to identify the best performing model, determined by the

highest coefficient of determination (R2) value when comparing predicted values to the

observed values for the validation data set. With the optimal RF parameters established, each
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species-specific model was applied predictively for both study areas. Model validation was per-

formed using leave-one-out cross validation, producing R2 values of observed versus predicted

values.

The areas of optimal habitat were then calculated for each species based on the combination

of EO variables included in each SDM. The ratio of optimal habitat to total land evaluates the

risk for a species to develop outbreaks and reach large population densities, within the limits

of its ecology and the biotic capacity of the habitat. To convert the SDM continuous measure

of predicted abundance to binary optimal / non-optimal classes, a thresholding approach was

applied whereby the mean predicted abundance of all data used to build the SDM was set as

the threshold value [63]. Predicted abundance values above this threshold value were classified

to optimal, values below were non-optimal. This approach has been used previously for the

maximum entropy SDM method where the predicted probability of presence values generated

are converted to binary presence-absence values. [64] determined that this average probability

approach is at least as good as more complex approaches to determining threshold values.

Results

Land cover mapping

Land cover classifications were generated for both study areas (Fig 4), with Sary Mogul com-

prising 72.16% grassland, 20.80% bare, 4.76% arable, 0.77% bushes, 0.57% snow, 0.55% built-

up, and 0.39% water. Narati comprised 68.54% grassland, 12.93% forest, 10.37% bare, 6.57%

arable, 0.71% snow, 0.55% built-up, 0.32% bushes, and 0.01% water. Classification accuracies

for Sary Mogul and Narati are 85.23% and 94.50% respectively, with confusion matrices pre-

sented in S3 and S4 Tables.

Boruta feature selection

The species-specific variable sets identified as important by the boruta feature selection were

then used as the explanatory variables for the SDM. The top five variables for each species are

presented in Tables 2 and 3, with complete lists in S5–S7 Tables.

The boruta results (Tables 2 and 3) demonstrated that the most important EO-derived vari-

ables for each species varied, with proportional presence of woodland being important for A.

uralensis, S. asper and M. baibacina at Narati, with grassland being important for M. obscurus
and M. baibacina at Narati, and M. gregalis at Sary Mogul. Both vegetation and water indices

were consistently identified as important, although the specific index and percentile/range

value did vary between species. Elevation is also identified as being amongst the top five most

important variables for A. uralensis, S. tianshanica and E. tancrei at Narati.

For all sites, trapping methods and small mammal species, the RF hyperparameter tuning

determined the RF model parameters producing the highest R2 values between predicted and

observed values as: number of trees = 200, minimum leaf population = 1, maximum

nodes = unlimited, and variables per split =
p

number of variables, bag fraction = 0.7. RF

parameter tuning results are available in S8–S10 Tables.

Species distribution modelling

Narati. RF analysis indicated variability in predicted abundance patterns across the Narati

study area (Fig 5).

Results from SDM analysis of trapline data indicated highest predicted abundances to be

located in woodland-grassland boundary areas and wetter areas close to watercourses for A.

uralensis, in drier, higher-biomass grassland dominated areas for M. obscurus, and in wetter
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areas with high levels of woodland cover for M. centralis. Although predicted trapping success

for S. tianshanica and S. asper were considerably lower, where higher trapping success were

predicted for S. tianshanica this was at lower elevations in higher biomass areas comprising

grassland, woodland and bushy areas along watercourses. For S. asper, higher abundances

were predicted predominantly in areas of high woodland cover and with increasing wetness

close to watercourses. SDM of the transect data indicated highest predicted abundances for E.

Fig 4. Land cover classifications. (a) Sary Mogul study area. (b) Narati study area.

https://doi.org/10.1371/journal.pone.0289209.g004
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tancrei in grassland dominated areas. Areas of higher M. baibacina abundance were predicted

in higher-altitude grasslands, particularly on slopes. For the transect data, higher predicted

abundance of E. tancrei corresponded to grassland dominated areas, while for M. baibacina
this corresponded to grasslands at higher elevation and topographically variable (sloped) areas.

Sary Mogul. For Sary Mogul, trapline SDMs predicted generally low abundance of C.

migratorius (Fig 6). Where higher abundances were predicted, these corresponded with

sparsely-vegetated areas where the annual VI range was lower, indicating areas with consis-

tently low biomass levels across the growing season are preferred. Contrastingly, lower abun-

dances are observed in arable areas. For M. gregalis, generally low abundances were predicted,

although higher abundances were predicted in shrub areas close to watercourses and arable

areas, sparsely vegetated dry riverbed areas, and higher elevation grasslands. Conversely, very

low predicted abundances were observed for broader expanses of sparsely vegetated areas.

Transect data analysis for E. tancrei predicted extensive low abundance in sparsely vege-

tated areas, with higher abundance predicted in arable areas, more productive vegetated areas

along watercourses and where higher wetness levels are maintained at drier times of the year,

and higher elevation grasslands. For M. gregalis lower predicted abundances corresponded

Table 2. Top five EO-derived variables identified by the boruta feature selection analysis as important for each small mammal species for Narati.

Trapline Transect

A. uralensis M. obscurus M. centralis S. tianshanica S. asper E. tancrei M. baibacina
TCB 10p range MNDWI 25p range SVVI 50p SAVI 10p TCW 50p NDVI 50p Grassland 400m

Woodland 450m TCB 10p range EVI 50p Elevation NDWI 90p Elevation Woodland 500m

Woodland 400m GRVI 90p TCW 50p NDVI 10p Woodland 100m EVI 50p TCB 10p

Woodland 500m NDWI 10p EVI 10p range NDWI 10p range TCW 25p TCG 50p TCB 25p

Elevation Grassland 250m MNDWI 25p range SAVI 10p range Woodland 150m NDWI 90p range TCB 50p

TCB = Tasseled Cap Brightness, TCW = Tasseled Cap Wetness, TCG = Tasseled Cap Greeness, EVI = Enhanced Vegetation Index, NDWI = Normalised Difference

Water Index, NDVI = Normalised Difference Vegetation Index, GRVI = Green Red Vegetation Index, MNDWI = Modified Normalised Difference Water Index,

SVVI = Spectral Variability Vegetation Index, SAVI = Soil Adjusted Vegetation Index, 10p = 10th percentile, 25p = 25th percentile, 50p = 50th percentile, 90p = 90th

percentile. Variables are displayed in order of decreasing importance as determined by the random forest variable importance rankings, with the most important

variable at the top (see S5 and S6 Tables for full tables).

https://doi.org/10.1371/journal.pone.0289209.t002

Table 3. Top five EO-derived variables identified by the boruta feature selection analysis as important for each

small mammal species for Sary Mogul.

Trapline Transect

M. gregalis C. migratorius E. tancrei M. gregalis
TCB 25P NDWI 25p range TCW 10p TVI 50p

TCB 50P NDWI 10P DVI 25p range DVI 50p

Grassland 250m TVI 75P TCG 25p range NDWI 50p

Grassland 300m GRVI 25p range SAVI 25p range

Grassland 500m NDWI 75P NDVI 25p range

TCB = Tasseled Cap Brightness, TCW = Tasseled Cap Wetness, TCG = Tasseled Cap Greeness, NDWI = Normalised

Difference Water Index, NDVI = Normalised Difference Vegetation Index, TVI = Triangular Vegetation Index,

GRVI = Green Red Vegetation Index, DVI = Difference Vegetation Index, SAVI = Soil Adjusted Vegetation Index,

10p = 10th percentile, 25p = 25th percentile, 50p = 50th percentile, 75p = 75th percentile. Variables are displayed in

order of decreasing importance as determined by the random forest variable importance rankings, with most

important variable at the top (see S7 Table for full table).

https://doi.org/10.1371/journal.pone.0289209.t003
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with some grassland and arable areas, although there is considerable local variability with

localised hotspots of higher abundance predicted in grassland, arable and sparsely vegetated

areas.

Leave-one-out cross validation. The leave-one-out cross validation results indicated

good performance of the SDMs (Table 4), with R2 values ranging from 0.670 for M. gregalis
transect data from Sary Mogul to 0.939 for E. tancrei transect data from Narati. R2 values were

Fig 5. Random forest predicted abundance for the Narati study area. (a) A. uralensis, (b) M. obscurus, (c) M. centralis,
(d) S. tianshanica and (e) S. asper using trapline data, and (f) E. tancrei, and (g) M. baibacina using transect data.

https://doi.org/10.1371/journal.pone.0289209.g005
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Fig 6. Random forest predicted abundance for the Sary Mogul study area. (a) C. migratorius and (b) M. gregalis using the trapline survey data, and (c) E.

tancrei and (d) M. gregalis using the transect survey data.

https://doi.org/10.1371/journal.pone.0289209.g006

Table 4. Leave-one-out R2 values for the random forest species distribution models.

Site Method Species R2

Narati Trapline A. uralensis 0.780

M. obscurus 0.907

M. centralis 0.886

S. tianshanica 0.771

S. asper 0.835

Transect E. tancrei 0.939

M. baibacina 0.878

Sary Mogul Trapline C. migratorius 0.830

M. gregalis 0.775

Transect E. tancrei 0.810

M. gregalis 0.670

https://doi.org/10.1371/journal.pone.0289209.t004
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broadly similar for trapline and transect methods, although there is variability between

species.

Percentage of optimal habitat in the total area. Here, areas of optimal habitat were com-

puted for each species based on the thresholding values and combination of EO variables

included in each SDM (Table 5). This showed considerable variability in the area of optimal

habitat for the different species at each study area, at Narati varying from 16.8% of the total

study area comprising optimal habitat for S. asper, to 75.1% for M. baibacina, and at Sary

Mogul from 30.6% for E. tancrei to 53.5% for the M. gregalis transect data.

Discussion

This study assessed the effectiveness of RF SDM for predictively modelling abundance for nine

small mammal species. The objective, to identify important landscape proxy variables driving

small mammal distributions and generate species-specific predictive abundance maps has

been achieved. This is evidenced by the high leave-one-out cross validation R2 values for the

SDM models, ranging from 0.670 for the M. gregalis transect data at Sary Mogul to 0.939 for

the E. tancrei transect data at Narati, demonstrating the majority of variance to be explained

by the EO variables. These EO variables characterised the landscape in terms of land cover dis-

tributions, topographical variability and vegetation and wetness dynamics across the growing

season via the VI and water index (WI) percentile products. This enabled examination of the

impact of low, mid and high vegetation and moisture proxy variables on the small mammal

species in question.

SDM predicted high abundance areas varied considerably for each species; at Narati grass-

lands were predicted to hold higher abundances of M. obscurus, E. tancrei and M. baibacina,

forest areas hold higher abundances of M. centralis and S. asper, with mixed forest—grassland

boundary areas and areas close to watercourses predicted to hold higher abundances of A. ura-
lensis and S. tianshanica. However, it is not simply predominant land cover type influencing

species abundance, but also further variables characterising localised variability in vegetation

and wetness condition. For example, whereas grassland is identified as the key land cover type

in relation to abundance of M. obscurus, a range of VI and WI variables are also important in

the SDM, demonstrating increasing abundances with higher VI values and decreasing abun-

dances with higher WI values, indicating preferences for higher biomass, drier grassland areas.

Similarly, for other species, the variables ranked as important comprised a mix of land cover

and vegetation and water index metric variables.

Table 5. Proportion of optimal habitats in the total land, based on species-specific predictive models, and model-specific threshold values applied.

Site Method Species Threshold value Optimal habitat area (km2) % Total land

Narati Trapline A. uralensis 1.136 504.5 21.4

M. obscurus 1.740 1357.6 57.5

M. centralis 1.599 573.0 24.3

S. tianshanica 0.006 664.0 28.2

S. asper 0.014 395.8 16.8

Transect E. tancrei 0.078 1162.7 49.4

M. baibacina 0.009 1768.9 75.1

Sary Mogul Trapline C. migratorius 0.665 313.2 41.3

M. gregalis 0.007 247.7 32.7

Transect E. tancrei 0.928 231.7 30.6

M. gregalis 1.047 405.6 53.5

https://doi.org/10.1371/journal.pone.0289209.t005
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This advances the findings of previous studies, for example [7, 8, 21], that have modelled

small mammal distributions based on only the ratio of optimal to marginal patch area

(ROMPA) for a specific species within the broader landscape [65], using a pre-defined deci-

sion of what is considered key habitat type for a species. Characterising ROMPA simply

through the extent of a discrete land cover type across an area of interest precludes examina-

tion of how variability within land cover classes drives small mammal distributions and abun-

dances, and so offers a restricted understanding of the mechanics driving those patterns. The

approach used here overcomes this, and at least objectively identifies good proxies to optimal

habitat for a species based not just on the proportional coverage of discrete land cover type(s),

but additionally on the vegetation and wetness conditions, and temporal dynamics thereof, of

a given area. This differs from the conventional ROMPA approach, as here each species

informs us through a specific predictive model which variables (combination of EO variables)

form its own optimal habitat. For instance, where grassland was estimated at approximately

70% of total land both in Sary Mogul and Narati, grassland optimal habitat for E. tancrei was

predicted to be only around 30 and 50% respectively. Hence here, we move from a human per-

spective to a species perspective of optimal habitat.

When evaluating these results, it is necessary to again consider small mammal ecology. For

instance, Eulipotyphla insectivores (e.g. S. asper) cannot reach high densities since they are sit-

uated at a high level in the trophic chain. M. centralis is a forest vole, and generally forest spe-

cies do not reach as high population densities over large areas as grassland voles do [14, 66,

67]. Conversely, E. tancrei and M. obscurus are grassland voles, and in areas of high availability

of optimal habitat their populations can reach very high densities over large areas [7–8].

Whereas alternative SDM methods such as Maximum Entropy can predict species presence

[68], it is the ability of random forests to identify high abundance peaks of small mammals,

rather than necessarily just their presence, that is of particular value in determining their func-

tion within an ecosystem. It must be acknowledged, however, that a limitation is that interan-

nual variations in small mammal populations cannot be captured via trapping/transects from

a single snapshot in time. Consequently, this means some areas exhibiting low abundance or

virtual absence of a species at the time of the study could potentially be at high abundance

some months/years later and conversely [66] at different stages of their population cycle.

The potential of EO data to characterise a wider range of biophysical environmental vari-

ables for SDMs has been strongly suggested here. EO datasets can contribute to future moni-

toring programmes, complementing field observations by offering broader spatial and

temporal coverage. As such, synergies between EO, ecological modelling communities and

field ecologists will yield considerable benefits in improving modelling and predictions of spe-

cies distributions over broad scales, including filling data gaps, improved characterisation of

environmental variables influencing species distributions, and through effective, repeatable

and cost-effective monitoring of ecological systems [34]. As extensive historical remote sensing

data archives exist, including up to five decades of historical data for Landsat, there is also

potential for quantifying population responses to landscape change [69] including lag times

between landscape modification and subsequent population change. The inclusion of tempo-

rally aggregated VI variables characterising vegetation temporal variability throughout the

growing season, rather than just vegetation condition from a single snap-shot in time, also

overcomes previous limitations and enables inclusion of vegetation dynamic variables within

SDMs. However, the use of EO-data in SDM’s (and the development of SDM’s generally) is

very dependent on the availability of suitable ground data. Specifically, good quality ground

data collected from a spatially representative set of sites. Here, we retrospectively applied

SDM’s to existing data, but future work at these sites could build on this work.
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These methods will continue to leverage the strengths of EO data to improve our under-

standing of landscape and ecological linkages to small mammal distributions and population

dynamics.
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