
Geoscience Frontiers 13 (2022) 101288
Contents lists available at ScienceDirect

Geoscience Frontiers

journal homepage: www.elsevier .com/ locate/gsf
Editorial
Metamorphism at convergent plate margins: Preface
https://doi.org/10.1016/j.gsf.2021.101288
1674-9871/� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Foreword

The year 2020 will long be recognised as a period of sadness and
frustration for academics worldwide, given the catastrophic impact
that the spread of novel coronavirus ‘‘2019-nCoV” – or COVID-19 –
has had on research and teaching activities, as well as in their per-
sonal lives. This Special Issue was designed to represent an avenue
for dissemination of many studies presented at the September
2019 Geological Society of America session T23, ‘Metamorphism
and Orogenesis at Convergent Plate Margins’, convened by Richard
Palin and Kyle Ashley. Many geologists at all career stages attended
this session and presented work that was in different stages of
completion; however, just a few months later, the rapid spread
of COVID-19 around the globe applied sudden brakes to many of
these partially completed projects. Several researchers who
expressed interest in contributing to this Special Issue were forced
to withdraw, either due to new responsibilities at home, laboratory
closures at their places of work, or restrictions halting domestic or
international travel. We appreciate that these changes in circum-
stance have resulted in fewer than expected contributions to this
Special Issue, and warmly thank the authors who did manage to
overcome these hurdles and produce an excellent set of papers.
We hope that the academic world will be able to recover from
the impact of COVID-19 so that we can – as a community – move
forward once again to break new ground in our understanding of
this dynamic and highly unpredictable natural world.

2. Introduction

Convergent plate margins are sites of intense deformation,
metamorphism, and magmatism, where significant heat, fluid,
and mass transfer may take place. Quantifying the fluxes and dri-
vers of orogenic processes in these regions is critical to under-
standing the geodynamical evolution of the lithosphere, the rates
and mechanisms of metamorphism at elevated pressure and tem-
perature conditions, and for constraining the nature of mountain
building and continental growth through geological time. Investi-
gating the drivers and petrological/tectonic implications of regio-
nal or contact metamorphism at convergent plate margins,
whether in the subducting slab or overlying arc, can be achieved
via many techniques, such as field mapping, petrological phase
equilibriummodelling, petrochronology, geochemistry, and geody-
namic and/or geophysical modelling, and which can be performed
a wide range of spatial and/or temporal scales (e.g. Hossack, 1979;
Bell and Johnson 1989; Li and Bebout, 2005; Roberts, 2012; St-
Onge et al., 2013; Palin and White, 2016; Palin et al., 2020). The
contributions to this Special Issue exemplify innovative uses of
combinations of these techniques, and address important ques-
tions related both to local geology and broader-scale geodynamic
processes.

3. Contributions in this Special Issue

This Special Issue of Geoscience Frontiers assembles seven
papers authored by a geographically diverse set of scientists at var-
ious career stages. Together, these studies focus on deformational,
magmatic and metamorphic processes that occur in several conti-
nental arcs and collision zones worldwide, and spanning the Meso-
proterozoic to recent.

The first study, by Avellaneda-Jiménez et al. (2022), presents
new field observations, petrological data, and results of thermo-
barometry from Early Cretaceous, metamorphic rocks in the Cen-
tral Cordillera of the Colombian Andes. These outcrops preserve
metabasites that experienced cold and steep subduction to eclog-
ite-facies conditions, followed by thermal overprinting to amphi-
bolite-facies conditions during buoyancy-driven exhumation.
High-resolution constraints on the pressure and temperature evo-
lution indicate a secular evolution in the thermal structure of the
subduction channel, which the authors interpret as evidence for
asthenospheric mantle inflow during steepening of the angle of
subduction of the oceanic lithosphere through time. Such pro-
cesses are hypothesized to have occurred throughout Earth history
(Smith et al., 2014; Wang et al., 2019; Parsons et al., 2020), with
this contribution marking the first report of Phanerozoic slab
roll-back-related metamorphism in the Caribbean.

Next, Larson et al. (2022) present new petrological analyses,
results of thermobarometry, and garnet Lu–Hf age data from a
sample of metapelitic schist from the Nepalese Himalaya, which
reveal that the basal décollement oscillated ‘‘in and out of
sequence” through time as the orogenic hinterland evolved dur-
ing the Miocene. Such data may contribute to new kinematic
models describing how continent–continent collisional orogenesis
evolves through time. These data from east–central Nepal are cor-
related by the authors with similar examples in west Nepal
(Soucy La Roche et al., 2018), Bhutan (Grujic et al., 2011), and
northeast India (Warren et al., 2014), showing that this is likely
a broad-scale feature of the Himalaya, and not a localized
phenomenon.
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The third study, by Searle and Lamont (2022), reviews the geo-
logical evolution of the Cyclades, and in particular, a recently pro-
posed and highly provocative hypothesis that the entire
tectonothermal history of the Cycladic islands – including Naxos,
Tinos and Syros – can be explained by continent–continent colli-
sion (e.g. Lamont et al., 2020a; Lamont et al., 2020b; Searle and
Lamont, 2020) instead of representing metamorphism in an
extending back-arc region (e.g. Lister et al., 1984; Jolivet and
Brun, 2010; Menant et al., 2016). The authors outline a detailed
geodynamic model relating all known stages of the Wilson Cycle
to various localities throughout the region, which developed over
a 70-Myr period. The suggestion that the Cyclades may have
formed in this way will no doubt beg the question of whether other
apparently ‘well understood’ examples of actively extending conti-
nental lithosphere associated with orogenic collapse of previously
thickened crust may instead have formed in a similar fashion.

The following study, by Sequeira et al. (2022), presents meta-
morphic conditions, geochronology and magmatic geochemistry
from the Chottanagpur Gneiss Complex (CGC) of Eastern India.
The CGC represents an accretionary zone where crustal blocks of
northern and southern India collided in the early Neoproterozoic.
This study documents a ca. 1.5–1.4 Ga suite of A-type granitoids,
which are interpreted as a widespread phase of magmatism involv-
ing extension and asthenospheric upwelling, and correlate with A-
type magmatism elsewhere in the Columbia supercontinent. This
magmatism postdates early metamorphism and deformation at
>1.5 Ga in the CGC, and pre-dates 1.0–0.9 Ga metamorphism and
deformation associated with amalgamation of crustal blocks along
this fold belt. The origin and amalgamation of crustal blocks of
Greater India during the Columbia to Rodinia supercontinent tran-
sition is highly debated, with this study presenting crucial new evi-
dence for this puzzle.

The fifth study, by Shakerardakani et al. (2022), presents
geochronology and metamorphic petrology from the Sanandaj-Sir-
jan Zone of the Zagros mountains in Iran. Two different units are
interrogated, and both provide evidence of Variscan-aged (late Car-
boniferous) high temperature/low pressure metamorphism and
rift-related bimodal magmatism. The next metamorphic event is
not well constrained, but evidence is presented for an Early Jurassic
high pressure/low temperature event, with potentially related con-
tact metamorphism. The late Cretaceous to early Paleogene colli-
sion of Neotethys is recorded as M3 metamorphism in the
studied units. A final metamorphic stage (M4) is observed, with
timing constrained to ca. 28 Ma to 25 Ma, but the origin of which
remains elusive. This study demonstrates the polymetamorphic
nature of the Zagros mountains, and provides areas of interest
for further detailed invesitigation with constrained P-T-t paths.
The younger metamorphic stages will potentially inform about
the overall evolution of the Neotethys collisional belt.

Next, Walczak et al. (2022) present new geochronological data
for felsic orthogneiss from the Seve Nappe Complex, Scandinavian
Caledonides, using a zircon age depth-profiling method. The care-
ful analysis of thin zircon rims and overgrowths is shown by the
authors to document two discrete subduction and (partial)
exhumation events separated by ca. 20 Myr; affectionately referred
to as double-dunking! Such yo-yo tectonics at convergent margins
have been reported in rocks from Turkey (Umhoefer et al., 2007)
and the Italian Alps (Rubatto et al., 2011), and require high-spatial
resolution geochronology to identify; thus, they may be a common
feature of metamorphism at convergent margins, but have been
formerly missed in studies that have not had access to these newly
developed analytical techniques.

The final study by Zuza et al. (2022) documents critical field
observations and petrological data supporting a highly contentious
theory that has arisen in recent years – that tectonic pressure
within deforming continental crust can significantly exceed that
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expected solely induced by the volume of overburden (Petrini
and Podladchikov, 2000; Moulas et al., 2013; Gerya, 2015). This
contentious phenomenon is termed ‘overpressure’ and has been
proposed based on the results of crustal-scale numerical modelling
and first-principles calculations of mechanical/elastic interactions
between different minerals at the grain scale (Schmalholz and
Podladchikov, 2013; Wheeler, 2014; Tajčmanová et al., 2015);
however, evidence of overpressure in the natural world has been
difficult to discover. Recent workers have reported such occur-
rences in the Alps (Luisier et al., 2019) and potentially also the
Himalaya (Marques et al., 2018). The authors provide a valuable
addition to this list with evidence from the North American
Cordillera.

We thank all the contributors to this Special Issue and the ref-
erees who spared their valuable time to provide insightful and
helpful comments. Dr. L. Wang, Editorial Assistant at Geoscience
Frontiers, and Prof. Santosh, Editorial Advisor, are also thanked
for their support throughout the production process. We hope that
the papers assembled herein will be of interest to many research-
ers worldwide for many years to come.
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