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Synopsis 
Gravity waves (GWs) are the fundamental link that connects the tropospheric weather to the 
space weather. Hence, global measurements to characterize their parameters, distribution and 
main trends in the ITM are crucial. This white paper summarizes current GW measurement 
techniques operated from ground-based to space borne platforms. The capabilities and 
limitations of each technique are described and discussed. The gaps in current global GW 
measurements are identified and possible solutions are suggested. 
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1. Measurements required to determine the global distribution of GWs in the ITM 
Traditionally gravity waves (GWs) have been understood to couple the troposphere, 

stratosphere, and mesosphere (0-90 km), where waves generated by meteorological processes in 
the troposphere propagate upward into the stratosphere and mesosphere, grow in amplitude until 
they are dissipated by breaking or wind blocking, and drive the circulation of the stratosphere and 
mesosphere (Fritts and Alexander, 2003; Yiğit & Medvedev, 2010; 2015). Over the past decade a 
variety of theoretical and observational studies have revealed that waves have a crucial role in 
coupling the thermosphere with the mesosphere, stratosphere and troposphere below and coupling 
space weather and terrestrial weather (or meteorology). 

From ground-based sites and from airborne or space-based platforms, multiple techniques 
have been employed to support and guide the theoretical and modeling efforts. However, many 
GW characteristics and effects have yet to be quantified and understood. Current GW 
measurements have many limitations (wave spectrum, vertical, spatial, temporal distributions). 
We need to treat the atmosphere over a much larger scale to understand the bigger picture. In this 
case, the overarching unknowns comprise GW characteristics (scale sizes, period, propagation 
direction, and their associated energy and momentum fluxes) and distribution (global forcing, 
regional variations, seasonal and long-term variations), their effects on the background atmosphere 
(temperature, wind, composition, mixing), PWs or tides, and their coupling roles (between 
troposphere and middle/upper atmosphere, between neutral atmosphere and ionosphere, and in 
interhemispheric processes). Furthermore, the effects of tides and PWs on small-scale GW 
propagation and vice-versa GW forcing of these larger waves, are still not fully understood. 

To address these pressing issues, ideally, the following measurements are required: 
-   Global measurements (covering the world, from ground to ~500 km), 
-   Simultaneous measurements of the background and the wave perturbations in wind, temperature 

(or a proxy such as airglow intensity), and density, 
-   Wave measurements comprising all scale sizes from ~10 to 1000s km in the horizontal, and 

from ~1 to ~100 km in the vertical, covering observed wave periods from 1 min to 24 hours, 
-   Simultaneous vertical and horizontal measurements of the same wave event, and its evolution 

(4D), 
-   Continuous daytime and nighttime observations, 
-   Seasonal and long-term observations (several years to possibly several solar cycles). 

  
2. Overview of current technologies 

To date, a broad range of instruments and 
techniques are utilized to measure the required 
parameters. The following sections briefly 
overview their capabilities and limitations. 
2.1. Passive optical system 
 Naturally occurring airglow emissions 
(e.g., OH, O2, Na, OI 5577, OI 6300) have 
successfully been used for several decades to 
study GWs in the ITM system (e.g., Taylor et al., 
1995). These airglow layers spread from ~80 to 
~250 km altitude. Passive imaging systems with 
field-of-view from a few degrees to all-sky 
(180°) allow measurements of GW horizontal 

Figure 1: AMTM temperature map showing quasi-
monochromatic GW at 87 km (Pautet et al., 2014). 



characteristics (e.g., scale sizes, phase speed, direction, period, and perturbation amplitude) within 
each airglow layer (e.g., Taylor et al., 1997; Hecht et al., 2001; Ejiri et al., 2003; Suzuki et al., 
2004; Nielsen et al., 2009). This technology is limited to nighttime measurements and to GWs 
with vertical wavelengths larger than the layer thickness. Recent detector and optical developments 
enable derivation of the temperature measurements of wave field perturbations, and background, 
important to quantify GW impacts (e.g., Ground-based Infrared P-branch Spectrometer, GRIPS, 
Pilger and Bittner, 2009; Advanced Mesospheric Temperature Mapper, AMTM, Figure 1, Pautet 
et al., 2014; Taylor et al., 2019). Likewise, airglow emissions are used to map 2D horizontal wind 
with interferometer instruments (e.g., Scanning Doppler Imager, Conde and Nicolls, 2010; Wind 
Imaging Interferometer, Kristoffersen et al., 2022). 

Passive observations can also be made from space. For example, solar and stellar 
occultation at Far Ultraviolet (FUV) and Extreme Ultraviolet (EUV) use the extinction of sun or 
starlight to quantify the atmospheric column along the line of sight and have been used to 
characterize gravity waves by measuring their vertical wavelength and by fully constraining their 
potential energy flux, and partially constraining their momentum flux (Nakagawa et al. 2020, 
Starichenko, et al 2021). Likewise, infrared limb imaging measures temperature by thermal 
emissions of the atmosphere. Combined with tomography, GWs with horizontal wavelengths >80 
km can be sounded in 3D from airplane (e.g., Krisch et al., 2017), and potentially from satellites 
in the future (Preusse et al., 2014). 
2.2. Lidars 

Lidars have continued to advance our understanding of the structure and dynamics of the 
middle and upper atmosphere (stratosphere-mesosphere-lower thermosphere) over the past decade 
(see recent review by She et al., 2021 and references therein). Rayleigh and resonance lidars yield 
measurements of vertical profiles of density, metal (i.e., Na, Fe, K) temperature, and/or wind by 
combining scattering from the neutral air (Rayleigh) and from atomic metals (resonance) with 
precision spectroscopic techniques. The most advanced systems provide common volume 
measurements of wind and temperature at high resolution in day and night. The colocation of 
Rayleigh and resonance lidars have provided continuous measurements from ~30 to 110 km that 
yield insights into the vertical coupling of the whole atmosphere through measurements of the 
propagation and breaking of waves and tides (e.g., Hildebrand et al., 2012; Li et al., 2021). 

State of the art lidar systems have been established at a variety of observatories around the 
world. Rayleigh lidar measurements at McMurdo, Antarctica, have yielded measurements of 
secondary gravity wave generation in the mesosphere (Vadas et al., 2018; 2019). Iron resonance 
lidar measurements at McMurdo, Antarctica have revealed the presence of extended thermospheric 
layers, the presence of fast gravity waves in the thermosphere (Chu et al., 2011). The sodium 
resonance lidar observations at the Andes Lidar Observatory (ALO) at Cerro Pachon, Chile, has 
yielded measurements of horizontal tidal winds in the thermosphere, and wave-driven heat fluxes 
and turbulence in the mesosphere (Figure 2, Liu et al., 2016; Guo et al, 2017). Resonance lidar 
measurements at Utah State University, USA, have revealed changes in the circulation of the lower 
thermosphere driven by coronal mass ejections that may be a source of gravity waves (Yuan et al., 
2015). The colocation of Rayleigh and resonance lidars have provided continuous measurements 
from ~30 to 110 km that yield insights into the vertical coupling of the whole atmosphere through 
measurements of the propagation and breaking of GWs and tides (e.g., Hildebrand et al., 2012; Li 
et al., 2021).  Rayleigh and resonance lidar measurements coordinated with rocket soundings at 
Poker Flat Research Range, Alaska, have yielded measurements of waves and turbulence in the 
mesosphere (Triplett et al., 2018) and the thermodynamics of water in the lower thermosphere 



(Collins et al., 2021). The Raman Lidar for Meteorological Observations (RALMO) at Payerne, 
Switzerland (Sica and Haefele, 2016), and the Purple Crow Lidar in London, Canada (Sica and 
Haefele, 2015, Jalali et al., 2019), benefiting from advanced in signal processing, are able to 
measure temperature, water vapor, and aerosol on a routine basis up to the lower mesosphere 
(RALMO, Stober et al., 2021a), or to reach altitudes up to 100 km (Purple Crow Lidar). 

 

 

 Continued advances in laser and optical technologies, especially diode laser and fiber laser 
technologies, have resulted in the upgrading of existing lidar systems to make them more robust 
and accurate, and the development of new systems that are portable and highly automated (Liu et 
al., 2016; Kawahara, et al., 2017; Xia et al., 2017; Li et al., 2020; Kaifler and Kaifler, 2021; Lübken 
and Höffner, 2021; Collins et al., 2022). These advances have also supported the development of 
lidars that can measure new species such as metastable Helium in the thermosphere (Kaifler et al., 
2022). The development and success of ground-based and airborne systems have also prompted 
the design and development of resonance lidar systems for deployment in space to provide global 
views of the waves and the wave driven circulation (Janches et al., 2022). 
2.3. Radars 

Radars have become a widespread tool to measure mesospheric/lower thermospheric winds 
used to study the MLT dynamics including PWs, tides, and GWs. In particular, meteor radars take 
advantage of the continuous influx of meteoroids, creating ionized trails that drifts with the neutral 
wind (Hocking 1999; Hocking et al., 2001; Holdsworth et al., 2004). Currently, radars provide 
continuous and autonomous observations with a high degree of automated data analysis, and 
standard data products such as hourly horizontal winds, daily mean temperatures, and estimates of 
GW momentum fluxes for various scales (Hocking, 2005). They are distributed worldwide and 
currently cover latitudes from 79°N to 78°S, on almost all continents (see Figure 5). 

A breakthrough was achieved with a new generation of higher power meteor radars such 
as the Southern Argentina Agile Meteor Radar (SAAMER) or the Trondheim system (Fritts et al., 
2010a; 2010b; de Wit et al., 2016; 2017). 

Recently, multi-static observations using networks of meteor radars, which are based on 
2DVAR approaches, have become available as well (Walteufel and Corbin, 1979; Stober and 
Chau, 2015; Vierinen et al., 2016; Chau et al., 2017; Stober et al., 2018; Volz et al., 2021). The 

Figure 2: (a) Temperature and (b) meridional wind measured by the Na lidar at ALO on 17 April 2015. The 
existence of a thermospheric Na layer enabled measurements up to 140 km (She et al., 2021). 



current meteor radar networks performing 
continuous observations are the Nordic Meteor 
Radar Cluster, and the Chilean Observation 
Network De Meteor Radars (CONDOR, see 
Figure 3, Stober et al., 2021b; 2022). These new 
capabilities enable the investigation of horizontal 
wavelength spectra down to scales of 50-60 km 
for all three wind components, and 
measurements of momentum fluxes and wind 
variances at shorter time scales than what is 
achievable with standard monostatic systems. 
2.4. LF-pulse sensing 

LF-pulse sensing of the D-region has 
been recently employed to measure GWs in the 
upper atmosphere (Iwata and Ishikawa, 1974; Lay and Shao, 2011). This technique allows for 
measuring the vertical displacement of the bottom side of the ionosphere (80-90 km altitude). 
Waves with vertical wavelength from ~150 m to a few km, and a period over 6 s, can be measured 
over full 24 hours, but with a much lower ionospheric variability during daytime. 

 
The majority of these instruments are currently ground-based, operating often 

simultaneously as clusters or networks to take advantage of their complementary measurement 
capabilities. 
  
3. Observation platforms 
3.1. Ground-based observations - Instrument clusters and networks 

 Figure 4 shows a map of 
the current main instrument 
clusters dedicated to aeronomy 
studies. Red dots correspond to 
sites with all three main types of 
instruments (passive optical 
system, lidar, radar), yellow dots 
correspond to sites with only two 
types of instruments. 

To extend the coverage 
of a specific type of instrument, 
several networks have been 
established and are currently 
operational such as MANGO 
(Mid-latitude All-sky imaging Network for Geospace Observations), ANGWIN (Antarctica GW 
Instrument Network), SuperDARN, Boston University mesospheric/thermospheric imagers, radar 
network… As an example, Figure 5 shows the network of meteor radars currently operating. 

 
These instrument clusters and networks span a large latitude range but enormous gaps 

still exist such as the Oceans or the African continent. 

Figure 3: Illustration of the CONDOR multi-static 
meteor radar detection centered on the Andes 
Lidar Observatory, Chile. 

Figure 4: Current clusters of aeronomy instruments. 



3.2. Airborne and space borne missions 
Airborne platforms have been used for decades to study tropospheric weather and 

phenomenon, but it was only recently that several projects were designed to investigate GWs in 
the middle and upper atmosphere. Most notably, ALOHA-90 and ALOHA/ANLC-93 (Hostetler 
and Gardner, 1994; Gardner, 1995; Swenson et al., 1995), and recently DEEPWAVE (Fritts et al., 
2016), GW_LCYCLE, or SOUTHTRAC (Rapp et al., 2021) employed airglow imagers, infrared 
limb imagers, and lidars onboard research aircrafts to cover large regions, usually inaccessible to 
ground-based instruments, and to characterize propagation through a large range of altitudes. 
Stratospheric balloons have also been used to make in-situ measurements in the middle atmosphere 
(e.g., Hertzog et al., 2012; Plougonven et al., 2013), or to remotely study the upper atmosphere 
(e.g., TurboPMC, Fritts et al., 2019). 

Satellite missions have been launched since the 1990s to study the ITM system, such as 
UARS, SME (Clancy et al., 1994). They have employed two types of measurement techniques: 
nadir viewing (imager or lidar pointing directly towards the Earth), or limb scanning (optical 
instruments measuring the scattering of sunlight at the limb to obtain vertical profiles). Nadir 
viewing instruments are capable of measuring the horizontal wave characteristics over large areas, 
with global coverage, but with a coarser vertical resolution. The limb scanning instruments provide 
vertical profiles of various background fields and wave parameters, but are limited to larger 
horizontal wavelength waves (Wright et al., 2016). The current missions/instruments include 
AQUA/AIRS, AIM, CrIS, GOLD, ICON/MIGHTI, AURA/MLS (Waters et al., 2006), NIRAC, 
ODIN/OSIRIS, TIMED/SABER, COSMIC-2 and VIIRS. Table 1 summarizes their capabilities 
and limitations on GW measurements. In the near future, new missions or instruments such as 
AWE (the first NASA dedicated GW mission, capable of temperature mapping and MF at OH 
layer altitude), DYNAGLO (dual cubesat measuring horizontal waves at 150 km), MATS 
(temperature profiles 75-110 km, NLC mapping, and 3D GW reconstruction, Gumbel et al., 2020), 
and OWLS (density profiles ~100-230 km, vertical waves, potential energy flux), will soon add 
new capabilities in GW observations and expand our knowledge on their characteristics. 

Figure 5: Global meteor radars network (courtesy S. Eckermann). 



Recent missions 
Altitude range 
(km) 

Latitude range 
(°) Day/Night Type 

Resolution/Sampling 
(km) Comments 

AIM/CIPS ~50 +/- 75 Twilight Nadir 10 Vert, 7.5 Horiz 
Rayleigh Albedo 
Anomaly 

80-85 60-85 N and S PMC 
AIM/SOFIE 20-100 65-85 N and S Day Limb 2 Vert, 300 Horiz   
AQUA/AIRS 35-40 +/- 85 Day and night Nadir 6-10 Vert, 30 Horiz Sun-synchronous 
AURA/MLS 10-90 +/- 82 Day and night Limb 4-10 Vert, 165 Horiz Sun-synchronous 
COSMIC-2 0-60 +/- 24 Day and night Limb  <1   
CrIS 35-40 +/- 85 Day and night Nadir 10 Vert, 14 Horiz Sun-synchronous 
GOLD 140-180 +/- 60 Day Nadir 40 Vert Geostationary 

ICON/MIGHTI 

Night 94-110 and 
230-270, day 94-
280 -10 to +40 Day and night Limb > 500 Horiz 

Wind 

Night 90-105, day 
90-127 Temperature 

NIRAC ~87 +/- 53 Night Nadir  0.07 Horiz OH brightness 

ODIN/OSIRIS 7-65 
+/- 82 but 
seasonal Day Limb 1 Vert  Sun-synchronous 

TIMED/SABER 20-110 
82N-52S or 
52N-82S Day and night Limb 2.5 Vert, 100 Horiz Temperature 

VIIRS ~87 +/- 85 Night Nadir 10 Vert, 0.75 Horiz OH brightness 
  

Future missions   
AWE ~87 +/- 53 Night Nadir 30-300 Horiz OH temperature 

DYNAGLO 150 km +/- 86 Day Nadir 330 km Horiz 
O/N2 density 
variations 

MATS/Limb 75-110 Global Day and night Limb 1 Vert x 20 Horiz O2 temperature 

MATS/Nadir 80-86 

45-90 N and S 
(NLC) 
Global (O2) 

Day 
(NLC)/night 
(O2) Nadir 0.5 vertx10 Horiz,  

NLC and O2 
nightglow 

OWLS 100-230 
~50 to 90 N 
and S Dawn/dusk Limb <60 Vert O2 density 

       
Table 1: Capabilities and limitations of the current and near-future aeronomy missions. 

  
Space-based instruments offer a much large geographical coverage, can measure vertical 

or horizontal GW wavelengths, with long-duration observations, but investigation of the lifecycle 
of individual GW events is more limited. Furthermore, depending on the orbits, it is difficult to 
properly assess the modal composition of the contributing tidal and PW fields. 
 
4. Gaps in global measurements of GWs 

The current or near-future aeronomy projects will provide a broad wealth of data that will 
significantly improve our knowledge on GW dynamics. Nevertheless, numerous gaps in these 
global measurements will still exist: 
- As shown in Table 1, no individual instrument can cover all the GW scale sizes, both horizontally 



and vertically, leaving gaps in the wave spectrum. In particular, the detectability of small-
amplitude waves is limited due to instrument specifications, background noise, or low signal 
level. As they propagate to higher altitudes, those waves will grow larger and impact the 
atmosphere above the measurement region, 

- Even space-borne missions are limited in coverage by their orbit, which results in missing 
regions, especially at high latitudes where ground-based measurements are already sparse, 

- Simultaneous vertical and horizontal measurements of the same wave events are rare but essential 
to characterize GW without making any assumptions on their dynamics; ideally, these 
observations are carried out to provide full 3D/4D data fields, 

- Simultaneous measurements of the neutral atmosphere and ion/electron content are necessary to 
understand the coupling between the mesosphere/thermosphere and the overlying ionosphere, 

- Even though some missions have acquired data for many years, longer term measurements are 
essential to better understand the broader effects of phenomenon like El Niño, La Niña, or the 
solar cycle on GW dynamics (Beig et al., 2003). 

 
5. Possible solutions 

Newly available technologies and simultaneous operation of complementary instruments 
can provide possible solutions to fill the current measurement gaps. The following suggestions 
should be taken into consideration: 
- The development/expansion of ground-based cluster/networks with recent high-resolution 

instruments such as AMTM, wind imaging interferometers, new generation high-power radars 
and lidars, spread out around the world, to establish global, simultaneous, multi-dimensional 
measurements of both the waves and background fields, 

- Constellations of complementary satellite measurements with both wave and background 
temperature and wind fields, possibly using a combination of large satellites together with a suite 
of cubesats, 

- Clear strategy to replace end-of-life satellites/instruments to assure continuity for long-term 
measurements, 

- Take advantage of new space technologies such as infrared limb imaging to measure wind and 
temperature from 20 up to 250 km or to generate 3D distributions along the orbital track, or sub-
limb imaging to observe very short wavelength waves in the mid-stratosphere, 

- For space borne instruments, develop adequate observation strategy, such as deploying multiple 
satellites, to ensure a good time coverage of the upper atmospheric wind/temperature fields to 
better resolve tidal modes and account for two-way interaction between the background and 
GWs, 

- Organize simultaneous coordinated GW and background measurements from the global ground-
based networks and the satellite missions, 

- Finally, cooperation with numerical models, including assimilation (Eckermann et al., 2018; 
Stober et al., 2020), is crucial to better understand the dynamics and effects of GWs in the Earth’s 
or other planets’ atmosphere. 

The future DYNAMIC mission, which proposes to combine measurements from two 
satellites to delineate the dynamical behavior and structure of the ionosphere, thermosphere and 
mesosphere system, is an essential step in the right direction. 

 
No instrument can do everything. However, we are now in an era when we can define 

the measurements we need and then achieve them! 
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	- Even though some missions have acquired data for many years, longer term measurements are essential to better understand the broader effects of phenomenon like El Niño, La Niña, or the solar cycle on GW dynamics (Beig et al., 2003).

