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Deforestation poses a major threat to the tropical montane forest ecosystems of
East Africa. Montane forests provide key and unique ecological and socio-
economic benefits to the local communities and host diverse flora and fauna.
There is evidence of ongoing deforestation and forest clearance in thesemontane
forests although estimates diverge among different sources suggesting rates of
0.4%–3% yr−1. Quantifying deforestation rates and forest disturbance is critical to
design conservation and sustainable management policies for forest
management. This study quantified the rate of deforestation and forest
recovery over the last three decades for the Mau Forest Complex and Mount
Elgon forests in Kenya and Uganda using Landsat time-series satellite imagery.
With the analysis, classification accuracies of 86.2% and 90.5% (kappa 0.81 and
0.88) were achieved for the Mau Forest Complex and the Mt Elgon forests,
respectively. 21.9% (88,493 ha) of the 404,660 ha of Mau forest was lost at an
annual rate of −0.82% yr−1 over the period between 1986 and 2017. More
positively, 18.6% (75,438 ha) of the forest cover that was disturbed during the
same period and is currently undergoing recovery. In Mt Elgon forest, 12.5%
(27,201 ha) of 217,268 ha of the forest cover was lost to deforestation at an annual
rate of −1.03% yr−1 for the period between 1984–2017 and 27.2% (59,047 ha) of the
forest cover disturbed is undergoing recovery. The analysis further demonstrated
agriculture (both smallholder and commercial) was the main driver of forest cover
loss in Mau forest, accounting for 81.5% (70,612 ha) of the deforestation, of which
13.2% was due to large scale and 68.3% was related to the smallholders. For the Mt
Elgon forest, agriculture was also themain driver accounting for 63.2% (24,077 ha)
of deforestation followed by the expansion of human settlements that contributed
to 14.7% (5,597 ha) of forest loss. This study provides accurate and novel estimates
of the rate of deforestation for the Mau forest complex and Mt Elgon forest
ecosystems. These rates are higher than previously estimated and recent
deforestation has been identified, which provides a quantitative basis for forest
restoration programs and to design conservation policies.
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1 Introduction

Deforestation poses a global challenge to humanity. This is due
to its vast contribution towards greenhouse gas (GHG) emissions to
the atmosphere and the impact that forest loss has on the
hydrological cycle globally. These impacts include disruption of
movement of water in the atmosphere, shifts in precipitation and
hence leading to draught among others. Forests regulate water flows
in catchments by playing an important role in the interception of
rainfall, reducing runoff, attracting rainfall through their high
evapotranspiration rates, and contributing to condensation (Sheil
and Murdiyarso, 2009; Sheil, 2018). Forests also contribute to cloud
formation by releasing biogenic volatile compounds into the
atmosphere, which further accelerate condensation (Ellison et al.,
2017), contrarily deforestation increases the surface temperature
leading to increased evaporation and reduced evapotranspiration
(Lawrence and Vandecar, 2015). Since 1990, an estimated total of
420 million hectares of forests have been lost globally because of
conversion to other land uses, most notably agriculture and human
settlements (FAO and UNEP, 2020). Between 2015 and 2020, the
global rate of deforestation was estimated at 10 million ha yr−1 down
from 16 million ha yr−1 in the 1990s (FAO and UNEP, 2020).
Between 2001 and 2019, forest clearing resulted in global gross
GHG emission of 8.1 ± 2.5 GtCO2e yr−1, yet tropical forests
contribute most (5.3 ± 2.4 GtCO2e yr−1) to the removal of
atmospheric carbon dioxide (CO2) emissions (Harris et al., 2021).

Despite the importance of tropical forests in regulating climate
and supporting the hydrological systems, their cover has dropped
from 1,966 million ha in 1990 to 1,770 million ha in 2015 (FAO,
2015a; Keenan et al., 2015; MacDicken, 2015). Large areas of tropical
forests have been deforested between 2000 and 2012, amongst which
20% were in sub-Saharan Africa (Kim, Sexton, and Townshend,
2015; Mitchard, 2018). The tropical forests in sub-Saharan Africa are
facing a rapid loss to deforestation and degradation at an estimated
annual conversion rate of approximately 0.4%–0.5% yr−1 (Mayaux
et al., 2005; FAO, 2015b). The increasing demand for land for
agriculture and human settlements means that forests are the main
target for conversion (Kissinger et al., 2012; Curtis et al., 2018). The
forest loss rates have been reported over global and continental
scales, such as through the Global Forest Change (GFC) platform
and Global Forest Watch (Hansen et al., 2013). The GFC data shows
forest gain and loss from 2001 and these forest cover change
estimates provide the global perspective of the forest cover
change with accuracy that differs across regions. The usefulness
of global datasets at a local scale has not been examined closely for
East Africa (Hamunyela et al., 2020), although literature suggest that
GFC underestimates forest loss rates at a local scale and varies
spatially (Milodowski, Mitchard and Williams, 2017; Yesuf, Brown
andWalford, 2019). Specifically, the GFC dataset provides estimates
of the scale and magnitude of forest cover change as a gain or loss
(Hansen et al., 2013), and although these estimates are valuable there
is a need to distinguish permanent losses due to deforestation and to
identify areas under-recovery over time through forest clearing
events, i.e., fragmentation, logging, shifting cultivation or fires
(Curtis et al., 2018; Grantham et al., 2020). Reliable estimates for
the rates of deforestation for Africa are lacking at both national and
regional levels (Achard et al., 2014). Understanding the magnitude
and spatial distribution of deforestation hotspots is essential to

monitor, protect and manage tropical forest ecosystems
sustainably (Hansen et al., 2008). Quantifying the rates of
deforestation and understanding the underlying causes is a
critical component for designing and developing evidence-based
policies to tackle forest cover loss, in order to support the
implementation of national or international programs such as
REDD+ (Entenmann et al., 2014).

In East Africa, the annual rates of deforestation at the national
level are under debate and estimated at 0.05% yr−1 (Kenya) for the
period 1990–2010 and 0.4%–3% yr−1 (Uganda) in 2016 (Mwangi
et al., 2018). These rates are contentious and disparity in estimates
arises from different forest types, measurements, definition of forest
cover, and reporting methods (MacDicken, 2015). This research
aims to establish robust estimates of forest change for East African
montane forests, focusing on two important forests in Kenya and
Uganda (Mau Forest Complex and Mt Elgon forest) with respects to
their ecological and socio-economic values (WWF, 2007; Cavanagh,
2017; KEFRI, 2018). The estimates of deforestation in these two
important forests involve the forest cover change, the underlying
drivers, as well as the extent of forest recovery.

Previous research on montane forests focused on land-use
change over specific blocks of Mau forest complex and Mt Elgon
forests (e.g., Baldyga et al., 2007; Were et al., 2013). Although some
studies assessed land use and land cover change and the underlying
drivers for the Mau forest complex (e.g., Ayuyo and Sweta, 2014;
Kimutai and Watanabe, 2016; Swart, 2016), the rates of
deforestation, forest clearing, and the rates of forest recovery
were not investigated.

Different remote sensing tools and methods are used to detect,
monitor, and map forest loss due to deforestation and other forms of
forest Clearance. For example, Breaks For Additive Season and
Trend (BFAST) uses Landsat time-series data (DeVries et al., 2015),
TimeSync (Cohen et al., 2010), spectral forest recovery trajectories
(Frazier et al., 2015), and change detection approach (Margono et al.,
2012). In this study we use the freely available satellite data (Landsat
time-series) and carry out change detection to map deforestation
and recovery resulting from forest clearance. We defined
deforestation according to Hirata et al. (2012) as “direct human-
caused conversion of forested land to non-forested land”. Therefore,
our main goal was to determine the rate of deforestation (loss) and
forest recovery (gain) in Mau forest complex and Mt Elgon forest by
analysing spectral differences in Landsat imagery from 1984 to 2017.

The specific research objectives include.

(i) to identify the areas where deforestation has occurred.
(ii) to detect when the first and last deforestation took place.
(iii) to quantify the annual rate of deforestation and recovery for

montane forests.

To achieve these objectives, the study used the existing and
available Landsat time-series from L4/5 TM, Landsat 7 and
Landsat 8 OLI data collected between December–March each
year from 1984 to 2017 for the Mt Elgon forest and 1986 to
2017 for Mau forest complex to examine forest cover change. Due
to limitation of images for some years, the average for the
available data was used. Maximum likelihood classification
was undertaken, and change detection was carried out
between the available time spans.
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2 Methodology

2.1 Study area

The study was carried out in the Mt Elgon forest and Mau forest
complex as indicated in Figures 1A, B respectively which are
classified as tropical montane forest and are collectively referred
to as the Water Towers of East Africa. The tropical montane forests
are forest with varying elevation and are characterized with
Afroalpine vegetation from over 1,000 m elevation (White, 1983).
The Mau forest Complex is approximately 1,800–3,000 m elevation
and the ecosystem is approximately 4,088.93 km2 (408,893 ha) and
comprises several forest blocks (22 blocks) such as Narok, Masaya
Mau, Eastern, and Western Mau, Southern to Southwest Mau, and
Transmara regions among others (Crafford et al., 2012; Chrisphine
et al., 2015a). Mau forest complex is classified as an Afromontane
vegetation type comprising both closed deciduous forest in the lower
elevation and afro alpine vegetation such as Fern and moorland at
the top of the mountain (Ojoatre, 2022). This forest is the major
catchment area for 12 rivers draining into Lake Baringo, Nakuru,
Turkana, Natron, and the Trans-boundary Lake Victoria shared by
Kenya, Uganda, and Tanzania and therefore has been referred to as
the Water Tower of East Africa (Olang and Kundu, 2011;
Chrisphine et al., 2015b).

Mt Elgon forest is located approximately 100 km northeast of
Lake Victoria (Penny Scott, 1998) and it is a protected area that
covers approximately 2,045 km2 (Mukadasi et al., 2007). It is a
volcanic mountain with five (5) major peaks located in Eastern

Uganda and Western Kenya as shown in Figure 1A. The 5 major
peaks include Wagagai with 4,321 m above sea level, Mubiyi
(4,211 m), Masaba (4,161 m) all these are predominantly located
in Uganda meanwhile Koitobos (4,222 m) is in Kenya and Sudek
which stands at (4,302 m) is located on the Kenya/Uganda border
(Wielochowski andWest Col Productions., 1989). Mt Elgon forest is
classified as a dense closed canopy montane forest at the lower
elevations and the top is characterized as moorland. Uganda
Wildlife Authority currently manages Mt Elgon forest and the
Nation Park since the merging of the Uganda National Parks
(UNP) with the Game department. On the Kenya side, the forest
is co-managed by Kenya Wildlife Service (KWS) focusing on the
wildlife and Kenya Forest Service (KFS) that focuses on the forest
reserve (Ongugo, et al., 2001).

The East African montane forests are found in moderate to high
altitudes comprising of several separate mountain areas above
2,000 m spanning from South Sudan through Uganda and Kenya
to Northern Tanzania along the Rift valley (EAC, UNEP, and GRID-
Arendal, 2016).

2.2 Data sources and processing

Landsat satellite imagery acquired from the USGS archives
for the study area from Path/Raw 170/59 (for Mt Elgon forest),
and 169/60–61 for the Mau forest complex as indicated in
Table 1. Available data from Landsat 4 and 5 Thematic
Mapper [TM], Landsat 7 Enhanced Thematic Mapper Plus

FIGURE 1
Location of the Mau forest complex and Elgon forest in East Africa. (A)Map showing the official boundaries of the Mt Elgon forests (Scott, 1998) and
(B) Map showing the official boundaries of the Mau forest complex (Government of Kenya, 2017).
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TABLE 1 Landsat time-series data for the Mt Elgon forest area and Mau forest complex.

Mt. Elgon forest Mau forest complex

Date of acquisition Sensor Date of acquisition Sensor

31/12/1984 L5 TM 28/01/1986 L5 TM

08/03/1986 L5 TM 01/03/1989 L4 TM

27/03/1987 L5 TM 21/01/1995 L5 TM

18/02/1988 L4 TM 12/02/2000 L7 ETM+

12/01/1995 L5 TM 14/02/2001 L7 ETM+

06/03/2000 L7 ETM+ 01/02/2002 L7 ETM+

05/02/2001 L7 ETM+ 04/02/2003 L7 ETM+

07/01/2002 L7 ETM+ 30/01/2010 L5 TM

10/01/2003 L7 ETM+ 26/02/2014 L8 OLI

21/01/2010 L5 TM 17/03/2015 L8 OLI

05/03/2014 L8 OLI 16/02/2016 L8 OLI

03/01/2015 L8 OLI 17/01/2017 L8 OLI

23/02/2016 L8 OLI

09/02/2017 L8 OLI
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[ETM+], and Landsat 8 OLI from 1984 to 2017 (Mt Elgon forest)
and 1986 to 2017 (Mau forest Complex) were collected during
dry months (from December to March) for both sites obtained.
The images for the years from 1989 to 1994, 1996 to 1999 for the
two-study areas generally are missing from the USGS archives.
From 2004 to 2009, images from Landsat 7 were affected by SLC
failure which rendered the images with a data loss (Andréfouët
et al., 2003). For the images missing from Landsat 8, were largely
because of cloud cover in the study area.

Forest boundaries created in 2009 for the Mau forest
Complex were obtained from the Kenya Forest Service (KFS)

and for the Mt Elgon forest from the National Forestry Authority
(NFA) for the part of Mt Elgon forest located in Uganda. The Mt
Elgon forest boundary was demarcated in 1968 for the Kenyan
side and in 1992 for the Uganda side (Scott, 1998).

The Landsat data were processed and classified using the
steps indicated in Figure 2. The processing software used was
ArcGIS for Desktop and ENVI Software. After the classification
process indicated in Figure 2. The yearly forest areas were
extracted from the classified imagery and analysed using
Microsoft excel software. The maps were produced using the
ArcGIS software.

Global Forest Change (GFC) dataset from 2000 to 2017 (version
1.5) was also used (http://earthenginepartners.appspot.com/science-
2013-global-forest; Hansen et al., 2013). The results of the GFC data
were compared with the results for the forest loss from supervised
classification results of the Landsat time-series for the period
2001–2017 which corresponds with the GFC data.

GFC quantifies the trend in forest cover change (gain and
loss) from the year 2000. GFC datasets have being reported to
present limitations at the local scale (Sannier et al., 2016;
Hamunyela et al., 2020). In this study, the classification results
for years from 2000 were extracted to be assessed with
corresponding findings from GFC for the Mau forest Complex
and Mt Elgon forest.

2.3 Image analysis and classification

The images were classified in to 7 (seven) classes, namely:
Forest, Non forest, Agriculture (Smallholder and Large scale),
Rangeland among others. Supervised classification with the
Maximum Likelihood (ML) algorithm was undertaken and
change detection was performed to assess forest cover
change. The ML classifier considers the centers of the
clusters (class), shape size, and the orientation of the clusters
by calculating the statistical distance based on the mean values
and covariance matrix of the clusters (Tolpekin and Stein,
2012). The acquired Landsat imagery shown in Table 1.
Were processed, classified, analyzed and the results were
compared with the forest cover change from GFC data for
the corresponding period. The supervised classification
approach used in the current study requires reference data

TABLE 2 Land cover classes and the scheme used in the study adopted from similar reported studies in the same current study area as well as the reported
vegetation classification in Eastern Africa.

Land cover/land use class Description (FAO/National classification and vegetation map for Africa)

Forest (F) Trees with closed canopy visible on high-resolution imagery. With height >2 m, canopy cover of >30%

Agriculture large-scale (LA) Large scale commercial agriculture including tea estates of >2 ha, large scale irrigated and mechanized agriculture

Agriculture smallholder (SA) Smallholder agriculture (Small-scale) mainly rainfed with fields of <2 ha for subsistence farming purposes

Rangeland (R) This involves open land cultivated with pasture and grasslands

Settlements/urban (SU) Bare land, developed with high density especially urban areas, infrastructure, and markets with limited farmlands

Moorland (M) Extensive low-growing vegetation characterized with heath in high altitude >1,500 m above sea level commonly referred to as Afro-
alpine vegetation

Water (W) Areas that are occupied with open water bodies (both natural and man-made) such as lakes

FIGURE 2
Flow chart showing a summary of the methodology that was
undertaken in the current study.
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for training and validation. High-resolution Google Earth
imagery dated February 2017 available shown in Figures 3D,
E, together with field survey (Figures 3A–C) was used to acquire

the reference data for training and validation of the classified
Landsat data (Fortier et al., 2011; Zhu, Woodcock and Olofsson,
2012; Rutkowska et al., 2014).

FIGURE 4
Training and validation samples based on visual interpretation from High-resolution Google imagery and Multispectral Landsat images. The figure
shows the Land cover class identification and sample from the high-resolution imagery and Landsat TM, ETM+ (5-4-3 spectral band combination), and
Landsat 8 OLI (6-5-4 spectral band combination) for each land cover class used for the classification scheme.

FIGURE 3
Examples from Mau forest complex of areas that show deforestation as a result of clearance for logs and firewood (A–C). Deforestation resulting
from fire indicated by the red circle (D), forest recovery following clearance from encroachment (E). The high-resolution Google imagery showing (D, E)
are dated February 2017.
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Classification accuracy was assessed using the error matrix
(confusion Matrix) with the high resolution (50 cm) Google
Earth images used as the reference data (Strahler et al., 2006;
Olofsson et al., 2014; Vogelmann et al., 2017).

To map forest cover change, seven land cover classes (with
the corresponding land use) were defined, including forest,
agriculture (large scale), agriculture (small scale), rangelands,
settlement/urban, and moorland as described in Table 2. The
land use and land cover classes were defined based on
classification schemes in previous studies (Houghton et al.,
2012; Sassen et al., 2013; Ayuyo and Sweta, 2014; FAO, 2014;
Mugagga et al., 2015). Additionally, the vegetation map of the
Eastern Africa region (VECEA Team, 2020) was used for the class
definition alongside the previous studies.

Visual interpretation of the high-resolution Google imagery and
the Landsat multispectral image (Figure 4) was undertaken to obtain
500 training and validation samples (split into 60% for training and
40% for validation) for the supervised classification of the
multispectral Landsat images.

2.4 Forest cover change, deforestation and
recovery

Forest cover changes were quantified from the classified satellite
images for the two study areas. The classification was undertaken on
selected images with at least <10% cloud cover during the dry months
(December to March) for the available images from 1986 to 2017 for the

FIGURE 5
Land cover map 1986 (A), 2017 (B) for the Mau forest complex, 1984 (C) and 2017 (D) for the Mt Elgon forest showing forest cover change within and
outside the official boundaries of the two montane forests.
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Mau forest complex and 1984 to 2017 for the Mt Elgon forest shown in
Table 1. To quantify forest cover change over time, the multispectral
images and the high-resolution imagery were visually interpreted. The
areas showing deforestation (loss) and forest recovery (gain) were
identified as shown in Figures 3D, E and Figure 4. The visual
interpretation process was then followed by the supervised
classification using the classification scheme and classes that were
developed as shown in Table 2.

From the classified imagery, forest class for each year was extracted.
The forest area for 1986 (Mau forest complex) and 1984 (Mt Elgon
forest) were used as masks. The masks were then used to identify and
calculate (i) areas that were lost and never recovered (deforestation), (ii)
areas that were lost or disturbed at some point in the time series but and
were under-recovery by 2017, and (iii) forest areas that stayed forest
since the beginning of the time series as permanent (intact) forest. To
further quantify the areas that were permanent, recovering, and
deforested, the current forest boundaries for the Mau forest complex
andMt Elgon forest were used to clip and estimate area changes within
the forest boundary for both forests.

2.5 Rate of deforestation

The rate of deforestation was calculated from the yearly detected
change in forest cover. This study adopts the method by Puyravaud

(2003), who proposed the use of the mean annual rate of change of
forest cover over time. The method has been widely used to quantify
the rate of deforestation and land cover change across the tropics
(e.g., Schulz et al., 2010; Grinand et al., 2013; Reimer et al., 2015).
The rate of deforestation (Eqn. 1) is based on the change analysis and
the method accounts for variations in date for the image
acquisitions.

Equation 1: Rate of deforestation

r � 1/ T2 –T1( )( ) x ln A2/A1( )

where: r = the deforestation rate per year (% yr−1).
T1 = Year for the beginning of the time step (initial year).
T2 = Year for the end of the time step (final year).
A1 = Forest area at the beginning of the time step (initial year).
A2 = Forest area at the end of the time step (final year).
Classified images for the Mau forest Complex and Mt Elgon

forest were used to determine the change in land cover from
forest to the other land cover/land use types (gross loss) and
Other Land covers to forest (gross gain), the net change was
calculated by subtracting the Gross Loss from the Gross Gain for
the timespans based on the available imagery. To determine the
transition of change from forest to other land covers/land use
types, a matrix table for the classified land cover/use types was
generated and the change areas were obtained. To determine the
rate of deforestation, the current official forest boundaries for

TABLE 3 Accuracy assessment for the supervised classification of the Mau forest complex (a) and the Mt Elgon forest (b).

(a) The Mau forest complex

Overall accuracy = 86.2%, kappa coefficient = 0.81

Class F AL SA R B W Total P (%) U (%)

F 89.96 0.52 0.21 0.00 0.00 0.00 21.23 89.96 99.45

AL 0.12 88.19 0.93 0.00 0.80 0.00 6.16 88.19 93.42

SA 9.83 4.19 91.51 36.01 0.08 0.00 42.91 91.51 82.87

R 0.00 0.24 4.03 44.51 0.00 0.00 7.48 44.51 78.86

B 0.09 6.86 3.32 19.48 99.12 0.07 6.27 99.12 30.64

W 0.00 0.00 0.00 0.00 0.00 99.93 15.96 99.93 100.0

(b) Mt Elgon forest

Overall Accuracy = 90.50%, Kappa Coefficient = 0.87

Class F A R M B W Total P (%) U (%)

F 100 0.00 0.00 0.00 0.00 0.00 19.45 100.0 100.0

A 0.00 67.16 0.55 0.00 1.54 0.00 18.88 67.16 98.92

R 0.00 22.66 99.45 0.00 3.82 0.00 31.44 99.45 79.45

M 0.00 0.88 0.00 100 0.00 0.00 20.29 100.0 98.80

B 0.00 9.30 0.00 0.00 94.64 0.00 6.59 94.64 60.77

W 0.00 0.00 0.00 0.00 0.00 100 3.35 100.0 100.0

F, Forest; AL, Agriculture (Largescale); SA, Agriculture (Smallholder); R, Rangeland; B, Bare land (Open Land) and W, Water; P, Producer accuracy and U, User accuracy.

F, Forest; AL, Agriculture (Largescale); SA, Agriculture (Smallholder); R, Rangeland; B, Bare land (Open Land) and W, Water; P, Producer accuracy and U, User accuracy.
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both Mt Elgon forest and the Mau forest complex were used
to carry out change detection to identify areas that were
deforested.

3 Results and analysis

3.1 Land cover classification and forest cover
change

Land cover and forest cover change in the Mau forest
complex are presented for the period 1986–2017 and the Mt
Elgon forest for the period 1984–2017 (Figure 5). Seven land
cover classes were identified based on classification scheme in
Table 2. Overall classification accuracy of 86.2% with Kappa
coefficient of 0.81 was attained for the Mau forest complex and
90.5% (Kappa coefficient of 0.87) for the Mt Elgon forest as
indicated in Tables 3A, B. In the Mau forest complex, rangelands
were classified with the lowest producer accuracy (P) of 44.51%
and the Settlements/Urban were classified with a lower user
accuracy (U) of 30.64%. For the Mt Elgon forest, agriculture
(A) had the lowest producer accuracy of 67.16% and the open/
bare land class had the lowest user accuracy of 60.77%. The low
producer accuracy of Rangeland was largely because the images
used in the classification were obtained during the dry months of
the study area hence rangelands appear bare because the grasses
have dried, and some areas are burnt. While the user accuracy of
the bare is high because areas that are rangelands because the dry
season would sometimes appear like bare land with no
vegetation. This is why the producer for rangelands is low and
user accuracy for bare land were also low. Meaning areas that are

rangelands are seen as bare in the classification and areas that are
rangeland are classified as bare.

The analysis shows that in the Mau forest complex, forest areas
that existed outside the current forest boundary of 2009 were
converted to mainly agriculture both small and large scale. For
the Mt Elgon forest, agriculture was also the main land cover/use to
which forest area was lost.

The results show that 81.5% (70,612 ha) of forest cover was lost
mainly to agriculture between 1986 and 2017, of which 13.2% (11,440 ha)
can be attributed to large scale agriculture and 68.3% (59,172 ha) to
smallholder agriculture in theMau forest complex as shown in Figure 6A.
For theMtElgon forest, agriculturewas also themain land cover towhich
forest was lost accounting for 63.2% (24,077 ha) followed by settlement at
14.7% (5,597 ha) as indicated in Figure 6B.

From the gross changes (loss and gain), net forest cover
change was established for all the years based on the available
imagery for the Mau forest complex as shown in Figure 7A and
for the Mt Elgon forest as indicated in Figure 7A.

3.2 Forest cover change from supervised
classification

The forest cover loss in the Mau forest complex was assessed for
the period 1986 to 2017 and the Mt Elgon forest for the period
1984 to 2017 using supervised classification (maximum likelihood
classifier) and compared to the estimates from GFC for the period
2000–2017 for the same period as the GFC datasets are only
available from the year 2000. The results indicate that in the
period 2000–2017, GFC detected a loss of 17.0% (68,848 ha) out
of the 404,660 ha of forest cover loss in the Mau forest complex and

FIGURE 6
Land use change transitions from forest to other land cover, i.e., agriculture (large scale), agriculture (small-scale), rangeland, moorland, and bare
land (open) in (A) the Mau forest complex and (B) Mt Elgon forest.
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5.3% (11,501 ha) of the 217,268 ha of forest loss in the Mt Elgon
forest. The analysis conducted in this study with supervised
classification from the same period (2000–2017) estimated similar

overall figures for the Mau forest complex with 16.8% (68,155 ha)
and larger forest loss with 7.6% (16,496 ha) for theMt Elgon forest as
presented in Table 4.

FIGURE 7
Changes in forest area for the various periods (1984/1986–2017) for the Mau forest complex (A) and Mt Elgon forest (B). Net change (in blue) is the
difference between Gross gain and Gross loss. The bars represent the total change for each period while the values represent the annual change within
the periods. A negative net result indicates overall forest conversion to other land covers.
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TABLE 4 Estimates of forest cover loss using Supervised Classification (ML) compared to the GFC data for the Mau forest complex (a) and the Mt Elgon forest (b) for
the period 2000–2017.

Period (2000–2017) Mau forest complex Mt Elgon forest

ML GFC ML GFC

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Deforestation 68,155 16.8 68,848 17.0 16,496 7.6 11,501 5.3

Remained forest 282,779 69.9 276,446 68.3 120,497 55.5 166,356 76.6

Non-forest 53,668 13.3 59,308 14.7 80,275 37.0 39,411 18.1

Total 404,602 100 404,602 100 217,268 100 217,268 100

FIGURE 8
Forest cover change from 1984 (Mt Elgon forest) and 1986 (Mau forest Complex) to 2017 showing areas that remained forest throughout the time
series analyzed, the forest that was disturbed and is currently undergoing recovery by 2017, and forest that has been permanently lost to deforestation in
the Mau forest complex (A) and the Mt Elgon forest (B).

TABLE 5 Forest cover change in the Mau forest Complex and Mt Elgon forest calculated from classified Landsat imagery from 1984 to 2017 (Mt Elgon forest) and
1986–2017 (Mau forest complex) using the supervised classification and change detection method.

Forest cover Mau forest complex Mt Elgon forest

Area (ha) % Area (ha) %

Permanent forest (1984–2017) 172,250 42.6 52,369 24.1

Deforested area (2017) 88,493 21.9 27,201 12.5

Forest under recovery (2017) 75,438 18.6 59,047 27.2

Non-forest 68,479 16.9 78,651 36.2

Total 404,660 100 217,268 100
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3.3 Forest cover change, deforestation, and
recovery

Forest cover changes from 1986 to 2017 for theMau forest complex
and the Mt Elgon forest from 1984 to 2017 within their respective
official forest boundaries are shown in Figure 8. The hotspots, forest
blocks, and areas that are more pronouncedly affected by deforestation

were the Southwestern Mau, Eastern Mau, Londiani (Western Mau),
and Maasai Mau. For the Mt Elgon forest, deforestation was more
pronounced in the Kapchorwa area of Uganda and the Southern part of
the Mt Elgon forest on the Kenyan side of the forest. The result also
revealed the specific areas in the twomontane forests where forest cover
was lost to other land cover types (deforestation) within the study
period and areas that were undergoing forest recovery.

TABLE 6 Observed forest cover loss inMau forest complex (a) andMt Elgon forest (b) within the official forest boundaries for theMau Forest Complex andMt Elgon
forest.

Time [T1] Time [T2] Period (T2-T1) Area (ha) [A1] Area (ha) [A2] Def [period] (ha) Deforestation rate yr-1 [%]

Mau forest complex (a)

1986 1989 3 336,181.3 334,563.3 1,618.0 −0.2

1989 1995 6 334,308.3 330,095.2 4,213.0 −0.2

1995 2003 8 330,095.2 285,342.4 44,752.8 −1.8

2003 2010 7 285,342.4 257,817.4 27,525.0 −1.5

2010 2014 4 257,817.4 253,223.4 4,594.0 −0.5

2014 2017 3 253,223.4 247,688.0 5,535.4 −0.7

Average −0.8

Mt Elgon forest (b)

1984 1988 4 138,350.0 118,904.4 19,445.6 −3.8

1988 1995 7 118,904.4 116,699.6 2,204.8 −0.3

1995 2003 8 116,699.6 121,138.5 −4,438.9 0.5

2003 2010 7 121,138.5 121,732.9 −594.4 0.1

2010 2014 4 121,732.9 116,552.9 5,180.0 −1.1

2014 2017 3 116,552.9 111,149.0 5,403.9 −1.6

Average −1.0

TABLE 7 Observed forest cover gain (recovery) in the Mau forest complex andMt Elgon forest within the official forest boundaries for the Mau Forest Complex and
Mt Elgon forest.

Ecosystem (forest) Time [T1] Time [T2] Period (T2 - T1) Area recovered/Gain (ha) Recovery rate yr-1 [%]

Mau forest Complex

1986 1989 3 7,710.20 3.41

1989 1995 6 3,803.70 0.84

1995 2003 8 18,573.10 3.08

2003 2010 7 10,565.10 2.00

2010 2014 4 15,562.90 5.16

2014 2017 3 19,222.90 8.49

Mt Elgon forest

1984 1988 4 8,239.40 3.49

1988 1995 7 6,353.90 1.54

1995 2003 8 19,850.40 4.20

2003 2010 7 9,075.80 2.20

2010 2014 4 6,825.20 2.89

2014 2017 3 8,702.40 4.91
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The analysis of the area change in Figure 8, shows that during
the 1986–2017 period, 42.6% (172,250 ha) of the Mau forest
complex remained forest, 21.9% (88,493 ha) of the forest area
was lost to deforestation and 18.6% (75,438 ha) was disturbed
and is currently at different stages of recovery as shown in
Table 5. For the Mt Elgon forest, 24.1% (52,369 ha) of the forest
remained forest between 1984 and 2017, and 12.08% (26,250 ha) of
the forest area was deforested and 27.6% (59,998 ha) was disturbed
and is currently undergoing recovery as indicated in Table 5.

3.4 Rates of deforestation and recovery

The multi-temporal assessment of the rate of deforestation
covers 31 years (the Mau forest complex) and 33 years for Mt
Elgon forest as shown in Tables 6A, B respectively. The results
indicate that an estimated 88,493 ha of the Mau forest complex was
lost to deforestation at an annual rate of −0.86% for the period
1986–2017 and an estimated 27,201 ha for the Mt Elgon forest at a
rate of −1.03% during the same period. The recovery rates for the
Mau forest complex and the Mt Elgon forest were estimated at an
average of 2,434 ha yr−1 and 1,789 ha yr−1, respectively presented in
Table 7.

Deforestation rates were higher for the Mau forest Complex
between 1995 and 2003 where 44,753 ha were lost and in the period
between 2003 and 2010 when 27,525 ha of the forest cover were lost
as shown Table 6A. For the Mt Elgon forest, deforestation was high
between 1984–1988 when 19,446 ha of the forest were lost as shown
in Table 6B.

4 Discussion

4.1 Mapping and classification of forest
cover change

This study produced a new set of maps that show the extent of
intact forest and degraded forest following clearance since 1984 for
the two montane forests in East Africa. The study estimated the
forest area that stayed as from the beginning of the time series (1984)
until 2017, identified areas that were lost due to deforestation and
those that are undergoing recovery. Supervised image classification
with maximum likelihood (ML) algorithm was used with an
accuracy of 86.20% (Kappa coefficient of 0.81) for the Mau forest
complex was attained and 90.50% (Kappa coefficient of 0.88) was
obtained for the Mt Elgon forest and deforestation was determined
using the change detection method (Margono et al., 2012). The
classification accuracy in this study for the Mau forest complex is
comparable with a related classification that was undertaken by
Were et al. (2013) with a reported accuracy of 80%, with which land
cover and land-use change were assessed in the Eastern Mau forest
reserve, a section of the Mau forest complex for the years 1986, 2000,
and 2011. However, the results fromWere et al. (2013) were only for
a small section of the Mau forest complex. In this study, the training
and validation samples for the maximum likelihood classification
were obtained from the available high-resolution Google images for
the two study areas, an approach that conforms with the best
practices described by Olofsson et al. (2014). Several factors

contribute to the accuracy of the classification of which the
reliability associated with the use of the high-resolution Google
image with a slight difference in the dates of acquisition introduces
potential errors into the class definition and allocation especially
when the changes occur after the acquisition of the Google Imagery.
UsingML for land cover mapping and carrying out change detection
provides a challenge in class identification and definition given the
images were collected during the dry months of the study area to be
able to segregate forest cover from other land cover types. For
example, small-scale agricultural land where harvesting has taken
place could be assigned to the settlement and vice versa. ML assigns
classes based on likelihood, and the classes assigned are used to
assess the forest cover change at each time step. However, these
challenges were minimized by using the forest masks to focus the
changes within the areas that had been forest at the beginning of the
time series.

The study further shows that the forest cover loss detected
compared with the GFC data by Hansen et al. (2013) for the
period 2000–2017. GFC results indicate gross forest loss of 17.0%
(68,848 ha) for the Mau forest complex and 5.3% (11,501) for the Mt
Elgon forest. These estimates from GFC for the period (2000–2017)
are comparable to the results from the classification in this current
study which revealed 16.8% (68,155 ha) and 7.6% (16,496 ha) forest
cover loss for the Mau forest complex and Mt Elgon forest
respectively for the same period. The variations could be
associated with differences in method, scales, and thresholds used
as well as the processes involved. For example, ML is operator-based
with a focus on the changes in the spectral value in different periods,
while GFC uses the canopy cover percentage and determines change
using the bagged decision tree in Google Earth Engine with images
collected during the growing season (Arjasakusuma et al., 2018).

4.2 Spatio-temporal forest cover change
and drivers of deforestation and forest
disturbance

A comprehensive assessment of the forest cover changes due to
deforestation and the following forest recovery for the two largest
montane forests of East Africa covering together 621,928 ha
(404,660 ha for the Mau forest complex and 217,268 ha for Mt
Elgon forest) was undertaken. Over the period from 1984–2017, this
study showed that 21.9% (88.493 ha) and 12.5% (27,201 ha) of the
Mau forest and Mt Elgon forest respectively were lost to
deforestation. It also revealed that 18.6% (75,438 ha) for the Mau
forest complex and 27.2% (59,047 ha) of Mt Elgon forest are
currently undergoing different stages of recovery as indicated in
Figure 8. Despite the losses to deforestation and clearance, the two
montane forests have been regarded as the largest closed-canopy
forest in East Africa playing a significant role in carbon
sequestration, regulation of rainfall and nutrient cycling, soil
formation, and support to biodiversity (Gichuhi, 2013; Otieno,
2016; Plumptre et al., 2019; Omoding et al., 2020). These
montane forests are also very important ecosystems and water
catchments to the East African region (Muhweezi et al., 2007;
Hesslerová and Pokorný, 2011; Chrisphine et al., 2015). Due to
various factors ranging from natural to anthropogenic, these
montane forests have faced large-scale deforestation and

Frontiers in Environmental Science frontiersin.org13

Ojoatre et al. 10.3389/fenvs.2023.1084764

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1084764


disturbance (Landmann and Dubovyk, 2014; Mutugi and Kiiru,
2015) which conforms to the findings of the current study. In the
Mau forest complex, our findings demonstrate that deforestation has
been attributed largely to agriculture with the largest losses in forest
cover resulting from the conversion of forest to small-scale
agriculture 59,172 ha (68.3%). While in Mt Elgon forest,
agriculture was also the main driver of forest cover loss
accounting for 63.2% (24,077 ha) of the loses quantified. Previous
studies also reported agriculture as the main driver of the land cover
changes, for example, 4,500 ha of Mt Elgon forest that has been
converted to other land uses (Petursson et al., 2013), and a total of
145,850 ha (1,458.5 km2) of the Mau forest complex has been lost to
other land uses as reported by Swart, (2016). Our findings also agrees
with the findings ofWere et al. (2013) for the EasternMau forest and
Lake Nakuru basin sections of the Mau forest complex, which
revealed that there was an increase in cropland expansion and
built-up area by an annual rate of 6% and 16% and a decrease in
the forest cover as a consequence for the period from 1973 to 2011.
Kissinger et al. (2012) associated forest cover loss with increasing
demand for land to expand agriculture at a global level, this study
confirms these claims as the study demonstrates that most of the
forest cover was lost to agriculture for both the study areas. Curtis
et al. (2018) reported deforestation rates in Africa being driven by
shifting agriculture, i.e., small to medium-scale forest and shrubland
conversion for agriculture that is later abandoned and followed by
subsequent forest regrowth. However, this study determined that
smallholder agriculture contributed to 68.31% of forest loss and
large scale agriculture to 13.2%, and most of this area remains under
agriculture, making it the main driver of forest cover loss as
suggested by Hosonuma et al. (2012); Albertazzi et al. (2018).
The current study further showed that deforestation in the Mau
forest complex and Mt Elgon forest occurs in small patches of less
than 1 ha, which may be associated with the activities of farming
communities adjacent to the forest as reported by the empirical
studies by Sassen et al. (2013); Brandt et al. (2018). The finding of
this study demonstrates that most of the areas deforested were
mainly at the edges of agricultural lands both smallholder and large
scale tea farms.

4.3 Rate of deforestation and recovery in the
montane forest of East Africa

Deforestation has been reported to be pervasive in sub-Saharan
Africa especially in the Democratic Republic of Congo (DRC)
rainforests and the Miombo woodlands due to smallholder
agriculture and increasingly commodity crop cultivation (Song
et al., 2018), however, the rates are largely for lowland tropical
rainforests. This study quantified the rate of deforestation and
recovery for the two east African montane ecosystems which
revealed 88,493 ha reduction in the forest cover from
336,181.3 ha at an annual rate of −0.82% yr−1 for the Mau Forest
Complex. While in the Mt Elgon forest, forest cover reduced by
27,201 ha from 138,350 ha in 1984 to 111,149 ha by 2017 at an
annual rate of −1.03% yr−1 as indicated in Table 6. Comparing the
rates of deforestation from this study with other reported rates can
be challenging because of differences in datasets used, scale, and
boundaries of the study areas. Most studies for the Mau forest

complex do not quantify forest cover changes for the whole forest
but in selected specific blocks out of the 22 blocks. For example,
Were et al. (2013) estimated changes for the Lake Nakuru basin,
Kinyanjui et al. (2013) calculated changes for the Southwestern and
Transmara blocks of the Mau forest complex, and Swart, (2016)
assessed the land cover change in the region that includes the Mau
forest complex. These previous studies focused on the land-use
change and the main drivers within specific blocks, whereas the
current study covers the quantification of the rate of forest cover
change and recovery across all the blocks of the Mau forest complex.

This study shows that the rate of deforestation in the Mau forest
complex is also higher than the nationally reported annual rates by
the Food and Agriculture Organization of the United Nations (FAO)
for Kenya and Uganda at the national level since there are no site-
specific reported rates of deforestation for the period 1990 to 2010 at
0.32% per year for Kenya and the findings for theMt Elgon forest are
below the national reported annual rate of 0.4%–3% per year for
Uganda for the period 1990 to 2010 (FAO, 2013). In comparison
with the regional studies that have assessed rates of deforestation, the
annual rates for the Mau forest complex and Mt Elgon determined
in this study were slightly higher than the findings of Brink et al.
(2014) that indicated an increase in the annual rate of deforestation
from 0.2% in the period from 1990–2000 to 0.4% from 2000–2010. It
should be noted that the study by Brink et al. (2014) used the images
from the DMCDeimos imagery with ground resolution of 22 m and
the standard imager resolution of 32 m collecting images in
3 spectral bands.

The current study provides spatio-temporal information
regarding forest cover change. This provides the basis for future
research to investigate the key drivers of the forest cover change and
how these can be controlled in order to plan, implement and
monitor the restoration and conservation programs for the
tropical montane forest of East Africa. Previous studies have
cited agriculture (both smallholder and Large scale as the key
driver of change, however the magnitude and scale were not
clearly stated. Our findings clearly show both the magnitude and
scale of the drives from historical spatial data which can therefore
provide much needed basis for further investigation into the drivers
of change and how they can be managed. Other remote sensing
methods can also be applied to test their robustness in determining
forest cover change in the Eastern Africa region in general.

Future research work could involve the assessment of
community perception regarding forest disturbance and develop
citizen science tools to engage the community into the monitoring of
the forest disturbance, with focus to areas that have been identified
as deforested.

5 Conclusion

Deforestation has been a major problem facing the Mau forest
Complex and Mt Elgon forests in Kenya and Uganda, yet the annual
rate of deforestation over time has not been quantified previously.
This study provides a detailed multi-temporal and extensive spatial
analysis of these two important forests thus providing an annual rate
of forest loss to deforestation and the rate of recovery. The results
provide a basis and spatial-temporal status of the forest for the
development of effective monitoring of the two forest ecosystems
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from the areas that are currently deforested and those that are
undergoing recovery. The study findings also provide the relevant
scientific evidence on the trends of forest cover loss due to
deforestation and forest cover clearance in the Mau forest
complex and Mt Elgon forest and add to the limited information
regarding the changes in montane forest ecosystems. The use MLC
approach for assessing the rate of deforestation and forest recovery
in the Mau forest complex and Elgon forest benchmarks the wider
use and application of these datasets for assessing deforestation and
forest recovery in the East African forests.
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