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S U M M A R Y   

Opportunistic species sightings submitted by citizen science volunteers are a valuable source of species data for 
trends analysis, as used in biodiversity indicators. However, projects collecting these data give people flexibility 
where and when to make records, and the recording behaviour of participants varies between individuals. Here 
we tested the effect of recorder behaviour on outputs of the analysis of temporal biodiversity trends. Using a large 
(c. 3 million records), 20 year unstructured citizen science dataset of butterfly records in Great Britain, we 
manipulated recorder behaviour by constructing biased 50% subsamples of the dataset by preferentially 
including different types of recorders (based on high and low values of four metrics independently describing the 
temporal, spatial and taxonomic attributes of recorder behaviour). We found that, in general, the three outputs 
(namely: occupancy trend, precision of the trend, and the estimate of occupancy) showed relatively little de-
viation from random expectation across most of the different types of recorder behaviour. Occupancy trends 
showed least deviation, while estimates of occupancy itself showed greatest deviation from the random expec-
tation. Regarding the recorder behaviours, the outputs were most sensitive to variation in ‘recorder potential’, 
which describes the difference between ‘thorough’ and ‘incidental’ recorders. Importantly, by demonstrating the 
robustness of occupancy trends to differences in recorder behaviour, this study provides support for the 
appropriate use of occupancy trend modelling for unstructured citizen science. However, we did not consider 
change in recorder behaviour over time, so further research is required to assess the impact of this on trend 
modelling. This study highlights the value of developing solutions to further increase the robustness of biodi-
versity trend analysis. These solutions should include both analytical developments and enhancements in project 
design to engage participants.   

1. Introduction 

In the face of the global biodiversity crisis, understanding changes in 
biodiversity is important to help us address the threats to biodiversity 
(Dirzo et al., 2014). This needs to be supported by accurate information 
on biodiversity trends (Kühl et al., 2020). In particular, there is recent 
concern about invertebrate declines, but our ability to address the causes 
of decline is hampered by the lack of information we have for many 
species in many parts of the world (Eisenhauer et al., 2019; Montgomery 
et al., 2020). 

For many species, records from volunteers, through citizen science, 
are a valuable source of data to assess changes in biodiversity (Rapac-
ciuolo et al., 2021). For some groups of species there are structured 
monitoring schemes that provide excellent information on abundance 
trends, but such high quality data is limited to a few popular species 
groups in a few well-recorded regions or countries (Pilotto et al., 2020; 
Proença et al., 2017). In contrast, the amount of opportunistically- 
collected species records is dramatically increasing, as evidenced 
through the increasingly popularity of species recording platforms, such 
as iNaturalist or, in the UK, iRecord (Amano et al., 2016; Oliver et al., 
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2021). The fact that these data are ‘unstructured’ means that organisers 
do not specify sampling protocols or control the data collection process, 
resulting in an uneven distribution of records in space and time (Boakes 
et al., 2016; Isaac and Pocock, 2015). Occupancy modelling is one 
valuable approach to make use of these data and estimate trends in site 
occupancy, while taking account of imperfect detection, i.e. the fact that 
species could be present but not reported (Altwegg and Nichols, 2019; 
Guillera-Arroita, 2017; Isaac et al., 2014). This approach is increasingly 
widely used to create trends for large numbers of species at national and 
continental scales (Baker et al., 2019; Outhwaite et al., 2020; Powney 
et al., 2019; Soroye et al., 2020; Termaat et al., 2019; van Strien et al., 
2016). 

In addition to variation in the distribution of biodiversity records in 
space and time, there is also variation amongst recorders in their pat-
terns of recording (August et al., 2020; Boakes et al., 2016), as also in 
online citizen science (Ponciano and Brasileiro, 2014; Rallapalli et al., 
2015). In the past, trend analysis has been shown to be reasonably 
robust to simple measures of variation of information content across 
recording visits, i.e. the species list length per visit (van Strien et al., 
2010), but it has also been shown that accounting for observer identity 
leads to improvements in the performance of spatial distribution models 
(Johnston et al., 2018). It is therefore possible that heterogeneity of 
recorder behaviour has the potential to influence occupancy model 
outputs, but its impact is currently not known. 

Variation in patterns of field-based citizen science recording can be 
described by each individual’s spatial, temporal and taxonomic pattern 
of recording (August et al., 2020). Classifying recorders into groups, 
based on their positions on these axes, provides a way to explore the 
impact of recorder behaviour on the performance of occupancy models. 

Here we tested the impact of manipulating recorder behaviour on the 
outputs from occupancy modelling by undertaking occupancy analysis 
on subsets of the unstructured citizen science dataset of UK butterflies. 
Subsets were created either by randomly sampling records or by 
selecting data submitted by recorders with different types of recording 
behaviour. These biased subsets would have differed in their patterns of 
recording (including sample size per species and spatial coverage), 
leading to potential differences in estimates of occupancy trend, preci-
sion of this trend and estimates of mean occupancy. We used UK but-
terflies as an exemplar for this work because they are well-recorded and 
studied (Fox et al., 2023) and the patterns of recording by individuals 
are well-characterised (August et al. 2020). 

2. Methods 

We ran occupancy models for eight species of butterfly from sub-
samples of an existing dataset of records of butterflies from Great Brit-
ain. The dataset was the Butterflies of the New Millennium (BNM), with 
records submitted by volunteers and collated by Butterfly Conservation 
(Asher et al., 2001) and we used BNM records for a 20 year period 
(1995–2014), which was a phase of intensive sampling (Lobo et al., 
2021). 

First, we cleaned the recorder names in the dataset, then we sub-
sampled the dataset according to the different recorder behaviours and 
different dataset sizes, and finally we ran occupancy models to assess the 
impact of recorder behaviour and dataset size on the model outputs. 

2.1. Previous work to characterise recorder behaviour 

Previously, August et al. (2020) used metrics of recorder behaviour 
to describe 5,268 users of the iRecord Butterflies mobile phone app, 
which is a multi-species citizen science project focussed on butterflies in 
the UK. They found that the users can be described by their position 
along four axes of recording behaviour: recording intensity, spatial 
extent, recording potential and rarity recording (Table 1). Individuals in 
that dataset were unambiguously identified with a unique code, but the 
dataset was only of four years’ duration, so was not suitable for the study 

of temporal trends. 

2.2. Standardising recorder names in the database 

We summarised the dataset by visits; a visit was defined as a list of 
one or more butterfly species recorded on a single date in a 1 km × 1 km 
grid square by a single recorder. The BNM dataset is a well-curated 
dataset, but the recorder names came from many different data sour-
ces and are identified by names written as free text, rather than by 
unique identifiers (as in August et al., 2020). 

In the original dataset there were 8,874,402 species records, repre-
senting 3,484,565 visits, with 91,890 unique text strings for the recorder 
name. Dealing with the complexity of name formats is difficult: it in-
cludes challenges such as using full names or initials, hypocorisms (i.e. 
informal versions of personal names) with different initial letters (such 
as Elizabeth/Liz and Robert/Bob), and the inclusion or not of middle 
initials. It would be impossible to perfectly link names to unique in-
dividuals in such a large, heterogeneous dataset. We used a simple 
approach to attempt to standardise the name formats (described in 
Appendix S1) and we removed records from those that were not asso-
ciated with an individual (e.g. ‘…group’ or ‘…society’ or ‘…and…’). 
This process resulted in 3,437,755 species records, representing 
1,413,135 visits, and 56,657 unique text strings for recorder name. 
Overall, our approach will probably tend to over-estimate the number of 
recorders and under-estimate their recording contribution (because, we 
expect that it is more frequent for one recorder to have multiple aliases 
than multiple recorders to have the same alias). This simplification does 
not interfere with the primary aims of our research, which is to explore 
the impact of variation in recorder behaviour in the results of the 
modelling. Henceforth, each unique text string is called a ‘recorder’. 

2.3. Metrics of recorder behaviour 

We used the recorderMetrics package (August et al., 2020) to score 

Table 1 
Description of the four metrics used to describe recorder behaviour in August 
et al. (2020). We have given names and narrative descriptions of the type of 
recorder exhibiting high or low values for each metric for ease of interpretation, 
but these names are not intended to imply that recorders differ in the importance 
of their contributions. ‘Dabblers’, with records from 10 days or fewer, were not 
included in analysis.  

Metric from  
August et al. 
(2020) 

High values Low values 

Recording 
intensity 

Frequent recorders: record 
frequently, regularly and with 
low periodicity (i.e. short gaps 
between records) 

Occasional recorders: 
record infrequently and 
irregularly 

Spatial extent Roaming recorders: record 
over many, widely-distributed 
locations 

Patch recorders: record 
locally and their records are 
more aggregated 

Recording 
potential* 

Thorough recorders: have 
recorded a large proportion of 
species, record fewer single 
species lists on a site visit and 
record more rare species than 
average 

Incidental recorders: record 
fewer species, fewer rare 
species and have more visits 
of only a single species 

Rarity 
recording* 

Twitchers: tend to 
preferentially record rarer 
species, and have a greater 
propensity to record single 
species lists, i.e. those people 
who specifically go looking for 
rare species and only report the 
rarer species that they see 

All-rounders: no bias 
towards rare species and more 
likely to record lists of 
multiple species 

*Recording potential and rarity recording were orthogonal axes taken from a 
principal components analysis by August et al. (2020), and both were required to 
best characterise taxonomic coverage by recorders. 
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each recorder according to four metrics relating to their recording 
behaviour. Each of the four metrics represents a different recorder 
behaviour and the correlations between axes are low (August et al., 
2020) (Table 1). 

It is not possible to determine these scores for recorders with low 
recording activity (10 days or fewer with records), so we omitted such 
recorders from the construction of data subsamples. This resulted in the 
exclusion of 45,958 recorders, although the remaining 18.9% of re-
corders (>10 days of activity) accounted for the vast majority (91.6%) of 
species records. The final, cleaned dataset for analysis therefore 
comprised 3,147,865 species records, representing 1,290,683 visits, and 
10,699 unique text strings for recorder name. 

2.4. Constructing subsets of the dataset 

Our aim was to assess how different recording behaviours influence 
the model outputs. We therefore needed to manipulate the dataset by 
constructing subsets of the full dataset that were biased for each of these 
recording behaviours. We did this by selecting recorders (without 
replacement) from the final dataset, until we achieved datasets with a 
predetermined number of records. 

In order to construct these biased subsets we had to select recorders 
for inclusion in a way that was biased according to their value of one of 
the four recorder metrics. Simply selecting the recorders at the top or 
bottom of the recorder metrics would have created unrealistic datasets. 
Instead the biased subsets were constructed probabilistically: the list of 
recorders were ranked by their value for each metric and we took a 
weighted random sample so that each successive decile of recorders 
were twice as likely to be selected as the previous decile. For example, 
the 90th percentile recorder for a specific metric was twice as likely to be 
selected compared to the 80th percentile recorder, which in turn was 
twice as likely to be selected compared to the 70th percentile recorder. 
Recorders were added to the data subset in this biased way until we 
reached 50% of the total number of records in the full dataset (about 1.6 
million records). We also repeated this analysis for thresholds of 80% 
and 20% of the records (about 2.5 and 0.6 million records, respectively) 
and found broadly similar results (Appendix S3). This was done sepa-
rately for high-to-low and low-to-high values of each of the four recorder 

behaviour metrics, so by doing this, we obtained eight biased datasets 
that we used for analysis of species trends (Fig. 1). The ideal would have 
been to run the occupancy trend models with hundreds of different 
subsets for each type of bias in recorder behaviour, but due to the major 
computational demands of running these models, we constructed each 
biased dataset once. 

One of the challenges with making a fair assessment of the impact of 
biases in recorder behaviour is that the full dataset does not provide the 
‘truth’ for the values of the outputs. Indeed, the full dataset is likely to be 
biased itself, especially in its spatial coverage (Boyd et al., 2021; Isaac 
and Pocock, 2015), and certain subsets of the data may actually be more 
representative than the full dataset (Boyd et al., 2022). However, we do 
not have an independent assessment of the true species trends. 
Comparing the outputs from the final, cleaned dataset with the 50% 
biased subsets is not a fair test because reducing the amount of data is 
likely to affect the precision of estimates. We therefore compared the 
50% biased subsets with 50% random subsets. This enabled us to assess 
the sensitivity of the outputs to changes in the recording behaviour of 
volunteers. For the 50% random subsets we selected recorders (without 
replacement) at random until we obtained a dataset with 50% the 
number of records compared to the final dataset for analysis. This was 
done four times to estimate variation due to random subsampling 
(Fig. 1). 

2.5. Running occupancy trend analysis 

For the full dataset and each of the data subsets, we ran Bayesian 
occupancy models (Outhwaite et al., 2018, 2020) to estimate the annual 
occupancy for eight focal species of butterfly. Occupancy models are 
used with presence/absence datasets to account for imperfect detection: 
the data are used to estimate detection rate and, taking this into account, 
the true rate of presence in the sampled sites (the ‘occupancy’) is esti-
mated (Altwegg and Nichols, 2019; Guillera-Arroita, 2017). The specific 
form of occupancy model that we used included a smoothing term across 
years to reduce stochastic variability in occupancy due to data variation 
(Outhwaite et al., 2018). 

The models were run for each of eight species of butterfly in turn 
(Table 2). These butterfly species were selected because they were 

Fig. 1. The process of this research showing the construction of subsets of the full, cleaned dataset and the three metrics obtained from each output. In the graph the 
dashed black line is the control (annual estimates of occupancy from the random or full datasets, depending on the question) and the orange line shows a single set of 
posteriors from the Bayesian occupancy model (solid line), a linear trend of occupancy (dotted line) and the variance of slopes from across the posteriors. As well as 
50% subsets, we ran this process for 80% and 20% subsets. The final, cleaned dataset excluded records that were not associated with an individual (e.g. attributed to 
a ‘group’ or ‘society’) and excluded records from those recording on 10 days or fewer. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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relatively easy to identify, varied substantially in their occupancy (from 
common and widespread species to rare and restricted species), their 
specialism (from habitat specialists to wider countryside species (Brer-
eton et al., 2015)) and their trends. Each data subset provided infor-
mation on the visits for which that species of butterfly was reported (a 
‘presence’) or was not reported (a non-detection, i.e. an inferred 
‘absence’). 

2.6. Summarising the results of the biased subsamples compared to the 
control 

The Bayesian occupancy model was run with 20,000 iterations and a 
burn-in of 10,000 (as per Outhwaite et al., 2019) and provided 1000 
posterior samples of the estimated annual occupancy for each species 
from each data subset. From these data we could estimate three outputs 
(Fig. 1). Firstly, we estimated the trend in occupancy, which was defined 
as the slope of a linear trend across years. This was calculated for each of 
the 1000 samples and averaged across samples. Secondly, we estimated 
the precision of the trend, which we defined as the variance across the 
1000 samples. Thirdly, we estimated the deviation in occupancy. We 
calculated this by taking the difference between the occupancy estimate 
for one posterior sample and the full dataset for each year in turn. We 
averaged this difference across years, and then averaged this across all 
1000 posterior samples. Even though occupancy varied substantially 
across species and years (from 0.016 to 0.951), we found that the ab-
solute difference (sample – full model) was a better metric across species 
than relative difference (sample / full model). 

Z-scores were used to compare the outputs of the analysis of biased 
subsamples to the outputs from random subsamples. Z-scores are 
calculated as the observed value minus the mean of the control sample, 
divided by the standard deviation of the control sample. For the three 
outputs (trend, precision of the trend and deviance in occupancy), the 
observed value (average slope, variance of slope and average difference 
in occupancy, respectively) from the biased subsample was compared to 
the mean and standard deviation of the four random subsamples. Z- 
scores were calculated separately for each species and for each type of 
bias (high and low, for each of the four recorder metrics). When the 
absolute value of the z-score exceeded 1.96, then it was regarded as a 
significant deviation from a normally distributed set of expected values. 
To assess the overall impact of each of the four recorder behaviours on 
each of the three output metrics, the ‘mean absolute error’ was calcu-
lated from z-scores for high and low biased subsamples averaged across 
all species. 

We explored how changes in the patterns of recording (including 

sample size per species and spatial coverage) could have affected the 
model outputs. Firstly, we tested for a relationship between the number 
of records per species and the precision of the trend (relative to the 
control). Secondly, we tested for differences in the spatial coverage 
across habitats. The Land Cover Map has information on the habitat 
coverage of every 1 km square in the UK (Rowland et al. 2017) and from 
this we calculated the proportional area of nine habitat types (according 
to Border et al. 2019) across the 1 km squares in each biased subsample. 
These were compared to the random subsamples, and to the total for the 
whole of the UK. 

3. Results 

3.1. The creation of subsamples 

It was important to confirm that our method of constructing the 
biased subsamples only impacted the recorder metric of interest. Visu-
alising the distribution of recorders according to the value of each metric 
shows that manipulating the inclusion of individuals according to the 
four recorder metrics did result in observed differences in that metric 
between the biased and random subsamples (shown by differences in the 
curves on the plots on the diagonal in Fig. 2). In contrast, there was no 
substantial variation in the distribution of recorder metrics that were not 
manipulated (shown by the high degree of congruence of the curves in 
plots that are not on the diagonal in Fig. 2). Therefore our results 
demonstrated our ability to create datasets that were biased by one type 
of recorder behaviour independent of the others. 

3.2. The effect of variation in recorder behaviour 

To assess the effect of manipulating recorder behaviour compared to 
the observed data, we compared the results of the biased subsamples to 
the random subsamples. We found that despite differences in occupancy 
and trend for the eight butterfly species, there was no systematic effect 
across butterflies (Appendix S2) and so here we report the results 
aggregated across all eight species (Fig. 3). 

Considering the effect of the biased subsamples on the trends in 
occupancy, we found no consistent effect of recorder behaviour on the 
estimates of the slope (i.e. the median across species of the z-score was 
within the range − 1.96 to + 1.96; Fig. 3a). This indicates that trends 
obtained from occupancy models are robust to differences in the pat-
terns of recording behaviour between datasets. The precision of the 
trend was affected by recording potential and spatial extent (Fig. 3b), 
whereas the occupancy itself was affected by recording potential and 

Table 2 
The eight species of butterfly in this analysis, ordered by mean annual occupancy. The occupancy, trend and variance of the trend were obtained from 1000 posterior 
samples of the outputs from Bayesian occupancy analysis of the full dataset.  

Species English vernacular name Specialism* Mean annual occupancy of visited 
squares** 

Trend in occupancy (linear 
slope)** 

Variance of the 
trend** 

Aglais io Peacock Wider 
countryside  

0.951 0.876 × 10-2 5.706 × 10-4 

Aphantopus hyperantus Ringlet Wider 
countryside  

0.804 1.133 × 10-2 5.690 × 10-4 

Pararge aegeria Speckled Wood Wider 
countryside  

0.732 1.910 × 10-2 4.042 × 10-4 

Coenonympha 
pamphilus 

Small Heath Wider 
countryside  

0.275 − 0.550 × 10-2 3.855 × 10-4 

Erynnis tages Dingy Skipper Habitat specialist  0.100 0.241 × 10-2 2.166 × 10-4 

Boloria selene Small Pearl-bordered 
Fritillary 

Habitat specialist  0.058 0.034 x10-2 1.494 × 10-4 

Polyommatus coridon Chalk Hill Blue Habitat specialist  0.034 0.030 × 10-2 1.342 × 10-4 

Euphydryas aurinia Marsh Fritillary Habitat specialist  0.016 0.026 × 10-2 0.573 × 10-4 

* According to Brereton et al. (2015). 
** This dataset refers to 20 years of butterfly records (1995–2014) in which a visit refers to a unique combination of recorder name, date and 1 × 1 km grid cell, and we 
removed records that were not associated with an individual, and those from individuals who had records on ten dates or fewer (see Sections 2.2 and 2.3). The results 
are from occupancy analysis of this dataset. 
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rarity recording (Fig. 3c). Across all three metrics, recording potential 
had the greatest impact on the results, and recording intensity had the 
least (Fig. 3d). 

The precision of the slope was assessed by its variance (i.e. high 
variance is low precision; Fig. 3b). It was not sensitive to manipulations 
of two metrics of recorder behaviour (recording intensity and rarity 
recording), but it was sensitive to the other two metrics. Specifically, the 
variance was greater than expected (compared to the random sub-
samples, i.e. the z-score was larger) when manipulating the dataset for 
high values of spatial extent and for both high and low values of 
recording potential. This showed that, surprisingly, the trend estimates 
have high variation when there are more records from ‘thorough’ re-
corders (i.e. high recording potential: naturalists who record a high 
proportion of the species present and are more likely to make records of 
multiple species per visit) compared to incidental recorders. The trends 
are also less precise when there are more data from patch recorders (low 
spatial extent) compared to roaming recorders. Both of these results 
seems counterintuitive, because both ‘thorough recorders’ and ‘patch 
recorders’ would generally be expected to provide informative records, 
yet increasing their relative contribution leads to lower precision. 

The occupancy estimates were also affected when manipulating 
recording potential and rarity recording. The effect was greatest for 
recording potential, as shown by the fact that the z-scores comparing the 
biased to the control subsamples lay outside of the range − 1.96 to +
1.96 for almost all species. The effect of this can be clearly seen in the 
species that exhibit the greatest effects (Fig. 4), in which the occupancy 
estimates are shifted up or down the y-axis, even though the slope itself 
is fairly consistent between control and biased subsamples. 

These effects, comparing biased to random subsets of the data were 

consistent across different sized subsets of the data (Fig. S3.1 in Ap-
pendix S3). Although not the primary focus of our study, these results 
also allowed us to examine the effect of the size of the randomly-selected 
datasets on the outputs. We found that as the random subsets got smaller 
then, compared to the full dataset, the trends were estimated higher for 
the rarer butterflies, the trend variance greatly increased, and differ-
ences in occupancy increased, although the direction of this last effect 
varied by species (Fig. S3.2 in Appendix S3). 

The number of records for each species varied across the random and 
biased subsamples, but we found no consistent evidence that the number 
of records for a species affected the precision of the trend (Appendix S4). 
When considering the distribution of records according to habitat (Ap-
pendix S5), we found that, as expected, habitats were not sampled 
representatively: built-up areas and broad-leaved woodland were sub-
stantially over-represented in the random subsamples compared to the 
whole of the UK, and moorland, heath and bog and semi-natural 
grassland were substantially under-represented. Biasing the data sub-
samples by different types of recording behaviour had some effect on 
relative habitat coverage (Fig. 5; Appendix S5 for details). Differences in 
the habitat coverage could be one explanation how different types of 
recorder behaviour influence the model outputs. 

4. Discussion 

There is an increasing use of opportunistically-collected citizen sci-
ence data for modelling biodiversity trends and, concurrent with this, is 
a growth in modelling approaches to deal with the challenge of imper-
fect detection in non-standardised sampling (Bird et al., 2014; Isaac 
et al., 2014; Rapacciuolo et al., 2021). Bringing greater standardisation 

Fig. 2. The distribution of recorder metrics for the recorders included in the biased 50% subsample datasets. Each plot shows three datasets: the control (removing 
50% of records randomly) and the two biased datasets (removing 50% of records but biased towards high or low values of each recorder metric). Each row shows 
results for one manipulated dataset. The plots on the diagonal (highlighted with a thick border) show the measured impact of manipulating that metric. 
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in sampling, e.g. through semi-structured citizen science will help this 
(Kelling et al., 2019), but it will not fully address issues of spatial un-
evenness in datasets. There are differences in recording behaviour be-
tween individuals (August et al., 2020; Boakes et al., 2016), so it is 
important to understand the impact of these differences on analysis 
(Johnston et al., 2022). Here, we undertook simulations to help to 
address this question. Variation in recorder behaviour has been char-
acterised for some unstructured citizen science datasets (August et al., 
2020; Boakes et al., 2016) and our simulations assessed the effect of 
different types of recording behaviour on the results of trend analysis 
using occupancy modelling (Guillera-Arroita, 2017; Isaac et al., 2014). 
Overall, we found that three output metrics from occupancy models (i.e. 
trend, precision of trend and estimate of occupancy) are not substan-
tially affected by most aspects of recorder behaviour, although there are 
some important caveats to this, as explored below. 

4.1. Effects of recorder behaviour on the occupancy model results 

Firstly, we considered impacts on the trend in occupancy because 
reporting often focuses on biodiversity trends to assess the ‘state of na-
ture’, quantify the impact of drivers of change, and evaluate 

interventions (Hayhow et al., 2019; Outhwaite et al., 2020). Secondly, 
we considered the precision of the trend estimates. This is important 
because greater precision (when models are correctly specified) pro-
vides greater confidence in evaluating the statistical significance of 
trends and so detect change as early as possible. Thirdly, we considered 
the estimate of occupancy itself (averaged across years) because this 
provides an estimate of species’ distribution size, which is valuable for 
some assessments, such as Red List reporting (Cardoso et al., 2011). 

Across the eight species we modelled, which varied in their trend and 
rarity, the occupancy trend was robust to differences in recorder 
behaviour (Fig. 3a). This suggests that the reported trends for biodi-
versity taxa in Britain would not have been affected by any systematic 
variation in recording behaviour across datasets for the taxonomic 
groups (Outhwaite et al., 2020). However, the precision of the trend and 
the estimate of occupancy could have been affected if recorder behav-
iour differed across datasets (Fig. 3b and c). 

When considering the type of recording behaviour that has greatest 
impact, our results showed that the models were most robust to differ-
ences in recording intensity (the frequency and regularity of records per 
participant; Fig. 3d). Therefore, when accounting for the total size of the 
dataset (the number of records), the intensity of recording by individuals 

Fig. 3. The effect of taking biased subsamples, according to high and low values of four types of recorder behaviour on the estimates of (a) the slope, (b) the variance 
of the estimate of the slope (i.e. inverse of precision) and (c) the difference in occupancy compared to the full dataset, and (d) the comparison of the mean absolute 
error of the z-score for the three metrics. The boxplots show the z-scores of the biased subsamples, based on comparison with four replicates of the same-sized random 
subsamples for the eight species of butterfly. Here we show the results for 50% subsamples, although the results are similar for 80% and 20% subsamples. We show 
the results for all species combined because there was no consistent effect across species (see Appendix S3). Horizontal dotted lines represent a significance value of 
0.05 for the comparisons of each biased subsample to the control subsample. 
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Fig. 4. Example trends for two species of butterfly showing the effect of bias of recorder type (high and low recording potential) on estimates of occupancy. Marsh 
Fritillary (Euphydryas aurinia) and Speckled Wood (Pararge aegeria) had particularly extreme effects of the subsamples that were manipulated to be biased for low and 
high values of recording potential, respectively. The coloured areas show the 95% confidence intervals of the posteriors from the Bayesian occupancy analysis. Note 
the difference in the scale on the y-axis: Marsh Fritillary is a rare species (occupancy = 0.5–2.5% of sampled grid squares), whereas Speckled Wood is much more 
common (occupancy = 37–80% of sampled grid squares). 

Fig. 5. The proportion of habitats in the whole of the UK (white circle), the four random subsamples (grey rectangle indicating the full range), and the biased 
subsamples indicated by recorder behaviour (four different colours, with symbols indicating subsamples that were biasing high or low). This shows that, as expected, 
the citizen science recording is not representative across habitat types (grey bars compared to white circles) and that biasing across to different types of recorder 
behaviour creates differences from the random subsamples (coloured triangles compared to grey bars). 
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(the number of records and the gap between periods of recording) does 
not affect the estimates of occupancy, trend in occupancy, or its preci-
sion. In contrast, the other three aspects of recording behaviour do affect 
different aspects of the outputs. In particular, the overall outputs were 
most sensitive to recording potential (Fig. 3d). 

The precision of the trend estimate was sensitive to two aspects of 
recorder behaviour. Although greater precision in trend estimates seems 
positive, certain subsets of the data could lead to occupancy trend es-
timates that were erroneously precise, e.g. due to model misspecification 
or lack of representativeness of the dataset. When considering the out-
puts of occupancy trend modelling, the results are with respect to the 
subset of sites that have been sampled, which may not be representative 
of the region of interest (Boyd et al., 2021). Our results suggest that this 
could be particularly problematic when there are biases towards the 
types of recorders that we termed ‘thorough recorders’ (i.e. with high 
recording potential) or ‘patch recorders’ (i.e. with low spatial extent of 
recording). 

4.2. The potential reasons why recorder behaviour affects biodiversity 
trend analysis 

Since we found that some types of recorder behaviour impacts on the 
occupancy model outputs, this raises the question: what were the un-
derlying causes for these effects? We expect that the effects are due to a 
combination of both the range of sites included in the dataset and the 
information content per site (e.g. number of revisits and the detectability 
per species). When manipulating the data according to different aspects 
of recorder behaviour, there were differences in the habitat coverage of 
sites (in our case, 1 km squares; Fig. 5), hence biasing the sample of sites 
over which occupancy and its trend is estimated. For example, partici-
pants with higher rarity recording behaviour might lead to the inclusion 
of more nature reserves in the dataset, which could cause model esti-
mates to be less representative of the whole region. There is a balance for 
project organisers in encouraging participants to visit more grid squares 
(thus potentially provide greater spatial representativeness for the es-
timate of occupancy), which comes at the cost of fewer revisits (thus 
potentially providing poorer estimates of detection probability). The 
overall effect on the precision of the trend is difficult to predict a priori 
and so should be a focus for future research. 

4.3. Limitations of this study and opportunities to develop solutions 

In the current study, we focussed on a well-recorded taxon, and our 
data subsample (50% of the total, including all species of butterfly) was 
1.6 million records over the 20 year period, i.e. an average of 80,000 
species records per year and c. 10–15,000 site visits per year. This is far 
more than is available for most taxa and in almost all other parts of the 
world. We note that, although there were some significant effects of 
recorder behaviour on two of the output metrics, the differences were 
quite modest compared to the expected values. It will be important to 
test our results further with smaller datasets in which biases in outputs 
due to recorder behaviour might be more pronounced, but we expect 
that the overall pattern of our results will be similar. 

A practical challenge for this study was the lack of standardised, 
unique versions of people’s names. This problem has only recently been 
addressed in other areas, such as authors of academic papers (Haak 
et al., 2012). Further work could improve our approach of standardising 
people’s names, and the increased use of online portals (with a unique 
identifier associated with each unique registration) will reduce this 
problem, but harmonising unique identifiers across datasets and across 
platforms will remain a challenge (Johnston et al., 2022). Johnston et al. 
(2018) indicated the value of including individual recorder identify 
when modelling citizen science data, so developing pipelines to retro-
spectively improve standardisation of recorder identities would be 
valuable. 

One of the other major limitations of this study is the fact that the 

true values of the parameters of interest (trend, precision of trend or 
occupancy) were not known. The full dataset was subject to spatial and 
temporal biases itself (Fig. 5), in common with all unstructured 
recording (Geldmann et al., 2016; Pernat et al., 2021; Petersen et al., 
2021). Therefore, here, we only report on differences from random 
subsamples of the dataset. In particular, because the occupancy is esti-
mated from the set of sampled sites, if those sampled sites are not 
representative of the species or range of interest, then the estimated 
trend in occupancy may not represent the true value (Boyd et al., 2022). 
Modelling simulated datasets (as per Isaac et al., 2014) would be 
required to understand the impact of this, although it is challenging to 
set up realistic, but tractable, simulation studies with variation in spe-
cies, site suitability and recorders. 

In this study we manipulated the overall dataset, however many 
aspects of recording vary over time (Knape et al., 2022), so it is possible 
that the metrics of recording behaviour could also change over time. 
This could be due to the inclusion of different types of recorder, e.g. 
selective recruitment towards beginners or experienced recorders will 
change the average recording behaviour of participants. It could also be 
because the motivation of participants will change over time (Rotman 
et al., 2014) or the recording environment changes, e.g. because tech-
nology facilitates people making more records more frequently (Pocock 
et al., 2017). Indicators of these changes can be seen in the pattern of 
species composition of records, e.g. with more records of commoner, 
conspicuous species than in the past (Ball et al., 2021). Indeed, such a 
shift in recording behaviour can actually be elicited by the project or-
ganisers, e.g. the dramatic shift in eBird towards people reporting 
‘complete lists’ rather than ‘incidental’ records was due to communi-
cation and technological facilitation (Sullivan et al., 2014). In our study, 
the estimate of occupancy was the output that was the most sensitive to 
recorder behaviour. Therefore if recording behaviour changed over 
time, then it would effect trend estimates (Fig. 6). Currently the varia-
tion in recorder behaviour over time is not well known, and so there is a 
need to better describe and understand these changes in long-term 
recording projects, and to assess their impact on biodiversity trend 
analysis. 

Describing the potential impacts of changing recording behaviour is 
valuable, but it is more fruitful to propose solutions to these issues. One 
approach could be to enhance the analytical models to take account of 
potential bias: by using models that are demonstrably robust to potential 
sources of bias in the dataset (as identified in the current study, see also 
van Strien et al. (2010)); by weighting sites appropriately to increase the 
representativeness of the dataset (Johnston et al., 2020); or by explicitly 
modelling recorders in the analysis (Johnston et al., 2018). A second 
approach would be to influence recorder behaviour directly. These cit-
izen science data come from people’s engagement with nature, and so 
will be influenced by many different individual factors, including the 
opportunity and motivation to record (Soga et al., 2021). Engagement 
with recorders could support beneficial forms of recorder behaviour to 
reduce biases in the dataset (Callaghan et al., 2019). Depending on the 
question of interest this could include recording previously unvisited 
sites, or prioritising the revisiting of sites. Creating feedback loops for 
recorders to be more engaged with the impact of their recording, and 
encouraging behaviour change that would benefit the data, is a prom-
ising area of innovation which will benefit from advances in technology 
and data science. 

4.4. Conclusions 

Overall, our results suggest that species’ trend estimates from oc-
cupancy modelling are largely robust to heterogeneity in recorder 
behaviour. This is an encouraging result, supporting the value of using 
occupancy modelling with unstructured citizen science for biodiversity 
monitoring. There are some systematic biases when manipulating the 
dataset according to some aspects of recorder behaviour and although 
the impact on the outputs was modest, this could become more 
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important if patterns of the recording behaviour of project participants 
changed over time. In particular, the influence of recorder behaviour on 
the inclusion of sites in the dataset, and the impact of differing site in-
clusion on overall estimates of occupancy requires further investigation, 
especially through simulations when the true values of occupancy and 
trend can be known. 
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Kühl, H.S., Bowler, D.E., Bösch, L., Bruelheide, H., Dauber, J., Eichenberg, D., 
Eisenhauer, N., Fernández, N., Guerra, C.A., Henle, K., Herbinger, I., Isaac, N.J.B., 
Jansen, F., König-Ries, B., Kühn, I., Nilsen, E.B., Pe’er, G., Richter, A., Schulte, R., 
Settele, J., van Dam, N.M., Voigt, M., Wägele, W.J., Wirth, C., Bonn, A., 2020. 
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García-González, R., Gómez García, D., Grandin, U., Gutowski, J.M., Hadar, L., 
Halada, L., Halassy, M., Hummel, H., Huttunen, K.-L., Jaroszewicz, B., Jensen, T.C., 
Kalivoda, H., Schmidt, I.K., Kröncke, I., Leinonen, R., Martinho, F., Meesenburg, H., 
Meyer, J., Minerbi, S., Monteith, D., Nikolov, B.P., Oro, D., Ozoliņš, D., Padedda, B. 
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