
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Tomoyuki Nakano,
Kyoto University, Japan

REVIEWED BY

Marshall Weisler,
The University of Queensland, Australia
Yunwei Dong,
Ocean University of China, China

*CORRESPONDENCE

Jack D. Hollister

jdh2n21@soton.ac.uk

RECEIVED 16 February 2023
ACCEPTED 07 July 2023

PUBLISHED 27 July 2023

CITATION

Hollister JD, Cai X, Horton T, Price BW,
Zarzyczny KM and Fenberg PB (2023)
Using computer vision to identify limpets
from their shells: a case study using four
species from the Baja California peninsula.
Front. Mar. Sci. 10:1167818.
doi: 10.3389/fmars.2023.1167818

COPYRIGHT

© 2023 Hollister, Cai, Horton, Price,
Zarzyczny and Fenberg. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 27 July 2023

DOI 10.3389/fmars.2023.1167818
Using computer vision to identify
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study using four species from
the Baja California peninsula
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The shell morphology of limpets can be cryptic and highly variable, within and

between species. Therefore, the visual identification of species can be

troublesome even for experts. Here, we demonstrate the capability of

computer vision models as a new method to assist with identifications. We

investigate the ability of computers to distinguish between four species and two

genera of limpets from the Baja California peninsula (Mexico) from digital images

of shells from both dorsal and ventral orientations. Overall, the models

performed marginally better (97.9%) than experts (97.5%) when predicting the

same set of images and did so 240x faster. Moreover, we utilised a heatmap

system to both verify that models are focussing on the specimens and to view

which features on the specimens the models used to distinguish between

species and genera. We then enlisted the expertise of limpet ecologists

specialised in identification of species from the Baja peninsula to comment on

whether the heatmaps are indeed focusing on specific morphological features

per species/genus. They confirm that in their opinion, the majority of the

heatmaps appear to be highlighting areas and features of morphological

importance for distinguishing between groups. Our findings reveal that the

cutting-edge technology of computer vision holds tremendous potential in

enhancing species identification techniques used by taxonomists and

ecologists. Not only does it provide a complementary approach to traditional

methods, but it also opens new avenues for exploring the biology and ecology of

limpets in greater detail.
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Introduction

Limpets are abundant, diverse, and ecologically important

members of rocky shore communities (Kordas et al., 2017; Firth,

2021). In addition, some limpet species are important culturally and

as food sources for modern and pre-historic human societies

(Fenberg and Roy, 2008; Fenberg and Roy, 2012; Firth, 2021;

Weisler and Rogers, 2021). Yet, despite their ubiquity, limpet

species can sometimes be difficult to tell apart in the field (Simison

and Lindberg, 2003; Burdi, 2015), at archaeological sites (Rogers and

Weisler, 2020a) and in museum collections (Kuo and Sanford, 2013)

owing to their highly variable shell morphologies and colour patterns

(Nakano and Spencer, 2007). Even within species, shell features can

vary according to substrate, size (age), population, and geographic

region, sometimes resulting in distinct shell morphologies (Williams,

2017) and shapes (Rogers and Weisler, 2020b) To further complicate

matters, shell erosion and encrusting symbionts can also impede

visual identification. As a result, taxonomists frequently rely on using

internal anatomical features, such as radular structure, as

distinguishing characters (Simison and Lindberg, 1999). In more

recent decades, molecular methods have revealed new limpet species,

confirmed/rejected species validity, and clarified nomenclatural

confusion among morphologically similar species (Simison and

Lindberg, 2003; Crummett and Eernisse, 2007). Nevertheless, the

use of internal anatomical or molecular characters for distinguishing

similar looking and highly variable species can be time consuming

and resource limiting, while offering little advance in species-level

identifications using the most easily accessible external features –

their shells.

Recent developments in computer-based image recognition and

detection may be harnessed to develop accurate, fast, and cost-

effective means to distinguish between limpet species from their

shells. In addition, these emerging technologies can also provide

insight into the morphological characteristics that can be used to

distinguish between similar looking species (Pinho et al., 2022). The

aim of this paper is to evaluate the feasibility of these new

computer-based methods for distinguishing between limpet

species and genera using digital images of their shells.

Computer vision (CV) is currently pushed forward by deep

learning (DL) and artificial intelligence (AI) and focuses on the

development of algorithms and techniques for computers to

process, understand and analyse visual data inputs. This can

involve tasks such as image and video recognition (the

recognition of specified subjects within images and video), object

detection (the recognition and location of subjects within an image

and video) and scene understanding (the recognition of a subject

within a 3D environment with respect to its relationship to other

subjects). CV involves the understanding of pixel patterns and their

respective colour values. Furthermore, CV systems have the

capability to operate for prolonged periods, handle very large

datasets, and produce results at very fast speeds (Wilson et al.,

2022), which are unachievable and/or unfeasible for humans.

Recently, CV has been adopted by the life sciences as a method

to visually identify and group organisms together based on their

morphology (Wäldchen and Mäder, 2018; Greeff et al., 2022;

Hollister et al., 2022), and has been recognised as an emerging
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tool for ecology, evolution, and taxonomic research (Høye et al.,

2021; Lürig, 2022). The accelerated use of CV in the natural sciences

has coincided with the massive digitisation efforts of natural history

museums (Popov et al., 2021; Wilson et al., 2022), where tens of

millions of digital images of specimens and collection data are now

available for researchers worldwide. For example, Wilson et al.

(2022) applied CV models to >180,000 specimens of digitised

natural history specimens of butterflies, resulting in highly

accurate sex identifications and body size measurements over a

short timescale (one week), showcasing the emerging power of CV

for the natural sciences.

The evaluation of CV methods for identifying similar looking

species has not been well studied to date with mixed results from the

few studies that have. For example, CV models achieved accuracy

scores of ~ 50% for identifying species of British carabid beetles

(Hansen et al., 2020). But more recently, some researchers have

achieved highly accurate results (upwards of 97%) for identifying

species of cryptic lizards (Pinho et al., 2022), suggesting that CV

models are either getting more accurate and/or that the results can

be taxon specific. Regardless, even if highly accurate CV models are

achieved, on their own, they do not give researchers any

information about how specimens of different species can be

distinguished from each other. Similarly, while DNA barcoding

can allow for the species-level identification of specimens,

traditional morphological taxonomy is required to find

distinguishing features between species (Tautz et al., 2003). For

CV to be practically useful for identification purposes, they must

not only be trained on specimens with known species-level

identification (which can be achieved through DNA barcoding

and/or expert identification), but newly developed methods need

to be integrated to the workflow to provide insights to the decisions

made by CV models. In other words, we need to overcome the

“black box” problem (Savage, 2022).

DL based systems are often viewed as “black boxes” with

internal processes too complicated for comprehension, which can

lead to the development of biased models that generate incorrect or

biased results, leading to distrust in their results (Sham et al., 2022).

To address these issues, a significant number of researchers are

working to improve various aspects of AI. Fortunately, CV has

made significant strides in this area, as evidenced by the

development of explainable AI (XAI) in the form of heatmaps.

Heatmaps come in many forms and can be used with a variety of

applications. Within convolutional neural networks (CNN),

heatmaps are often used as a visualisation tool that can be

generated to show which features are learned during the training

processes and which parts of an input image were used to make

predictions (Selvaraju et al., 2016).

Ecologists and taxonomists are now beginning to realise the

potential of integrating heatmaps into their CV models to help

classify morphologically similar or cryptic species and to highlight

morphologically important characters. Recently, researchers

applied CV models and heatmaps for species identification

problems of a cryptic group of lizards (Pinho et al., 2022). The

researchers found that the heatmaps from their CV models were

focussing on areas of the body that were morphologically variable

between species (while also noting that future research should focus
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on the interpretation of heatmap results). Although still in its

infancy, we believe that the use of CV and heatmaps will provide

insightful, cost effective, and rapid means for the identification of

limpet species using shell features. If found to be robust, similar

techniques could be used to tell apart cryptic species, populations,

and perhaps even shell differences caused by microhabitat or

phylogeographic factors.

In this paper, we apply CV models and heatmaps to four limpet

species from the rocky intertidal of the Baja California peninsula,

Mexico: Lottia strigatella, (Carpenter, 1864), Lottia conus (Test,

1945), Fissurella volcano (Reeve, 1849), and Fissurella rubropicta

(Pilsbry, 1890). Each species overlaps in range and occupies the

rocky shore habitat in the high to mid-intertidal zone. We focus on

these species because of their diverse shell morphologies and colour

patterns on their dorsal and ventral sides. For example, Lottia conus

has a variety of dorsal shell patterns that can be described as “wavy”,

“ribbed”, “speckled”, or “mixed” (Burdi, 2015; Ross, 2022).

The “true limpets”, which include the Lottia species, are in the

subclass Pattelogastropoda, whereas the Fissurella species (keyhole

limpets) are members of the distantly related subclass,

Vetigastropoda. We include Fissurella in this analysis because

they are ecologically and functionally similar to the true limpets

and they live in the same rocky shore habitat. But importantly, the

shells of the Fissurella species are easily distinguishable by eye from

the Lottia species due to the distinctive keyhole found only in the

Fissurelidae family. Therefore, we expect the heatmaps to also focus

on this shell difference when making predictions on which genus a

specimen belongs (Lottia versus Fissurella) and have high accuracy

scores. If true, it will give us confidence that the models are

focussing on important morphological differences for

distinguishing between taxa.

Species level identifications within both genera are more

difficult, and therefore, more challenging for both human and

CV-based methods of identification. For example, authors have

observed multiple cases of misidentifications of F. volcano with F.

rubropicta (and vice versa) in museum collections and L.

strigatella and L. conus each have their own history of

taxonomic confusion (Simison and Lindberg, 2003; Burdi,

2015). The Lottia species can sometimes be difficult to tell apart

as they are both relatively small, have highly variable shell

patterns, and live within the same microhabitat (on top of rocks

or as epibionts on other shells in the high to mid-intertidal). By

applying CV and heatmaps to digital images of the shells of these

species, our broader aim is to help solve these classification

problems while also identifying shell characteristics that

researchers can use to distinguish species, both in the field and

in museum collections. To this end, we have trained CVmodels on

specimens with confirmed species identifications (using DNA

barcoding) and calculated model accuracies for making correct

predictions. We compare the results of the CV models with expert

identifications of the same specimens (without prior knowledge of

the model results). We then used expert opinion to determine if

the heatmaps focused on important or unique morphological

features that may be useful for identification purposes. Finally,

we asked the experts to view incorrect predictions and provide

interpretations as to why these were made.
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Methodology

Field sampling and DNA barcoding

Four species were selected for this investigation: Lottia conus,

Lottia strigatella, Fissurella volcano and Fissurella rubropicta.

These species are co-distributed in the mid to high rocky

intertidal zone along the Pacific coast of the Baja California

peninsula (Mexico). Specimens were sampled from the field at

sites spanning the peninsula, from ~23-30°N. Limpet specimens

were fixed in 70% ethanol in the field and transferred to absolute

ethanol in the laboratory. To confirm species identification, DNA

was extracted from foot tissue using the DNeasy Blood and Tissue

Kit following the manufactures instructions (Qiagen). For all

species, we amplified a ~630bp fragment of a section of

mitochondrial Cytochrome Oxidase Subunit I (COI) gene and

sequenced on an ABI 3730 DNA Analyser at the Natural History

Museum, London (UK). Total specimen numbers: L. strigatella =

158, L. conus = 120, F. volcano = 82, and F. rubropicta = 70.

Pairwise sequence distances within each group were calculated

and a neighbour joining tree was performed in MEGA (Tamura

et al., 2021) to confirm the monophyly of each species. Pairwise

distances within each group are small and range from 0.05 (Lottia

conus) to 0.00 (Fissurella rubropicta) and monophyly of each

species was confirmed. Further, we used BLAST searches to match

sequences to species on the NCBI database. Fissurella volcano and

Lottia strigatella are on the NCBI database and our sequences

matched with a percent identity of >97%. Lottia conus sequences

were matched (>95%) to sequences obtained from Dawson et al.,

2014. There are no published COI sequences of Fissurella

rubropicta, but the very low pairwise distances between

specimens within this group (see above) and its clear divergence

from F. volcano sequences (77%) gives us high confidence of the

identity of this species for our models. Correctly labelled data are

essential for creating accurate and un-biased training datasets and

to assess the accuracy of model results (Rädsch et al., 2023). We

use DNA barcoding, but if available, researchers could also use

expert identification from taxonomists to confirm species identity

(or a combined approach). Further details of the molecular

methods of each species and genbank accession numbers are in

Zarzyczny et al. (under minor revision)1.
Dataset construction

High-resolution images of the dorsal and ventral sides of the

shells of each specimen were captured using an Olympus SZX10

microscope. To optimize image quality, a focal step function was

implemented, and a black velvet backdrop was used to minimize

background interference. Images were taken in a room with

controlled lighting to allow for uniformity. In total, six image sets
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were created. Four models examined species vs species differences

and two examined genus vs genus differences. These were as

follows: Dorsal L. conus vs L. strigatella; ventral L. conus vs L.

strigatella; dorsal F. rubropicta vs F. volcano; ventral F. rubropicta vs

F.volcano; dorsal Lottia vs Fissurella; and ventral Lottia vs Fissurella.

Therefore, each model was made up of two classes. The models were

designed to learn features from visual data inputs (the images)

through a computational training process, resulting in predictions

based on the learned features.

The images in each class were divided into three groups:

training, validation, and test. The training images were used to

train the model, the validation images were used for self-

verifying and updating model weights during the training

process, and the test images were reserved for the final

evaluation of the model performances. Due to the limited

number of specimens available, models may struggle to train

effectively due to a lack of data to identify unique features. To

address this issue, we employed image augmentation, a

technique that generates artificial images based on the original

stock. This has been shown to improve model performance

when faced with such situations by creating a larger stock of

images, but where the desired features remain unique and non-

repeated (Perez and Wang, 2017; Xu et al., 2023). To preserve

the integrity of the specimens’ morphology, we chose

augmentations that did not alter their colour or shape. We

utilized a range of random flips (vertical and horizontal), two

rotations functions (a fixed 900 clockwise or anticlockwise and a

separate clockwise or anticlockwise rotation, up to a maximum

of 890), and a zoom out (decreases the size by a maximum of

10%). Each of these were set with an 80% probability of being

selected and programmed to not create duplications. Before any

augmentation was applied, 20 images from each class (i.e., 40

images in total per model) were randomly selected from each

image set and set aside as the test set. The test set must remain

neutral, un-augmented and unseen by the model. 20 images

from each class were randomly chosen and used as the

validation set. These 20 validation images were augmented to

a combined total of 400 images. The remaining images in each

class were used for training and were augmented to a combined

total of 3000 images. Overall, each model would contain 6000

training images, 800 validation images and 40 test images.
Computer vision model

We used a high-specification workstation equipped with an

NVIDIA GPU with TensorFlow and Python programming. The

image classification technique, which consisted of a CNN, was

deemed the most appropriate for this scenario. The VGG16 CNN

algorithm (Simonyan and Zisserman, 2014) with custom top layers

and transfer learning using the ImageNet dataset, was employed.

Models were tuned using KerasTuner to find optimum

hyperparameter and learning rate (Joshi et al., 2021). They were

initially trained for three epochs. Afterwards, all models were fine-

tuned by unlocking previously trained layers starting from layer 11,

and each model had a final learning rate set lower than its original
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validation accuracy plateaued. The time taken for the model

development (training and validation) and testing phases for each

model were noted for comparison with the expert classification

(see below).
Model and expert identifications:
evaluation and comparisons

The experts visually identified the same test sets of images for

each model but with the species labels removed and with no prior

knowledge of model results. They also kept track of how long it took

to go through the dataset. Expert accuracy scores were then

compared to the confirmed species identifications based on the

barcoding results. They were subsequently compared to the

prediction accuracy scores for each CV model. Further, the

incorrect predictions for specimens for each method (expert

versus CV model identification) were compared to look for any

congruent patterns (e.g., do both methods misidentify the

same specimens?).

The accuracies for both methods of identification (model versus

expert) were calculated as the proportion of the correct predictions

out of the total number of possible predictions. Accuracies are

therefore scored between 0 – 100%, with 100% being a perfect score.

The model and expert predictions were further evaluated using a

bootstrap analysis to create a 95% confidence interval on the

accuracy scores (resampling single specimen predictions with

replacement 10,000 times). Overlap in 95% CI was used to judge

if there were significant differences between expert and model

predictions. Differences in the time taken to make predictions

between the expert and the models were also noted. In addition,

for each specimen that was incorrectly identified, the experts made a

post-hoc judgement as to why they thought an incorrect

identification was made and whether the models and experts

made the same mistakes.
Heatmap evaluation

The Gradient-weighted Class Activation Mapping (GradCam)

system (Selvaraju et al., 2016) was selected to create heatmaps for

each specimen image in the test datasets. GradCam is a technique

used in CV to understand which parts of an image influenced a DL

model decision. It works by analysing DL model activations and

gradients to create a heatmap that highlights the important regions

in the image. This heatmap helps us see what the model focused on

when making its prediction. The heatmap images of each specimen

in the test datasets were then shown to the experts to help evaluate

which features of the shell, if any, were used to make predictions.

Both experts are limpet ecologists (PBF and KMZ) that use visual

cues to determine species identification of Baja Peninsula limpets,

often using digital images of shells taken in the field.

To further evaluate the use of heatmaps to distinguish between

classes, we compared the intensity values between each class per

model. When the heatmaps are produced, a value is assigned to each
frontiersin.org
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pixel depending on how strongly a particular pixel contributes to

the classification decision made by the model. The higher the

intensity score of a pixel, the more significant its contribution to

the predicted class. These values are then summed up to produce

the overall heatmap intensity value per specimen. Although the

value itself cannot tell us what part of the shell is being used for

prediction, significant differences in overall heatmap intensity

values between classes might be evidence that the models are

using different features of each class to make predictions.

Comparisons in the mean difference of heatmap intensity values

between each class per model were evaluated using two sample

Wilcoxon tests (due to violations of normality for some models).
Results

Final model and expert accuracies

The models and experts produced highly accurate results

(Table 1). Overall, the models only incorrectly predicted five

images (out of 240), for an overall accuracy score of 97.9%. The

experts also performed well overall, with only six images incorrectly

predicted (out of the same 240 images), for an overall accuracy score

of 97.5%. Both produced a 100% correct prediction rate using the test

sets frommodels 1, 2 and 6. The experts’ worst performance was with

the test set from model 4 with an accuracy score of 92.5%. The

models’ worst performance were models 3 and 5, with an accuracy

score of 95%. The 95% confidence intervals overlap for all models,

suggesting a non-significant difference between model and expert

identification of limpet shells. The experts performed the predictions

on all test images in 59 minutes while the models predicted the test

images in ~30 seconds in total.
Heatmaps and expert interpretation

After the heatmaps were shown to the experts, they confirmed

the following: Across all six models, all the heatmaps were focussed
Frontiers in Marine Science 05
on the specimens (except for one image within model 1 within the

Lottia class). Across all six models, all heatmaps appeared to be

focussed on specific areas of the shells (except for the same one image

in model 1). Heatmaps often focused on a single area of the shells

while others focused on multiple features. These features were often

common across all images within each respective class (e.g., for the

Fissurella class in the genus models 1&2, the focus was always on the

keyhole). To review which features were highlighted most frequently,

we tallied the responses within the comments made by the experts.

For example, if a shell feature/area was focused on in all images from

a single class, it would equal 20/20.
Expert opinion: Model 1

For the Fissurella images (Figures 1A–D), 20/20 heatmaps

focused on the keyhole. For the Lottia images (Figures 1E–H), 19/

20 heatmaps focused on patterns around the shell margin. One

heatmap focused its attention around the outside of the shell rather

than on it but was still correctly predicted as Lottia. It was noted that

the specimens within the Lottia class had a high degree of variable

shell patterns and morphology.
Expert opinion: Model 2

For the Fissurella images (Figures 2A–D), 20/20 heatmaps focus

on the keyhole. For the Lottia images (Figures 2E–H) 19/20 focused

on the areas within the muscle scar and not on the shell margins,

while 1/20 focused on the muscle scar to the shell margin.
Expert opinion: Model 3

For the L. conus images (Figures 3A–D), 20/20 heatmaps focus on

the ribbing pattern on the shell, but not on the apex. For the L.

strigatella images (Figures 3E–H) 17/20 heatmaps focused on the

apex, while 3/10 focussed on patterns around the apex.
TABLE 1 Accuracy scores of all trained models with 95% confidence intervals in brackets.

Model Expert
Accuracy

Computer model Accuracy

Model 1: Dorsal Fissurella vs Lottia 100%
[100, 100]

100%
[100, 100]

Model 2: Ventral Fissurella vs Lottia 100%
[100, 100]

100%
[100, 100]

Model 3: Dorsal L. conus vs L. strigatella 95%
[87.5, 100]

95%
[87.5, 100]

Model 4: Ventral L. conus vs L. strigatella 92.5%
[82.5, 100]

97.5%
[92.5, 100]

Model 5: Dorsal F. rubropicta vs F. volcano 97.5%
[92.5, 100]

95%
[87.5, 100]

Model 6: Ventral F. rubropicta vs F. volcano 100%
[100, 100]

100%
[100, 100]
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Expert opinion: Model 4

For the L. conus images (Figures 4A–D), 19/20 heatmaps focus on

the area between the muscle scar and the shell margin. 1/20 focused on

a very small portion of the shell margin, however, this shell was noted

as containing no pattern and was predicted incorrectly (Figure 5). For

the L. strigatella images (Figures 4E–H), 20/20 heatmaps focused on

areas of the shell margin which is often bordered by a dark or mottled

band. Additionally, 2/20 also focused on the centre of the interior

portion of the shell within the muscle scar.
Expert opinion: Model 5

For the F. rubropicta images (Figures 6A–D), 20/20 heatmaps

focus on the ribbing pattern on the shell, but not on the keyhole. It
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was noted that some of the shells were highly eroded but the

heatmap still focused on any remaining ribbing patterns. For the F.

volcano images (Figures 6E–H) 20/20 heatmaps focused directly on

the keyhole. It was noted that the keyhole shape between the two

species is different.; F. rubropicta is more lemniscate while F.volcano

is ellipsed.
Expert opinion: Model 6

For the F. rubropicta images (Figures 7A–D), 20/20 heatmaps

focus on the area between the muscle scar and callus (which

usually contains a deep red colour) but not on the shell margin.

For the F. volcano images (Figures 7E–H) 18/20 heatmaps focused

on the margin. 2/20 focused on the margin and on the interior of

the shell.
FIGURE 2

Model 2: Ventral Fissurella (A–D) vs Lottia (E–H).
FIGURE 1

Model 1: Dorsal Fissurella (A–D) vs Lottia (E–H).
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Incorrect model predictions and
expert interpretation

All incorrect model predictions and all incorrect expert

predictions (Figure 5) were shown to the experts who were asked

to provide an opinion on what morphological features may have

caused the misidentification.
Expert opinion: Incorrect
model predictions

The F. volcano specimen in Figure 5A was incorrectly predicted

by both the model (model 5) and the experts (both incorrectly

predicted it as F. rubropicta). Experts determined that this specimen

has ribbing patterns normally associated with F. rubropicta. Experts

were convinced they were correct but after visual inspection of the
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ventral side and a correct prediction by the ventral model (6), they

concluded that this may just be an outlier individual with dorsal

characteristics of both species of Fissurella. In image B, the F.

rubropicta specimen was incorrectly predicted by model 5 as F.

volcano. Experts determined that this specimen displayed features

that they would expect from F. volcano as it has less defined ridging.

Image C, an L. conus specimen was incorrectly predicted by model 3

as L. strigatella. This same specimen was also incorrectly predicted

by the experts. Upon subsequent inspection, the experts determined

that the morphological features of this specimen are not typically

associated with L. conus such as not having a banding pattern and

the shell pattern is more stippled, which they often attribute to L.

strigatella. Image D, an L. strigatella specimen was incorrectly

predicted by model 3 as L. conus. The experts determined that

the shell is highly eroded and very little morphological information

can be used to make a prediction. Image E, a L. conus specimen was

incorrectly predicted by model 4 as L. strigatella. Experts
FIGURE 4

Model 4: Ventral Lottia conus (A–D) vs Lottia strigatella (E–H).
FIGURE 3

Model 3: Dorsal Lottia conus (A–D) vs Lottia strigatella (E–H).
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FIGURE 6

Model 5: Dorsal Fissurella rubropicta (A–D) vs Fissurella volcano (E–H).
FIGURE 5

All incorrect model and expert image predictions.
FIGURE 7

Model 6: Ventral Fissurella rubropicta (A–D) vs Fissurella volcano (E–H).
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determined that it also has very little pattern and largely

monochromatic, making it difficult to identify.

Expert opinion: Incorrect
expert predictions

Images A and C were incorrectly predicted by both the models

and the experts, with reasonings outlined above. Image F is a dorsal

view of an L. conus specimen that was incorrectly predicted by the

experts as L. strigatella. On reflection, experts commented that they

can see some clear L. conus morphological features (clear banding

pattern) and were unsure how they incorrectly predicted the

specimen initially. Image G is a ventral view of an L. conus

specimen that was incorrectly predicted by the experts as L.

strigatella. Again, on reflection, experts determined that they

could see L. conus features (ribbed margin) and were unsure how

they incorrectly predicted the specimen. Image H is a ventral view

of an L. strigatella specimen that was incorrectly predicted by the

experts as L. conus. On reflection experts determined that the

banding pattern around the margin is a feature they would

usually associate with L. conus, making this specimen a difficult

one to predict (but was correctly predicted by the model). Image I is

a ventral view of a L. strigatella specimen and was incorrectly

predicted by the experts as L. conus. Experts determined that the

pattern on this specimen is unusual and is displaying a tortoiseshell

pattern that they could attribute to both Lottia species (the model

predicted this specimen correctly).
Heatmap intensity values

For the heatmap intensity values, all models showed a

significant difference (P<0.05; two sample Wilcoxon tests) in the
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mean values between each class (Figure 8). For both genus models

(1&2), the Fissurella values are much lower and with a smaller range

of values than the Lottia values. For the species comparisons

(Figure 8), both the dorsal and ventral views for the Lottia

models (3&4) are higher, on average for L. strigatella than L.

conus. Likewise, the values for F. rubropicta are on average higher

than F. volcano (5&6).

Discussion

Computer vision-based
limpet identification

The use of CV to help distinguish between species is starting to

gain traction amongst ecologists and taxonomists (Wäldchen and

Mäder, 2018; Greeff et al., 2022; Hollister et al., 2022). However, few

have attempted to pair CV models with heatmaps to help visually

distinguish between species with high morphological variability.

Limpets, including those species used in this study, can have

multiple colour morphs and shell patterns due to several different

ecological and life history factors, including substrate type, age, and

patterns of shell erosion (Bird, 2011; Williams, 2017). It is therefore

not uncommon for field ecologists and museum curators/

taxonomists to make mistakes in species identification. To help

assist identification, our CV models performed very well and the

heatmaps largely focus on shell areas that are morphologically

informative between genera and species.

When considering the genera, the models achieved 100%

predicted accuracy for the dorsal and ventral orientations (models

1 and 2 respectively). Previous research has shown that higher

taxonomic levels tend to score greater than lower levels with

computer-based classification problems (Hansen et al., 2020).

This is most likely due to having more unique images and having
FIGURE 8

Boxplots showing heatmap intensity values for all models.
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a larger selection of features to associate to each respective class,

both of which are shown to improve the performance of CV models

(Shorten and Khoshgoftaar, 2019). This follows general taxonomic

identification procedures, where higher taxonomic levels are more

easily distinguished (Hennig, 1966). It is important to recognise that

all Fissurella species have a distinctive keyhole in their shells,

whereas true limpets (including Lottia) do not. This is a very

clear method of distinguishing the two by eye and the high genus

level accuracies evidence this through perfect model performance.

This is further supported by the heatmap analysis which clearly

shows that the models are focussing on the keyhole of all Fissurella

specimens within both models. When viewing the Lottia specimens,

the heatmaps are looking at different areas of the specimens, which

is reflective of the varied morphology of Lottia. When viewing the

heatmap intensity values (Figure 8), the Fissurella class have a much

lower mean and spread of values, while the Lottia class has a much

higher mean and spread of values. This shows that the models

utilise much less visual information to determine the Fissurella class

while requiring a lot more information to determine the Lottia class.

The experts commented that the keyhole, or a lack of, would be

their defining feature to classify either class.

The species vs species models achieved more variable, but still

highly accurate results. The ventral oriented models performed

better than the dorsal oriented models across both species’ groups.

The Lottia ventral model (model 4) performed slightly worse

(achieving a prediction accuracy of 97.5%) than the Fissurella

ventral model (model 6), which achieved a prediction accuracy

score of 100%. However, the Fissurella dorsal model (model 5) and

the Lottia dorsal model (model 3) performed equally well (95%).

We believe this slight difference in performance between the ventral

and dorsal orientations lies in the fact that the dorsal sides will

incorporate many factors that can alter appearance, such as erosion

and encrusting symbionts that can cover the shell, all of which

would hinder the accuracy of CV models. However, the ventral side

remains hidden and protected from physical elements. Thus, the

ventral side may provide a clearer picture of the differences between

species and therefore provide maximum identification

opportunities for the CV models. Although this option is not

preferable for field identification as the body tissue would need to

be removed from shells. Dry shell collections of museum specimens

or those collected for other purposes (e.g., population genetics)

however, could benefit from the use CV on the ventral and dorsal

shell for identification. Again, the heatmap intensity values for the

species-based models showed significant differences between each

class per model. This suggests that the models found morphological

features or areas of similar importance within each class when

making their respective predictions. We believe this type of

assessment could help researchers interpret decisions made by

CV models. For instance, if a prediction does not fit into a

known boundary of heatmap intensities for a given class, then it

could either be ruled as incorrect or could, at the very least, warrant

further investigation, either by revisiting visually by an expert or by

molecular means. The heatmap intensity values for the incorrectly

predicted specimens (n=5) tend to be lower than the values for the

correctly predicted specimens (n=235).
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Expert identification and comparison to
model performance

Experts performed marginally worse (by one specimen) than

the model predictions when considering all images used for the test

datasets (n=240). The experts achieved 100% on the genus-based

models (models 1 and 2) and the ventral F. rubropicta vs F. volcano

(model 6) which is equal to the model performance. The experts

performed marginally better on model 5 by 2.5%, performed equally

on model 3 and performed worse on model 4. These small

differences however are not significant (Table 1). What is striking

is the difference in time it takes for the experts and models to make

their predictions. It took the experts on average 10 minutes to

identify each test set (59 minutes in total) while each model could

process their respective test images in less than 6 seconds

(30 seconds in total). The experts combined years of limpet-based

experience in the study region totals over 22 years, having viewed

countless specimens to achieve their personal knowledge base. In

contrast, each model used no more than 350 unique images and was

created in less than 5 minutes of training time. Therefore, the sheer

speed at which CV models can make accurate predictions is one of

its primary advantages.

The more unique images that are available for training, then the

better the performance of the finished model (Shorten and

Khoshgoftaar, 2019). However, at the time of the project, a

limited number of specimens were available to create the models,

so it is highly likely that if more unique images were available (e.g.,

from confirmed museum specimens) then we believe that

subsequent models could perform even better than those achieved

within this project. Interestingly, when viewing the incorrect

predictions by themselves, the experts felt that some of their

incorrect predictions were a result of human error. A typical

downside of the human condition is that performance can

decrease due to fatigue or many other cognitive and physical

conditions (Mallis et al., 2004), which computers do not suffer.

Thus, in the future, we envision that many thousands of specimens

can be fed into similar models for identification purposes (e.g., for

bulk field collected specimens or un-catalogued museum

accessions), alongside confirmation and quality control from

expert taxonomists and molecular ecologists.
Heatmap production and
expert interpretation

The heatmaps were found to almost always focus upon the

specimens, regardless of the model or class. This is a good indicator

that the models trained effectively despite the relatively low number

of unique images. After the heatmaps were shown to the experts, it

was agreed that almost all were focussing on parts of the shell

considered to be morphologically important. Occasionally, models

focussed on a singular feature, whilst other times they would focus

on multiple features. Neither outcome could be considered

incorrect. When visually identifying specimens, a human would

use a variety of features to make a final decision. However, with
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cryptic or highly variable species (e.g., some limpet species), the

number of defining features is likely to be limited and/or variable

among specimens. For instance, the dorsal orientation of L. conus vs

L. strigatella can appear similar (model 3), with only a couple of

shell characteristics that can be used to distinguish them by eye. In

addition, the dorsal side of both shells can be highly eroded making

species identification more difficult when only viewed dorsally (e.g.,

as they are in situ). Regardless, the heatmaps for model 3 appeared

to find consistent morphological differences between the species.

The L. conus heatmaps mainly focussed on the shell patterns around

the apex and looking at shell patterns, while the L. strigatella

heatmaps mainly focussed on apex itself. The apex on the dorsal

shell of L. strigatella is often highly eroded (Keen, 1971), more so

than on L. conus. The apex is the oldest part of the limpet shell, and

therefore it is often the most eroded. It is therefore possible that the

pattern of shell erosion on the apex is different between the two

Lottia species, which may reveal differences in their internal shell

structures or microhabitats (Day et al., 2000), but this has not yet

been studied in these species.

Again, there are consistent differences between the Lottia

species on the ventral sides of their shells. The heatmaps mainly

focussed on the area between the muscle scar and the margin areas

of the ventral sides of L. conus shells. Whereas on L. strigatella,

focussed on the margin perimeter which often contains a dark band.

The dorsal orientations of F. rubropicta vs F. volcano (model 5)

heatmaps displayed consistent differences. The F. rubropicta

heatmaps consistently focussed on the area around the keyhole/

callus, but not on it, while the F. volcano images consistently

focussed on the keyhole. The F. rubropicta specimens have more

pronounced ribbing on their shells, which the heatmaps appear to

focus on. Whereas F. volcano shells are smooth with black/reddish

rays. These shell differences may be related to their microhabitat

differences: F. volcano are usually found underneath rocks and in

sheltered crevices (Morris et al., 1980) while F. rubropicta are

exposed and found on top of rocks (PBF and KMZ personal

observations). The smooth shells of F. volcano are more suited to

life underneath rocks and in crevices, whereas the heavy ribbing of

F. rubropicta likely helps reduce water loss (due to higher surface

area) during long periods of aerial exposure. Again, the ventral

orientation of F. rubropicta vs F. volcano (model 6) heatmaps

displayed consistent differences. The F. rubropicta consistently

focused on the area within the muscle scar and around the callus,

while the F. volcano consistently focused on the margin which

usually contains a dark band.
Future considerations

For CV models to be robust, images of accurately identified

specimens are required for training purposes. To do this, we relied

on DNA barcoding to confirm the species level identifications of the

training dataset and to evaluate the accuracy of the test dataset

identifications from both the CV models and experts. All specimens

were therefore already identified to species level prior to developing

the CV models. However, molecular work can be expensive and

time consuming. To reduce costs and time, the workflow could be
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adjusted where only the training dataset are barcoded, and then a

smaller sub-sample of specimens in the test dataset could be

barcoded to statistically assess the accuracy of the models.

Ultimately however, the more specimens that are available for

training purposes, the more accurate the model results. If large

datasets of confirmed and standardized training images are made

publicly available for the known species in a study region, then

future researchers could use them to supplement their own training

datasets. In particular, we need more training images of the

dorsal side of limpet shells, as they are primarily used for

field identifications.

More research is also needed to help interpret the utility of

heatmaps for understanding ecological questions related to limpet

shell morphology (Bird, 2011; Hamilton et al., 2020). With more

robust training datasets per species from multiple populations, age/

size ranges, and habitat types, we may be able use heatmaps to help

decipher if and how shell morphology varies intra-specifically over

local to regional scales. For example, the intensity and location of

heatmaps may differ based on factors such as: microhabitat,

population, size/age, and region. We can then use this

information to shed new light on how and why limpet shells have

such high morphological variability (Giesel, 1970).
Conclusion

This project demonstrates the effectiveness of using CV in

identifying limpets based on images of their shells. Despite the

variable shell morphologies and colour patterns within and between

species, the CV models were able to classify them to genus (100%)

and species level (95% - 100%) with high accuracy and quickly, even

with small datasets. The use of heatmaps confirmed that the

models were focusing on the limpet shells, and when reviewed by

expert taxonomists, they agreed that the heatmaps highlighted

significant and unique morphological features for each genus

and species.

Typically, DL models are considered as ‘black box’ systems due

to their complex decision-making processes and the ‘impossibility’

of truly understanding how these types of systems come to their

final conclusions. However, the use of heatmaps offers a means to

understand how CV makes its decisions. The results show that the

models can differentiate between visually similar species or those

with high morphological variability, and that they utilize unique

morphological features to distinguish them. In the future, we

envision this type of system being used by taxonomists as a tool

to assist them in identifying important or new morphological

features to help distinguish between visually similar and cryptic

species. Additionally, similar methods could assist with field

identification of limpets and potentially replace the need to collect

numerous specimens purely for identification purposes. Computer

models, once trained, require far less computation power to

perform identifications, and most can be uploaded and used from

a modern mobile phone.

It is important to consider the strengths and limitations of CV

models for identification purposes. No single method is perfect, but

combining the strengths of CV, molecular methods, and human
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expertise will allow us to gain new insights for taxonomy and

ecology. Not only for limpets, but for all of biodiversity.
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