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1  |  INTRODUC TION

High rates of freshwater biodiversity change and decline, and 
ecological degradation, are well- documented at a global scale; a 
result of the combined action of several globally pervasive pres-
sures, including pollution, habitat alteration, species introduction, 
over- exploitation and climate change (Jenny et al., 2020; Revenga 
et al., 2005; Tickner et al., 2020). Our ability to accurately quantify 

large- scale spatiotemporal patterns of change and understand un-
derlying drivers depends upon robust and representative data. These 
are challenging to collect in highly heterogeneous and ecologically 
complex environments, especially given the resource limitations 
typically faced by researchers and agencies. While this is a signifi-
cant cause for concern, we now have access to a widening array of 
monitoring approaches that allow us to quantify and attribute fresh-
water ecosystem status, change and underlying drivers (Thackeray 
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Abstract
1. In order to better quantify spatial and temporal patterns in freshwater biodiversity, 

and potential underlying drivers of change, we must utilise the increasingly broad 
range of data available on freshwater ecosystems. Statistical advances in the field 
of integrated modelling provide new opportunities to further our understanding 
through the combined and simultaneous analysis of these diverse datasets.

2. We briefly introduce integrated modelling in the context of freshwater biodiver-
sity and outline the key steps involved in its implementation, from data collection 
to analysis. We highlight both opportunities and challenges for the application of 
integrated approaches.

3. To illustrate the potential for integrated models to improve our understanding of 
freshwater biodiversity compared to standard approaches, we combine two data-
sets collected using different methods to model the distribution of Agabus water 
beetles in England. The integrated model had greater power to detect covariate 
effects on Agabus distribution, and reduced parameter uncertainty compared with 
analysis using only a single dataset.

4. We show that integrated methods have the potential to increase our understand-
ing of freshwater systems and enable us to make full use of the diversity of fresh-
water data available.
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& Hampton, 2020). For freshwater ecosystems, the range of avail-
able monitoring methods now includes such diverse approaches as 
sensor networks, ecoacoustics, eDNA, remote sensing, text mining, 
traditional in situ sampling, museum records, indigenous knowledge 
and rapidly- growing citizen science initiatives (Harper et al., 2019; 
Jarić et al., 2020; Linke et al., 2018; Metcalfe et al., 2022; Palmer 
et al., 2015; Pellerin et al., 2016; Revenga et al., 2005, and refer-
ences therein). These different monitoring approaches will vary in 
their power to detect change and driver effects at different spatio-
temporal scales and levels of biological organisation.

The purpose of monitoring also varies depending on the study 
focus and research questions; therefore, data are frequently col-
lected using different survey designs. Structured monitoring, such 
as that often required to meet statutory requirements under the 
EU Water Framework Directive, with robust underlying design, 
repeatable protocols, repeated observations over time and quality 
assurance processes are typically seen as the gold standard for bio-
diversity monitoring as they provide the greatest control over the 
data collection process (Buckland & Johnston, 2017). However, re-
source limitations and logistical challenges often mean that struc-
tured monitoring is limited in the number of locations that can be 
surveyed. Unstructured or opportunistic data collection –  data col-
lected without a strict design or protocol –  has emerged as a means 
of widening spatial coverage and temporal resolution of the natural 
environment. Wider use of unstructured data has now been made 
possible as a result of the development of statistical techniques and 
computational resources for analysing large volumes of incomplete 
or biased data (Isaac et al., 2014).

The current proliferation and diversification of data sources pro-
vides opportunities to enhance our fundamental understanding of 
the behaviour of freshwater ecosystems, providing evidence to guide 
management and restoration efforts. However, to fully capitalise on 
this potential and unlock the “complementarities” that exist among 
methods (Thackeray & Hampton, 2020), we need the capability to 
bring different sources of data together to answer questions about 
how freshwater biodiversity is changing, and why. Combining data 
collected using different methods and with different designs provides 
a challenge for data analysts, particularly when data are very differ-
ent from each other (e.g., eDNA and in situ observations). To address 
this challenge, researchers have developed integrated modelling ap-
proaches which allow data from multiple sources to be combined 
within the same analytical workflows, allowing different datasets to 
be used simultaneously to assess ecological status and trends (DeWan 
& Zipkin, 2010; Fletcher Jr et al., 2019; Isaac et al., 2020; Miller 
et al., 2019). Integrated models can combine data collected using dif-
ferent methodologies and designs by accounting for differences be-
tween data sources within the model structure.

Bringing multiple datasets together to address environmental 
problems has a number of advantages beyond simply increasing the 
pool of data that can be used:

1. Well- constructed integrated models inherit the strengths of 
the datasets that contribute to them, and also counter their 

weaknesses, for example by utilising the large sample size 
offered by opportunistic citizen science data and the robust 
design of a systematic survey.

2. Integration of data with different properties makes it possible 
to capture processes operating at different spatial and temporal 
scales (Ryo et al., 2019; Zipkin et al., 2021), or to estimate param-
eters that would not be identifiable using a single dataset.

3. Integrated models can allow better estimation of potential 
environmental driver effects than using single datasets alone 
through increased coverage of environmental gradients (Bowler 
et al., 2019).

4. Where source datasets present conflicting signals about 
biodiversity change, an integrated framework has the potential 
to reveal where the key uncertainties lie, to target future data 
collection.

Integrated modelling is seeing increased uptake in the ecologi-
cal literature, but the vast majority of existing applications are from 
terrestrial or marine environments (Bowler et al., 2019; Martino 
et al., 2021; Zulian et al., 2021), and there has been limited applica-
tion within the freshwater domain despite there being a strong case 
to do so (Bishop et al., 2021). The aim of this paper is to increase 
awareness of integrated analysis within the freshwater ecological 
community via a brief introduction to integrated modelling and the 
existing literature, outlining the steps required to conduct a suc-
cessful integrated analysis, and presenting an example of integrated 
modelling in a freshwater context through a case study of British 
water beetles.

1.1  |  Introduction to integrated modelling

Recent developments in applied statistics mean that it is now 
possible to build statistical models that combine very different types 
of ecological data within a single model, such as visual surveys with 
acoustic monitoring, or field measurements with remote sensing 
(Henrys & Jarvis, 2019; Zulian et al., 2021). To achieve this, there 
is an underlying assumption that there exists at least one shared 
ecological state, process or parameter common to different datasets, 
albeit measured in different ways (Figure 1). Integrated models allow 
for differences in the way observations are made by adding sub- 
models that account for different observation processes (Figure 1; 
Isaac et al., 2020). Differences between data collection methods 
and survey designs can be represented using additional covariates 
or a hierarchical error structure that allows key parameters within 
the model to differ across datasets (Moriarty et al., 2020; Piepho & 
Ogutu, 2002).

2  |  STEPS IN AN INTEGR ATED ANALYSIS

Given the potential advantages of integrated modelling in address-
ing questions in freshwater ecology we aim to provide a helpful 
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introduction by highlighting four key steps in a successful integrated 
modelling application: collecting (and storing), mobilising, exploring 
and analysing data. The first two steps are generally done on each 
dataset separately, whereas exploration and analysis are conducted 
on multiple datasets simultaneously. Although the analysis step may 
seem most obvious when we consider an introduction to integrated 
models, we wish to highlight elements of all four steps that can influ-
ence how successfully datasets can be analysed jointly. We briefly 
discuss each step, highlighting both opportunities and challenges.

2.1  |  Data collection and storage

A very broad range of freshwater biodiversity data can be po-
tentially suitable for integrated analyses, originating from a wide 
range of sampling methods and technologies (Kakouei et al., 2021; 
Read et al., 2014; Rusak et al., 2018). A key consideration for in-
tegrating any data is whether there is consistency in the way data 
are collected and stored within individual datasets that are con-
sidered for integrated modelling. Integrated models aim to quan-
tify among- dataset differences owing to variation in the way data 
are observed, and inconsistencies within a dataset can confound 
quantification of among- dataset variation. Issues can occur when 
data are recorded in an inconsistent manner; for example, using 

surveyors with different levels of identification skill and experi-
ence, collecting different volumes of water, using different sam-
pling devices or using different species naming conventions.

Electronic data capture (e.g., using smartphone apps like Bloomin’ 
Algae for cyanobacterial blooms, iRecord for opportunistic species 
observations or custom apps; Reaney et al., 2019) can reduce in-
consistencies by embedding rules within the software design that 
increase within- dataset consistency (Murphy & Weatherby, 2008). 
Modern data capture technologies enable data collected in the 
field or laboratory to be uploaded manually or automatically onto 
an underlying database architecture on a central server for storage 
(Nowak et al., 2020, http://www.indic ia.org.uk/). Such systems offer 
many advantages to users and analysts including streamlining the lag 
between data collection and analysis- ready data, providing a cen-
tralised system for record validation, and minimising the likelihood 
of incurring any errors or inconsistencies.

2.2  |  Data access & mobilisation

In order to maximise the potential of integrated modelling we may 
want to use data collected by other researchers. To do this requires a 
modeller being able to find, access, understand and evaluate existing 
data, and requires a commitment from data collectors and holders to 

F I G U R E  1  Hypothetical example of integrated modelling. (a) Two datasets reflecting the same ecological state (whether or not a location 
is occupied by a species) but observed in different ways, one through net sampling and one through an eDNA approach. Both approaches 
give information on when the species was observed, but the eDNA data do not have information on locations which were sampled but 
where a sequence was not found (i.e., no zeroes). Both observation methods have detection probabilities lower than one, that is they will 
not detect all individuals or sequences present (e.g., location 5 in the net survey records a 0 even though the site is actually occupied) and 
only location 5 has data from both survey types. However, both datasets relate back to the same underlying ecological state (true occupancy 
per location), even though they are observed in different ways. (b) How integrated models work: both datasets are used to estimate the 
probability of each location being occupied by the species. To do this we model both the ecological state (whether or not the location is 
occupied) and the observation processes (e.g., net or eDNA method), allowing each dataset to be observed in a different way through the 
addition of observation sub- models. We also could include covariates; in the figure these feed into the state model only but covariates might 
be used in the observation sub- models if they are likely to affect detection.
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make their data and metadata available to others in a findable way. 
Data access has been recognised as a key priority for safeguarding 
global freshwater biodiversity (van Rees et al., 2021).

A valuable resource for freshwater biodiversity is the 
Freshwater Information Platform (Schmidt- Kloiber et al., 2019) 
which provides access to data and, more importantly, metadata 
(data about data) which enables researchers to explore available 
datasets easily. Access to good metadata is essential to ensure 
that any data acquired are used appropriately and is a key element 
of the FAIR (Findable, Accessible, Interoperable and Reusable) 
data principles (Wilkinson et al., 2016) which, if followed, support 
data reuse. Aggregation platforms such as the Global Biodiversity 
Information Facility and National Biodiversity Network are useful 
resources for species occurrence records, but often lack metadata 
required to enable data reuse (Turner et al., 2023). Data access 
is a particular challenge for historical datasets which are rarely 
available online, yet may provide important insights into long- term 
ecological processes.

Integrated modelling also is facilitated by open access data 
(i.e., data available to all). Open data provide both opportunities 
and challenges to those working with biodiversity data. Open 
access principles unlock biodiversity data which may greatly im-
prove our ability to understand ecological dynamics and pressures 
in freshwater systems. However, publishing open access data is 
time- consuming for researchers and can be seen as risk to re-
searchers who must open their datasets for others to publish on 
and potentially misuse (Mills et al., 2015; Reichman et al., 2011), or 
a risk to species conservation through exposing locations of sensi-
tive taxa (Tulloch et al., 2018).

2.3  |  Data exploration

Once potentially suitable datasets for an integrated modelling 
application have been identified and accessed, it is important to 
evaluate the similarities and differences amongst them before 
building an integrated model. The aims of this data exploration are 
two- fold: to assess whether integration is a sensible aim and, if so, 
to identify the key differences that would need to be accounted for 
in the observation sub- models (Figure 1). In our experience, data 
exploration is often the most important of the four steps and likely 
to take the most time in any integrated modelling application.

Properties of any biodiversity monitoring dataset include the tax-
onomic coverage (i.e., which organisms are included), the taxonomic 
resolution to which the specimens are identified, and the ecological 
currency in which data are recorded (e.g., counts vs. presence– absence 
vs presence- only). Datasets might differ in spatial extent and resolu-
tion (e.g., national vs. regional, surface waters vs. depth- resolved) as 
well as temporal extent and resolution (e.g., time series length and fre-
quency of sampling). Locations may be selected at random or chosen 
by the surveyor and datasets will often have different sampling pro-
tocols, including the time spent collecting data and what equipment 
is used. Datasets also may vary hugely in the number of observations 

taken. Another consideration is whether the observations are subject 
to any kind of quality assurance, for example to ensure that organisms 
have been correctly identified and to determine error rates.

When multiple datasets exist ostensibly representing the 
same environmental phenomena, it can be tempting to consider 
and compare the quality of the data from each source based on 
perceived characteristics. For example, data collected as part 
of a professional scheme may be considered higher quality than 
data from a voluntary scheme; however, it is important to note 
that there is not necessarily a clear distinction in quality be-
tween schemes using these different groups. There are examples 
of schemes with a systematic design reliant on volunteers (e.g., 
Anglers' Riverfly Monitoring Initiative; Brooks et al., 2019) that 
produce high- quality data. Therefore, it is usually not helpful to 
think in terms of high-  versus low- quality datasets per se but rather 
in terms of the more objective aspects of quality such as the spa-
tial extent, sample size, resolution and design aspects. When data 
have quality assurance information available, they can be used to 
assess error rates (e.g., false absences or presences) which may 
guide choices on dataset use.

Datasets with large differences in their properties may be diffi-
cult to combine sensibly in an integrated analysis. This is because, in 
such a situation, the variance in data resulting from different mon-
itoring scheme properties swamps any shared signals generated by 
underlying ecological processes. As the area of integrated model-
ling is still fairly new, there are no clear guidelines as to when data 
should not be integrated (Simmonds et al., 2020), but there should 
be sufficient similarity between the data that the assumption of a 
shared underlying ecological state, process or parameter can be 
justifiably made. Exploration of the data through graphical means 
is often informative to make this decision; for example, identifying 
whether datasets show reasonably similar responses to key, shared 
environmental gradients. Suitability for integration also will depend 
on the ecological question at hand and the type of analysis required; 
for example, if not all datasets capture information on important co-
variates then it may not be sensible to integrate them. Although data 
integration does not require large volumes of data, combining data-
sets of very different sizes may present problems as larger datasets 
can outweigh the information present in smaller datasets (Fletcher 
Jr et al., 2019).

In cases where datasets are collected in a sufficiently simi-
lar manner to attempt an integrated analysis and it is reasonable 
to assume data reflect similar or related ecological patterns, the 
dataset properties will determine the structure of the integrated 
model needed. To demonstrate these concepts, we consider two 
UK freshwater invertebrate datasets that monitor water beetles, 
and present key dataset properties that may influence our ability 
to conduct an integrated spatial analysis as outlined in Table 1. 
One dataset is the Environment Agency BIOSYS scheme for bio-
indicators of riverine water quality and the other is the world's 
oldest volunteer- run biological recording scheme, originally 
known as the Balfour- Browne Club (Balfour- Browne Club, 2020; 
Foster, 2015).

 13652427, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fw

b.14143 by U
kri C

/O
 U

k Shared B
usiness Services, W

iley O
nline L

ibrary on [07/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1483JARVIS et al.

In the following sections we elaborate on some of these dataset 
features and the challenges that may arise when considering an in-
tegrated analysis.

2.3.1  |  Ecological currency

The ecological currency refers to the type of ecological measure-
ment made. The three most common currencies are counts of indi-
viduals, presence– absence and presence- only data. Counts contain 
more information than simply recording presence, yet abundance 
data are often costly and time- consuming to assemble. Recording 
the presence of a species is usually more straightforward and pres-
ence data can be of two forms. Presence– absence data include non- 
detections (sampling occasions where the species is not seen) so that 
some idea of sampling effort and taxonomic focus can be extracted 
from the survey information. With presence- only data no informa-
tion is collected when a species was not seen. This difference makes 
presence– absence data more information- rich, although presence- 
only data can still be hugely important for assessing biodiversity 
patterns and trends (Elliott et al., 2015; Huang & Frimpong, 2016). 
Integrated models enable datasets of different currencies to be 
jointly analysed (Isaac et al., 2020), relying on mathematical links 
between the distributions used to model each currency.

Novel survey methods may add additional complications when 
considering ecological currencies. For example, DNA sequences 
from molecular surveys usually do not quantify abundance. In ad-
dition, detection probabilities from molecular data can be variable 
(Buxton et al., 2018), complicating assessments of non- detections. 
As yet, models for integrating molecular data with traditional sam-
pling data are still in development but are a promising future direc-
tion for freshwater analyses.

2.3.2  |  Sampling and sample processing protocols

The sampling protocol should define all of the methods, techniques, 
approaches and equipment that are used to generate observations, 
as well as the quality- assurance steps in place. Differences among 
protocols need to be considered when integrating data. For example, 
kick- sampling and dredge net survey protocols will deliver different, 
but related, information on species richness, species abundances and 
community composition of macroinvertebrates when conducted in 
the same river at the same time, because each method samples the 
habitat differently (Moore & Murphy, 2015).

A particular challenge for data integration occurs when sampling 
protocols differ in their spatial or temporal units. For example, a mac-
rophyte point sample and a transect might deliver useful information 
on the same stretch of river or lake, but the area covered by the latter 
is far greater. Similar problems occur when integrating data collected 
at different times of year, or at different depths in the water column. 
In statistics, this is known as the “change of support” problem and 
requires additional modelling steps to be taken when constructing 
integrated models (Pacifici et al., 2019).

2.3.3  |  Sampling design

The sampling design of any monitoring activity covers the rules 
underpinning where and when samples are taken. Sampling de-
signs for monitoring schemes fall along a gradient, from those 
determined mainly by scientific rationale to those that are driven 
by practical and/or logistical considerations. Ideal sampling would 
be representative across the spatial domain of interest and at a 
consistent temporal frequency over the long- term; one which is 
suited to disentangling the decadal, interannual, seasonal and 

TA B L E  1  Key features of contrasting types of national datasets of UK freshwater invertebrates.

Dataset properties BIOSYS River macroinvertebrate surveys (BIOSYS) Water beetle surveys from Britain and Ireland (WBS)

Taxonomic coverage All aquatic invertebrates Water beetles, including Sphaeriusidae, Gyrinidae, 
Haliplidae, Noteridae, Paelobiidae, Dytiscidae, 
Helophoridae, Georissidae, Hydrochidae, Spercheidae, 
Hydrophilidae, Hydraenidae, Elmidae, Dryopidae, 
Limnichidae, Heteroceridae, Psephenidae and some 
other fresh water- associated Coleoptera

Taxonomic resolution Variable over time, most recent samples to species 
level except Diptera, Oligochaeta and Bivalvia

Species level

Ecological currency Counts Presence- only

Spatial extent England UK and most of Ireland

Habitat coverage Rivers Rivers, lakes, ponds

Temporal extent 1965 to present day 1904 to present day

Sampling design Representative, spatially balanced Volunteer site- selection; opportunistic recording

Repeat visits to locations

Sampling protocol Kick samples and dredge samples Various, not recorded

Quality assurance Specimens preserved for verification Specimens not always preserved but records validated 
and verified by taxon experts
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short- term timescales over which ecological dynamics mani-
fest (Amundsen et al., 2019; Perga et al., 2018; Ryo et al., 2019; 
Seebens et al., 2007).

There are, however, many scenarios whereby practical or logisti-
cal constraints dictate changes to pre- planned, structured surveys. 
Within biodiversity monitoring, this can often be the case with in-
dividual species recording, particularly rare species, where a fully 
random location selection routine could return very few occurrence 
records. In such circumstances opportunistic data, with no underly-
ing design, may provide a far richer data source with more informa-
tion content.

Sampling design is important to consider in integrated modelling 
if one or more datasets are collected in a way that is not random, 
particularly if there is any evidence that data might be biased to-
wards certain areas or time periods. To understand any biases a “Risk 
of Bias” assessment can help to identify whether spatial, temporal 
or other biases arising through surveyor choice could affect model 
results (Boyd et al., 2022). Failing to account for these biases in inte-
grated modelling can lead to models that are less useful than single 
dataset models (Simmonds et al., 2020).

2.4  |  Integrated analysis: An example with Agabus 
water beetles

In order to illustrate how an integrated analysis can be achieved 
using the datasets described in Table 1 we create a model of Agabus 
beetle distributions across Great Britain. This example is intended to 
demonstrate the methodological aspects of integrating datasets, the 

mechanics of doing so and the potential impact, and is not intended 
as a comprehensive assessment of the distribution of Agabus beetles. 
Agabus was chosen to illustrate an integrative analysis as a result of 
the large number of records and relative consistency in nomencla-
ture between datasets. We show that the integrated analysis ben-
efits from the robust, structured design of the BIOSYS data, which 
offers unbiased, representative sampling across the whole domain, 
and the large sample size of occurrence records available from the 
citizen science WBS data (Figure 2).

The distribution of data pooled over a 3 year period (2001– 2003, 
chosen as it represents the most recent period for which data are 
publicly available across both schemes) clearly illustrates the differ-
ent spatial extent offered by each data source (Figure 2a,b). BIOSYS 
data cover England only whilst the WBS data cover the whole of 
Great Britain. If the mismatch in spatial extent was ignored within 
the integrated analysis, then undue weight could be given to the 
WBS data over the BIOSYS data purely because there are large re-
gions where these are the only data available. To mitigate this, we 
restricted the spatial extent of the analysis to England, where we had 
records from both datasets.

The datasets also recorded different ecological currencies (counts 
vs. presence- only). For this case study our aim was to model occur-
rence, so we simplified the count data to presence– absence. We ac-
counted for the protocol differences between the schemes by fitting a 
dataset- specific intercept so that each dataset has a different baseline 
probability of an Agabus beetle being observed. This approach can be 
used to account for simple differences between datasets (e.g., a dif-
ference in water volume captured) or the compound effect of multiple 
differences, as with the water beetle data.

F I G U R E  2  The spatial distribution of Agabus water beetles from (a) EA BIOSYS, with absences shown in grey and presences in black 
(157 presences), and (b) Water Beetle Surveys (1086 observations) between 2001 and 2003, and (c) predicted distribution of Agabus water 
beetles at 1- km resolution after integrated modelling using both datasets.
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We included four demonstrative environmental covariates in 
our model relating to the number of nodes and sources on the river 
network and urbanisation (Appendix S1). Although these covariates 
were chosen as a consequence of their potential impact on water 
beetles, we acknowledge there are many other potential drivers and 
we did not conduct an exhaustive review of covariates for this ex-
emplar. We assumed that the effects of environmental covariates 
would be the same across both datasets. We also assumed that there 
was a shared spatial pattern in the data –  both datasets would reflect 
that some parts of the country contained waterways more likely to 
be occupied by Agabus beetles. The WBS data are clustered into 
areas of intensive observation and areas with little or no sampling 
effort (Figure 2b), a pattern not shared with the BIOSYS data. We 
therefore included an additional spatial term to account for uneven 
sampling effort in the WBS data.

The model structure (Figure 3) demonstrates which aspects 
of the model are assumed to be shared between datasets (envi-
ronmental covariate effects and shared spatial process) and which 
are allowed to vary between datasets (mean and error, WBS- only 
spatial term). A detailed description of the modelling process and 
covariates used is available in the Appendix S1. The prediction 
from the integrated model highlights the areas where Agabus 
beetles are predicted to be most likely to occur based on infor-
mation in both datasets (Figure 2c). A comparison with a model 
of BIOSYS data only is presented in Appendix S1, along with 
uncertainty maps. Integration can increase the power to detect 
potential driver effects and we found that significant covariate 
effects on water beetle occurrence were identified using the inte-
grated model that could not be identified using only BIOSYS data 
(Table 2; Appendix S1). The SD associated with each of the esti-
mated parameters also is smaller in the integrated model than in 
the BIOSYS data only model, demonstrating that we can estimate 

covariate effects with increased confidence in the integrated 
model (Table 2).

This exemplar demonstrates one approach to integrating these 
two datasets but note that others are available; for example, we 
could have included abundance data from BIOSYS directly in-
stead of simplifying to presence– absence (Farr et al., 2021; Zipkin 
et al., 2017). Although we decided to include only data from England, 
integrated approaches also can be used where there is spatial mis-
match among datasets (Bowler et al., 2019). Our exemplar estimates 
patterns over space, but we could equally consider an integrated 
trend analysis over time. We also acknowledge that although inte-
grated approaches can allow us to efficiently use available observa-
tional data, they may not overcome the general limitations common 
to any observational studies (e.g., an inability to confidently quantify 
ecological processes or identify causal relationships) where an ex-
perimental approach may be needed. For each application it will be 
important to carefully consider the goal of the modelling, the dataset 
properties, and the assumptions made about underlying ecological 
and observation processes.

3  |  CONCLUSIONS

We believe that integrating different sources of freshwater biodi-
versity data within a common analytical framework presents op-
portunities for improved understanding of freshwater ecosystems. 
Integrated models have the potential to provide more robust meas-
ures of biodiversity, more power to identify potential underlying 
drivers at different scales, and an ability to identify and quantify 
key uncertainties. Integrated approaches also allow us to make 
fuller use of the increasing and hugely diverse data now available 
on freshwater systems, by defining a common framework in which 

F I G U R E  3  Schematic representation of the integrated model fitted, showing the components unique to each scheme and those 
considered to be common across schemes (those within the grey box). Note that BIOSYS data were downgraded from counts to presence– 
absence for analysis.

Integrated model BIOSYS data only model

Estimated 
coefficient SD

Estimated 
coefficient SD

Density of sources 0.874 0.101 0.409 0.165

Density of nodes 0.087 0.025 −0.072 0.044

Sources:node ratio −1.860 0.242 −1.028 0.459

Proportion of urban area 0.033 0.006 −0.025 0.018

Note: Entries in bold indicate significant effects for which 95% credible intervals do not 
overlap zero.

TA B L E  2  Estimated coefficients and 
associated uncertainty for the fixed 
effects estimated from the integrated 
model and BIOSYS data only model.
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disparate data can be combined. There are many outstanding re-
search questions to be addressed (some highlighted in Box 1) and 
we hope that this article will serve to catalyse data integration 
within the freshwater research community, to fully realise the po-
tential of diverse data to enhance fundamental understanding and 
guide ecosystem restoration.
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