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A B S T R A C T   

Intertidal zones serve as a critical transition between land and ocean and are periodically inundated by tides. 
They are extremely important to coastal communities as it provides diverse habitats and buffers against marine 
hazards. However, the reduced river sediment together with sea level rise and coastal reclamation have caused 
the widespread loss of intertidal areas. Reliable, high-resolution, and up-to-date intertidal topography maps are 
key information for coastal vulnerability assessment and restoration. Existing approaches to intertidal topog-
raphy reconstruction involve significant ground surveys, with limited spatial coverage, accuracy, and efficiency, 
thus, restricting their potential to generalize globally. To address these issues, we propose a pixel-based approach 
to construct intertidal topography from dense Sentinel-2 satellite time-series and limited ground truth surveys, 
named as Tide2Topo. Tide2Topo differs conceptually from the widely used waterline method since it considers 
tidal inundation frequency as a topographic indicator rather than instantaneous waterlines. Therefore, Tide2-
Topo does not involve manual selection of images at different tide levels. The relationship between intertidal 
inundation frequency and elevation is calibrated using linear and polynomial models based on a few transect 
measurements instead of tidal height, preventing errors introduced by inaccurate tidal data. The proposed 
Tide2Topo was applied and validated in the UK and China over several complicated estuaries and bays with 
extensive muddy flats or sandy beaches. The results demonstrated that the topography derived from intertidal 
inundation frequency compared to LiDAR or UAV photogrammetric observations has a root mean square error 
ranging from 16 to 38 cm. The large errors were found in the tidal channel areas where the inundation frequency 
calculation was prone to uncertainty. Dense Sentinel-2 time-series observations ensure finer sampling of the tidal 
cycle, thereby not only eliminating errors caused by spatial interpolation but also maintaining the accuracy of 
elevation estimations at pixel level. Tide2Topo is a robust, portable and rapid method that is well suited to large- 
scale intertidal topography reconstruction. Future work could use Sentinel-1 SAR as an alternative data source 
for Tide2Topo, realizing seasonal or annual monitoring of intertidal geomorphological changes.   

1. Introduction 

Intertidal zones can range from steep rocky cliffs to gently sloping 
sandy beaches and mudflats extending over hundreds of meters, and are 
periodically inundated by tides. They are of great social, economic and 
environmental significance due to their ability to support biodiversity 
hotspots (Loke and Todd, 2016), mitigate coastal erosion (Temmerman 
et al., 2013), protect coastal communities from marine hazards (Morris 
et al., 2018), and provide ample land resources (Nienhuis et al., 2020). 

However, accelerated sea-level rise, rapid decrease in river sediments, 
and extensive coastal reclamation have led to a considerable loss, 
degradation, and fragmentation of these tidal environments globally 
(Hill et al., 2021; Murray et al., 2022; Wu et al., 2022). To understand 
the impact of these stresses on tidal environments and to establish pri-
ority protection and implement restoration, intertidal topography needs 
to be updated frequently with accuracy. However, intertidal topography 
remains poorly captured due to limited accessibility and short duration 
of exposure. Even existing global digital elevation models (DEMs) (e.g., 
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the Shuttle Radar Topography Mission (SRTM) and the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) suf-
fer from either gaps in data or unacceptable errors (Kulp and Strauss, 
2018; Zhang et al., 2019). 

Intertidal topographic mapping commonly refers to the construction 
of topography in non-vegetated areas, as the dense salt marsh vegetation 
(e.g., Spartina alterniflora and Phragmites australis) in the supratidal zone 
brings additional challenges to access the topography beneath the 
vegetation directly. The intertidal topography construction depends 
largely on remote sensing techniques given the highly specific 
geographical environment and is mostly conducted in combination with 
in-situ observations (Bell et al., 2016; Bishop-Taylor et al., 2019; Ryu 
et al., 2008). These technologies can be broadly categorized into three 
types: ground-based, airborne-based, and spaceborne-based surveys. 
Ground-based (e.g., terrestrial laser scanning) and airborne-based (e.g., 
aerial photogrammetry and aerial LiDAR) measurements can provide 
highly accurate surface elevation of intertidal zones (Andriolo et al., 
2018; Chen et al., 2022a; Huff et al., 2019; Xie et al., 2017). However, 
they are considerably restricted by the limited spatial coverage, high 
economic costs, and low efficiency, thereby large-scale intertidal 
topography is challenging to establish. In contrast, spaceborne-based 
observations have the advantages of abundant data sources, large 
spatial coverage, and high temporal frequency (Bergsma et al., 2021; 
Salameh et al., 2019), and are more appropriate for constructing inter-
tidal topography at a large scale. 

Current spaceborne-based techniques for mapping intertidal topog-
raphy include interferometric synthetic aperture radar (Lee and Ryu, 
2017), satellite radar altimetry (Salameh et al., 2021), remotely sensed 
soil moisture approach (Li et al., 2022), and waterline method (Mason 
et al., 1995). Amongst them, the waterline method is the most 
commonly used approach due to its simple operation, easy access to 
data, and high stability in comparison with other methods (Bell et al., 
2016; Heygster et al., 2010; Salameh et al., 2020; Yamano et al., 2006). 
The waterline method implementation involves three steps, including 
waterline delineation, elevation assignment of waterlines, and topog-
raphy interpolation. Each step could result in errors and uncertainties 
(Mason et al., 2001). The accuracy of the constructed DEMs depends on 
the density and quality of waterlines derived from satellites and the 
accuracy of the tidal height (Tong et al., 2020; Wang et al., 2019). 
Previous studies have developed several algorithms to minimize errors 
in waterline extraction, including threshold-based (Sagar et al., 2017; 
Tong et al., 2020), edge detection-based (Li et al., 2014; Salameh et al., 
2020), subpixel-based (Bishop-Taylor et al., 2021; Vos et al., 2019), and 
deep learning-based methods (Seale et al., 2022; Zhang et al., 2022). 
These approaches, however, have disadvantages of algorithm stability, 
accuracy, and automation, especially in the context of spatial hetero-
geneity imposed by complex coastal types and time-varying tides. In 
addition, the waterlines generated by the above methods are often 
discontinuous and fragmented (Yang et al., 2022), requiring extensive 
manual modifications. Tidal heights used to calibrate instantaneous 
waterlines tend to be inaccurate as they are simply interpolated from 
nearby tidal stations or simulated by tidal models. Given these limita-
tions, the waterline method is not the ideal method to construct inter-
tidal topography rapidly at a large scale. 

Recently, the use of full time-series satellite observations to study 
tidal landscapes, empowered by the Google Earth Engine (GEE) cloud 
computing platform, has become a new paradigm. For example, Cao 
et al. (2020) and Jia et al. (2021) delineated the spatial extent of tidal 
flats at a national scale with full time-series Landsat and Sentinel-2 data, 
respectively. They assumed that dense satellite observations could ac-
quire images at the highest and lowest tides. Similarly, this hypothesis 
implies that full time-series observations can acquire images at all mo-
ments of tidal height within the tidal range. Traditional waterline 
method uses manually selected images and does not make use of full 
time-series observations across the whole tidal range. Furthermore, to 
better understand coastal processes, many intertidal zones involve 

regional fine-scale topographic observations using real-time kinematic 
(RTK) surveys, LiDAR, and unmanned aerial vehicle (UAV) photo-
grammetric measurements (Bertels et al., 2011; Brunier et al., 2020; Tan 
et al., 2020). Nevertheless, few studies have combined these local 
ground truth surveys with satellite observations to generate large-scale 
intertidal topography. Based on these observations, a new approach to 
constructing intertidal topography using full time-series satellite ob-
servations and local ground truth surveys was developed in this paper. 

Here, we present a pixel-based approach, Tide2Topo, to construct 
intertidal topography from full time-series Sentinel-2 and limited 
ground truth surveys. The Tide2Topo differs conceptually from the 
waterline method in that it considers tidal inundation frequency derived 
from the Sentinel-2 time-series as a topographic indicator rather than 
instantaneous waterlines. The relationship between intertidal inunda-
tion frequency and elevation is calibrated using regression models based 
on a few transect measurements from LiDAR or UAV photogrammetry 
instead of tidal heights. Several complex estuaries and bays with 
extensive muddy flats or sandy beaches in the UK and China were 
employed to assess and validate the performance of the proposed 
Tide2Topo approach comprehensively. 

2. Study area and datasets 

2.1. Study area 

We selected the Northwest coast and East coast of England and two 
typical China intertidal regions as study areas (Fig. 1). These areas are 
geographically characterized by estuaries and bays with extensive 
muddy flats, sandy beaches, and sandbanks. These coasts are typical and 
sufficiently diverse to evaluate the performance of the proposed method. 
The intertidal zone on the Northwest coast of England comprises several 
estuaries and bays, largely, including Solway Estuary, Morecambe Bay, 
Ribble Estuary, and Dee Estuary. The sediments in these estuaries and 
bays consist predominantly of very fine and fine sand, forming extensive 
intertidal sand banks and a few muddy flats (Mason et al., 2010). The 
tide on the Northwest coast of England is semi-diurnal, with a tidal range 
between around 8 m and 4.4 m with moderate waves (Van Der Wal et al., 
2002). The Wash Bay and Thames Estuary, on the East coast of England, 
include extensive fine sands and drying banks of coarse sand. The 
intertidal zone is macro-tidal with a tidal range within 5.3 m; the waves 
within the intertidal zone are relatively small, with a mean annual wave 
height of 1 m (Van der Wal and Pye, 2004). Sediment characteristics in 
the Wash Bay and the Thames Estuary differ along the seaward side 
(Rossington and Spearman, 2009). The inner shore is dominated by fine 
muddy sediments, whereas the sediments on the outer shore are largely 
sandy, generating several large sandbanks. In contrast, the east of 
Chongming Island at the mouth of the Yangtze River and Sansha Bay in 
Fujian Province, China largely consist of muddy flats. These tidal envi-
ronments support several biodiversity hotspots and are therefore well 
recognized as globally important Ramsar wetlands. 

2.2. Sentinel-2 data and pre-processing 

The Sentinel-2 mission, including twin polar-orbiting satellites 
(Sentinel-2A and Sentinel-2B commissioned), can provide a wide-swath, 
high-resolution multispectral imaging mission with a global 5-day 
revisit interval. 5,005 Sentinel-2 Level-2A surface reflectance images 
acquired from January 1, 2020 to December 31, 2021 were used in 
consideration of the high frequency of cloud cover in coastal areas and to 
obtain Sentinel-2 images with a full tidal range as much as possible 
(Fig. 2). The scene-level cloud percentage was calculated using the 
CLOUDY_PIXEL_PERCENTAGE property in the image metadata, and a 
threshold of 70% was recommended in previous studies (Ni et al., 2021; 
Tian et al., 2020). Considering that cloud removal algorithms perform 
poorly on images with high proportions of cloud coverage (Coluzzi et al., 
2018), and that image filtering discovered that removing images with 
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cloud percentages between 60 and 70% did not significantly reduce the 
total number of images. Therefore, Sentinel-2 images with a cloudy 
percentage greater than 60% were excluded in this study. Next, the 
QA60 bitmask band was used to mask cloudy pixels and generate cloud- 
free observations. The number of cloud-free observations for the indi-
vidual pixel of the Sentinel-2 images was recorded in the study areas 

(Fig. 2). About 100%, 98.8%, 100%, and 37.1% of pixels had more than 
50 cloud-free observations in regions of the Northwest and East coast of 
England, Chongming Island, and Sansha Bay, respectively. The number 
of cloud-free observations in Sansha Bay was considerably low 
compared with other study areas due to the high frequency of cloud 
cover; however, the minimum number of cloud-free observations still 

Fig. 1. Maps of the study area for intertidal zones in (a) the northwest coast of England (NWE) with three major estuaries (i.e., Solway Estuary, Ribble Estuary, and 
Dee Estuary) and one large bay (i.e., Morecambe Bay); (b) the east coast of England (ECE) with the Wash Bay and Thames Estuary; (c) the east of Chongming Island in 
Yangtze Estuary, China; and (d) Sansha Bay in the northeast of Fujian province, China. The LiDAR or UAV photogrammetric observation sections are shown in the 
figure by blue arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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reached 36. The acquisition of the Sentinel-2 images and all pre- 
processing steps were performed on the GEE platform. 

2.3. LiDAR and UAV photogrammetric data 

We used the available LiDAR data and UAV photogrammetric data in 
the study areas to establish the relationship between intertidal inunda-
tion frequency and the corresponding elevation and to validate our 
proposed Tide2Topo method. For study areas in England, LiDAR data 
were captured by the Environment Agency (EA) from March 2020 to 
April 2021 at the lowest tide and accessed via the Digimap data service 
platform (https://digimap.edina.ac.uk). The data quality was analyzed 
by EA, which showed that all LiDAR data had good vertical accuracy 
with a root mean square error (RMSE) of 10 cm, and the spatial reso-
lution varied from 25 cm to 2 m. All LiDAR point clouds were converted 
into DEMs using the coordinate system of OSGB36 British National Grid. 
For the study areas in China, 10 UAV photogrammetric surveys were 
conducted using a DJI Phantom-4 RTK quadcopter with a precise im-
aging system involving an RTK receiver module in May and October 
2021. All UAV flights were conducted during the lowest tide periods at 
an altitude of 100 m with 80% frontal overlap and 80% side overlap. The 
UAV images were processed using the SfM photogrammetry algorithm 
implemented by the Pix4Dmapper software to generate DEMs with the 
EGM96 vertical datum. The accuracy assessment performed previously 
showed that the RMSE of UAV photogrammetry could reach up to 5.7 
cm with a spatial resolution of 2.7 cm (Chen et al., 2022a). Although 
sufficient amount of ground data was collected, only one profile in 
LiDAR-based or UAV photogrammetric DEMs was employed to establish 

the relationship between intertidal inundation frequency and elevation 
for each estuary or bay and the remaining were left for validation. These 
calibration profiles are depicted in Fig. 1. 

3. Methods 

Our proposed Tide2Topo is based on a monotonically decreasing 
relationship between tidal inundation frequency and the corresponding 
surface elevation. Tidal platforms with higher surface elevations tend to 
experience a lower frequency and shorter duration of inundation by 
tides. Therefore, the tidal inundation frequency is considered a 
geographically relevant indicator of intertidal topographic relief. The 
general workflow of Tide2Topo intertidal topography mapping is shown 
in Fig. 3. Specifically, we first combined the water index with the 
vegetation index to generate water occurrence maps from cloud-free 
Sentinel-2 time-series. Next, the relationship between inundation fre-
quency and intertidal elevation was modeled by linear and polynomial 
regression analysis using limited LiDAR or UAV photogrammetric data, 
which subsequently allowed the construction of large-scale intertidal 
topography. 

3.1. Intertidal water occurrence composite 

Numerous spectral-based water and vegetation indices, such as the 
Normalized Difference Water Index (NDWI) (McFeeters, 1996), modi-
fied Normalized Difference Water Index (MNDWI) (Xu, 2006), and the 
Automated Water Extraction Index (AWEI) (Feyisa et al., 2014), have 
been used for water body extraction. However, these indices are 

Fig. 2. Histogram of the number of cloud-free Sentinel-2 observations and the number of images used (NOI) in (a) the northwest coast of England, (b) the east coast 
of England, (c) the east coast of Chongming Island, and (d) Sansha Bay. 
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insensitive to salt marsh vegetation inundated by tides, especially in 
estuaries or bays. To mitigate these effects, an algorithm combining 
water and vegetation indices was developed by Zou et al. (2017) and 
subsequently adopted by (Wang et al., 2018) for mapping annual 
changes in national-scale tidal flats. In this study, we extended the 
strategy to a new joint NDWI and the Normalized Difference Vegetation 
Index (NDVI) (Tucker, 1979) algorithm to identify water bodies and 
Equation (3) expresses this joint criterion. 

NDWI = (ρgreen − ρnir)/(ρgreen + ρnir) (1)  

NDVI = (ρnir − ρred)/(ρnir + ρred) (2)  

Water =

{
1,NDWI > TOtsuandNDVI < 0.1and(NDWI > NDVI)

0, others (3)  

where ρgreen, ρred, and ρnir are green, red, and near-infrared (NIR) bands 
of Sentinel-2 imagery, respectively. TOtsu is the water/land segmentation 
threshold calculated by the Otsu algorithm (Otsu, 1979). Compared to 
the approach proposed by Zou et al. (2017), three new criteria were 
incorporated to identify water body. First, the bands with 10-m reso-
lution were selected uniformly to derive NDWI and NDVI instead of 
MNDWI due to the difference in spatial resolution, avoiding the errors 
introduced by upsampling bands with 20-m resolution. Second, the new 
criteria of NDWI > TOtsu was added to further specify the range of water 
body pixels. Third, the criteria of NDVI < 0.1 was used to exclude 
vegetation pixels that were misclassified as water body pixels due to 
tidal inundation. Once the above criterion had been applied to all images 
to complete water and land segmentation, the tidal inundation fre-
quency was calculated using Equation (4). 

Fwater = nwater/N (4)  

where Fwater is the tidal inundation frequency ranging from 0 to 1, nwater 
is the number of measurements that are classified as water at the pixel 
location, and N is the total number of good observations at the pixel 
location. 

3.2. Intertidal elevation estimation model development 

The decreasing relationship between intertidal elevation and tidal 
inundation frequency is evident; however, their exact functional rela-
tionship is largely influenced by the local intertidal slope and tidal 
condition. To model such a relationship accurately, six transects in es-
tuaries or bays of the study areas were selected for analysis. The tidal 
inundation frequency and elevation of these profiles were extracted 
from Sentinel-2 derived from water occurrence and LiDAR-based or UAV 
photogrammetric DEMs, respectively. As shown in Fig. 4, the intertidal 
inundation frequency and elevation demonstrate a significant negative 
correlation. The trend between intertidal elevation and 1-Frequency was 
roughly consistent. Such a relationship was fitted using a simple linear 
model (Eq. (5)). However, the overall consistency showed spatial vari-
ability across transects as well as within the same transect. For example, 
the consistency was better in the Chongming Island and Ribble Estuary 
than in other estuaries or bays. In a specific bay or estuary, such as the 
Solway Estuary (Fig. 4(a)) and Thames Estuary (Fig. 4(d)), the rate of 
elevation declined from land to sea and did not exactly coincide with the 
rate of 1-Frequency decrease. To deal with the spatial variability, a third- 
order polynomial model (Eq. (6)) was designed to regression fit the 
relationship between intertidal inundation frequency and elevation. 
Before regression fitting, the DEMs from LiDAR or UAV photogrammetry 
were resampled to a spatial resolution that was consistent with the 
sentinel-2 derived water occurrence, i.e., 10-m, using bilinear interpo-
lation. Next, the corresponding point values were extracted along the 
transects in the area of overlap between the inundation frequency maps 

Fig. 3. Workflow of our proposed Tide2Topo intertidal topography mapping and results of key steps: (a) Sentinel-2 time series. (b) Tidal inundation frequency map. 
(c) Intertidal topography map. 
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and DEMs to calibrate the linear and polynomial regression models. 
Once the parameters of regression models were solved, the frequency to 
elevation mapping transformation was implemented in the GEE 
platform. 

Hl = af + b (5)  

Hp = w0 +w1f +w2f 2 +w3f 3 (6)  

where Hl and Hp are predicted elevation values for linear and poly-
nomial regression, respectively; f is the inundation frequency derived 
from Sentinel-2 time series; a, b, w0, w1, w2, w3 are regression 
coefficients. 

3.3. Accuracy assessment 

Validation of intertidal topography mapping includes the following 
two aspects: (1) validation of water pixel identification during water 
occurrence composite; and (2) validation of intertidal elevations con-
structed by two regression models. For the first aspect, because the tide 
levels in the coastal areas are time-varying, it is challenging to match 
high-resolution images that are synchronized perfectly with the time of 
acquisition of Sentinel-2 images. Thus, it is not technically possible to 
evaluate the accuracy of water extraction at the pixel level as in previous 
studies (Feyisa et al., 2014; Fisher et al., 2016). Furthermore, the 
water–land interface is more prone to errors in the extraction of 

nearshore water bodies. The semi-open Ribble Estuary and the complex 
Sansha Bay were considered validation areas, and three images for each 
area with different tide conditions (i.e., low, middle, and high tide) were 
selected to quantitatively evaluate the errors. For each image, the 
water–land boundary was first roughly outlined manually, and next, a 
200 m buffer zone was created on both sides of the water–land bound-
ary. Finally, random validation points were generated within the buffer 
zone (Fig. 5). Each point was visually verified and misclassified points 
were counted, and subsequently, omission and commission errors were 
calculated to evaluate the water–land segmentation accuracy. For the 
second aspect, the LiDAR or UAV photogrammetry DEMs were down- 
sampled to 10-m and afterward compared to DEMs constructed by the 
two regression models image-by-image, respectively. Moreover, the 
accuracy of the constructed intertidal topography was quantitatively 
assessed using R2 and the root mean square error (RMSE). 

4. Results 

4.1. Intertidal water occurrence and accuracy evaluation 

Fig. 6 illustrates the spatial extent of unvegetated intertidal zones 
and the frequency of tidal inundation between January 2020 and 
December 2021 for the several typical UK and Chinese estuarine coasts 
or bay shores. The frequency of tidal inundation increased seaward, 
reflecting the intertidal topographic characteristics in reverse. Low-lying 

Fig. 4. Analysis of the relationship between intertidal inundation frequency and elevation in six transects of estuaries or bays.  
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tidal channels and exposed sandbars in estuaries or bays were evident. 
For example, the dense networks of tidal channels in Sansha Bay con-
nected to the sea and extended landward. Similarly, tidal channels close 
to open sea were constantly filled with seawater, and their frequency of 
inundation approached 100%, whereas those extending landward were 
subject to periodic tidal inundation and the frequency of inundation 
gradually decreased until they could not be inundated by the tide (Fig. 6 
(f)). These geomorphological features, as reflected in the map of tidal 
inundation frequency, serve as indicators of intertidal topography. 

The results of water–land segmentation accuracy showed that errors 
of omission and commission at the Ribble Estuary were 1.9% and 0.8%, 
respectively, whereas they are 1.6% and 1.3%, respectively, in Sansha 
Bay (Table 1). Accordingly, the average overall accuracy was calculated 
to be 97.1%. For a convenient inspection, we superimposed water 
extraction results on the original Sentinel-2 images, and water–land 
boundaries were highlighted by a conspicuous red color. As illustrated in 
Fig. 7, our method could distinguish the boundary between water bodies 
and muddy tidal flats well in Sansha Bay. In addition, it can separate 
water bodies effectively from sandy shores in the Ribble Estuary. 
However, minor omission errors of water were present in certain narrow 
tidal channels at the mouth of the Ribble River (Fig. 7(c)-(d); however, 
these were rarely found in tidal channels connected to the sea of the 
Sansha Bay. 

4.2. Intertidal elevation estimation models 

For each estuary and bay, the ground observed elevations and the 
corresponding Sentinel-2-derived tidal inundation frequencies were 
extracted from a profile line. Next, their relationships were modeled 
using a simple linear model and a third-order polynomial model, and the 
results are shown in Fig. 8. Both models achieved good simulation re-
sults with small differences, and R2 ranged from 0.94 to 0.99; however, 
the polynomial model performed better with a higher R2 value. In the 
Solway Estuary, the two modeling functions almost overlapped in the 
observed frequency range with an identical R2 value. The simulation 
differences existed in the high and low-value parts of the tidal inunda-
tion frequency in other estuaries or bays, with a few differences in the 
middle-value part. 

4.3. Intertidal elevation mapping and accuracy evaluation 

The parameters of simple linear and polynomial models obtained 
from one profile-based simulation were used for the transformation of 
inundation frequencies and elevations from local calibration to large 
scale. The results are shown in Fig. 9, where the topography calculated 
using the two models was compared with the high-accuracy topography 
obtained from LiDAR or UAV photogrammetry. The image-by-image 
visual comparison revealed that both DEMs generated from linear and 
polynomial models had good consistency with the reference data in 

Fig. 5. Spatial distribution of validation points for accuracy assessment of water–land segmentation in (a)-(c) the Ribble Estuary, and (d)-(f) the Sansha Bay under 
different tide levels. 
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Fig. 6. Maps of water occurrence derived from Sentinel-2 time series in (a) Solway Estuary; (b) Morecambe Bay, Ribble Estuary, and Dee Estuary; (c) Thames 
Estuary; (d) The Wash Bay; (e) Chongming Island; and (f) Sansha Bay. 
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terms of trend. The results of the point-by-point quantitative evaluation 
indicated that the accuracy of DEMs constructed by the polynomial 
model exceeded that of DEMs constructed by the linear model, with a 
minimum RMSE of 16 cm (Fig. 9(g)) and a maximum RMSE of 38 cm 
(Fig. 9(h)). Consequently, the calibrated polynomial model was selected 
to convert the tidal inundation frequencies in the estuaries or bays to the 
corresponding topography (Fig. 10). These DEMs have a spatial reso-
lution of 10 m and can characterize the general topographic character-
istics of intertidal zones well (e.g., elevation gradient, tidal channels, 
and sandbars). 

5. Discussion 

5.1. Contributions of Tide2Topo in comparison with previous studies 

We developed a novel pixel-based approach, namely Tide2Topo, for 
constructing large-scale intertidal topography from Sentinel-2 time-se-
ries and limited ground truth data. The resulting 10-meter resolution 
intertidal DEMs in a number of estuaries or bays in the UK and China 
have been validated with RMSEs ranging from 16 cm to 38 cm. The 
proposed Tide2Topo method yielded topographic accuracy that was 
significantly superior to those previously generated using the waterline 
method (Bishop-Taylor et al., 2019; Sagar et al., 2017; Wang et al., 
2019). Similar to the commonly used waterline method, Tide2Topo 
utilizes tidal amplitudes at different moments to estimate intertidal el-
evations. However, Tide2Topo avoids the manual selection of images at 
different tidal levels and instead uses full time-series satellite observa-
tions. This ensures finer sampling of the tidal cycle, thereby preventing 
errors caused by spatial interpolation. In particular, the waterline 
method tends to extract only the outermost boundary with the sea, 
ignoring low-lying areas within the intertidal zone, and therefore causes 
an overestimation of the elevation in these areas when interpolating 
waterlines. The use of intertidal inundation frequency in Tide2Topo not 

Table 1 
Accuracy assessment for the water–land segmentation results in Ribble Estuary 
and Sansha Bay.  

Region Omission error Commission error Overall accuracy 

Ribble Estuary  1.9%  0.8%  97.2% 
Sansha Bay  1.6%  1.3%  97.0%  

Fig. 7. Visual assessment of water-land segmentation results under different tide conditions: (a)-(b) the Sansha Bay and (c)-(d) Ribble Estuary. The red lines are the 
water and land boundaries extracted by our method; and the white circles indicate water omission errors in narrow tidal channels. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.) 
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only provides pixel-level elevation estimates, but also avoids the labor- 
intensive process of waterline extraction and the errors arising from 
waterline delineation offsets (Liu et al., 2013). In addition, Tide2Topo 
uses ground truth data rather than tide gauge data to calibrate the 
relationship between pixel-based inundation frequency and elevation 
based on a polynomial model, thus eliminating the effect on elevation 
accuracy due to inaccurate tidal data. Note that Tide2Topo only requires 
a minimal amount of high-accuracy ground measurement data and 
previous studies have shown that locally high precision, high resolution 
ground truth observations have been collected in major coastal areas 
around the world, such as the Yellow River Estuary (Xie et al., 2021), the 
German Wadden Sea (Benninghoff and Winter, 2019), coasts of 
Australia (Doyle and Woodroffe, 2018), and Gulf Coast of United States 
(Johnson et al., 2020). Even in unmapped areas, it is feasible and cost- 
effective to perform a transect surveying using LiDAR or UAV photo-
grammetry. Tide2Topo presents an opportunity to complement those 
fine-scale ground surveys with large-scale satellite observations. 
Consequently, the data availability, robustness and operational ease of 
Tide2Topo enable the accurate mapping intertidal elevation at a conti-
nental or global scale. 

5.2. Impact of the number of available Sentinel-2 data 

To extensively cover the full tidal range, Sentinel-2 images from 
January 2020 to December 2021 with less than 60% cloud cover were 
selected to calculate the tidal inundation frequency. Tidal flats or sandy 
beaches morphology inevitably changes over two years; however, 
tracking associated vertical differences over such a short period is 
challenging for both satellite-based waterline method and Tide2Topo. 
Moreover, Tide2Topo aims to construct a large-scale intertidal topog-
raphy to fill the data gaps in this region and provide key input for me-
dium to long-term coastal dynamic modeling studies. The use of dense 
Sentinel-2 data provides a finer and more complete coverage of the 
tidal range than previous studies such as using Landsat archives as the 
data source (Tseng et al., 2017). Thus, a compromise was achieved be-
tween the number of available Sentinel-2 images and rigorous consid-
eration of coastal morphological stability during image acquisition. This 
trade-off has been indicated as acceptable in previous studies that con-
structed intertidal DEM using the waterline method based on multi- 
temporal Landsat images (Mason et al., 2010; Salameh et al., 2020). 
Furthermore, the intertidal topography of most estuaries or bays does 
not change dramatically in the short term. High-precision unmanned 

photographic surveys, for example, revealed that most mudflat topo-
graphic changes in the Yangtze Estuary ranged from 10 cm to 20 cm per 
year (Chen et al., 2022b). For changes of this magnitude, the above 
trade-off is reasonable. However, intertidal topography could change 
rapidly in short term for some estuaries with high water discharge and 
sediment load, such as the Amazon estuary (Gensac et al., 2016). When 
using Tide2Topo to map estuarine intertidal topography, it is necessary 
to consider the annual variability of the topography and select a 
reasonable date range for the satellite images. 

Nevertheless, because Tide2Topo is a pixel-based method for inter-
tidal topography estimation, we need to study the sensitivity and un-
certainty of the number of available Sentinel-2 cloud-free observations. 
Fig. 11 shows the coverage of the tidal cycle provided by Sentinel-2 for 
the Thames Estuary in 2020–2021, 2020, and 2021, respectively, as well 
as the tidal inundation frequencies calculated based on cloud-free ob-
servations during the corresponding periods. In the ideal cloud-free 
scenario, Sentinel-2 acquired 580 observations at a given pixel loca-
tion in the Thames Estuary between 2020 and 2021. The tidal heights 
associated with these image acquisition dates almost covered the entire 
tidal range of the region completely (Fig. 11(b)). The number of good 
observations remaining after the removal of cloudy pixels was 181, with 
several breaks in the corresponding tidal coverage; however, the dif-
ference in the tidal height between the breaks did not exceed 20 cm. 
However, if only 1 year of Sentinel-2 images were used, e.g., 2020 or 
2021, the number of good observations was halved, and there were more 
significant breaks in the tidal coverage. Thus, these breaks were pre-
sented as stepped changes in the tidal inundation frequency maps, as 
shown in Fig. 11(g). Accordingly, the resulting estimated intertidal 
topography exhibited a discontinuous variation. Although these dis-
continuities can be resolved using spatial interpolation as in the 
waterline method, the resulting DEMs are substantially less represen-
tative of the actual surface elevation. 

5.3. Effect of water body extraction errors on results 

The number of times a pixel is marked for water within a given time- 
series determines the value of the tidal inundation frequency, and 
misclassification of that pixel as water or land overestimates or un-
derestimates the inundation frequency and, accordingly, an underesti-
mation or overestimation of the associated elevation. To quantify the 
effect of water body misclassification on the generated topography at 
the pixel scale, we calculated the elevation errors arising from the 

Fig. 8. Analysis of the relationship between intertidal inundation frequency and elevation in six transects of estuaries or bays and the number of records used (N).  
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Fig. 9. Comparison of elevation estimation results from different models and their accuracy evaluation.  
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cumulative number of misclassifications for different inundation fre-
quencies. For example, in the Thames Estuary, the true tidal inundation 
frequency of a pixel was 0.1, and the number of misclassifications in 
practice was assumed to range from 1 to 10, and the resulting corre-
sponding elevation errors were subsequently calculated. The results 
demonstrated that for a given pixel, the resulting elevation error 
increased with the cumulative number of misclassifications at that pixel 
location in the image collection used (Fig. 12(a)). Because the third- 
order polynomial model is non-linear, the same cumulative misclassi-
fication error resulted in different elevation errors for different true tidal 
inundation frequencies. The resulting elevation errors were larger for 

the true tidal inundation frequencies between 0.4 and 0.7, and an 
accumulated misclassification of more than seven times resulted in 
elevation differences of more than 20 cm. Fortunately, the overall ac-
curacy of about 97% for the water–land segmentation implied that the 
number of misclassifications was limited, ensuring the controllability 
and reliability of the proposed Tide2Topo. Furthermore, the accuracy 
assessment revealed that these misclassification errors occurred pri-
marily in areas near the tidal channels (Fig. 7). This misclassification 
could result from one of the three factors: 1) tidal channels are pathways 
for the exchange of water and sediment during ebb and flood, and the 
rapid changes in water level within them might be out of sync with tidal 

Fig. 10. Intertidal topography transformed from tidal inundation frequency using polynomial models.  

C. Chen et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 200 (2023) 55–72

67

Fig. 11. (a) The plots of the tidal coverage provided by Sentinel-2 images used for the Thames Estuary in 2020–2021. (b) Collection of tidal heights at the acquisition 
moment of Sentinel-2 for different scenarios. (c)-(f) Tidal inundation frequency maps. (g) Comparison of one profile morphology in these maps. 

Fig. 12. (a) Elevation bias caused by misclassification errors of water bodies under different true tidal inundation frequency cases. (b) LiDAR-based DEM. (c) 
Constructed DEM.(d) Comparison of profile morphology in two DEMs. 
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inundation in the tidal flats; 2) the water in tidal channels is extremely 
turbid, and the NIR band of the NDWI index used is sensitive to high 
suspended sediment concentrations and prone to misclassification (Guo 
et al., 2017). Although the shortwave infrared radiation (SWIR) band of 
the MNDWI index can handle with highly turbid water (Jain et al., 
2022), the spatial resolution of the SWIR band in Sentinel-2 is 20 m, and 
upsampling to 10 m could introduce errors; 3) the narrow width of the 
tidal channels and their high proportion of mixed pixels in Sentinel-2 
imagery. Accordingly, comparison of the constructed DEM (Fig. 12(c)) 
with the LiDAR-based DEM (Fig. 12(b)) revealed that the elevation 
differences around the tidal channels were significantly larger than 
those in other regions, up to 40 cm, which is consistent with the theo-
retical assessment above. In comparison to LiDAR-based DEMs in other 
areas excluding tidal channels, Tide2Topo can create intertidal topog-
raphy with elevation errors as low as 10 cm. 

5.4. Selection of representative ground truth surveys used for calibration 

The accuracy of the waterline method was restricted by the accuracy 
of the simulated or measured tidal levels used to calibrate the waterline 
elevation (Gao et al., 2021; Sagar et al., 2017). The Tide2Topo utilized 
high-precision elevations and the corresponding tidal inundation fre-
quencies extracted from one profile morphology to calibrate regression 
parameters. Hence, the Tide2Topo algorithm also suffers from the se-
lection of ground surveys used for calibration. Representative profiles 
are required to extend seaward over the intertidal range exposed during 
low tide to avoid underfitting regression equations in areas where no 
data are available. In addition, spatial differences exist in the instanta-
neous tidal field due to phase differences in tidal wave propagation and 
tidal deformation caused by the complexity of underwater topography. 
For example, the tidal gauge stations at Workington, Heysham, and 
Liverpool are spatially separated by more than 50 km, whereas the 
difference in the tidal height at the same moment varies by up to half a 
meter (Fig. 13(b)). Thus, the assumption that intertidal areas with the 
same tidal inundation frequency have the same elevation holds only on a 
limited spatial range, implying that the regression relationship estab-
lished by a profile at a given location can only be mapped to a limited 
spatial extent theoretically. 

To explore the spatial extent that can be controlled by one calibration 
profile, three DEMs were constructed using one profile located in the 
Solway Estuary, Morecambe Bay, and Ribble Estuary. Five transects 
with direct distances from 1 km to 160 km from the calibration profiles 
were used for validation. As shown in Fig. 13, the DEMs constructed 
based on the Solway transect, the Morecambe transect, or the Ribble 
transect showed a similar pattern in topographic accuracy compared 
with the LiDAR-based DEM: their degree of closeness to the calibration 
transect was related to higher topographic accuracy of the evaluation 
transect. In this case, the accuracy of the constructed topography 
remained high with an RMSE of approximately 40 cm within 50 km from 
the calibration profiles; however, it decreased significantly to around 70 
cm when the distance reached 80 km and to roughly 80 cm when the 
distance exceeded 100 km. Therefore, Tide2Topo has a limited 
requirement for ground truth surveys in intertidal topographic mapping, 
enabling it to be employed in national or global topographic mapping. 
The above evaluation provides practicable guidelines for the location 
and number of representative profiles to be collected for intertidal 
mapping at the national or global scale. 

Furthermore, while the calibration data used in this paper were ob-
tained at the lowest tide, it is worth discussing the calibration model 
selection, and the implications for the results of the calibration data are 
insufficient to cover the seaward width of the intertidal zone. Using 
Morecambe Bay as an example, the LiDAR data within 1 km of the 
seaward side were manually removed to simulate the calibration data 
being acquired at the non-lowest tide (Fig. 14). To fit the elevation 
measured at the non-lowest tide and the corresponding tidal inundation 
frequency, a linear model and a polynomial were used, respectively. The 

polynomial model was found to be locally optimal over the intertidal 
width covered by the calibration data (i.e., within the range of the 
corresponding tidal inundation frequency) but underperformed every-
where else. Conversely, the linear model fits well over the range of tidal 
inundation frequency not covered by the calibration data because its 
slope is constant and in good agreement with the intertidal topographic 
gradient. When using Tide2Topo for intertidal topographic mapping, 
choosing the linear model for elevation calibration will help to avoid 
large errors if the calibration data do not cover the entire range of tidal 
inundation frequency. 

5.5. Future works 

The construction of pixel-based intertidal topography using the 
Tide2Topo requires dense satellite observations sufficient to cover the 
complete tidal range. Although the revisit period of the Sentinel-2 twin- 
satellite constellation is considerably short, the high-frequency cloud 
coverage in the coastal areas considerably reduces the available images. 
As an advanced radar mission, Sentinel-1 mission can deliver images day 
and night under all weather conditions. In addition, it can provide 
numerous available images and obtain a complete sampling of the tidal 
range for a short period. However, extracting exposed muddy flats or 
sandy beaches with Sentinel-1 SAR data remains challenging. For 
instance, there is a large overlap in the radar backscattering distribution 
between wet tidal flats, general tidal flats, and water bodies, making it 
difficult for conventional threshold methods to accurately separate 
exposed tidal flats from water bodies (Fig. 15). Future work in intertidal 
topography construction with Sentinel-1 SAR images should focus on 
developing adaptive or deep learning-based methods to deal with the 
local complexity and tidally spatial variation of exposed tidal flats. Once 
the difficulty has been solved, Sentinel-1 data can be applied to the 
Tide2Topo framework to map large-scale intertidal topography and 
monitor intertidal geomorphological changes at a seasonal or annual 
time scale. 

6. Conclusions 

Intertidal topography is fundamental information for coastal dy-
namics modeling and coastal wetland restoration. Previous approaches 
to intertidal topography construction have been restricted by method-
ological portability and automatization, the spatial coverage of map-
ping, accuracy, and efficiency, thereby limiting their extending potential 
at the global scale. To solve these problems, we proposed a novel method 
of Tide2Topo, to accurately construct large-scale intertidal topography 
with high resolution. Regression analysis was used to establish the 
relationship between the local tidal inundation frequency derived from 
the Sentinel-2 time-series and the corresponding elevation from limited 
ground truth surveys. Next, the obtained parameters were applied to the 
other tidal inundation frequency to complete the construction of the 
large-scale intertidal topography. The main conclusions of the study are 
as follows: 

Tidal inundation frequency derived from the full time-series 
Sentinel-2 can well characterize intertidal topography. Compared with 
the linear model, the third-order polynomial model can better represent 
its relationship with the surface elevation. 

The intertidal topography constructed by the proposed Tide2Topo 
method has high accuracy. Compared to the commonly used waterline 
method, the Tide2Topo method does not require manual image selection 
and additional modifications of the waterline. Therefore, it is simple to 
implement and readily generalizable to continental or global scale. 

The performance of the Tide2Topo is subject to the number of sat-
ellite observations, and adequate observations are required to ensure 
complete sampling of the full tidal range. The effect of the bias of the 
computed tidal inundation frequency caused by water extraction errors 
on Tide2Topo can be evaluated quantitatively and has been demon-
strated to be bounded and moderate. 
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Fig. 13. (a) Exploration of the control range of calibration profiles in the Solway Estuary, Morecambe Bay, and Ribble Estuary. (b) The differences in tide height at 
the same moment in the tide gauge stations at Workington, Heysham, and Liverpool. 
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In addition, Tide2Topo is agnostic to sensors and platform. Our 
future work will incorporate Sentinel-1 SAR as data source, with images 
day and night under all weather conditions to capture complete sam-
pling of the full tide range in a short period, such that we can monitor 
intertidal topography at a seasonal or annual time scale. 
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Fig. 14. Simulation of the effect using calibration data collected at the non-lowest tide.  

Fig. 15. Distribution of SAR backscatter coefficients (VH polarization) from Sentinel-1 for water, very wet tidal flats, and general tidal flats in the Wash Bay.  
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