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Abstract  Oil palm agriculture has caused extensive land 
cover and land use changes that have adversely affected 
tropical landscapes and ecosystems. However, monitor-
ing and assessment of oil palm plantation areas to support 
sustainable management is costly and labour-intensive. 
This study used an unmanned aerial vehicles (UAV) to 
map smallholder farms and applied multi-criteria analy-
sis to data generated from orthomosaics, to provide a set 
of sustainability indicators for the farms. Images were 
acquired from a UAV, with structure from motion (SfM) 
photogrammetry then used to produce orthomosaics and 
digital elevation models of the farm areas. Some of the 
inherent problems using high spatial resolution imagery 

for land cover classification were overcome by using tex-
ture analysis and geographic object-based image analysis 
(OBIA). Six spatially explicit environmental metrics were 
developed using multi-criteria analysis and used to gener-
ate sustainability indicator layers from the UAV data. The 
SfM and OBIA approach provided an accurate, high-reso-
lution (~5 cm) image-based reconstruction of smallholder 
farm landscapes, with an overall classification accuracy 
of 89%. The multi-criteria analysis highlighted areas with 
lower sustainability values, which should be considered 
targets for adoption of sustainable management practices. 
The results of this work suggest that UAVs are a cost-
effective tool for sustainability assessments of oil palm 
plantations, but there remains the need to plan surveys 
and image processing workflows carefully. Future work 
can build on our proposed approach, including the use of 
additional and/or alternative indicators developed through 
consultation with the oil palm industry stakeholders, to 
support certification schemes such as the Roundtable on 
Sustainable Palm Oil (RSPO).
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Introduction

Palm oil is the most widely traded and consumed vege-
table oil, with derivatives that are common ingredients 
in many products. Rapid rates of fossil fuel depletion, 
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along with disruptions to crude oil supply, are driving 
research programmes designed to develop palm oil as 
a biofuel source to support cleaner energy production 
(Johari et  al., 2015; Tan et  al., 2009). The growing 
demand for palm oil has led to the rapid expansion of 
plantations across tropical regions (Johari et al., 2015; 
Mekhilef et al., 2011; Xu et al., 2020), changing land 
use and land cover over large areas (Basiron, 2007; 
Shamshiri et al., 2019). In Malaysia, agriculture is one 
of the most economically important industries, with 
large-scale investment and widespread development 
of the plantation sector (Basiron, 2007). Malaysia is 
now one of the world’s largest palm oil producers and 
exporters (Azhar et al., 2017), with around 5 million ha 
of land in Malaysia currently under oil palm cultivation 
(Shamshiri et al., 2019).

The conversion of tropical forest and peatlands to oil 
palm plantations adversely affects the environment by 
reducing biodiversity and releasing greenhouse gases 
(Brandi et  al., 2015; Carlson et  al., 2018; Fitzherbert 
et  al., 2008; Hawa et  al., 2016; Shuhada et  al., 2020; 
Vijay et  al., 2016). Palm oil production also severely 
impacts air and water quality, giving rise to various pub-
lic health issues (Carlson et  al., 2018; Meijaard et  al., 
2020). However, the oil palm industry is also a profit-
able sector that generates positive socioeconomic out-
comes and alleviates rural poverty by providing income 
opportunities to smallholder communities (Brandi 
et al., 2015; Rist et al., 2010). Consequently, there is a 
pressing need to promote sustainable production.

Interest in sustainable production has led to the 
development of certification standards for palm oil 
production, most notably the Roundtable on Sustain-
able Palm Oil (RSPO, 2018). Under the RSPO, growers  
adhere to a set of principles and criteria to ensure that 
palm oil is produced through environmentally responsi-
ble agronomic practices (RSPO, 2018). The certification 
system brings economic benefits to producers through 
access to international markets where there is demand 
for sustainable products (Brandi et al., 2015; Vijay et al., 
2016). To improve sustainability of the industry as a 
whole, it is desirable for schemes such as the RSPO to be 
adopted by both large companies and smallholder farm-
ers. Whilst large companies have resources and skills to 
improve practices and secure RSPO certification, small-
holders frequently require external support (Saadun et al., 
2018). Such support is being provided by a variety of 
agencies and initiatives, such as Wild Asia, an organisa-
tion whose goal is to help local communities implement 

sustainable agricultural practices. These schemes support 
farmers with their environmental commitments consist-
ent with RSPO standards, including no cultivation in high 
conservation areas, mitigation of negative operational 
impacts on the environment, and implementation of best 
management practices for oil palm planting (Abdul Majid 
et al., 2021; RSPO, 2007). In addition, they support farm-
ers more broadly by considering the human rights and the 
livelihoods of communities (Ruysschaert & Salles, 2017; 
RSPO, 2007). A key starting point for sustainable certi-
fication is to understand land use and land cover within 
plantations, and how agronomic practices affect these.

Satellite-based remote sensing technology is used in 
oil palm management to monitor land use cost-effectively 
(Chong et al., 2017). Remote sensing techniques can help 
to define boundaries between land cover types, thereby 
providing estimates of the oil palm planted area as well 
as spatial patterns in habitat type, integrity and connectiv-
ity, all of which are important ecologically. Furthermore, 
change detection techniques applied to remotely sensed 
time-series data help in the assessment of the potential 
environmental impacts of the expansion of oil palm plan-
tations (Vijay et al., 2016). One of the drawbacks of satel-
lite-based datasets is the presence of cloud cover, which 
masks crucial ground information and affects land cover 
mapping results (Chong et  al., 2017; Shaharum et  al., 
2019; Vijay et al., 2016). Such cloud cover is a common 
hindrance in tropical countries such as Malaysia, limiting 
the value of satellite-based assessments.

Data collected from low altitude (i.e. below-cloud) 
using unmanned aerial vehicles (UAVs) are now used 
widely in precision agriculture (Liu et al., 2018, 2022; 
Shamshiri et  al., 2019; Tsouros et  al., 2019; Zhao 
et al., 2020) and provide a viable alternative to satel-
lite data for oil palm mapping. UAVs are particularly 
suited to collection of high-resolution data for small 
areas, and so are ideal for the  assessment of small-
holder plantations (Chong et  al., 2017; Kilwenge 
et al., 2021; Zhao et al., 2020). One of their particular 
advantages is that UAVs can rapidly acquire high spa-
tial resolution images that can be used to discriminate 
different land cover classes effectively and accurately 
(Rokhmana, 2015; Yao et al., 2019; Zhao et al., 2020). 
They can also be deployed flexibly, so for example, the 
time-series data needed to assess temporal change can 
be more easily obtained than with satellite, especially 
where image capture at specific dates is required.

Considerable advances have been made recently 
to unmanned aerial platforms and various onboard 
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sensors, leading to the proliferation and growing maturity 
of UAV-based remote sensing applications (Liu et al., 2022;  
Nex & Remondino, 2014; Pajares, 2015). UAVs can now  
be fitted with different and sometimes multiple sensors 
(Aslan et  al., 2022; Feng et  al., 2015; Kilwenge et  al., 
2021; Zhao et  al., 2020), allowing simultaneous collec-
tion of complementary datasets useful in a wide range of 
applications (Kattenborn et al., 2014; Lechner et al., 2012;  
Yao et  al., 2019). For instance, standard UAV-derived 
products, including orthophotos and three-dimensional 
geometric data, have been collected for urban infrastruc-
ture mapping and disaster management (Jia et al., 2022; 
Kerle et al., 2019), whilst UAV surveys that extract high 
spatial, spectral and temporal information have been 
applied in a range of environmental fields (Biggs et  al., 
2018; Feng et  al., 2015; McKenna et  al., 2017; Nowak 
et  al., 2019). They have proven especially valuable in 
agriculture, for vegetation and crop mapping to sup-
port farm management and conservation (Chong et  al.,  
2017; Liu et  al., 2022; Pajares, 2015; Rokhmana,  
2015). High spatial resolution digital surface models, 
which are common UAV-based products, can be inte-
grated with optical sensor data to improve the accuracy 
of land cover mapping (Chong et al., 2017; Tsouros et al., 
2019; Zhang et al., 2015). Ways of processing high-resolu-
tion UAV data sets have also developed and improved rap-
idly. For example, geographic, object-based image analy-
sis (GEOBIA or OBIA) approaches are often applied by 
grouping similar pixels into image objects and then these 
image objects  are classified (Blaschke et  al., 2014; Liu 
et al., 2022; Tsouros et al., 2019; Yao et al., 2019).

Sustainable development is a complex, multidimen-
sional issue, but ways of assessing it objectively are 
needed for policy development and evaluation (Boggia 
et  al., 2018; Mohamadzadeh et  al., 2020). Assessment 
remains challenging as sustainability indicators are very 
diverse by nature and often conflict (Milutinović et al., 
2014; Mohamadzadeh et al., 2020). Multi-criteria analy-
sis allows a variety of interrelated and conflicting indica-
tors to be taken into account, and integrated to produce a 
single index value (Boggia et al., 2018; Mohamadzadeh 
et al., 2020). Multi-criteria analysis has been used exten-
sively in strategic environmental planning and manage-
ment, including assessment of sustainability (Boggia 
et al., 2018; Cinelli et al., 2014; Mohamadzadeh et al., 
2020), so it is well-suited to oil palm landscapes.

The aim of this study was to develop and test a protocol 
for conducting sustainability assessments of smallholder 
oil palm production systems using UAV-derived data and 

multi-criteria analysis. The study had three objectives: (i) 
to assess the feasibility of using UAVs to map and classify 
land cover types on smallholder plantations, (ii) to apply 
multi-criteria analysis to the resulting land cover and land 
use data to create a map showing sustainability index val-
ues, and  (iii) to use the sustainability index map to help 
prioritise management across the study area. A broader 
goal of the work was to assess the merits of combining the 
UAV mapping–based approach with multi-criteria analysis 
as part of evidence-based decision-making for agriculture.

Materials and methods

Study area

The study area is situated in the Kampar district of 
Perak, Malaysia, and covers approximately 25 ha of 
oil palm farms registered under the Wild Asia Group 
Scheme (WAGS) (Fig.  1). The Wild Asia Group 
Scheme (http://​oilpa​lm.​wilda​sia.​org/​1030/​wags/) or 
WAGS is a community development initiative work-
ing directly with smallholders to improve farming 
practices and achieve compliance with international 
certification standards, such as RSPO.

To capture the high landscape heterogeneity of oil 
palm smallholdings (Azhar et  al., 2015; Ghazali et  al., 
2016; Sulai et  al., 2015), an area with known small-
holder farms adjacent to various biophysical features was 
selected for this study. During a site visit on 13 September  
2019, the area was identified as heterogeneous, with a 
mixture of vegetation, unpaved roads, bare ground and 
water bodies. Vegetation consists predominantly of oil 
palms, but fruit trees, such as guava (Psidium guajava), 
banana (Musa spp.) and lime (Citrus aurantifolia), are 
also planted as commodity crops by the smallholders.

Land cover classification

The first step in the land cover mapping was to develop 
a systematic classification scheme (Horning et al., 2010; 
Lechner et al., 2016). Amongst many conventional clas-
sification schemes, the United States Geological Survey 
(USGS) Land Cover/Land Use Classification System 
(Anderson et  al., 1976) and the Food and Agriculture 
Organization (FAO) Land Cover Classification System 
(LCCS) (Gregorio & Jansen, 2000) are widely used, 
and both are hierarchically structured to offer flexibility 
by dividing broad-level classes into more detailed sub-
classes (Congalton et  al., 2014; Horning et  al., 2010; 

http://oilpalm.wildasia.org/1030/wags/
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Yang et al., 2017). This ensures land cover classes have 
appropriate spatial and thematic details suitable for spe-
cific user needs and requirements (Horning et al., 2010; 
Yang et al., 2017). Hence, a hierarchical approach was 
adopted in this study, with landscape features nested as a 
series of land cover and land use classes. This hierarchy 
also supported the remote sensing classification meth-
ods where coarser land cover classes were classified first 
and in the final steps the finer classes were identified.

The classification scheme was designed by first divid-
ing the oil palm landscape into three broad land cover cat-
egories (Fig. 2): (i) natural ecosystems, (ii) areas that were 
managed by plantation owners and (iii) disturbed land from 
previous land use activities (e.g. sand mining, including 
lakes now formed in old sand mine pits). Fine-scaled sub-
classes of the natural ecosystems comprised high carbon 
stock forests, high conservation value areas and water bod-
ies, whereas areas managed by smallholders were divided 
into subcategories of plantation and non-plantation areas. 
Oil palm trees and crops were grouped under the plantation 
area, whilst buildings were considered non-plantation areas.

Data collection

The surveys used a DJI Matrice 100 Quadcopter equipped 
with MAPIR Survey3W RGN (red, green, near-infrared) 
and Survey2 RGB (red, green, blue) sensors. Both sen-
sors were attached beneath the UAV with nadir viewing 

direction. A GPS module was mounted to the UAV plat-
form, and connected to the RGN sensor. Both sensors 
were connected to an intervalometer, which triggered 
their shutters simultaneously (2-s interval).

The flight mission was programmed to capture 
images 121  m above ground level, which is the maxi-
mum legal altitude for UAVs in Malaysia. Images were 
acquired with 80% frontal and side overlap. Five ground 
control points (GCPs) were distributed evenly across the 
survey area, each visible in the aerial images. The loca-
tions of GCPs were surveyed using a differential GPS 
with a nominal accuracy of 10 cm.

UAV data were collected on 13 September 2019. To mini-
mise the impact of shadowed areas on image quality (Rahman  
et al., 2019; Stow et al., 2019), the flight was undertaken at 
noon. Flight paths were in a grid pattern, with a total flight 
distance of 14,059 m. The flight took approximately 40 min, 
with a total of 1269 images captured by each sensor.

Pre‑processing of UAV images

As the RGB sensor was not connected to the onboard 
GPS system during the aerial survey, images captured 
were geotagged manually. Images were pre-processed 
using the Pix4Dmapper v4.4.12 software, and the RGB 
and RGN imagery were used to produce a digital eleva-
tion model and orthomosaic of the surveyed area. Dur-
ing the initial processing stage, distinct features from the 

Fig. 1   Location and details 
of the study area. Red areas 
are oil palm farms that 
are registered under the 
Wild Asia Group Scheme 
(WAGS)
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images were identified for computing keypoints, and tie 
points were generated for stitching images together. GCP 
locations were imported and marked using the keypoints 
to improve the quality of surface reconstruction. Once the 
GCPs were added, a quality report (see Figs. 12 and 13 in 
Appendix 1) was analysed to determine the parameters 
that need to be optimised.

Tie points were used to generate a 3D point cloud, 
which were subsequently used to derive a digital surface 
model (DSM). Structure from motion (SfM) photogram-
metry with bundle adjustment was used to orthorectify 
the images, with well-defined geometric features from 
overlapping images used to create the point cloud needed 
for surface reconstruction (Hashemi-Beni et  al., 2018; 
Wallace et  al., 2016). Surface smoothing was applied to 
retain sharp features such as the edges of oil palm fronds 
and corners of buildings, whilst inverse distance weighting 
(IDW) interpolation was employed to generate the DSM. 
A digital terrain model (DTM) and orthomosaic were then 
generated from the point cloud and DSM. An overview of 
the pre-processing of UAV images is shown in Fig. 3.

Texture analysis

Land cover classification using high-resolution imagery 
can be challenging. This is mainly because the high spatial 
resolution increases the spectral covariance and, therefore, 
reduces the spectral separability of land cover classes. The 
inherent complexity of landscapes also makes traditional 
spectral classification more difficult. Hence, conventional 
spectral analysis is often integrated with texture analysis. 
Texture analysis is a statistical measure of the structural 
properties of an image, and many studies have shown that 
its use can improve classification accuracy (Feng et  al., 
2015; Girolamo-neto et  al., 2019; Laliberte & Rango, 
2009). Texture analysis has been successfully applied 
to fine-resolution images in vegetation mapping, with 

different vegetation covers being discriminated based on 
textured surfaces. In this study, the near-infrared image 
data from the RGN orthomosaic were chosen for texture 
calculation as they had a high contrast that separated veg-
etated from non-vegetated areas. A texture image was cre-
ated using Erdas Imagine v16.6 software, with the textural 
measure calculated within a moving window. Different 
textural measures with various window sizes were tested. 
Based on visual assessment, a texture image derived 
using mean Euclidean distance with 41 × 41 window size 
was adopted; this size yielded images with the detail and 
clarity needed to distinguish the vegetation classes present 
across the study area.

Object‑based image analysis (OBIA) classification

OBIA is often superior to pixel-based image analysis for 
classifying high-resolution imagery as object character-
istics are no longer defined by a single pixel (Blaschke 
et  al., 2014; Laliberte & Rango, 2009; Pande-Chhetri 
et al., 2017; Whiteside et al., 2011). Furthermore, OBIA 

Fig. 2   The hierarchical scheme used to classify land use and cover within the study area

Fig. 3   Schematic of image processing workflow to produce a 
digital surface model, digital terrain model and orthomosaic
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methods overcome the so-called salt and pepper effect 
by categorising pixels into homogeneous objects based 
on their spatial, spectral and textural characteristics (Bao 
et al., 2014; Blaschke, 2010). The eCognition Developer 
software is widely used in remote sensing studies, with 
about 50% of OBIA studies using this software in 2010 
(Blaschke, 2010). eCognition allows for the implementa-
tion of advanced segmentation algorithms (i.e. multiple 
scales, input data) within a rule-based and hierarchical 
classification workflow (Blaschke et  al., 2006; Hos-
sain & Chen, 2019; Ma et al., 2015) and is well suited 
to high spatial resolution UAV imagery and the hierar-
chical classification used in our study. The Fractal Net 
Evolution Approach with a multiresolution segmentation 
algorithm (Baatz & Schäpe, 2000), which is a bottom-up 
segmentation approach to merging pixels with similar 

characteristics, was selected for segmenting the RGN 
imagery. The segmentation of pixels was controlled by 
segmentation parameter scale, shape and compactness, 
with respective values of 40, 0.1 and 0.5, determined 
from visual examination.

A rule-based classification was implemented in eCog-
nition using threshold expressions for various spatial and 
spectral features used for the land cover classification 
analysis. Using the RGN orthomosaic, a set of spectral 
indices was computed to aid the classification, including 
the normalised difference vegetation index (NDVI) and 
the normalised difference water index (NDWI). NDVI 
is the normalised ratio between the near-infrared band 
and red band (Tucker, 1979), and is commonly used as 
an indicator for the greenness of vegetation and is use-
ful for separating vegetation from non-vegetation (Chong 

Fig. 4   Method for object-based classification including a rule-
based workflow using the eCognition software. The image 
classification was performed using the RGN orthomosaic 

and DSM with a texture image. DSM, digital surface model; 
NDVI, normalised difference vegetation index; NDWI, nor-
malised difference water index



Environ Monit Assess (2023) 195:577	

1 3

Page 7 of 29  577

Vol.: (0123456789)

et  al., 2017; Srestasathiern & Rakwatin, 2014; Xue & 
Su, 2017), whilst NDWI is the normalised ratio of the 
green band and near-infrared band (McFeeters, 1996) 
and is used to delineate surface water features such as 
for monitoring water dynamics (Avdan et  al., 2019; Ji 
et al., 2009). In this study, land cover was first divided 
into areas of vegetation and non-vegetation using the 
NDVI according to the hierarchy (Figs. 3 and 4). Then, 
the non-vegetated areas were subdivided into three fur-
ther classes (water bodies, built-up areas and bare soil). 
Water bodies were identified using the NDWI, whilst 
built-up areas were classified based on shape, spatial 
and spectral features. Buildings are typically square-
shaped objects with an elevation above ground (Jabari 

& Zhang, 2013; Tong et al., 2012); therefore, high rec-
tangular fit and elevation were used in extracting build-
ing segments. Additionally, most buildings in the study 
area had a red-brown roof; thus, the red band values 
was incorporated into the process of extracting built-up 
areas. Once the water bodies and built-up areas were 
extracted, the remaining segments of the non-vegetation  
cover were then classified as bare soil.

As various types of vegetation have similar spectral char-
acteristics, spectral features were incorporated in addition 
to texture image to classify oil palm trees, crops and other 
vegetation. A supervised classification was applied using 
the Nearest Neighbour classifier to identify different vegeta-
tion types, with about 30 training samples of each vegetation 

Table 1   Indicators and criteria for assessing the environmental sustainability of smallholder land cover and land use

Indicators Criteria Land cover categorised Sustainability class (score)

Low (1) Medium (2) High (3)

Erosion protection on slopes Steepness of slopes with bare 
soil or oil palms (°)

Bare soil and oil palm trees  > 25 10–25  ≤ 10

Riparian vegetation Lack of natural vegetation 
within the riparian buffer 
of a river (m)

All land cover, except water 
bodies within 40 m of a 
river

 ≤ 20 20–30 30–40

Lack of natural vegetation 
within the riparian  
buffer of a standing water 
body (m)

All land cover, except water 
bodies within 100 m of a 
standing water body

 ≤ 100 - -

Water clarity index Mean red band value of a 
water body

All water bodies 179.5–142.0 142.0–104.5 104.5–67.1

Channel modification Channel sinuosity River 1–1.05 1.06–1.30  > 1.31
Landscape connectivity and 

quality
Proximity to natural 

vegetation (m) multiplied 
with land cover coefficients

All land cover  > 50 50–25  ≤ 25

Table 2   Summary of 
results of pre-processing of 
UAV images

RGN RGB

Ground sampling distance (GSD) (cm) 5.59 4.56
Calibrated images (%) 98 95
Single/multiple blocks 2 blocks 4 blocks
Mean keypoints/image 4,598 5,637
Matching (matches/calibrated image) 1,500 992
Georeferencing Yes, 5 GCPs Yes, 5 GCPs
2D keypoints bundle block adjustment 1,438,374 939,838
3D point bundle block adjustment 614,785 428,846
Mean RMSE value (m) 0.026 0.007
- XRMSE (m) 0.034 0.009
- YRMSE (m) 0.008 0.003
- ZRMSE (m) 0.041 0.008
Orthomosaic and DSM resolution (cm/pixel) 22.36 18.24
DTM resolution (cm/pixel) 27.95 22.80
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class selected for the classification analysis. Once the clas-
sification was completed, it was refined by merging objects 
with the same land cover class. Figure 4 shows the OBIA 
classification, applied using eCognition software.

Accuracy assessment

An accuracy assessment was conducted using ArcGIS 
v10.6 to derive a confusion matrix based on a set of 45 ran-
domly distributed points. The confusion (or error) matrix 
(Congalton, 1991; Foody, 2002) is a cross-tabulation of a 
classified map against validation samples from reference 
data. This matrix is commonly used to assess classification 
accuracy, and several accuracy measures were extracted 

from the error matrix table, including the overall accuracy, 
kappa coefficient, user accuracy and producer accuracy 
(Congalton, 1991; Foody, 2002; Olofsson et al., 2013). The 
validation points were identified through manual image 
interpretation of the original high-resolution RGN imagery.

Sustainability assessment

The classified images were used to produce a sustain-
ability map of the study area. The sustainability crite-
ria used by the RSPO (2018) were modified to allow 
application to a site-scale spatial dataset (see Table  6 
of Appendix  2). Many papers have described spatial 
patterns of biodiversity in oil palm landscapes and 

Fig. 5   DSM (left) and orthomosaic (right) generated from RGN image dataset

Fig. 6   DSM (left) and orthomosaic (right) generated from RGB image dataset
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developed indicators that can be used to produce sus-
tainability maps (Asmah et  al., 2017; Ghazali et  al., 
2016; Syafiq et al., 2016; Tee et al., 2019).

Six environmental sustainability criteria were adopted 
(Table 1), with multi-criteria analysis integrated with the 
use of geographic information system (GIS) to generate 
individual criterion maps. These criteria represented five 
environmental indicators identified by previous work: 
(i) erosion protection on slopes, (ii) riparian vegetation, 
(iii) water clarity index, (iv) channel modification and (v) 
landscape connectivity and quality. Threshold values for 
sustainability for each of the criteria were identified with 
the aid of peer-reviewed papers and published reports 
(Baral et  al., 2014; Fryirs & Brierley, 2012; Barclay 
et al., 2017; Standards Malaysia, 2006; Wild Asia, 2018). 
Threshold values were used to distinguish between low, 
medium and high sustainability, as detailed below.

The presence of risk of erosion due to bare earth on slopes 
was used as an indicator to represent the importance of mini-
mising soil erosion (Standards Malaysia, 2006). Erosion risk 
was mapped by deriving a slope map from the digital eleva-
tion model, with the slope values for areas with bare soil and 
with oil palms categorised into three sustainability classes.

The second, third and fourth indicators are  related 
to aquatic elements of the landscape. Riparian buffers 
serve numerous functions (Dwire & Lowrance, 2006; 
Wenger, 1999). Forested buffers are recognised as pro-
viding canopy cover and shading to the channel, which 

can be important for providing energy subsidies (e.g. in 
the form of leaf litter) (France et  al., 1996) and to help 
moderate temperature extremes (Johnson & Jones, 2000) 
respectively. The presence of mature trees along river-
banks can also be important for stabilisation resulting 
from their extensive root systems (Beschta & Weatherred, 
1984). Natural habitats in the riparian area can provide 
additional buffering effects, including filtering agricul-
tural pollutants, trapping fine sediments and mitigating 
flood risk (Barclay et al., 2017). The clearance of natural 
areas and planting of oil palm or other crops all the way 
to the channel edge can therefore be considered a non-
sustainable practice, so we analysed images to determine 
the presence of a buffer. Assessing buffer characteristics 
needed to provide protection, including precise width of 
the buffer needed, can be rather complex (Hilary et  al., 
2021; Lee et al., 2004) so we adopted a simple presence/
absence approach. For the streams and rivers in the study 
area, we defined sustainable practice as being where a nat-
ural vegetation buffer greater than the channel width was  
left in place. To assess this, a buffer along the channel was 
first created in ArcGIS, which on each bank was the same 
width as the channel. Then, a continuous raster surface was 
created within a moving window with a neighbourhood 
of a radius equivalent to the channel width. For standing 
water bodies (ponds and lakes), we adopted the acceptable 
buffer width of 100 m suggested by Barclay et al. (2017) 
and mapped areas with and without this buffer.

Fig. 7   Land cover map of 
study area classified with 
OBIA method (see text for 
details)
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Water clarity was used as an indicator of water qual-
ity. Water may become less clear (= more turbid) as a 
result of fine sediment inputs or the presence of abundant 
microalgae resulting from nutrient enrichment. Many 
studies have found a strong positive correlation between 
water turbidity and values in the red spectrum in RGB 
images (Joshi et al., 2017; Shen et al., 2021; Teo et al., 
2021). Thus, red band values were extracted for all pixels 
across each water body and the mean value was used as 
an index of relative turbidity for each one. We assigned 
each water body to one of three water clarity classes, 
with classes based on the range of red band values 
observed across the whole of the study area. One of the 
water bodies was extremely clear, based on field surveys, 
and this had a mean red band value of 67.1. This was 
therefore taken as the baseline for the high sustainability 
class, with the other classes based on increasingly high 
red band values (see Fig. 14 and Table 7 in Appendix 3).

The fourth indicator represented physical modifica-
tion of river and stream channels. A common practice in 
agricultural landscapes is the canelisation of river water 
courses, i.e. straightened and over-deepened, to aid water 

conveyance. As it can be calculated easily from aerial 
images, the sinuosity index was used as a measure of the 
degree of channel straightening. For each water course 
in the study area, sinuosity was computed by dividing 
the observed channel length between start and endpoints 
by the straight-line distance between respective points.

The fifth indicator used connectivity as a measure of 
the likely ecological integrity of areas. Natural areas have 
important ecological functions, such as providing habitats 
and food resources (Dislich et al., 2017), so connectivity to 
such areas is important. Connectivity was mapped by using 
the distance to natural vegetation multiplied with land cover 
coefficients (0, 0.5 or 1.0) that represented land cover qual-
ity, ecological and conservation values. A coefficient of 
1 was assigned to natural vegetation and the river. On the 
other hand, bare soil and built-up areas that supported a few 
or no conservation values were assigned a coefficient of 0.

A final sustainability map was produced using a 
multi-criteria analysis approach with overlap analysis to 
provide an overall assessment of the oil palm landscape. 
For this, the weighted linear combination method was 
used for aggregating scores. This is one of the commonly 

Table 3   Error matrix and accuracy assessment for the OBIA classification. The original RGN orthomosaic served as reference data 
for validating accuracy assessment points

The bold values represent the number of validation points in the reference data which were correctly identified in the classified data
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used aggregation operators (Ghajari et  al., 2017; Jeong 
& Ramírez-Gómez, 2017; Mehri et al., 2019). It requires 
the indicators to be weighted based on their relative 
importance, with all weighted criterion layers, and then 

summed to yield a composited layer (Ghosh & Lepcha, 
2019; Mehri et al., 2019; Pérez et al., 2005). In this study, 
all indicators were considered to have equal importance 
in contributing to farmland sustainability, so they were 

Fig. 8   Indicator maps of environmental sustainability. Areas coloured black are those that were not included in respective indicator 
assessments; e.g. only water bodies were assessed for water clarity and channel modification, so all non-water areas are left black
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weighted equally. Their respective indicator maps were 
then combined to generate a single composite sustaina-
bility map for the study area. This map showed the spatial 
distribution of sustainability values within the oil palm 
plantation areas, with high values representing more sus-
tainable areas. Areas with low sustainability scores were 
taken to be priority areas for adopting more sustainable 
practices and/or improving existing conditions.

Results

DSM, DTM and orthomosaics

Based on the quality report generated by Pix4D (see Appen-
dix 1), the RGN image dataset had an average ground sam-
pling distance (GSD) of 5.59 cm, whilst the RGB image 
dataset had a GSD of 4.56  cm. The root-mean-square 
error (RMSE) values of the RGN and RGB imagery were 
0.026 m and 0.007 m, respectively (Table 2). The DTM of 
the RGN and RGB imagery had a corresponding resolution 

of 27.95 cm and 22.80 cm; the RGN orthomosaic and DSM 
(Fig.  5) had a spatial resolution of approximately 22  cm, 
whereas those generated from the RGB image dataset 
(Fig. 6) had a resolution of around 18 cm.

Land cover map and classification accuracy

A land cover map of the study area classified using the 
OBIA approach is shown in Fig. 7. The majority of the 
area was composed of oil palms and water bodies. The 
total area occupied by oil palm was 37  ha. Standing 
water bodies were mainly lakes formed in old tin mining 
depressions and some aquaculture ponds, whilst a sin-
gle thread river channel crossed the northern part of the 
area. Other than oil palms and crops, vegetation included 
shrubs, grasses and trees, whilst bare soil included 
unpaved roads and unvegetated open areas where the soil 
was exposed. Built-up areas consisted of houses as well 
as buildings where domesticated livestock was housed.

Fig. 9   Percentage of sur-
face of the study area falling 
into the three sustainability 
classes for each of the 
indicators

Table 4   Average environmental sustainability score of WAGS 
farms. Dashed lines represent farms where indicators are not 
relevant since respective features are not present; e.g. farms 
without a river or stream channel are not scored for the riparian 

vegetation buffer, whilst those with no river or standing water 
are not scored for water clarity. The Channel Modification 
indicator is not included since although the river is present in 
the study area it does not cross any of the WAGS farms

Indicators Farm ID

I II III IV V VI VII VIII IX X

Erosion protection on slopes 2.95 2.93 2.95 2.99 2.99 2.93 2.91 2.63 2.80 2.82
Riparian vegetation (river) 1.93 2.27 - - - - - - - -
Riparian vegetation (standing water body) 1.55 1.53 1.01 1.00 1.06 1.00 - - 1.00 1.11
Water clarity index 1 1.55 - - - - - - - 3
Landscape connectivity and quality 1.86 1.62 1.16 0.91 1.21 0.59 0.56 0.58 0.55 0.88
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Classified RGN imagery had an overall classification 
accuracy of 89% and a kappa value of 0.871 (Table 3), 
with the user and producer accuracy both similarly high 
(89% and 90%, respectively). The land cover classes of 
crops and other vegetation had the lowest user and pro-
ducer accuracy, with both being 76%.

Multi‑criteria sustainability assessment

The multi-criteria analysis allowed for the production 
of numerous indicator maps, which were then used to 
generate an aggregate index of sustainability for the 
area. In the following sections, outputs of the sustain-
ability assessment, including the indicator map layers 
and final sustainability map, are presented.

Indicator maps

Areas of bare earth and oil palm were mostly on land 
with moderate or low slopes and therefore fell within the 
medium and high sustainability classes (scores 2 and 3, 
respectively) (Fig.  8a). Many parts of the riparian zone 
within the study area were classified as bare or cultivated 
areas and so were assigned as having a low sustainability 
score. The water clarity indicator highlighted that most 
water bodies in the area were highly turbid, with red band 
values skewed towards the higher of the three classes used. 
Sinuosity index for the main river cutting across the study 
area was 1.11 (see Fig. 15 of Appendix 4). Thus, the river 

was relatively straight and accordingly, a medium sustain-
ability score was allocated (Fig. 8e); this reflects the like-
lihood that the channel has historically been straightened 
and realigned, with impacts on its ecological integrity. The 
fifth indicator showed that natural vegetation in the oil 
palm landscape was poorly connected (Fig. 8f), with more 
than 70% of the land cover and land use classified with a 
low or medium sustainability score for landscape con-
nectivity (Fig. 9). The average score of individual WAGS 
farms for each indicator is summarised in Table 4.

Fig. 10   Map sustainability 
index scores for the study 
area and farms

Fig. 11   Percentage of surface of the study area falling into 
each sustainability class



	 Environ Monit Assess (2023) 195:577

1 3

577  Page 14 of 29

Vol:. (1234567890)

Final sustainability map

Values for the 5 indicators were combined to generate a final 
sustainability map (Fig. 10). For easy depiction and inter-
pretation, the initial index scores for this map were reclas-
sified to yield the 5 classes shown. The map depicts spatial 
variability in sustainability across the study area and within 
the smallholder farms. Approximately 43% of the study area 
had high sustainability values (Fig. 11), with 46% a medium 
and 9% a low score. WAGS farms mostly had moderate 
scores (Table 5). The median score of WAGS farms was 
within the medium sustainability class (between 2 and 3).

Discussion

Remote sensing technology is used widely for mapping 
land cover and assessing land cover change (Chong et al., 
2017; Nex et  al., 2022; Yao et  al., 2019). UAV-derived 
imagery provides higher spatial resolution and accuracy 
for site scale applications so it represents a useful alterna-
tive to satellite-based analyses. The UAV-derived RGN 
and RGB imagery of our study area had pixel sizes of 
0.055 m and 0.045 m and RMSE values of 0.026 m and 
0.007  m respectively. The land cover mapping applied 
using the OBIA-based method resulted in an overall clas-
sification accuracy of 89%, with the user and producer 
accuracy both similarly high (89% and 90% respectively). 

However, the land cover classes of crops and other vegeta-
tion had lower user and producer accuracy of 76%. The 
UAV data were used as the basis for a multi-criteria analy-
sis, building on existing applications of GIS environmental 
spatial planning and management (Aguilar-Rivera, 2019; 
Boggia et al., 2018; Cinelli et al., 2014; Furlan et al., 2018) 
to oil palm sustainability assessments at the site-scale.

Our multi-criteria analysis approach provided an array 
of key environmental indicators to assess the sustainabil-
ity of oil palm plantations within the study area. Both the 
individual and combined sustainability indicators can be 
used in an assessment, representing a multi-dimensional 
approach, derived from a set of indicators, some of which 
are distinct and some interrelated (Milutinović et al., 2014; 
Mohamadzadeh et al., 2020; Singh et al., 2012). The final 
sustainability map suggested that 55% of the study area 
had low and medium sustainability scores, representing 
areas should be prioritised for management. The analysis 
revealed that areas of bare earth and oil palm were mostly 
found in areas with moderate or low slopes and therefore 
posed a low risk of erosion; these areas were therefore 
scored as having high sustainability index values. Con-
versely, many parts of the riparian zone were bare or culti-
vated areas and so were assigned a low sustainability score. 
The poor condition of the river was also reflected in its 
straightness, which using the sinuosity values was scored as 
medium. The analysis showed that natural vegetation was 

Table 5   Overall 
sustainability index scores 
for the WAGS farms. 
Values show percentage 
areas of each farm falling 
into the various index 
categories (very high to 
very low)

Farm
ID

Sustainability Class Average
ScoreVery Low Low Medium High Very High

I 0% 1.05% 31.74% 39.70% 27.50% 3.46

II 0.13% 7.46% 31.15% 40.26% 20.97% 3.16

III 0% 0% 35.68% 63.71% 0.60% 3.12

IV 0% 0% 74.04% 25.64% 0.31% 2.76

V 0% 0.18% 38.44% 58.38% 2.97% 3.03

VI 0% 0% 86.00% 13.99% 0% 2.92

VII 0% 0% 90.06% 9.93% 0% 2.89

VIII 0% 0.27% 85.86% 13.86% 0% 2.68

IX 0% 5.58% 74.77% 12.49% 7.13% 2.78

X 0% 1.70% 67.18% 28.64% 2.47% 2.91

Overall 0.01% 1.62% 61.49% 30.66% 6.19% 2.97
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fairly poor connected, with more than 70% of the study area 
having low or medium landscape connectivity scores.

Implications and application of the multi‑criteria 
analysis for plantation management

The multi-criteria analysis provided information about the 
spatial distribution of sustainability within smallholder farms, 
enabling farmers to formulate sustainable management strat-
egies. Specifically, the maps can be used to identify prior-
ity areas, such as areas with low and medium sustainability 
scores, where improved management is needed. Based on an 
interpretation of the sustainability scores, the primary recom-
mendation to come from the work presented here is the res-
toration of a continuous riparian buffer strip, to be replanted 
with diverse range of tree species (Correll, 2005; Luke et al., 
2019) and excluding oil palms. This will prevent erosion and 
improve water quality and, if complex vegetation structure 
is present, these areas will support a rich assemblage of spe-
cies (Juen et al., 2016; Luke et al., 2019). The restored and 
existing riparian areas will need maintenance such as regular 
weed clearance to ensure their integrity (Barclay et al., 2017).

A second recommendation relates to bare ground. The 
parts of the study area with medium sustainability values 
included locations with bare ground; this will likely lead to 
soil erosion and soil loss. Ground cover management such 
as frond stacking and mulching therefore needs to be applied 
here to reduce erosion (Rahman et  al., 2021; Woittiez  
et al., 2018). Unpaved roads should be covered with ground 
stones and with ground cover along the edges (Wild Asia, 
2018). In the longer term, the lack of landscape heteroge-
neity could be addressed to support biodiversity and con-
nectivity, such as through increasing vegetation ground 
cover to enhance local-scale heterogeneity and facilitate 
movements across the agricultural land cover matrix. The 
biodiversity benefits of plantations can be further improved 
by having a multi-strata vegetation cover that creates micro-
climates and habitats (Azhar et al., 2014, 2015).

The approach presented in our study represents a novel 
application of multi-criteria GIS analysis to the agricultural 
sector, which typically focuses on assessing the suitability 
of the land for prospective agricultural production rather 
than sustainability (Feizizadeh & Blaschke, 2013; Herzberg 
et al., 2019; Ozsahin & Ozdes, 2022; Ustaoglu et al., 2021). 
Further refinements of the method particularly of the criteria 
weighting should be considered. The weighted linear com-
bination method used in our study is a compensatory evalu-
ation method (Malczewski, 2004; Masoudi et al., 2021) that 
allows for trade-offs between criteria, and is commonly used 

to support complex decision-making (Ghajari et  al., 2017; 
Malczewski, 2004; Pérez et al., 2005). However, compensa-
tory methods allow for better performance in one criterion 
to compensate for poor performance in another, which may 
result in unintended trade-offs (Esmail & Geneletti, 2018). 
For example, oil palm land managers may not want under 
any circumstances for riparian areas to be cleared, and high 
values in other criteria should not be a substitute. The weight-
ing of different criteria based on their importance should also 
be considered to ensure that the most important criteria make 
the greatest contribution to sustainability scores (Geneletti, 
2019). It is recommended that key stakeholders and experts 
in the oil palm sector work together to find thresholds that 
account for the downsides of compensatory approaches and 
review the relative weights for each indicator.

Effectiveness of drone mapping and object‑based classification

Underpinning the multi-criteria analysis was an accurate 
classified UAV-derived orthomosaic and DEM. The imagery 
showed good positional accuracy, with RMSE values of less 
than 1 pixel, which is considered to be the accuracy threshold 
for georeferenced and orthorectified imagery (Thomlinson  
et al., 1999). The good quality of our imagery was also a 
property of the good weather conditions (i.e. good illumina-
tion and low wind), the quality of the sensor and high-quality 
RTK GPS-derived GCPs (e.g. number and distribution of 
GCPs) (Koci et al., 2017; Seifert et al., 2019). Nevertheless, 
the larger water bodies in the study area were challenging for 
the stitching process, due to their homogeneous surface.

The OBIA classification yielded a reasonably high level 
of accuracy, exceeding the minimum thresholds of 85% over-
all and 70% per-class accuracy suggested by Thomlinson 
et al. (1999). However, even with the use of texture analysis 
and a high-quality DEM, image classification of vegetation 
cover across the smallholdings proved to be challenging due 
to the lack of spectral contrast between vegetation types, with 
confusion between crops and other vegetation and, as a result, 
a relatively low user accuracy. Such challenges associated 
with separating vegetation types are well known; the appli-
cation of the OBIA approach with high-resolution imagery 
is important for addressing this challenge, as the increase in 
spectral variance within land cover classes associated with 
high-resolution pixel-based approaches makes spectral sepa-
ration between land cover classes difficult (Blaschke et al., 
2014; Laliberte & Rango, 2009; Marceau & Hay, 1999).

Most remote sensing studies to date have focused on 
surveying industrial plantations on a regional and national 
scale (Miettinen et al., 2017; Nomura & Mitchard, 2018; 
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Shaharum et  al., 2020; Xu et  al., 2020), but large-scale 
mapping of oil palms is prone to missing smaller plant-
ings (Descals et  al., 2021; Rodríguez et  al., 2021). The 
approach outlined here addresses this problem, and dem-
onstrates the feasibility of UAV-based mapping to accu-
rately assess smallholdings at a local level. Furthermore, 
few studies have investigated the potential conservation 
values of smallholdings which are often characterised by 
their heterogeneous landscapes (Azhar et al., 2011, 2013) 
which can only be captured by high-resolution mapping.

Mapping and monitoring of oil palm areas are essential 
for understanding the spatio-temporal dynamics of these 
landscapes (i.e. expansion and shrinkage) which, in turn, 
can provide useful insights into environmental impacts 
(Meijaard et al., 2020; Xu et al., 2020). However, finan-
cial constraints and inadequate availability of cloud-free 
satellite imagery have hampered land cover mapping in 
tropical countries (Koh & Wich, 2012; Miettinen et  al., 
2017; Xu et al., 2020). The present study demonstrates the 
utility of UAVs as a low-altitude (i.e. below cloud) remote 
sensing platform to provide solutions for monitoring oil 
palm plantations in tropical countries. Our methods pro-
vide a flexible and cost-effective remote sensing platform 
by using a UAV fitted with two off-the-shelf sensors. The 
approach is especially useful for Global South countries 
where labour is relatively cheaper than the purchase cost 
of high-resolution earth observation imagery (compared 
to the Global North). The greatest challenge is building 
technical capacity to apply such approaches, and there-
fore, further development of standardise workflows and 
guidance is required to operationalise such approaches in 
countries in the Global South.

Whilst UAV remote sensing is considered the future 
of precision agriculture (Aslan et al., 2022; Chong et al., 
2017; Liu et al., 2022), there are a number of challenges 
which could be addressed through future research. Firstly, 
developing methods to systematically select the segmen-
tation parameters and classification approach (i.e. appli-
cation of texture analysis), which are usually determined 
through a trial-and-error approach, requiring prior knowl-
edge and experience (Arvor et al., 2013; Feng et al., 2015), 
and are dependent on the image resolution and objects 
mapped (Bao et al., 2014; Gu et al., 2017; Ma et al., 2015). 
Secondly, using sensors other than the most frequently 
used RGB cameras (Tsouros et al., 2019; Yao et al., 2019), 
such as multispectral, hyperspectral and LiDAR which 

have been shown to be beneficial for monitoring agri-
cultural environments (Liu et al., 2022; Nex et al., 2022; 
Shamshiri et al., 2019) would bring advantages. However, 
aside from the size and weight constraints (Colomina & 
Molina, 2014; Liu et al., 2022), these sensors are often not 
affordable for wider applications (Shamshiri et al., 2019; 
Tsouros et al., 2019; Yao et al., 2019). In addition, these 
sensors require a complex pre-processing procedure for 
extracting ready-to-use information (Colomina & Molina, 
2014; Nex et al., 2022; Tsouros et al., 2019). Operation-
alising UAVs for smallholder sustainability mapping will 
require a solution to these challenges and balance technical 
capabilities, cost and accuracy.

Conclusions

This study represents a proof of concept for the utility 
of UAVs for undertaking sustainability assessments of 
oil palm plantations. It demonstrated the utility of UAV-
derived high-resolution imagery processed with the SfM, 
OBIA and texture analysis for classifying biophysical fea-
tures and broad vegetation cover classes for smallholder 
plantation areas. Such an approach can be developed in 
conjunction with precision agriculture to support more 
efficient agricultural production. Future work to build on 
the sustainability assessment could also include other indi-
ces, including wider aspects of water quality and socio-
economic indicators. This work needs to be conducted in 
consultation with the oil palm industry, to integrate indi-
vidual indicators and/or improve on the weightings used 
here, so as to better support certification schemes such as 
the RSPO. Systematic workflows and guidance can also 
be developed related to optimal segmentation and classifi-
cation approaches for UAV image analysis. Research and 
development could also be directed towards miniaturising 
advanced imaging sensors and making them affordable 
for wider agricultural needs and applications.

Appendix 1: Quality report for assessing 
photogrammetric image processing

A comprehensive report provided by the Pix4D was used to 
assess the quality and accuracy of the surface reconstruction 
of UAV-derived RGN and RGB imagery (Figs. 12 and 13).
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Fig. 12   Quality report for the surface reconstruction of RGN image dataset (double-click the figure for detailed information)
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Fig. 13   Quality report for the surface reconstruction of RGB image dataset (double-click the figure for detailed information)
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Fig. 15   The real length and 
direct length of the river 
were first measured, and a 
sinuosity index was calcu-
lated through dividing the 
channel length (1012.17 m) 
by the straight-line length 
(911.607 m). A value of 
1.11 was obtained for the 
sinuosity index

Appendix 4: Calculation of sinuosity index

A sinuosity index was calculated to assess the level of 
modification of riverine habitat. The sinuosity index 
was calculated through dividing the observed channel 
length between start and endpoints by the straight-
line length between them. For the example below 
(Fig. 15), a sinuosity index with a value of 1.11 was 
obtained.

Table 7   Mean red band value of water bodies from RGB 
imagery

Mean red band 
value ± SD

Value

River 179.5 ± 53.1 Maximum
Water body A 160.2 ± 77.1
Water body B 67.1 ± 55.0 Minimum
Water body C 170.6 ± 9.5
Water body D 177.4 ± 28.9
Water body E 128.3 ± 52.0

Fig. 14   Six water bodies in the study area

Appendix 3: Mean red band value for assessing 
water clarity

Six water bodies were identified in the study area 
(Fig. 14), and the red band value from RGB imagery 
was used as a representative parameter for assessing 
water clarity (Table 7).
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